Nothing Special   »   [go: up one dir, main page]

JP2024063690A - Operation method of nitrogen production device - Google Patents

Operation method of nitrogen production device Download PDF

Info

Publication number
JP2024063690A
JP2024063690A JP2022171856A JP2022171856A JP2024063690A JP 2024063690 A JP2024063690 A JP 2024063690A JP 2022171856 A JP2022171856 A JP 2022171856A JP 2022171856 A JP2022171856 A JP 2022171856A JP 2024063690 A JP2024063690 A JP 2024063690A
Authority
JP
Japan
Prior art keywords
nitrogen
liquefied
oxygen
enriched
fractionator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022171856A
Other languages
Japanese (ja)
Inventor
伸一郎 山本
Shinichiro Yamamoto
碧 長谷川
Midori Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2022171856A priority Critical patent/JP2024063690A/en
Publication of JP2024063690A publication Critical patent/JP2024063690A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04424Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system without thermally coupled high and low pressure columns, i.e. a so-called split columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

To provide an operation method that can further reduce the power consumption of a nitrogen production device which industrially produces nitrogen by using cryogenic liquefaction/separation and also can further reduce power source unit.SOLUTION: A operation method of a so-called double-tower nitrogen production device having a first rectification tower 8 and a second rectification tower 51 for collecting product nitrogen by cryogenically liquefying and separating compressed, rectified, and cooled material air, repeats a liquid collecting operation which extracts at least a part of first liquefied nitrogen obtained in the first rectification tower 8 and introduces it into a liquefied nitrogen storage tank 80, and a liquid injection operation which injects the liquefied nitrogen into the second rectification tower 51 from the liquefied nitrogen tank 80 via a liquefied nitrogen injection path 72 and stops operation of an expansion turbine 24.SELECTED DRAWING: Figure 3

Description

本発明は、窒素製造装置の運転方法に関し、より詳しくは、原料空気を深冷液化分離法により原料空気を分離精製して製品窒素(窒素ガス、液体窒素)を採取する窒素製造装置の運転方法に関する。 The present invention relates to a method for operating a nitrogen production apparatus, and more specifically, to a method for operating a nitrogen production apparatus that separates and refines raw air using a cryogenic liquefaction separation method to extract product nitrogen (nitrogen gas, liquid nitrogen).

窒素の工業的な製造には深冷液化分離法によって空気液化分離させる方法が多く採用されている。このような、深冷液化分離法を利用して工業的に窒素を製造する方法として、二塔式窒素製造装置プロセスを採用した窒素製造方法が開示されている(例えば、特許文献1及び特許文献2参照)。 In the industrial production of nitrogen, a method of air liquefaction separation using cryogenic liquefaction separation is often used. As a method of industrially producing nitrogen using cryogenic liquefaction separation, a nitrogen production method employing a two-tower nitrogen production apparatus process has been disclosed (see, for example, Patent Documents 1 and 2).

特許文献1及び特許文献2で開示されている窒素製造方法は、精留塔を2塔備えた二塔式窒素製造装置を用い、精留塔を1塔だけ備えた単塔式窒素製造装置を用いての単塔式窒素製造装置プロセスでは破棄されていた(一方の)精留塔から出た廃ガスを他方の精留塔の原料として導入することで、製品収率や動力原単位を大幅に改善することが可能となっている。 The nitrogen production methods disclosed in Patent Documents 1 and 2 use a twin-column nitrogen production system equipped with two rectification towers, and introduce waste gas from one of the rectification towers, which is discarded in a single-column nitrogen production system process using a single-column nitrogen production system equipped with only one rectification tower, as raw material for the other rectification tower, making it possible to significantly improve product yield and power consumption.

図1は、特許文献1でも用いられる精留塔を2塔備えたいわゆる二塔式窒素製造装置の装置構成の一例を示す系統図であって、この図を用いて、従来の基本運転方法について説明する。 Figure 1 is a system diagram showing an example of the equipment configuration of a so-called two-tower nitrogen production equipment equipped with two rectification towers, which is also used in Patent Document 1. Using this diagram, the basic conventional operating method will be explained.

まず、この窒素製造装置は、原料空気圧縮機3で所定の圧力まで昇圧され、前処理吸着器4で精製された後に、保冷外槽5内の主熱交換器6で冷却された原料空気を低温蒸留して塔上部の第1窒素ガスと塔底部の第1酸素富化液化流体とに分離する第1精留塔8と、前記第1窒素ガスと減圧弁16で減圧した前記第1酸素富化液化流体とを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第1酸素富化液化流体を蒸発ガス化して第1酸素富化ガス流体を得る第1凝縮器13と、前記第1酸素富化ガス流体の一部を低温蒸留して塔上部の第2窒素ガスと塔底部の第2酸素富化液化流体とに精留分離する第2精留塔51と、前記第2窒素ガスと減圧弁63で減圧した前記第2酸素富化液化流体とを間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に第2酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2凝縮器58と、前記第1窒素ガスの一部を熱回収後に第1製品窒素ガスとして導出する第1製品回収経路11と、前記第2窒素ガスの一部を熱回収後に第2製品窒素ガスとして導出する第2製品回収経路56と、第1精留塔8の下部と第2精留塔51の下部とを弁62を介して連結する第1酸素富化液化流体合流経路61と、前記第1酸素富化ガス流体の一部を断熱膨張させる膨張タービン24と、前記第2製品窒素ガスを圧縮する窒素圧縮機54とを備えている。 First, this nitrogen production apparatus comprises a first fractionator 8 that performs low-temperature distillation of the raw air that has been pressurized to a predetermined pressure by a raw air compressor 3, purified by a pretreatment adsorption unit 4, and then cooled by a main heat exchanger 6 in a cold-storage outer tank 5, to separate the raw air into a first nitrogen gas at the top of the tower and a first oxygen-enriched liquefied fluid at the bottom of the tower; a first condenser 13 that performs indirect heat exchange between the first nitrogen gas and the first oxygen-enriched liquefied fluid reduced in pressure by a pressure reducing valve 16 to condense and liquefy the first nitrogen gas to obtain first liquefied nitrogen, and at the same time, evaporates and gasifies the first oxygen-enriched liquefied fluid to obtain a first oxygen-enriched gas fluid; a second fractionator 51 that performs low-temperature distillation of a portion of the first oxygen-enriched gas fluid, to rectify and separate the second nitrogen gas at the top of the tower and the second oxygen-enriched liquefied fluid at the bottom of the tower; The second condenser 58 indirectly exchanges heat with the second oxygen-enriched liquefied fluid depressurized by the pressure valve 63 to condense and liquefy the second nitrogen gas to obtain second liquefied nitrogen, and at the same time evaporates and gasifies the second oxygen-enriched liquefied fluid to obtain a second oxygen-enriched gas fluid; a first product recovery path 11 that discharges a portion of the first nitrogen gas as a first product nitrogen gas after heat recovery; a second product recovery path 56 that discharges a portion of the second nitrogen gas as a second product nitrogen gas after heat recovery; a first oxygen-enriched liquefied fluid merging path 61 that connects the lower part of the first fractionator 8 and the lower part of the second fractionator 51 via a valve 62; an expansion turbine 24 that adiabatically expands a portion of the first oxygen-enriched gas fluid; and a nitrogen compressor 54 that compresses the second product nitrogen gas.

また、この窒素製造装置は、液化窒素貯槽80に貯蔵されている液化窒素を前記第1精留塔8及び前記第2精留塔51に導入する液化窒素注入経路71,72を備えている。 This nitrogen production device also includes liquefied nitrogen injection paths 71, 72 that introduce liquefied nitrogen stored in a liquefied nitrogen storage tank 80 into the first fractionator 8 and the second fractionator 51.

次に、この装置の基本運転について説明する。まず、経路1からフィルター2を経て取り入れられた原料空気は、原料空気圧縮機3で所定の圧力に圧縮され、前処理吸着器4で水分や二酸化炭素等の不純物が除去されて精製された後、保冷外槽5内の主熱交換器6で製品窒素ガスや廃ガスと熱交換を行って所定の温度に冷却される。 Next, we will explain the basic operation of this equipment. First, the raw air taken in through path 1 and filter 2 is compressed to a specified pressure by raw air compressor 3, and purified by pretreatment adsorber 4 to remove impurities such as moisture and carbon dioxide. After that, the air is cooled to a specified temperature by exchanging heat with product nitrogen gas and waste gas in main heat exchanger 6 in outer refrigerated tank 5.

圧縮、精製、冷却後の原料空気は、主熱交換器6から原料空気流入経路7を通って第1精留塔8の下部に導入され、第1精留塔8内での深冷液化分離法による低温蒸留により、塔上部の第1窒素ガスと塔底部の第1酸素富化液化流体とに分離する。 The compressed, purified, and cooled feed air is introduced from the main heat exchanger 6 through the feed air inlet path 7 into the bottom of the first fractionator 8, where it is separated into a first nitrogen gas at the top of the tower and a first oxygen-enriched liquefied fluid at the bottom of the tower by low-temperature distillation using a cryogenic liquefaction separation method in the first fractionator 8.

第1精留塔8においては、圧縮、精製、冷却後の原料空気が原料空気流入経路7から塔下部に導入され、この第1精留塔8内での深冷液化分離法による低温蒸留により、塔上部の第1窒素ガスと塔底部の第1酸素富化液化流体とに分離される。 In the first fractionator 8, the compressed, purified, and cooled feed air is introduced into the bottom of the tower through the feed air inlet path 7, and is separated into a first nitrogen gas at the top of the tower and a first oxygen-enriched liquefied fluid at the bottom of the tower by low-temperature distillation using a cryogenic liquefaction separation method in this first fractionator 8.

塔上部から経路9に抜き出された前記第1窒素ガスは、一部が経路10に分岐して主熱交換器6で前記原料空気と熱交換を行い、熱回収された後に第1製品回収経路11から第1製品窒素ガスとして導出される。また、残部の第1窒素ガスは、経路12を通って第1凝縮器13に導入される。 A portion of the first nitrogen gas extracted from the top of the tower to path 9 branches off to path 10 and exchanges heat with the feed air in main heat exchanger 6, and after heat recovery, is discharged as first product nitrogen gas from first product recovery path 11. The remaining first nitrogen gas is introduced into first condenser 13 through path 12.

この第1凝縮器13には、第1精留塔8の下部から抜き出されて減圧弁16で所定圧力に減圧された前記第1酸素富化液化流体が経路17から導入され、この第1酸素富化液化流体と前記第1窒素ガスとが間接熱交換を行い、第1窒素ガスが凝縮液化して第1液化窒素になると同時に、第1酸素富化液化流体が蒸発ガス化して第1酸素富化ガス流体となる。前記第1液化窒素は、経路14を通って第1精留塔8の上部に導入されて還流液となる。 The first oxygen-enriched liquefied fluid, which has been extracted from the bottom of the first fractionator 8 and reduced to a predetermined pressure by the pressure reducing valve 16, is introduced into the first condenser 13 through a path 17, and the first oxygen-enriched liquefied fluid and the first nitrogen gas exchange heat indirectly with each other, so that the first nitrogen gas condenses and liquefies to become the first liquefied nitrogen, and at the same time, the first oxygen-enriched liquefied fluid evaporates and gasifies to become the first oxygen-enriched gas fluid. The first liquefied nitrogen is introduced into the top of the first fractionator 8 through a path 14 and becomes the reflux liquid.

一方、第1凝縮器13から経路18に導出した前記第1酸素富化ガス流体は、一部が第2精留塔51に向かう経路50に分岐した後、残部の極一部が弁19で減圧されて経路20に分岐し、主熱交換器6で前記原料空気と熱交換を行って熱回収され、廃ガスとして廃ガス導出経路21から導出される。 On the other hand, the first oxygen-enriched gas fluid discharged from the first condenser 13 to the path 18 is partially branched off to the path 50 toward the second fractionator 51, and a very small portion of the remaining part is depressurized by the valve 19 and branched off to the path 20, where it exchanges heat with the feed air in the main heat exchanger 6 to recover heat, and is discharged as waste gas from the waste gas discharge path 21.

また、経路50及び経路20に分岐しなかった第1酸素富化ガス流体は、経路22を通って主熱交換器6に導入され、中間温度まで昇温して経路23に抜き出され、膨張タービン24に流入して断熱膨張することにより、装置の運転に必要な寒冷を発生した後、経路20の第1酸素富化ガス流体に合流し、主熱交換器6で熱回収後に前記廃ガス導出経路21から廃ガスとして導出される。 The first oxygen-enriched gas fluid that is not branched into path 50 and path 20 is introduced into the main heat exchanger 6 through path 22, heated to an intermediate temperature, and extracted into path 23. It flows into the expansion turbine 24 and undergoes adiabatic expansion to generate the cold necessary to operate the device, and then merges with the first oxygen-enriched gas fluid in path 20. After heat recovery in the main heat exchanger 6, it is discharged as waste gas from the waste gas discharge path 21.

経路50から第2精留塔51の下部に導入された第1酸素富化ガス流体は、この第2精留塔51内での低温蒸留により、塔上部の第2窒素ガスと塔底部の第2酸素富化液化流体とに分離する。塔上部から経路52に抜き出された前記第2窒素ガスは、一部が経路53に分岐して主熱交換器6で前記原料空気と熱交換を行い、熱回収された後に前記窒素圧縮機54で所定圧力に圧縮されて第2製品回収経路56から第2製品窒素ガスとして導出される。また、残部の第2窒素ガスは、経路57を通って第2凝縮器58に導入される。 The first oxygen-enriched gas fluid introduced from line 50 into the bottom of the second fractionator 51 is separated into a second nitrogen gas at the top of the tower and a second oxygen-enriched liquefied fluid at the bottom of the tower by low-temperature distillation in the second fractionator 51. A portion of the second nitrogen gas extracted from the top of the tower into line 52 branches off into line 53 and exchanges heat with the feed air in the main heat exchanger 6. After heat recovery, the second nitrogen gas is compressed to a predetermined pressure by the nitrogen compressor 54 and discharged as a second product nitrogen gas from the second product recovery line 56. The remaining second nitrogen gas is introduced into the second condenser 58 through line 57.

この第2凝縮器58には、第2精留塔51の下部から抜き出された第2酸素富化液化流体と、第1精留塔8の下部から抜き出されて第1酸素富化液化流体合流経路61に分岐した第1酸素富化液化流体とが合流した後、減圧弁63で減圧されて所定温度で経路64から導入されており、合流後の第2酸素富化液化流体と前記第2窒素ガスとが間接熱交換を行い、第2窒素ガスが凝縮液化して第2液化窒素になると同時に、第2酸素富化液化流体が蒸発ガス化して第2酸素富化ガス流体となる。前記第2液化窒素は、経路59を通って第2精留塔51の上部に導入されて還流液となる。 In this second condenser 58, the second oxygen-enriched liquefied fluid extracted from the bottom of the second fractionator 51 and the first oxygen-enriched liquefied fluid extracted from the bottom of the first fractionator 8 and branched off into the first oxygen-enriched liquefied fluid merging path 61 are merged, and then the pressure is reduced by the pressure reducing valve 63 and introduced from the path 64 at a predetermined temperature. The second oxygen-enriched liquefied fluid and the second nitrogen gas after merging perform indirect heat exchange, and the second nitrogen gas condenses and liquefies to become the second liquefied nitrogen, and at the same time, the second oxygen-enriched liquefied fluid evaporates and gasifies to become the second oxygen-enriched gas fluid. The second liquefied nitrogen is introduced into the top of the second fractionator 51 through the path 59 and becomes the reflux liquid.

一方、第2凝縮器58から経路65に導出した前記第2酸素富化ガス流体は、弁66で減圧されてから前記経路20に合流し、主熱交換器6で前記原料空気と熱交換を行って熱回収された後、廃ガスとして廃ガス導出経路21から導出される。 Meanwhile, the second oxygen-enriched gas fluid discharged from the second condenser 58 to the path 65 is depressurized by the valve 66 and then merges with the path 20, where it exchanges heat with the raw air in the main heat exchanger 6 to recover heat, and is then discharged as waste gas from the waste gas discharge path 21.

第1製品回収経路11と第2製品回収経路56とは下流側で経路70として一つの経路になるように合流し、第1製品窒素ガスとが第2製品窒素ガスが導出される。 The first product recovery path 11 and the second product recovery path 56 merge downstream to form a single path 70, from which the first product nitrogen gas and the second product nitrogen gas are discharged.

以上が二塔式窒素製造装置の構成及びその基本運転方法であるが、図1(特許文献1)の運転方法においては、さらに、装置の運転状態や必要寒冷量に応じて、液化窒素貯槽80に貯蔵されている液化窒素を第1精留塔8や第2精留塔51に導入することで、各精留塔の運転に必要な寒冷源とすることができる。 The above is the configuration of a two-tower nitrogen production system and its basic operating method. In the operating method of FIG. 1 (Patent Document 1), the liquefied nitrogen stored in the liquefied nitrogen storage tank 80 can be introduced into the first fractionator 8 or the second fractionator 51 depending on the operating state of the system and the amount of refrigeration required, thereby providing the refrigeration source required for the operation of each fractionator.

特許第3738213号公報Patent No. 3738213 特許第4451438号公報Patent No. 4451438

しかしながら、深冷液化分離法を利用して工業的に窒素を製造する窒素製造装置については、動力を多量に消費するため、更なる低減単位化が求められている。 However, nitrogen production equipment that uses cryogenic liquefaction separation to produce nitrogen industrially consumes a large amount of power, so there is a demand for further reduction in the unit size.

そこで、本発明は、このような要望に鑑み、消費動力の更なる低減、及び更なる動力原単位の低減が可能な窒素製造装置の運転方法を提供することを目的とする。 In response to such demands, the present invention aims to provide an operating method for a nitrogen production system that can further reduce power consumption and power unit consumption.

上記目的を達成するため、本発明の窒素製造装置の運転方法は、圧縮、精製、冷却された原料空気を低温蒸留して塔上部の第1窒素ガスと塔底部の第1酸素富化液化流体とに分離する第1精留塔と、前記第1窒素ガスと前記第1酸素富化液化流体とを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第1酸素富化液化流体を蒸発ガス化して第1酸素富化ガス流体を得る第1凝縮器と、前記第1酸素富化ガス流体の少なくとも一部を低温蒸留して塔上部の第2窒素ガスと塔底部の第2酸素富化液化流体とに分離する第2精留塔と、前記第2窒素ガスと前記第2酸素富化液化流体とを間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に第2酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2凝縮器と、前記第1酸素富化ガス流体の一部が導入される膨張タービンと、前記第1窒素ガスの一部を熱回収後に第1製品窒素ガスとして導出する第1製品回収経路と、前記第2窒素ガスの一部を熱回収後に第2製品窒素ガスとして導出する第2製品回収経路と、前記第1液化窒素の少なくとも一部を抜き出して、液化窒素貯槽に導入するための第1液化窒素導出経路と、前記液化窒素貯槽から液化窒素を前記第2精留塔に導入するための液化窒素注入経路と、を備えた窒素製造装置の運転方法であって、前記第1液化窒素の少なくとも一部を前記第1液化窒素導出経路から抜き出す液採取運転と、前記液化窒素貯槽から液化窒素を前記第2精留塔に導入するとともに前記膨張タービンの運転を停止する液注入運転と、を交互に繰り返すことを特徴としている。 In order to achieve the above object, the method of operating the nitrogen production apparatus of the present invention includes a first fractionation column that performs low-temperature distillation of compressed, purified, and cooled feed air to separate it into a first nitrogen gas in the upper part of the column and a first oxygen-enriched liquefied fluid in the bottom part of the column; a first condenser that performs indirect heat exchange between the first nitrogen gas and the first oxygen-enriched liquefied fluid to condense and liquefy the first nitrogen gas to obtain first liquefied nitrogen and at the same time evaporate and gasify the first oxygen-enriched liquefied fluid to obtain a first oxygen-enriched gas fluid; a second fractionation column that performs low-temperature distillation of at least a portion of the first oxygen-enriched gas fluid to separate it into a second nitrogen gas in the upper part of the column and a second oxygen-enriched liquefied fluid in the bottom part of the column; and a second condenser that performs indirect heat exchange between the second nitrogen gas and the second oxygen-enriched liquefied fluid to condense and liquefy the second nitrogen gas to obtain second liquefied nitrogen and at the same time evaporate and gasify the second oxygen-enriched liquefied fluid to obtain a second oxygen-enriched gas fluid. A method for operating a nitrogen production apparatus including a nitrogen extractor, an expansion turbine into which a portion of the first oxygen-enriched gas fluid is introduced, a first product recovery path for extracting a portion of the first nitrogen gas as a first product nitrogen gas after heat recovery, a second product recovery path for extracting a portion of the second nitrogen gas as a second product nitrogen gas after heat recovery, a first liquefied nitrogen discharge path for extracting at least a portion of the first liquefied nitrogen and introducing it into a liquefied nitrogen storage tank, and a liquefied nitrogen injection path for introducing liquefied nitrogen from the liquefied nitrogen storage tank into the second rectification tower, the method being characterized by alternately repeating a liquid collection operation in which at least a portion of the first liquefied nitrogen is extracted from the first liquefied nitrogen discharge path, and a liquid injection operation in which liquefied nitrogen is introduced from the liquefied nitrogen storage tank into the second rectification tower and the operation of the expansion turbine is stopped.

また、本発明の窒素製造装置の運転方法は、前記液注入運転における前記第1精留塔に導入される原料空気量は、前記液採取運転における前記第1精留塔に導入される原料空気量よりも少ないことが好ましい。 In addition, in the method of operating the nitrogen production apparatus of the present invention, it is preferable that the amount of feed air introduced into the first fractionator during the liquid injection operation is less than the amount of feed air introduced into the first fractionator during the liquid collection operation.

さらに、本発明の窒素製造装置の運転方法は、前記液注入運転における第2製品窒素ガス量は、前記液採取運転における第2製品窒素ガス量よりも多いことが好ましい。 Furthermore, in the method of operating the nitrogen production apparatus of the present invention, it is preferable that the amount of the second product nitrogen gas in the liquid injection operation is greater than the amount of the second product nitrogen gas in the liquid collection operation.

本発明によれば、従来の基本運転と基本運転とほぼ同等の電力で液体窒素を採取可能な液採取運転と、従来の基本運転とほぼ同等の空気量、製品量で電力を削減可能な液注入運転とを交互に繰り返すことにより、窒素製造装置の平均の電力消費量を低減することができる。電力需要に応じて液採取運転と液注入運転を切り替えることで、動力の低減あるいは消費動力の差分を液化窒素として貯蔵することが可能となる。 According to the present invention, the average power consumption of the nitrogen production equipment can be reduced by alternately repeating a conventional basic operation, a liquid extraction operation that can extract liquid nitrogen with approximately the same amount of power as the basic operation, and a liquid injection operation that can reduce power with approximately the same amount of air and product as the conventional basic operation. By switching between the liquid extraction operation and the liquid injection operation according to the power demand, it is possible to reduce power or store the difference in power consumption as liquefied nitrogen.

従来の基本運転方法を実施する窒素製造装置の一例を示す系統図である。FIG. 1 is a system diagram showing an example of a nitrogen production apparatus implementing a conventional basic operation method. 実施形態で用いられる窒素製造装置の本発明に係る装置の運転方法を適用した液採取運転を示す系統図である。FIG. 2 is a system diagram showing a liquid collection operation of the nitrogen production apparatus used in the embodiment, to which the method of operating the apparatus according to the present invention is applied. 実施形態で用いられる窒素製造装置の本発明に係る装置の運転方法を適用した液注入運転を示す系統図である。FIG. 2 is a system diagram showing a liquid injection operation to which the method of operating the apparatus according to the present invention of the nitrogen production apparatus used in the embodiment is applied.

以下に、図2及び図3を参照して本発明の一実施形態である二塔式窒素製造装置及びその窒素製造装置の運転方法を説明する。なお、以下の説明において、前記図1に記載した窒素製造装置の構成要素と同一の構成要素で、同一の機能を有するものには同一符号を付して、運転方法を含めて詳細な説明は省略する。 Below, a two-tower nitrogen production apparatus according to one embodiment of the present invention and an operating method of the nitrogen production apparatus will be described with reference to Figures 2 and 3. In the following description, components that are the same as those of the nitrogen production apparatus shown in Figure 1 and have the same functions are given the same reference numerals, and detailed descriptions, including the operating method, will be omitted.

図2及び図3に示される窒素製造装置は、図1と同じく原料空気を深冷液化分離して製品窒素を採取する窒素製造装置であり、精留塔を2塔備えたいわゆる二塔式窒素製造装置である。なお、図1に示される窒素製造装置との相違点として、図1の装置の場合、液化窒素貯槽80から第1精留塔8に液化窒素を導入するための液化窒素注入経路71を備えているが、本実施形態で示される窒素製造装置については、経路14から分岐して、第1液化窒素の一部を液化窒素貯槽80に導入するための第1液化窒素導出経路15を備えている。 The nitrogen production apparatus shown in Figures 2 and 3 is a nitrogen production apparatus that extracts product nitrogen by cryogenic liquefaction separation of feed air, just like that shown in Figure 1, and is a so-called two-tower nitrogen production apparatus equipped with two rectification towers. Note that the nitrogen production apparatus shown in Figure 1 differs from that shown in Figure 1 in that the apparatus in Figure 1 is equipped with a liquefied nitrogen injection path 71 for introducing liquefied nitrogen from the liquefied nitrogen storage tank 80 to the first rectification tower 8, whereas the nitrogen production apparatus shown in this embodiment is equipped with a first liquefied nitrogen discharge path 15 that branches off from path 14 and introduces a portion of the first liquefied nitrogen into the liquefied nitrogen storage tank 80.

また、いわゆる二塔式窒素製造装置は、運転圧力が異なる精留塔から構成されている。すなわち、第1精留塔8下部から採取される第1酸素富化液化流体を減圧・気化させ第一酸素富化ガス流体としたものが第2精留塔51に導入されるため、第2精留塔51の運転圧力は第1精留塔8よりも低くなる。 The so-called two-column nitrogen production system is composed of distillation columns with different operating pressures. That is, the first oxygen-enriched liquefied fluid collected from the bottom of the first distillation column 8 is depressurized and vaporized to become a first oxygen-enriched gas fluid, which is introduced into the second distillation column 51, so the operating pressure of the second distillation column 51 is lower than that of the first distillation column 8.

本形態例における窒素製造装置の運転方法は、上述した基本運転ではなく、各部を制御して以下で説明するような液採取運転と液注入運転とを交互に繰り返すものである。平均の電力消費量を低減するように液採取運転と液注入運転とを交互に適宜切り替えて運転される。 The operating method of the nitrogen production device in this embodiment is not the basic operation described above, but rather controls each part to alternate between liquid collection operation and liquid injection operation as described below. The liquid collection operation and liquid injection operation are switched between alternately as appropriate to reduce the average power consumption.

(液採取運転)
まず図2を用いて、本発明の液採取運転について説明する。液採取運転では、上述した基本運転と異なり、第1凝縮器13で液化した第1液化窒素は、経路14を通って第1精留塔8の上部に導入されて還流液となるが、その一部を第1液化窒素導出経路15から抜き出し、液化窒素貯槽80に送液される。なお、液採取運転では第1製品窒素ガスにプラスして更に第1液化窒素を採取する分、基本運転と同じ第1製品窒素ガスを採取する場合には、基本運転時よりも原料空気量を増量する必要がある。
(Liquid collection operation)
First, the liquid collection operation of the present invention will be described with reference to Fig. 2. In the liquid collection operation, unlike the basic operation described above, the first liquefied nitrogen liquefied in the first condenser 13 is introduced into the upper part of the first rectification column 8 through the line 14 to become a reflux liquid, but a part of it is extracted from the first liquefied nitrogen discharge line 15 and sent to the liquefied nitrogen storage tank 80. In the liquid collection operation, the first liquefied nitrogen is collected in addition to the first product nitrogen gas, so when the same first product nitrogen gas as in the basic operation is to be collected, the amount of feed air needs to be increased compared to the basic operation.

(液注入運転)
次に、図3を用い、本発明の液注入運転について説明する。液注入運転では、上述した基本運転と異なり、膨張タービン24の運転を停止させ、代わりに寒冷源として液化窒素を使用する。この場合、液化窒素貯槽80から液化窒素注入経路72より第2精留塔51上部へ液化窒素を送液する。なお、前述したように、第1精留塔8下部から採取される第1酸素富化液化流体を減圧・気化させ第一酸素富化ガス流体としたものが第2精留塔51に導入されるため、第2精留塔51の運転圧力は第1精留塔8よりも低くなる。このため、第1精留塔8から第1液化窒素導出経路15を通じて液化窒素貯槽80に送液した液化窒素を、液ポンプを使うことなく液化窒素注入経路72から第2精留塔51に導入できる。
(Liquid injection operation)
Next, the liquid injection operation of the present invention will be described with reference to FIG. 3. In the liquid injection operation, unlike the basic operation described above, the operation of the expansion turbine 24 is stopped, and liquefied nitrogen is used instead as a cold source. In this case, liquefied nitrogen is sent from the liquefied nitrogen storage tank 80 to the upper part of the second fractionator 51 through the liquefied nitrogen injection path 72. As described above, the first oxygen-enriched liquefied fluid collected from the lower part of the first fractionator 8 is depressurized and vaporized to become the first oxygen-enriched gas fluid, which is introduced into the second fractionator 51, so that the operating pressure of the second fractionator 51 is lower than that of the first fractionator 8. Therefore, the liquefied nitrogen sent from the first fractionator 8 to the liquefied nitrogen storage tank 80 through the first liquefied nitrogen discharge path 15 can be introduced into the second fractionator 51 through the liquefied nitrogen injection path 72 without using a liquid pump.

また、液注入運転時は膨張タービン24が停止しているため、前記第一酸素富化ガス流体は全量が経路50を通り第2精留塔51に導入される。 In addition, since the expansion turbine 24 is stopped during liquid injection operation, the entire amount of the first oxygen-enriched gas fluid is introduced into the second fractionator 51 via path 50.

液注入運転における第1精留塔8に導入される原料空気量は、液採取運転における第1精留塔8に導入される原料空気量よりも少なくなる。また、液注入運転における第2製品窒素ガス量は、液採取運転における第2製品窒素ガス量よりも多くなる。 The amount of feed air introduced into the first fractionator 8 during liquid injection operation is less than the amount of feed air introduced into the first fractionator 8 during liquid collection operation. Also, the amount of second product nitrogen gas during liquid injection operation is greater than the amount of second product nitrogen gas during liquid collection operation.

本実施形態における窒素製造装置の運転方法では、第1液化窒素の少なくとも一部を第1液化窒素導出経路から抜き出す液採取運転と、液採取運転で抜き出された第1液化窒素の少なくとも一部を液化窒素注入経路72から第2精留塔51に注入するとともに膨張タービン24の運転を停止する液注入運転と、を適宜切り替えて、交互に繰り返して運転する。 In the operating method of the nitrogen production apparatus in this embodiment, a liquid collection operation in which at least a portion of the first liquefied nitrogen is extracted from the first liquefied nitrogen discharge path and a liquid injection operation in which at least a portion of the first liquefied nitrogen extracted in the liquid collection operation is injected into the second fractionator 51 from the liquefied nitrogen injection path 72 and the operation of the expansion turbine 24 is stopped are switched between and alternately repeated as appropriate.

(液採取運転をメインとした場合)
表1は基本運転を24時間行った場合と、一日のうち15時間液採取運転、9時間液注入運転を行う液採取運転をメインとした場合との比較を示す。
(When used primarily for liquid collection)
Table 1 shows a comparison between a case where basic operation was performed for 24 hours and a case where liquid collection operation was the main operation, in which liquid collection operation was performed for 15 hours a day and liquid injection operation was performed for 9 hours a day.

Figure 2024063690000002
Figure 2024063690000002

この液採取運転をメインとした場合では、動力は基本運転とほぼ同等の655kWとなるが、液化窒素を888Nm採取することができる。液採取運転をメインとした場合では、基本運転とほぼ同等の動力で液体窒素を空気量の0.4%採取可能である。 When this liquid extraction operation is the main operation, the power is 655 kW, which is almost the same as in basic operation, but 888 Nm3 of liquefied nitrogen can be extracted. When liquid extraction operation is the main operation, 0.4% of the air volume of liquid nitrogen can be extracted with almost the same power as in basic operation.

(液注入運転をメインとした場合)
表2は基本運転を24時間行った場合と、一日のうち10時間液採取運転、14時間液注入運転を行う液注入運転をメインとした場合の比較を示す。
(When liquid injection is the main operation)
Table 2 shows a comparison between a case where basic operation was performed for 24 hours and a case where liquid sampling operation was performed for 10 hours and liquid injection operation was performed for 14 hours each day as the main operation.

Figure 2024063690000003
Figure 2024063690000003

この液注入運転をメインとした場合では、液採取運転で採取した液化窒素1000Nmに対し、952Nmを注入することになるが、動力合計が635kWとなり基本運転の654kWと比べて動力を3%削減できることが分かる。液注入運転をメインとした場合では、生産した液をほぼ注入に回すことで基本運転より動力を3%削減可能である。 When liquid injection operation is the main operation, 952 Nm3 will be injected for the 1000 Nm3 of liquefied nitrogen extracted in liquid extraction operation, but the total power required is 635 kW, which is a 3% reduction in power compared to basic operation's 654 kW. When liquid injection operation is the main operation, the produced liquid is almost entirely used for injection, making it possible to reduce power by 3% compared to basic operation.

液注入運転では基本運転とほぼ同等の空気量、製品量で電力を削減可能であり、液採取運転では基本運転とほぼ同等の電力で液体窒素を採取可能であるため、実施形態のように液採取運転と液注入運転とは適宜切り替えて装置の運転を行えば、深冷液化分離法を利用して工業的に窒素を製造する際に、使用する装置の消費動力の更なる低減、及び更なる動力原単位の低減が可能である。 In liquid injection operation, it is possible to reduce power consumption with roughly the same amount of air and product as in basic operation, and in liquid collection operation, liquid nitrogen can be collected with roughly the same amount of power as in basic operation. Therefore, if the device is operated by appropriately switching between liquid collection operation and liquid injection operation as in the embodiment, it is possible to further reduce the power consumption of the device used when industrially producing nitrogen using the cryogenic liquefaction separation method, and further reduce the power unit.

本実施形態では、第1精留塔8から第1液化窒素導出経路15を通じて液化窒素貯槽80に送液した液化窒素を、液ポンプを使うことなく液化窒素注入経路72から第2精留塔51に導入できるため、液注入にかかる動力を削減できる。なお、従来の単式精留塔では、精留塔から液化窒素を採取する場合、液化窒素貯槽の圧力は精留塔の運転圧力より低くなるため、液化窒素の注入には液ポンプが必要となる。 In this embodiment, the liquefied nitrogen sent from the first rectification column 8 to the liquefied nitrogen storage tank 80 through the first liquefied nitrogen discharge path 15 can be introduced into the second rectification column 51 through the liquefied nitrogen injection path 72 without using a liquid pump, so the power required for liquid injection can be reduced. In addition, in a conventional single rectification column, when liquefied nitrogen is extracted from the rectification column, the pressure of the liquefied nitrogen storage tank is lower than the operating pressure of the rectification column, so a liquid pump is required to inject the liquefied nitrogen.

また、液注入運転では、膨張タービン24が停止しているため、その分の第1酸素富化ガス流体を第2精留塔51に導入できる。第2精留塔51は運転圧力が低いことから比揮発度が大きく、製品収率が高いため、導入される酸素富化ガス流体が増加した分、第2製品窒素ガスが多く採取できるようになる。液注入運転では、基本運転時と同じ量の製品窒素ガスを採取する場合と比べて原料空気を減らすことができ、基本運転と比べて原料空気圧縮機3の減量運転をすることができる。一方で、第2製品窒素ガスが増えることで窒素圧縮機54の動力は増加する。しかしながら、装置動力の大部分を占める原料空気圧縮機3の動力が下がる影響が大きいことから、装置全体で見れば平均動力を低減することができる。 In addition, in liquid injection operation, the expansion turbine 24 is stopped, so that the first oxygen-enriched gas fluid can be introduced into the second fractionator 51. Since the second fractionator 51 has a high relative volatility and a high product yield due to its low operating pressure, the increased amount of oxygen-enriched gas fluid introduced allows a larger amount of second product nitrogen gas to be collected. In liquid injection operation, the amount of feed air can be reduced compared to when the same amount of product nitrogen gas is collected in basic operation, and the feed air compressor 3 can be operated at a reduced volume compared to basic operation. On the other hand, the power of the nitrogen compressor 54 increases due to the increase in the second product nitrogen gas. However, since the impact of the reduction in the power of the feed air compressor 3, which accounts for the majority of the power of the device, is large, the average power can be reduced when viewed from the perspective of the entire device.

また、液採取運転は製品窒素ガスにプラスして更に液化窒素を採取する分、基本運転と同じ製品窒素ガスを採取する場合は、基本運転時よりも原料空気量を増量する必要がある。そのため原料空気圧縮機3の動力が上昇し液採取運転の動力は大きくなるが、液注入運転と組み合わせることで動力上昇の影響を相殺することができる。よって、液注入運転と液採取運転とを適宜切り替えることにより、基本運転とほぼ同等の動力、同じ製品窒素ガス量で更に液化窒素を採取することが可能となる。 In addition, since liquid collection operation collects liquefied nitrogen in addition to the product nitrogen gas, if the same product nitrogen gas as in basic operation is to be collected, the amount of raw air must be increased compared to basic operation. This increases the power of the raw air compressor 3, and the power required for liquid collection operation becomes greater, but by combining it with liquid injection operation, the effect of the increased power can be offset. Therefore, by appropriately switching between liquid injection operation and liquid collection operation, it is possible to collect more liquefied nitrogen with roughly the same power and the same amount of product nitrogen gas as in basic operation.

また、このような液採取運転を行うことで、余剰電力をいわば液化窒素の形態で貯蔵することが可能となる。すなわち、基本的には電力需要が少なく電気料金が安価な夜間に液採取運転を行って液化窒素を貯蔵し、昼間にこの採取した液化窒素を消費する液注入運転を行うことで電力コストを抑制できる。 In addition, by performing this type of liquid collection operation, it becomes possible to store surplus electricity in the form of liquid nitrogen. In other words, liquid collection operation is basically performed at night when electricity demand is low and electricity rates are low, and liquid nitrogen is stored, and liquid injection operation is performed during the day to consume the collected liquid nitrogen, thereby reducing electricity costs.

なお、2021年4月に施行された改正省エネ法では、「電気の需要の平準化」の概念が追加され、全国一律で7~9月(夏季)、及び12月~3月(冬期)の8時~22時の間で、節電や、電気を使用する時間帯をずらすなど電気需要平準化に資する措置を行うことが明記された。これに伴いデマンドレスポンス(時間的に変化する電力価格、もしくは卸電力価格高騰時や需給ひっ迫時に電力使用を減らすように設計された報酬に反応して、最終需要家自らが通常の電力消費パターンから電力使用を変化させる仕組み)の活用が期待されており、本実施形態のように液採取/液注入運転を行うことでデマンドレスポンスの導入による更なる電気料金の低減を図ることができ、電力網の安定化にも寄与することができる。 The revised Energy Conservation Act, which came into force in April 2021, adds the concept of "leveling electricity demand," and stipulates that measures that contribute to leveling electricity demand, such as saving electricity and shifting the time of electricity use, will be taken nationwide between 8:00 and 22:00 from July to September (summer) and December to March (winter). In response to this, demand response (a mechanism in which end consumers themselves change their electricity usage from their normal electricity consumption patterns in response to time-varying electricity prices, or rewards designed to reduce electricity usage when wholesale electricity prices rise or supply and demand are tight) is expected to be utilized, and by performing liquid extraction/liquid injection operations as in this embodiment, it is possible to further reduce electricity charges by introducing demand response, which can also contribute to stabilizing the power grid.

なお、本実施形態で示した窒素製造装置は一例であり、また、各図面は必ずしも窒素製造装置の全ての構成を反映したものではない。さらに、運転方法についても、液採取運転と液注入運転を繰り返すだけでなく、適宜基本運転等と組み合わせることもできる。 The nitrogen production device shown in this embodiment is only one example, and the drawings do not necessarily reflect all the configurations of the nitrogen production device. Furthermore, the operation method can be not only repeated liquid sampling operation and liquid injection operation, but also appropriately combined with basic operation, etc.


1…経路、2…フィルター、3…原料空気圧縮機、4…前処理吸着器、6…主熱交換器、8…第1精留塔、11…第1製品回収経路、13…第1凝縮器、15…第1製品液化窒素導出経路、16…減圧弁、21…廃ガス導出経路、24 膨張タービン、51…第2精留塔、54…窒素圧縮機、56…第2製品回収経路、58…第2凝縮器、61…第1酸素富化液化流体合流経路、63…減圧弁、72…液化窒素注入経路、80…液化窒素貯槽

Reference Signs List 1: Path, 2: Filter, 3: Feed air compressor, 4: Pretreatment adsorber, 6: Main heat exchanger, 8: First fractionator, 11: First product recovery path, 13: First condenser, 15: First product liquefied nitrogen discharge path, 16: Pressure reducing valve, 21: Waste gas discharge path, 24: Expansion turbine, 51: Second fractionator, 54: Nitrogen compressor, 56: Second product recovery path, 58: Second condenser, 61: First oxygen-enriched liquefied fluid joining path, 63: Pressure reducing valve, 72: Liquefied nitrogen injection path, 80: Liquefied nitrogen storage tank

Claims (3)

圧縮、精製、冷却された原料空気を低温蒸留して塔上部の第1窒素ガスと塔底部の第1酸素富化液化流体とに分離する第1精留塔と、
前記第1窒素ガスと前記第1酸素富化液化流体とを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第1酸素富化液化流体を蒸発ガス化して第1酸素富化ガス流体を得る第1凝縮器と、
前記第1酸素富化ガス流体の少なくとも一部を低温蒸留して塔上部の第2窒素ガスと塔底部の第2酸素富化液化流体とに分離する第2精留塔と、
前記第2窒素ガスと前記第2酸素富化液化流体とを間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に第2酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2凝縮器と、
前記第1酸素富化ガス流体の一部が導入される膨張タービンと、
前記第1窒素ガスの一部を熱回収後に第1製品窒素ガスとして導出する第1製品回収経路と、
前記第2窒素ガスの一部を熱回収後に第2製品窒素ガスとして導出する第2製品回収経路と、
前記第1液化窒素の少なくとも一部を抜き出して、液化窒素貯槽に導入するための第1液化窒素導出経路と、
前記液化窒素貯槽から液化窒素を前記第2精留塔に導入するための液化窒素注入経路と、を備えた窒素製造装置の運転方法であって、
前記第1液化窒素の少なくとも一部を前記第1液化窒素導出経路から抜き出す液採取運転と、
前記液化窒素貯槽から液化窒素を前記第2精留塔に導入するとともに前記膨張タービンの運転を停止する液注入運転と、
を交互に繰り返すことを特徴とする窒素製造装置の運転方法。
a first fractionator for cryogenically distilling the compressed, purified and cooled feed air into a first nitrogen gas in an upper portion of the first fractionator and a first oxygen-enriched liquefied fluid in a bottom portion of the first fractionator;
a first condenser that performs indirect heat exchange between the first nitrogen gas and the first oxygen-enriched liquefied fluid to condense and liquefy the first nitrogen gas to obtain first liquefied nitrogen and simultaneously evaporates and gasifies the first oxygen-enriched liquefied fluid to obtain a first oxygen-enriched gas fluid;
a second fractionator for cryogenically distilling at least a portion of the first oxygen-enriched gas stream into a second nitrogen gas in an upper portion of the second fractionator and a second oxygen-enriched liquefied fluid in a bottom portion of the second fractionator;
a second condenser for indirectly exchanging heat between the second nitrogen gas and the second oxygen-enriched liquefied fluid to condense and liquefy the second nitrogen gas to obtain second liquefied nitrogen and at the same time evaporating and gasifying the second oxygen-enriched liquefied fluid to obtain a second oxygen-enriched gas fluid;
an expansion turbine into which a portion of the first oxygen-enriched gas stream is introduced;
a first product recovery path for outputting a portion of the first nitrogen gas as a first product nitrogen gas after heat recovery;
a second product recovery path for outputting a portion of the second nitrogen gas as a second product nitrogen gas after heat recovery;
a first liquefied nitrogen outlet path for extracting at least a portion of the first liquefied nitrogen and introducing it into a liquefied nitrogen storage tank;
A liquefied nitrogen injection passage for introducing liquefied nitrogen from the liquefied nitrogen storage tank into the second rectification column,
a liquid collection operation for extracting at least a portion of the first liquefied nitrogen from the first liquefied nitrogen discharge path;
a liquid injection operation in which liquefied nitrogen is introduced from the liquefied nitrogen storage tank into the second rectification column and the operation of the expansion turbine is stopped;
The above steps are repeated alternately.
前記液注入運転における前記第1精留塔に導入される原料空気量は、前記液採取運転における前記第1精留塔に導入される原料空気量よりも少ないことを特徴とする請求項1記載の窒素製造装置の運転方法。 The method for operating a nitrogen production system according to claim 1, characterized in that the amount of feed air introduced into the first fractionator during the liquid injection operation is less than the amount of feed air introduced into the first fractionator during the liquid collection operation. 前記液注入運転における第2製品窒素ガス量は、前記液採取運転における第2製品窒素ガス量よりも多いことを特徴とする請求項1又は2記載の窒素製造装置の運転方法。 The method for operating a nitrogen production system according to claim 1 or 2, characterized in that the amount of the second product nitrogen gas during the liquid injection operation is greater than the amount of the second product nitrogen gas during the liquid collection operation.
JP2022171856A 2022-10-26 2022-10-26 Operation method of nitrogen production device Pending JP2024063690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022171856A JP2024063690A (en) 2022-10-26 2022-10-26 Operation method of nitrogen production device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022171856A JP2024063690A (en) 2022-10-26 2022-10-26 Operation method of nitrogen production device

Publications (1)

Publication Number Publication Date
JP2024063690A true JP2024063690A (en) 2024-05-13

Family

ID=91030779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022171856A Pending JP2024063690A (en) 2022-10-26 2022-10-26 Operation method of nitrogen production device

Country Status (1)

Country Link
JP (1) JP2024063690A (en)

Similar Documents

Publication Publication Date Title
JP5425100B2 (en) Cryogenic air separation method and apparatus
JP4733124B2 (en) Cryogenic air separation method for producing pressurized gas products
JP2865274B2 (en) Cryogenic distillation of air for the simultaneous production of oxygen and nitrogen as gaseous and / or liquid products
JPH087019B2 (en) High-pressure low-temperature distillation method for air
JP5878310B2 (en) Air separation method and apparatus
JPH06101963A (en) High-pressure low-temperature distilling method of air
EP2713128A1 (en) Process for the separation of air by cryogenic distillation
JP6092804B2 (en) Air liquefaction separation method and apparatus
JP5417054B2 (en) Air separation method and apparatus
CN101535755B (en) Cryogenic air separation system
EP2513579B1 (en) Process and apparatus for the separation of air by cryogenic distillation
JP3737611B2 (en) Method and apparatus for producing low purity oxygen
JP5032407B2 (en) Nitrogen production method and apparatus
JP2024063690A (en) Operation method of nitrogen production device
EP2741036A1 (en) Process and apparatus for the separation of air by cryogenic distillation
JP4401999B2 (en) Air separation method and air separation device
JP5005708B2 (en) Air separation method and apparatus
CN202109724U (en) Air pressurization backflow expansion inner compression air separation device
JP5027173B2 (en) Argon production method and apparatus thereof
JP4177507B2 (en) Method and apparatus for producing low purity oxygen
JP4447501B2 (en) Air liquefaction separation method and apparatus
US20080264101A1 (en) Process and Apparatus for Nitrogen Production
JP5647853B2 (en) Air liquefaction separation method and apparatus
JP4447502B2 (en) Air liquefaction separation method and apparatus
JP2024129928A (en) Nitrogen production method and nitrogen production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20241030