Nothing Special   »   [go: up one dir, main page]

JP2024052628A - Compound, metal complex, catalyst composition for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer - Google Patents

Compound, metal complex, catalyst composition for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer Download PDF

Info

Publication number
JP2024052628A
JP2024052628A JP2023169810A JP2023169810A JP2024052628A JP 2024052628 A JP2024052628 A JP 2024052628A JP 2023169810 A JP2023169810 A JP 2023169810A JP 2023169810 A JP2023169810 A JP 2023169810A JP 2024052628 A JP2024052628 A JP 2024052628A
Authority
JP
Japan
Prior art keywords
group
atom
added
catalyst
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023169810A
Other languages
Japanese (ja)
Inventor
佑輔 満重
Yusuke Mitsushige
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polychem Corp
Original Assignee
Japan Polychem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polychem Corp filed Critical Japan Polychem Corp
Publication of JP2024052628A publication Critical patent/JP2024052628A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

To provide: a novel ligand and a metal complex that enable copolymerization of olefin and vinyl monomers; a catalyst composition for olefin polymerization containing the same; and a method for producing an olefin polymer.SOLUTION: A catalyst composition for olefin polymerization contains a compound represented by the general formula (A) in the figure, and a transition metal compound represented by the general formula (E) or (F) in the figure.SELECTED DRAWING: None

Description

本発明は、オレフィン系重合体の製造用の重合触媒に関する。特に、本発明は、配位子として用いられ得る新規な化合物、当該新規な化合物を用いた金属錯体、オレフィン重合用触媒組成物、及びオレフィン重合用触媒に関する。また、本発明は、該触媒を用いたオレフィン系重合体の製造方法にも関する。 The present invention relates to a polymerization catalyst for producing olefin polymers. In particular, the present invention relates to a novel compound that can be used as a ligand, a metal complex using the novel compound, a catalyst composition for olefin polymerization, and a catalyst for olefin polymerization. The present invention also relates to a method for producing an olefin polymer using the catalyst.

非極性モノマーであるエチレンやプロピレンなどのオレフィンと極性基含有モノマーとの共重合体は、無極性であるポリエチレンやポリプロピレンにはない機能や特性を有する。このような観点からエチレンやプロピレンと極性基含有モノマーの共重合により、ポリエチレンやポリプロピレンに機能性を付与する研究が盛んに行われている。
エチレンやプロピレンと極性基含有モノマーを共重合することができる遷移金属触媒としては、α-ジイミン配位子を用いたパラジウム錯体を含む触媒が報告されている(非特許文献1)。エチレンとアクリル酸エステルとを共重合する遷移金属触媒としては、リン原子と酸素原子を配位原子とする配位子を用いたニッケル錯体を含む、いわゆるSHOP系触媒(特許文献1、特許文献2、非特許文献2、非特許文献3)や、ホスフィノスルホン酸配位子を有するパラジウム錯体を含む触媒(特許文献3、非特許文献4、非特許文献5)などが報告されている。
Copolymers of olefins such as non-polar monomers, such as ethylene and propylene, and polar group-containing monomers have functions and properties that are not found in non-polar polyethylene and polypropylene. From this perspective, research has been actively conducted into imparting functionality to polyethylene and polypropylene by copolymerizing ethylene or propylene with polar group-containing monomers.
As a transition metal catalyst capable of copolymerizing ethylene or propylene with a polar group-containing monomer, a catalyst containing a palladium complex using an α-diimine ligand has been reported (Non-Patent Document 1). As a transition metal catalyst capable of copolymerizing ethylene with an acrylic acid ester, so-called SHOP-based catalysts containing a nickel complex using a ligand with phosphorus and oxygen atoms as coordinating atoms (Patent Document 1, Patent Document 2, Non-Patent Document 2, Non-Patent Document 3) and catalysts containing a palladium complex having a phosphinosulfonic acid ligand (Patent Document 3, Non-Patent Document 4, Non-Patent Document 5) have been reported.

特許文献4、非特許文献6では、リン原子と酸素原子を配位原子とする配位子と遷移金属化合物としてビス-1,5-シクロオクタジエンニッケル(Ni(cod))とを反応させたニッケル触媒を用いることにより、分岐が少ない直鎖状のエチレンと(メタ)アクリル酸エステル共重合体が得られることが報告されている。また、特許文献5では、非芳香族の骨格としてアルキレンを配位子骨格として有し、リン原子と酸素原子を配位原子とする1価アニオン性2座配位子とニッケル塩化アリル二量体とを反応させたニッケル錯体を含む触媒によるエチレンと極性基含有モノマーとの共重合が報告されている。
非特許文献7では、非芳香族の骨格としてアルキレンを配位子骨格として有し、リン原子と酸素原子を配位原子とする1価アニオン性2座配位子とビス-1,5-シクロオクタジエンニッケルとを反応させたニッケル触媒を用いることによる、エチレンのオリゴメリゼーションが報告されている。
非特許文献8では、非芳香族の骨格を有し、リン原子と硫黄原子を配位原子とする1価アニオン性2座配位子とニッケル錯体とを反応させたニッケル触媒を用いることによる、エチレンのオリゴメリゼーションが報告されている。
Patent Document 4 and Non-Patent Document 6 report that a linear ethylene and (meth)acrylic acid ester copolymer with few branches can be obtained by using a nickel catalyst in which a ligand having phosphorus and oxygen atoms as coordinating atoms is reacted with bis-1,5-cyclooctadiene nickel (Ni(cod) 2 ) as a transition metal compound. Patent Document 5 reports copolymerization of ethylene and a polar group-containing monomer using a catalyst containing a nickel complex in which a monovalent anionic bidentate ligand having phosphorus and oxygen atoms as coordinating atoms, and nickel allyl chloride dimer is reacted with the ligand skeleton having an alkylene as a non-aromatic skeleton.
Non-Patent Document 7 reports the oligomerization of ethylene by using a nickel catalyst obtained by reacting a monovalent anionic bidentate ligand having an alkylene as a non-aromatic skeleton as a ligand skeleton and having phosphorus and oxygen atoms as coordinating atoms with bis-1,5-cyclooctadiene nickel.
Non-Patent Document 8 reports the oligomerization of ethylene using a nickel catalyst obtained by reacting a nickel complex with a monovalent anionic bidentate ligand having a non-aromatic skeleton and containing a phosphorus atom and a sulfur atom as coordinating atoms.

米国特許4,698,403号明細書U.S. Pat. No. 4,698,403 特開昭64-14217号公報Japanese Patent Application Laid-Open No. 64-14217 米国特許出願公開第2007/0049712号明細書US Patent Application Publication No. 2007/0049712 国際公開第2010/050256号International Publication No. 2010/050256 国際公開第2001/092342号International Publication No. 2001/092342

Mecking,S.;Johnson,L.K.;Wang,L.;Brookhart,M.J.Am.Chem.Soc.1998,120,888-899.Mecking, S. ;Johnson, L. K. ;Wang, L. Brookhart, M. J. Am. Chem. Soc. 1998, 120, 888-899. Ittel,S.D.;Johnson,L.K.;Brookhart,M.,Chem.Rev.2000,100,1169-1203.Ittel, S. D. ;Johnson, L. K. Brookhart, M. , Chem. Rev. 2000,100,1169-1203. Gibson,V.C.;Tomov,A.;White,A.J.P.;Williams,D.J.,Chem.Commun.2001,719-720.Gibson, V. C. ;Tomov, A. ;White, A. J. P. ;Williams, D. J. , Chem. Commun. 2001, 719-720. Drent,E.;van Dijk,R.;van Ginkel,R.;van Oort,B.;Pugh,R.I.,Chem.Commun.2002,744-745.Drent, E. ;van Dijk, R. ;van Ginkel, R. ;van Oort, B. ;Pugh, R. I. , Chem. Commun. 2002, 744-745. Kochi,T.;Yoshimura,K.;Nozaki,K.,DaltonTrans.2006,25-27.Kochi, T.; Yoshimura, K.; Nozaki, K., Dalton Trans. 2006, 25-27. Xin.B.S.;Sato,N.;Tanna,A.;Oishi,Y.;Konishi,Y.;Shimizu,F.J.Am.Chem.Soc.2017,139,3611-3614.Xin. B. S.; Sato, N.; Tanna, A.; Oishi, Y.; Konishi, Y.; Shimizu, F. J. Am. Chem. Soc. 2017, 139, 3611-3614. Mueller,U.;Keim,W.;Krueger,C.;Betz,P. Angew.Chem.Int.Ed.Engl.1989,28,1011-1013.Mueller, U. ;Keim, W. ;Krueger, C. ; Betz, P. Angew. Chem. Int. Ed. Engl. 1989, 28, 1011-1013. H.-F. Klein et al.,Inorganica Chimica Acta 358 (2005) 4394-4402H. -F. Klein et al. , Inorganica Chimica Acta 358 (2005) 4394-4402

前記のように、オレフィン系の重合触媒が多数知られている。しかし、特許文献4、非特許文献6で用いられている配位子の骨格は芳香族であり、アクリル酸エステルとの共重合において、共重合体の分子量には改良の余地がある。また、特許文献5の触媒は、活性、分子量などの触媒性能に改良の余地がある。また、非特許文献7ではオリゴマーが得られているのみで重合活性は不明である。なお、錯体の単離が行われているが、単離した錯体は重合性能を示さないことが開示されている。非特許文献8の触媒は、低密度のポリエチレンオリゴマーができることがあるとわかる程度である。
かかる状況において、本発明で解決しようとする課題は、活性や分子量などの触媒性能が改善されて、オレフィンを重合又は共重合できる触媒の配位子として用いられ得る新規な化合物、中でも極性基含有モノマーおよび環状オレフィンからなる群より選ばれる少なくとも1種類のモノマーと、非環状オレフィンを共重合できる、触媒の配位子として用いられ得る新規な化合物、当該新規な化合物を用いた金属錯体、オレフィン重合用触媒組成物、及びオレフィン重合用触媒、並びに、当該触媒を用いたオレフィン系重合体の製造方法を提供することである。
As mentioned above, many olefin-based polymerization catalysts are known. However, the skeleton of the ligand used in Patent Document 4 and Non-Patent Document 6 is aromatic, and there is room for improvement in the molecular weight of the copolymer in copolymerization with acrylic ester. In addition, the catalyst in Patent Document 5 has room for improvement in catalytic performance such as activity and molecular weight. In Non-Patent Document 7, only oligomers are obtained, and the polymerization activity is unknown. It is disclosed that the isolated complex does not show polymerization performance, although the complex is isolated. The catalyst in Non-Patent Document 8 is only known to produce low-density polyethylene oligomers.
In this situation, the problem to be solved by the present invention is to provide a novel compound having improved catalytic performance such as activity and molecular weight and usable as a ligand of a catalyst capable of polymerizing or copolymerizing olefins, particularly a novel compound usable as a ligand of a catalyst capable of copolymerizing at least one monomer selected from the group consisting of polar group-containing monomers and cyclic olefins with a non-cyclic olefin, a metal complex using the novel compound, an olefin polymerization catalyst composition, and an olefin polymerization catalyst, as well as a method for producing an olefin polymer using the catalyst.

本発明者らは、特定の構造を有するアルキレンを配位子骨格として有し、15族および16族元素、特に窒素原子またはリン原子と酸素原子を配位原子とし、特定の置換基を有する1価アニオン性2座配位子と、特定のニッケル化合物および/またはパラジウム化合物とを組み合わせることにより、少なくとも活性または分子量のいずれかは高い水準にあるオレフィン系重合用触媒を見出し、本発明に至った。 The present inventors have discovered an olefin polymerization catalyst that has a high level of at least activity or molecular weight by combining a monovalent anionic bidentate ligand having an alkylene with a specific structure as the ligand skeleton, with Group 15 and Group 16 elements, particularly nitrogen atoms or phosphorus atoms and oxygen atoms as coordinating atoms, and specific substituents, with a specific nickel compound and/or palladium compound, and have arrived at the present invention.

すなわち、本発明は以下の[1]~[16]に関する。
[1] 下記一般式(A)で表される化合物。
That is, the present invention relates to the following [1] to [16].
[1] A compound represented by the following general formula (A):

[式(A)中、
は、酸素原子または硫黄原子を表し、
は、窒素原子、リン原子、砒素原子またはアンチモン原子を表し、
Zは、水素原子、脱離基または1以上4以下の価数を有するカチオンを表し、
mは、1以上Zの価数以下の整数であり、
nは、0、1、2、3または4であり、nが0のとき、EはX、RおよびRが結合する炭素原子に直接結合し、
は、下記一般式(B)または(C)で表される炭化水素基を表し、
は、下記一般式(B)または(C)で表される炭化水素基とは異なる、ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~20の炭化水素基を表し、
lは1または2であり、lが2のとき、Rは存在しない。
、R、R、およびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
(i)水素原子
(ii)ハロゲン原子
(iii)ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~30の炭化水素基
(iv)OR、C(O)OR、C(O)OM’、C(O)N(R、C(O)R、OC(O)R、SR、S(O)、S(O)R、OS(O)、SF、P(O)(OR2-y(R、CN、N(H)R、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、S(O)OM’、P(O)(OM’)、P(O)(ORM’またはエポキシ含有基(ここで、Rはそれぞれ独立に、水素原子または炭素数1~20の炭化水素基を表し、Rはそれぞれ独立に、炭素数1~20の炭化水素基を表し、M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0、1、2または3、yは0、1または2を表す)。R、R、R、およびRは、隣接置換基同士が互いに連結し、5~8員の、脂環式環または酸素原子、窒素原子、若しくは硫黄原子から選ばれるヘテロ原子を少なくとも1つ含有する複素環を形成していてもよい。]
[In the formula (A),
X1 represents an oxygen atom or a sulfur atom;
E1 represents a nitrogen atom, a phosphorus atom, an arsenic atom, or an antimony atom;
Z represents a hydrogen atom, a leaving group, or a cation having a valence of 1 to 4,
m is an integer from 1 to the valence of Z,
n is 0, 1, 2, 3 or 4, and when n is 0, E 1 is directly bonded to the carbon atom to which X 1 , R 5 and R 6 are bonded;
R 1 represents a hydrocarbon group represented by the following general formula (B) or (C):
R2 represents a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one heteroatom and which is different from the hydrocarbon group represented by the following general formula (B) or (C),
l is 1 or 2, and when l is 2, R2 is absent.
R 3 , R 4 , R 5 , and R 6 each independently represent an atom or group selected from the group consisting of the following (i) to (iv):
(i) a hydrogen atom; (ii) a halogen atom; (iii) a hydrocarbon group having 1 to 30 carbon atoms which may contain at least one heteroatom; (iv) OR b , C(O)OR b , C(O)OM', C(O)N(R a ) 2 , C(O)R b , OC(O)R b , SR b , S(O) 2 R b , S(O)R b , OS(O) 2 R b , SF 5 , P(O)(OR b ) 2-y (R a ) y , CN, N(H)R a , N(R b ) 2 , Si(OR a ) 3-x (R a ) x , OSi(OR a ) 3-x (R a ) x , NO 2 , S(O) 2 OM', P(O)(OM') 2 , P(O)(OR b ) 2 M', or an epoxy-containing group (wherein R a each independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, R b each independently represents a hydrocarbon group having 1 to 20 carbon atoms, M' represents an alkali metal, an alkaline earth metal, ammonium, a quaternary ammonium or a phosphonium, x represents 0, 1, 2 or 3, and y represents 0, 1 or 2). Adjacent substituents of R 3 , R 4 , R 5 and R 6 may be linked together to form a 5-8 membered alicyclic ring or a heterocycle containing at least one heteroatom selected from an oxygen atom, a nitrogen atom or a sulfur atom. ]

[式(B)及び式(C)中、
*はEとの結合手を表し、
、R、R、R10、R11、R12およびR13は、それぞれ独立に、前記式(A)で定義する(i)~(iv)からなる群より選ばれる原子または基を表し、R、R、RおよびR10は、隣接置換基同士が互いに連結し、5~8員の、脂環式環、芳香族環、または酸素原子、窒素原子、若しくは硫黄原子から選ばれるヘテロ原子を少なくとも1つ含有する複素環を形成していてもよく、
、A、AおよびAは、それぞれ独立に、酸素原子、硫黄原子、-C(R)-、-S(O)-、-S(O)-、-N(R)-、-P(R)-、または-P(O)(R)-(ここで、Rはそれぞれ独立に、水素原子、または、ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~20の炭化水素基を表す。)を表す。
ただし、
式(B)中、A、A、AおよびAのうち、少なくとも3つが-C(R)-以外であり、
式(C)中、AおよびAはいずれも-C(R)-以外であり、且つ、R12およびR13のうち、少なくとも1つは前記(ii)および(iv)(ただしエポキシ含有基を除く)からなる群より選ばれる原子または基である。
およびWは、それぞれ独立に、炭素原子、ケイ素原子、窒素原子、リン原子、ホウ素原子、酸素原子、-P(O)-または-S(O)-を表し、窒素原子、リン原子、ホウ素原子または-P(O)-のとき、RおよびR10は存在せず、酸素原子、または-S(O)-のとき、RおよびR並びにRおよびR10は存在しない。
hおよびiは、それぞれ独立に、1~6の整数であり、W、W、R、R、RおよびR10が複数存在する場合、複数のW、W、R、R、RおよびR10はそれぞれ同一であっても異なっていてもよい。]
[In formula (B) and formula (C),
* represents a bond to E1 ;
R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and R 13 each independently represent an atom or group selected from the group consisting of (i) to (iv) defined in formula (A), and adjacent substituents of R 7 , R 8 , R 9 and R 10 may be bonded to each other to form a 5- to 8-membered alicyclic ring, aromatic ring, or heterocycle containing at least one heteroatom selected from an oxygen atom, a nitrogen atom, or a sulfur atom;
A 1 , A 2 , A 3 and A 4 each independently represent an oxygen atom, a sulfur atom, -C(R) 2 -, -S(O)-, -S(O) 2 -, -N(R)-, -P(R)- or -P(O)(R)- (wherein each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one heteroatom).
however,
In formula (B), at least three of A 1 , A 2 , A 3 and A 4 are other than —C(R) 2 —;
In formula (C), A3 and A4 are both other than -C(R) 2- , and at least one of R12 and R13 is an atom or group selected from the group consisting of (ii) and (iv) (excluding epoxy-containing groups).
W 1 and W 2 each independently represent a carbon atom, a silicon atom, a nitrogen atom, a phosphorus atom, a boron atom, an oxygen atom, -P(O)- or -S(O) 2 -; when W 1 and W 2 represent a nitrogen atom, a phosphorus atom, a boron atom or -P(O)-, R 8 and R 10 do not exist; and when W 1 and W 2 represent an oxygen atom or -S(O) 2 -, R 7 and R 8 as well as R 9 and R 10 do not exist.
h and i each independently represent an integer of 1 to 6, and when a plurality of W 1 , W 2 , R 7 , R 8 , R 9 and R 10 are present, the plurality of W 1 , W 2 , R 7 , R 8 , R 9 and R 10 may be the same or different.]

[2] 下記一般式(D)で表される金属錯体。 [2] A metal complex represented by the following general formula (D):

[式(D)中、
は、酸素原子または硫黄原子を表し、
は、窒素原子、リン原子、砒素原子またはアンチモン原子を表し、
nは、0、1、2、3または4であり、nが0のとき、EはX、RおよびRが結合する炭素原子に直接結合し、
は、下記一般式(B)または(C)で表される炭化水素基を表し、
は、下記一般式(B)または(C)で表される炭化水素基とは異なる、ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~20の炭化水素基を表し、
lは1または2であり、lが2のとき、Rは存在しない。
、R、R、およびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
(i)水素原子
(ii)ハロゲン原子
(iii)ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~30の炭化水素基
(iv)OR、C(O)OR、C(O)OM’、C(O)N(R、C(O)R、OC(O)R、SR、S(O)、S(O)R、OS(O)、SF、P(O)(OR2-y(R、CN、N(H)R、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、S(O)OM’、P(O)(OM’)、P(O)(ORM’またはエポキシ含有基(ここで、Rはそれぞれ独立に、水素原子または炭素数1~20の炭化水素基を表し、Rはそれぞれ独立に、炭素数1~20の炭化水素基を表し、M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0、1、2または3、yは0、1または2を表す)。R、R、R、およびRは、隣接置換基同士が互いに連結し、5~8員の、脂環式環または酸素原子、窒素原子、若しくは硫黄原子から選ばれるヘテロ原子を少なくとも1つ含有する複素環を形成していてもよい。
は、ニッケル原子またはパラジウム原子を表し、
およびLは、それぞれ独立に、Mに配位したリガンドを表し、
およびLは互いに結合してMを含む環を形成してもよい。]
[In the formula (D),
X1 represents an oxygen atom or a sulfur atom;
E1 represents a nitrogen atom, a phosphorus atom, an arsenic atom, or an antimony atom;
n is 0, 1, 2, 3 or 4, and when n is 0, E 1 is directly bonded to the carbon atom to which X 1 , R 5 and R 6 are bonded;
R 1 represents a hydrocarbon group represented by the following general formula (B) or (C):
R2 represents a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one heteroatom and which is different from the hydrocarbon group represented by the following general formula (B) or (C),
l is 1 or 2, and when l is 2, R2 is absent.
R 3 , R 4 , R 5 , and R 6 each independently represent an atom or group selected from the group consisting of the following (i) to (iv):
(i) a hydrogen atom; (ii) a halogen atom; (iii) a hydrocarbon group having 1 to 30 carbon atoms which may contain at least one heteroatom; (iv) OR b , C(O)OR b , C(O)OM', C(O)N(R a ) 2 , C(O)R b , OC(O)R b , SR b , S(O) 2 R b , S(O)R b , OS(O) 2 R b , SF 5 , P(O)(OR b ) 2-y (R a ) y , CN, N(H)R a , N(R b ) 2 , Si(OR a ) 3-x (R a ) x , OSi(OR a ) 3-x (R a ) x , NO 2 , S(O) 2 OM', P(O)(OM') 2 , P(O)(OR b ) 2 M' or an epoxy-containing group (wherein R a each independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, R b each independently represents a hydrocarbon group having 1 to 20 carbon atoms, M' represents an alkali metal, an alkaline earth metal, ammonium, a quaternary ammonium or a phosphonium, x represents 0, 1, 2 or 3, y represents 0, 1 or 2). Adjacent substituents of R 3 , R 4 , R 5 and R 6 may be linked together to form a 5-8 membered alicyclic ring or a heterocycle containing at least one heteroatom selected from an oxygen atom, a nitrogen atom or a sulfur atom.
M1 represents a nickel atom or a palladium atom;
L1 and L2 each independently represent a ligand coordinated to M1 ;
L1 and L2 may be bonded to each other to form a ring containing M1 .

[式(B)及び式(C)中、
*はEとの結合手を表し、
、R、R、R10、R11、R12およびR13は、それぞれ独立に、前記式(A)で定義する(i)~(iv)からなる群より選ばれる原子または基を表し、R、R、RおよびR10は、隣接置換基同士が互いに連結し、5~8員の、脂環式環、芳香族環、または酸素原子、窒素原子、若しくは硫黄原子から選ばれるヘテロ原子を少なくとも1つ含有する複素環を形成していてもよく、
、A、AおよびAは、それぞれ独立に、酸素原子、硫黄原子、-C(R)-、-S(O)-、-S(O)-、-N(R)-、-P(R)-、または-P(O)(R)-(ここで、Rはそれぞれ独立に、水素原子、または、ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~20の炭化水素基を表す。)を表す。
ただし、
式(B)中、A、A、AおよびAのうち、少なくとも3つが-C(R)-以外であり、
式(C)中、AおよびAはいずれも-C(R)-以外であり、且つ、R12およびR13のうち、少なくとも1つは前記(ii)および(iv)(ただしエポキシ含有基を除く)からなる群より選ばれる原子または基である。
およびWは、それぞれ独立に、炭素原子、ケイ素原子、窒素原子、リン原子、ホウ素原子、酸素原子、-P(O)-または-S(O)-を表し、窒素原子、リン原子、ホウ素原子または-P(O)-のとき、RおよびR10は存在せず、酸素原子、または-S(O)-のとき、RおよびR並びにRおよびR10は存在しない。
hおよびiは、それぞれ独立に、1~6の整数であり、W、W、R、R、RおよびR10が複数存在する場合、複数のW、W、R、R、RおよびR10はそれぞれ同一であっても異なっていてもよい。]
[In formula (B) and formula (C),
* represents a bond to E1 ;
R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and R 13 each independently represent an atom or group selected from the group consisting of (i) to (iv) defined in formula (A), and adjacent substituents of R 7 , R 8 , R 9 and R 10 may be bonded to each other to form a 5- to 8-membered alicyclic ring, aromatic ring, or heterocycle containing at least one heteroatom selected from an oxygen atom, a nitrogen atom, or a sulfur atom;
A 1 , A 2 , A 3 and A 4 each independently represent an oxygen atom, a sulfur atom, -C(R) 2 -, -S(O)-, -S(O) 2 -, -N(R)-, -P(R)- or -P(O)(R)- (wherein each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one heteroatom).
however,
In formula (B), at least three of A 1 , A 2 , A 3 and A 4 are other than —C(R) 2 —;
In formula (C), A3 and A4 are both other than -C(R) 2- , and at least one of R12 and R13 is an atom or group selected from the group consisting of (ii) and (iv) (excluding epoxy-containing groups).
W 1 and W 2 each independently represent a carbon atom, a silicon atom, a nitrogen atom, a phosphorus atom, a boron atom, an oxygen atom, -P(O)- or -S(O) 2 -; when W 1 and W 2 represent a nitrogen atom, a phosphorus atom, a boron atom or -P(O)-, R 8 and R 10 do not exist; and when W 1 and W 2 represent an oxygen atom or -S(O) 2 -, R 7 and R 8 as well as R 9 and R 10 do not exist.
h and i each independently represent an integer of 1 to 6, and when a plurality of W 1 , W 2 , R 7 , R 8 , R 9 and R 10 are present, the plurality of W 1 , W 2 , R 7 , R 8 , R 9 and R 10 may be the same or different.]

[3] 前記[1]に記載の前記一般式(A)で表される化合物と、下記一般式(E)または(F)で表される遷移金属化合物とを含む、オレフィン重合用触媒組成物。 [3] A catalyst composition for olefin polymerization, comprising a compound represented by the general formula (A) described in [1] above and a transition metal compound represented by the following general formula (E) or (F):

〔式(E)および式(F)中、
は、ニッケル原子またはパラジウム原子を表し、
およびLは、それぞれ独立に、Mに配位したリガンドを表し、
およびLは互いに結合してMを含む環を形成してもよい。
およびMは、それぞれ独立に、ニッケル原子またはパラジウム原子を表し、
、L、L、L、LおよびL10は、それぞれ独立に、M、MまたはMに配位したリガンドを表し、LおよびLは、それぞれ独立に、MおよびMに配位したリガンドを表し、
qは0、1または2であり、
およびLは互いに結合してMを含む環を形成してもよく、
およびLは、互いに結合してMを含む環を形成してもよく、
およびL10は、互いに結合してMを含む環を形成してもよい。]
[In the formula (E) and the formula (F),
M1 represents a nickel atom or a palladium atom;
L1 and L2 each independently represent a ligand coordinated to M1 ;
L1 and L2 may be bonded to each other to form a ring containing M1 .
M2 and M3 each independently represent a nickel atom or a palladium atom;
L3 , L4 , L5 , L6 , L9 and L10 each independently represent a ligand coordinated to M1 , M2 or M3 ; L7 and L8 each independently represent a ligand coordinated to M2 and M3 ;
q is 0, 1 or 2;
L3 and L4 may be bonded to each other to form a ring containing M1 ;
L5 and L6 may be bonded to each other to form a ring containing M2 ;
L9 and L10 may be bonded to each other to form a ring including M3 .

[4] 前記RおよびRの少なくとも一方が、前記(i)、(iii)および(iv)からなる群より選ばれる原子または基であることを特徴とする、前記[1]に記載の化合物。
[5] 前記RおよびRの少なくとも一方が、前記(i)、(iii)および(iv)からなる群より選ばれる原子または基であることを特徴とする、前記[2]に記載の金属錯体。
[6] 前記RおよびRの少なくとも一方が、前記(i)、(iii)および(iv)からなる群より選ばれる原子または基であることを特徴とする、前記[3]に記載のオレフィン重合用触媒組成物。
[4] The compound according to [1], wherein at least one of R5 and R6 is an atom or group selected from the group consisting of (i), (iii) and (iv).
[5] The metal complex according to [2] above, wherein at least one of R5 and R6 is an atom or group selected from the group consisting of (i), (iii) and (iv).
[6] At least one of R5 and R6 is an atom or group selected from the group consisting of (i), (iii) and (iv), according to the olefin polymerization catalyst composition described in [3].

[7] 前記Rが、前記(i)および(iii)からなる群より選ばれる原子または基であって、前記Rが、前記(i)、(iii)、C(O)OR、C(O)N(R、C(O)R、S(O)およびP(O)(OR2-y(Rからなる群より選ばれる原子または基である(ここで、R、R、yは、前記[1]で定義したとおりである。)ことを特徴とする、前記[1]に記載の化合物。
[8] 前記Rが、前記(i)および(iii)からなる群より選ばれる原子または基であって、前記Rが、前記(i)、(iii)、C(O)OR、C(O)N(R、C(O)R、S(O)およびP(O)(OR2-y(Rからなる群より選ばれる原子または基である(ここで、R、R、yは、前記[2]で定義したとおりである。)ことを特徴とする、前記[2]に記載の金属錯体。
[9] 前記Rが、前記(i)および(iii)からなる群より選ばれる原子または基であって、前記Rが、前記(i)、(iii)、C(O)OR、C(O)N(R、C(O)R、S(O)およびP(O)(OR2-y(Rからなる群より選ばれる原子または基である(ここで、R、R、yは、前記[1]で定義したとおりである。)ことを特徴とする、前記[3]に記載のオレフィン重合用触媒組成物。
[7] The compound according to [1] above, characterized in that R 5 is an atom or group selected from the group consisting of (i) and (iii), and R 6 is an atom or group selected from the group consisting of (i), (iii), C(O)OR b , C(O)N(R a ) 2 , C(O)R b , S(O) 2 R b and P(O)(OR b ) 2-y (R a ) y (wherein R a , R b and y are as defined in [1] above).
[8] The metal complex according to [2] above, characterized in that R 5 is an atom or group selected from the group consisting of (i) and (iii), and R 6 is an atom or group selected from the group consisting of (i), (iii), C(O)OR b , C(O)N(R a ) 2 , C(O)R b , S(O) 2 R b and P(O)(OR b ) 2-y (R a ) y (wherein R a , R b and y are as defined in [2] above).
[9] The catalyst composition for olefin polymerization according to [3] above, characterized in that R 5 is an atom or group selected from the group consisting of (i) and (iii), and R 6 is an atom or group selected from the group consisting of (i), (iii), C(O)OR b , C ( O)N(R a ) 2 , C(O)R b , S(O) 2 R b and P(O)(OR b ) 2-y (R a ) y (wherein R a , R b and y are as defined in [1] above).

[10] 前記RおよびRの少なくとも一方が、前記(i)、(iii)および(iv)からなる群より選ばれる原子または基であることを特徴とする、前記[1]、[4]および[7]のいずれか1つに記載の化合物。
[11] 前記RおよびRの少なくとも一方が、前記(i)、(iii)および(iv)からなる群より選ばれる原子または基であることを特徴とする、前記[2]、[5]および[8]のいずれか1つに記載の金属錯体。
[12] 前記RおよびRの少なくとも一方が、前記(i)、(iii)および(iv)からなる群より選ばれる原子または基であることを特徴とする、前記[3]、[6]および[9]のいずれか1つに記載のオレフィン重合用触媒組成物。
[10] At least one of R3 and R4 is an atom or group selected from the group consisting of (i), (iii) and (iv). The compound according to any one of [1], [4] and [7].
[11] At least one of R3 and R4 is an atom or group selected from the group consisting of (i), (iii) and (iv). The metal complex according to any one of [2], [5] and [8].
[12] At least one of R3 and R4 is an atom or group selected from the group consisting of (i), (iii) and (iv). The catalyst composition for olefin polymerization according to any one of [3], [6] and [9].

[13] 前記[3]、[6]、[9]及び[12]のいずれか1つに記載のオレフィン系重合用触媒組成物を含む、オレフィン重合用触媒。
[14] 前記[2]、[5]、[8]及び[11]のいずれか1つに記載の金属錯体を含む、オレフィン重合用触媒。
[13] An olefin polymerization catalyst comprising the olefin polymerization catalyst composition according to any one of [3], [6], [9] and [12].
[14] An olefin polymerization catalyst comprising the metal complex according to any one of [2], [5], [8] and [11].

[15] 前記[13]または[14]に記載のオレフィン系重合用触媒の存在下、オレフィンを重合または共重合することを特徴とする、オレフィン系重合体の製造方法。
[16] 非環状オレフィンと、極性基含有モノマーおよび環状オレフィンからなる群より選ばれる少なくとも1種類のモノマーとを共重合することを特徴とする、前記[15]に記載のオレフィン系重合体の製造方法。
[15] A method for producing an olefin polymer, comprising polymerizing or copolymerizing an olefin in the presence of the olefin polymerization catalyst according to [13] or [14] above.
[16] A method for producing an olefin polymer according to the above [15], comprising copolymerizing a non-cyclic olefin with at least one monomer selected from the group consisting of a polar group-containing monomer and a cyclic olefin.

本発明によれば、活性や分子量などの触媒性能が改善されて、オレフィンを重合又は共重合できる触媒の配位子として用いられ得る新規な化合物、中でも極性基含有モノマーおよび環状オレフィンからなる群より選ばれる少なくとも1種類のモノマーと、非環状オレフィンを共重合できる、触媒の配位子として用いられ得る新規な化合物、当該新規な化合物を用いた金属錯体、オレフィン重合用触媒組成物、及びオレフィン重合用触媒、並びに、当該触媒を用いたオレフィン系重合体の製造方法を提供することができる。 According to the present invention, it is possible to provide a novel compound that has improved catalytic performance such as activity and molecular weight and can be used as a ligand of a catalyst capable of polymerizing or copolymerizing olefins, particularly a novel compound that can be used as a ligand of a catalyst capable of copolymerizing at least one monomer selected from the group consisting of polar group-containing monomers and cyclic olefins with a non-cyclic olefin, a metal complex using the novel compound, a catalyst composition for olefin polymerization, and a catalyst for olefin polymerization, as well as a method for producing an olefin-based polymer using the catalyst.

以下、本発明の配位子として用いられ得る新規な化合物、当該新規な化合物を用いた金属錯体、オレフィン重合用触媒組成物、及びオレフィン重合用触媒、並びに、当該触媒を用いたオレフィン系重合体の製造方法について、項目毎に詳細に説明する。
本明細書において、「重合」とは、1種類のモノマーの単独重合と複数種のモノマーの共重合を総称するものであり、特に両者を区別する必要がない場合には、総称して単に「重合」と記載する。また、明細書において、「(メタ)アクリル酸エステル」とは、アクリル酸エステルとメタクリル酸エステルの両方を含む。
また、本明細書において数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。
本明細書において「Ph」はフェニル、「Me」はメチル、「Et」はエチル、「Pr」はプロピル、「Bu」はブチル、「Py」はピリジルまたはピリジン、「acac」はアセチルアセトナート、「DMP」は2,6-ジメトキシフェニル、「TMS」はトリメチルシリルを表す。
さらに、アルキル基の構造異性体の接頭辞において、「i」はイソ、「n]はノルマル、「s」はセカンダリー、「t」はターシャリーを表す。なお、アルキル基に構造異性体の接頭辞が記載されていない場合は、ノルマル構造であることを示す。
Hereinafter, the novel compound that can be used as a ligand of the present invention, the metal complex using the novel compound, the olefin polymerization catalyst composition, and the olefin polymerization catalyst, as well as the process for producing an olefin polymer using the catalyst will be described in detail for each item.
In this specification, "polymerization" refers collectively to homopolymerization of one type of monomer and copolymerization of multiple types of monomers, and when there is no need to distinguish between the two, they are collectively referred to simply as "polymerization." In addition, in the specification, "(meth)acrylic acid ester" includes both acrylic acid ester and methacrylic acid ester.
In addition, in this specification, the use of "to" indicating a range of values is used to mean that the values before and after it are included as the lower limit and upper limit.
In this specification, "Ph" stands for phenyl, "Me" stands for methyl, "Et" stands for ethyl, "Pr" stands for propyl, "Bu" stands for butyl, "Py" stands for pyridyl or pyridine, "acac" stands for acetylacetonate, "DMP" stands for 2,6-dimethoxyphenyl, and "TMS" stands for trimethylsilyl.
Furthermore, in the prefixes of structural isomers of alkyl groups, "i" stands for iso, "n" stands for normal, "s" stands for secondary, and "t" stands for tertiary. When no prefix of structural isomer is given to an alkyl group, it indicates a normal structure.

1.化合物
本発明の化合物は、下記一般式(A)で表される化合物である。
1. Compound The compound of the present invention is a compound represented by the following general formula (A).

[式(A)中、各符号は前記のとおりである。]
以下において、式(A)中のR~R、E、X、Z、l、n及びmについて説明する。
[In formula (A), each symbol is as defined above.]
R 1 to R 6 , E 1 , X 1 , Z, l, n and m in formula (A) will be explained below.

前記一般式(A)において、Xは、酸素原子または硫黄原子を表す。即ち、前記一般式(A)で表される化合物は、16族元素を1価のアニオン性の配位原子として1つ有している配位子として用いることができる。配位子として用いられる化合物の種類が豊富であることから、Xは、好ましくは、酸素原子である。 In the general formula (A), X 1 represents an oxygen atom or a sulfur atom. That is, the compound represented by the general formula (A) can be used as a ligand having one Group 16 element as a monovalent anionic coordinating atom. Since there are a wide variety of compounds that can be used as a ligand, X 1 is preferably an oxygen atom.

前記一般式(A)において、Eは、窒素原子、リン原子、砒素原子またはアンチモン原子を表す。即ち、前記一般式(A)で表される化合物は、15族元素を中性の配位原子として1つ有している配位子として用いることができる。配位子として用いられる化合物の種類が豊富であり、ニッケルまたはパラジウムなどの後周期遷移金属元素との配位性が良好であることから、Eは、窒素原子またはリン原子であることが好ましい。 In the general formula (A), E1 represents a nitrogen atom, a phosphorus atom, an arsenic atom, or an antimony atom. That is, the compound represented by the general formula (A) can be used as a ligand having one Group 15 element as a neutral coordinating atom. Since there are a wide variety of compounds that can be used as a ligand and they have good coordination with late transition metal elements such as nickel or palladium, E1 is preferably a nitrogen atom or a phosphorus atom.

前記一般式(A)において、R、R、R、およびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
(i)水素原子
(ii)ハロゲン原子
(iii)ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~30の炭化水素基
(iv)OR、C(O)OR、C(O)OM’、C(O)N(R、C(O)R、OC(O)R、SR、S(O)、S(O)R、OS(O)、SF、P(O)(OR2-y(R、CN、N(H)R、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、S(O)OM’、P(O)(OM’)、P(O)(ORM’またはエポキシ含有基(ここで、Rはそれぞれ独立に、水素原子または炭素数1~20の炭化水素基を表し、Rはそれぞれ独立に、炭素数1~20の炭化水素基を表し、M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0、1、2または3、yは0、1または2を表す)。R、R、R、およびRは、隣接置換基同士が互いに連結し、5~8員の、脂環式環または酸素原子、窒素原子、若しくは硫黄原子から選ばれるヘテロ原子を少なくとも1つ含有する複素環を形成していてもよい。
In the above general formula (A), R 3 , R 4 , R 5 and R 6 each independently represent an atom or group selected from the group consisting of the following (i) to (iv):
(i) a hydrogen atom; (ii) a halogen atom; (iii) a hydrocarbon group having 1 to 30 carbon atoms which may contain at least one heteroatom; (iv) OR b , C(O)OR b , C(O)OM', C(O)N(R a ) 2 , C(O)R b , OC(O)R b , SR b , S(O) 2 R b , S(O)R b , OS(O) 2 R b , SF 5 , P(O)(OR b ) 2-y (R a ) y , CN, N(H)R a , N(R b ) 2 , Si(OR a ) 3-x (R a ) x , OSi(OR a ) 3-x (R a ) x , NO 2 , S(O) 2 OM', P(O)(OM') 2 , P(O)(OR b ) 2 M' or an epoxy-containing group (wherein R a each independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, R b each independently represents a hydrocarbon group having 1 to 20 carbon atoms, M' represents an alkali metal, an alkaline earth metal, ammonium, a quaternary ammonium or a phosphonium, x represents 0, 1, 2 or 3, y represents 0, 1 or 2). Adjacent substituents of R 3 , R 4 , R 5 and R 6 may be linked together to form a 5-8 membered alicyclic ring or a heterocycle containing at least one heteroatom selected from an oxygen atom, a nitrogen atom or a sulfur atom.

(ii)ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。これらの中でも、フッ素原子が好ましい。 (ii) Examples of halogen atoms include fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms. Of these, fluorine atoms are preferred.

(iii)ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~30の炭化水素基としては、炭化水素基、および、水素原子の少なくとも1つがヘテロ原子含有置換基で置換された炭化水素基が挙げられる。
(iii)におけるヘテロ原子としては、例えば、酸素原子、窒素原子、リン原子、硫黄原子、ケイ素原子、ハロゲン原子等が挙げられる。置換基としてのヘテロ原子としては、ハロゲン原子であってよく、ハロゲン原子としては前記(ii)と同様であってよい。
(iii)におけるヘテロ原子含有置換基としては、後述する(iv)に挙げられるヘテロ原子含有置換基と同様の基であってもよい。(iii)に使用されるヘテロ原子含有置換基としては、アルコキシ基、アリールオキシ基、アルコキシカルボニル基またはアシルオキシ基であってよい。
(iii) Examples of the hydrocarbon group having 1 to 30 carbon atoms which may contain at least one heteroatom include a hydrocarbon group and a hydrocarbon group in which at least one hydrogen atom is substituted with a heteroatom-containing substituent.
Examples of the heteroatom in (iii) include an oxygen atom, a nitrogen atom, a phosphorus atom, a sulfur atom, a silicon atom, a halogen atom, etc. The heteroatom as a substituent may be a halogen atom, and the halogen atom may be the same as in (ii) above.
The heteroatom-containing substituent in (iii) may be the same as the heteroatom-containing substituent in (iv) described below. The heteroatom-containing substituent used in (iii) may be an alkoxy group, an aryloxy group, an alkoxycarbonyl group, or an acyloxy group.

(iii)における炭素数1~30の炭化水素基としては、例えば、直鎖、分岐、環状の飽和又は不飽和脂肪族炭化水素基、芳香族炭化水素基、及びこれらの組み合わせが挙げられる。炭素数1~30の炭化水素基としては、より具体的には、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数7~30のアルキルアリール基等が挙げられる。 In (iii), examples of the hydrocarbon group having 1 to 30 carbon atoms include linear, branched, and cyclic saturated or unsaturated aliphatic hydrocarbon groups, aromatic hydrocarbon groups, and combinations thereof. More specific examples of the hydrocarbon group having 1 to 30 carbon atoms include linear alkyl groups having 1 to 30 carbon atoms, branched non-cyclic alkyl groups having 3 to 30 carbon atoms, alkenyl groups having 2 to 30 carbon atoms, cycloalkyl groups having 3 to 30 carbon atoms that may have a side chain, aryl groups having 6 to 30 carbon atoms, arylalkyl groups having 7 to 30 carbon atoms, and alkylaryl groups having 7 to 30 carbon atoms.

炭素数1~30の直鎖状アルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~10の直鎖状アルキル基であってよく、炭素数1~4の直鎖状アルキル基であってよい。
炭素数3~30の分岐した非環状アルキル基としては、i-プロピル基、i-ブチル基、t-ブチル基、s-ブチル基、i-ペンチル基(3-メチルブチル基)、t-ペンチル基(1,1-ジメチルプロピル基)、s-ペンチル基(1-メチルブチル基)、2-メチルブチル基、ネオペンチル基(2,2-ジメチルプロピル基)、1,2-ジメチルプロピル基、i-ヘキシル基(4-メチルペンチル基)等の炭素数3~10の分岐した非環状アルキル基であってよく、炭素数3~8の分岐した非環状アルキル基であってよい。
The linear alkyl group having 1 to 30 carbon atoms may be a linear alkyl group having 1 to 10 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, an n-nonyl group, or an n-decyl group, or may be a linear alkyl group having 1 to 4 carbon atoms.
The branched non-cyclic alkyl group having 3 to 30 carbon atoms may be a branched non-cyclic alkyl group having 3 to 10 carbon atoms, such as an i-propyl group, an i-butyl group, a t-butyl group, an s-butyl group, an i-pentyl group (3-methylbutyl group), a t-pentyl group (1,1-dimethylpropyl group), an s-pentyl group (1-methylbutyl group), a 2-methylbutyl group, a neopentyl group (2,2-dimethylpropyl group), a 1,2-dimethylpropyl group, or an i-hexyl group (4-methylpentyl group), or may be a branched non-cyclic alkyl group having 3 to 8 carbon atoms.

炭素数2~30のアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、スチリル基、シンナミル基が挙げられる。アルケニル基としては、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、スチリル基等の炭素数3~8のアルケニル基であってよく、ブテニル基、ペンテニル基、ヘキセニル基、スチリル基等の炭素数4~8のアルケニル基であってよい。
炭素数3~30の側鎖を有していてもよいシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、2-メチルシクロペンチル基、3-メチルシクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、4-エチルシクロヘキシル基、シクロオクチル基、デカヒドロナフチル基(ビシクロ[4,4,0]デシル基)等の炭素数3~10の側鎖を有していてもよいシクロアルキル基であってよく、炭素数3~6の側鎖を有していてもよいシクロアルキル基であってよい。
Examples of the alkenyl group having 2 to 30 carbon atoms include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, a styryl group, and a cinnamyl group. The alkenyl group may be an alkenyl group having 3 to 8 carbon atoms, such as an allyl group, a butenyl group, a pentenyl group, a hexenyl group, or a styryl group, or may be an alkenyl group having 4 to 8 carbon atoms, such as a butenyl group, a pentenyl group, a hexenyl group, or a styryl group.
The cycloalkyl group which may have a side chain having 3 to 30 carbon atoms may be a cycloalkyl group which may have a side chain having 3 to 10 carbon atoms, such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a 2-methylcyclopentyl group, a 3-methylcyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, a 4-ethylcyclohexyl group, a cyclooctyl group, or a decahydronaphthyl group (bicyclo[4,4,0]decyl group), or may be a cycloalkyl group which may have a side chain having 3 to 6 carbon atoms.

炭素数6~30のアリール基としては、フェニル基、ナフチル基、アズレニル基、ビフェニル基、アントラセニル基、テルフェニル基、フェナントレニル基、トリフェニレニル基、クリセニル基、ピレニル基、テトラセニル基等の炭素数6~18のアリール基であってよく、炭素数6~12のアリール基であってよい。
炭素数7~30のアリールアルキル基としては、ベンジル基、フェネチル基(2-フェニルエチル基)、9-フルオレニル基、ナフチルメチル基、1-テトラリニル基等の炭素数7~15のアリールアルキル基であってよく、炭素数7~10のアリールアルキル基であってよい。
炭素数7~30のアルキルアリール基としては、トリル基、キシリル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ペンチルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ウンデシルフェニル基、ドデシルフェニル基等の炭素数7~20のアルキルアリール基であってよく、トリル基、キシリル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ペンチルフェニル基等の炭素数7~15のアルキルアリール基であってよい。
The aryl group having 6 to 30 carbon atoms may be an aryl group having 6 to 18 carbon atoms, such as a phenyl group, a naphthyl group, an azulenyl group, a biphenyl group, an anthracenyl group, a terphenyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a pyrenyl group, or a tetracenyl group, or may be an aryl group having 6 to 12 carbon atoms.
The arylalkyl group having 7 to 30 carbon atoms may be an arylalkyl group having 7 to 15 carbon atoms, such as a benzyl group, a phenethyl group (2-phenylethyl group), a 9-fluorenyl group, a naphthylmethyl group, or a 1-tetralinyl group, or may be an arylalkyl group having 7 to 10 carbon atoms.
The alkylaryl group having 7 to 30 carbon atoms may be an alkylaryl group having 7 to 20 carbon atoms, such as a tolyl group, a xylyl group, an ethylphenyl group, a propylphenyl group, a butylphenyl group, a pentylphenyl group, a hexylphenyl group, a heptylphenyl group, an octylphenyl group, a nonylphenyl group, a decylphenyl group, an undecylphenyl group, or a dodecylphenyl group, or may be an alkylaryl group having 7 to 15 carbon atoms, such as a tolyl group, a xylyl group, an ethylphenyl group, a propylphenyl group, a butylphenyl group, or a pentylphenyl group.

(iii)においては、R~Rに相当する置換基の総炭素数が、好ましくは1~30であり、より好ましくは2~25であり、さらに好ましくは4~20である。
(iii)としては、(iii-A)炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数7~30のアルキルアリール基、(iii-B)上記(iii-A)のそれぞれの基に上記ヘテロ原子が1又は2以上置換している基、(iii-C)上記(iii-A)のそれぞれの基にヘテロ原子含有置換基が1又は2以上置換している基、並びに、(iii-D)上記(iii-A)のそれぞれの基に、上記ヘテロ原子が1又は2以上置換し、かつ、ヘテロ原子含有置換基が1又は2以上置換している基が挙げられる。(iii-C)については、例えば、アルコキシ基が置換しているアルキル基や、アルコキシカルボニル基、アシルオキシ基が置換しているアリール基等が挙げられる。
In (iii), the total number of carbon atoms in the substituents corresponding to R 3 to R 6 is preferably 1 to 30, more preferably 2 to 25, and even more preferably 4 to 20.
Examples of (iii) include (iii-A) a linear alkyl group having 1 to 30 carbon atoms, a branched non-cyclic alkyl group having 3 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms which may have a side chain, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, and an alkylaryl group having 7 to 30 carbon atoms, (iii-B) a group in which each of the groups in (iii-A) is substituted with one or more of the heteroatoms, (iii-C) a group in which each of the groups in (iii-A) is substituted with one or more heteroatoms containing substituents, and (iii-D) a group in which each of the groups in (iii-A) is substituted with one or more of the heteroatoms and one or more heteroatom-containing substituents. Examples of (iii-C) include an alkyl group substituted with an alkoxy group, an aryl group substituted with an alkoxycarbonyl group, or an acyloxy group.

(iii)ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~30の炭化水素基としては、例えば、トリフルオロメチル基、トリクロロメチル基、トリブロモメチル基、トリヨードメチル基、2,4,6-トリフェニルフェニル基、2,6-ジイソプロピルフェニル基、9-アントラセニル基、ペンタフルオロエチル基、ペンタフルオロフェニル基、フェニル基、ベンジル基等であってよい。 (iii) Examples of hydrocarbon groups having 1 to 30 carbon atoms and which may contain at least one heteroatom include a trifluoromethyl group, a trichloromethyl group, a tribromomethyl group, a triiodomethyl group, a 2,4,6-triphenylphenyl group, a 2,6-diisopropylphenyl group, a 9-anthracenyl group, a pentafluoroethyl group, a pentafluorophenyl group, a phenyl group, and a benzyl group.

(iv)はヘテロ原子含有置換基であり、OR、C(O)OR、C(O)OM’、C(O)N(R、C(O)R、OC(O)R、SR、S(O)、S(O)R、OS(O)、SF、P(O)(OR2-y(R、CN、N(H)R、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、S(O)OM’、P(O)(OM’)、P(O)(ORM’またはエポキシ含有基(ここで、Rはそれぞれ独立に、水素原子または炭素数1~20の炭化水素基を表し、Rはそれぞれ独立に、炭素数1~20の炭化水素基を表し、M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0、1、2または3、yは0、1または2を表す)からなる群より選ばれる原子または基である。 (iv) is a heteroatom-containing substituent, such as OR b , C(O)OR b , C(O)OM', C(O)N(R a ) 2 , C(O)R b , OC(O)R b , SR b , S(O) 2 R b , S(O)R b , OS(O) 2 R b , SF 5 , P(O)(OR b ) 2-y (R a ) y , CN, N(H)R a , N(R b ) 2 , Si(OR a ) 3-x (R a ) x , OSi(OR a ) 3-x (R a ) x , NO 2 , S(O) 2 OM', P(O)(OM') 2 , P(O)(OR b 2 ) M' or an epoxy-containing group (wherein each R a independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, each R b independently represents a hydrocarbon group having 1 to 20 carbon atoms, M' represents an alkali metal, an alkaline earth metal, ammonium, a quaternary ammonium or a phosphonium, x represents 0, 1, 2 or 3, and y represents 0, 1 or 2).

前記(iv)の例示としては、例えば、水酸基、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、t-ブトキシ基、フェノキシ基、p-メチルフェノキシ基、p-メトキシフェノキシ基、エトキシカルボニル基、t-ブトキシカルボニル基、フェノキシカルボニル基、ジメチルアミド基、アセチル基、ベンゾイル基、アセトキシ基、メチルチオ基、エチルチオ基、n-プロピルチオ基、i-プロピルチオ基、n-ブチルチオ基、t-ブチルチオ基、フェニルチオ基、メチルスルホニル基、フェニルスルホニル基、メチルスルホニルオキシ基、フェニルスルホニルオキシ基、ペンタフルオロスルファニル基(SF)、ジメチルホスフェート基、シアノ基、アミノ基(NH)、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、シクロヘキシルアミノ基、メチルエチルアミノ基、メチル-n-プロピルアミノ基、メチルシクロヘキシルアミノ基、カルバゾリル基、ピペリジル基、トリメチルシリル基、トリエチルシリル基、ジメチルフェニルシリル基、トリメトキシシリル基、トリエトキシシリル基、トリメチルシリルオキシ基、トリメトキシシロキシ基、カルボン酸ナトリウム、スルホン酸ナトリウム、スルホン酸カリウム、リン酸ナトリウム、リン酸カリウム等が挙げられる。 Examples of the (iv) include a hydroxyl group, a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, a t-butoxy group, a phenoxy group, a p-methylphenoxy group, a p-methoxyphenoxy group, an ethoxycarbonyl group, a t-butoxycarbonyl group, a phenoxycarbonyl group, a dimethylamido group, an acetyl group, a benzoyl group, an acetoxy group, a methylthio group, an ethylthio group, an n-propylthio group, an i-propylthio group, an n-butylthio group, a t-butylthio group, a phenylthio group, a methylsulfonyl group, a phenylsulfonyl group, a methylsulfonyloxy group, a phenylsulfonyloxy group, a pentafluorosulfanyl group (SF 5 ), a dimethylphosphate group, a cyano group, an amino group (NH 2 ), methylamino group, dimethylamino group, diethylamino group, di-n-propylamino group, cyclohexylamino group, methylethylamino group, methyl-n-propylamino group, methylcyclohexylamino group, carbazolyl group, piperidyl group, trimethylsilyl group, triethylsilyl group, dimethylphenylsilyl group, trimethoxysilyl group, triethoxysilyl group, trimethylsilyloxy group, trimethoxysiloxy group, sodium carboxylate, sodium sulfonate, potassium sulfonate, sodium phosphate, potassium phosphate, and the like.

また、R、R、R、およびRは、隣接置換基同士が互いに連結し、5~8員の、脂環式環または酸素原子、窒素原子、若しくは硫黄原子から選ばれるヘテロ原子を少なくとも1つ含有する複素環を形成していてもよい。形成された環構造においては縮合環の中に芳香族環が含まれていてもよい。環を形成する例としては、1,2-シクロペンチレン、1,2-シクロヘキシレン、1-オキソ-2,3-シクロペンチレン、1-オキソ-2,3-シクロヘキシレン、1,2-ジヒドロアセナフチレン、9,10-ジヒドロアントラセニレン等が挙げられる。 In addition, adjacent substituents of R 3 , R 4 , R 5 , and R 6 may be linked to each other to form a 5- to 8-membered alicyclic ring or a heterocyclic ring containing at least one heteroatom selected from an oxygen atom, a nitrogen atom, or a sulfur atom. In the ring structure formed, an aromatic ring may be included in the condensed ring. Examples of ring-forming groups include 1,2-cyclopentylene, 1,2-cyclohexylene, 1-oxo-2,3-cyclopentylene, 1-oxo-2,3-cyclohexylene, 1,2-dihydroacenaphthylene, and 9,10-dihydroanthracenylene.

中でも、配位子の安定性の点から、前記RおよびRの少なくとも一方が、前記(i)、(iii)および(iv)からなる群より選ばれる原子または基であることが好ましく、前記Rが、前記(i)および(iii)からなる群より選ばれる原子または基であって、前記Rが、前記(i)、(iii)、C(O)OR、C(O)N(R、C(O)R、S(O)、およびP(O)(OR2-y(Rからなる群より選ばれる原子または基であることがより好ましい。 Among these, from the viewpoint of the stability of the ligand, it is preferable that at least one of R 5 and R 6 is an atom or group selected from the group consisting of (i), (iii) and (iv), and it is more preferable that R 5 is an atom or group selected from the group consisting of (i) and (iii) and R 6 is an atom or group selected from the group consisting of (i), (iii), C(O)OR b , C(O)N(R a ) 2 , C(O)R b , S(O) 2 R b , and P(O)(OR b ) 2-y (R a ) y .

特に、Xに隣接する前記RおよびRの少なくとも1つが、電子吸引性基であると、オレフィン重合触媒としての性能がより向上するため好ましい。Xに隣接する前記RおよびRの両方が電子吸引性基であってよい。電子吸引性基としては、トリフルオロメチル基、ペンタフルオロフェニル基、メトキシカルボニル基、フェノキシカルボニル基、SF、トシル基、メシル基、ニトロ基、メチルカルボニル基、フェニルカルボニル基等が好適に用いられる。 In particular, it is preferable that at least one of R5 and R6 adjacent to X1 is an electron-withdrawing group, since this further improves the performance as an olefin polymerization catalyst. Both R5 and R6 adjacent to X1 may be electron-withdrawing groups. As the electron-withdrawing group, a trifluoromethyl group, a pentafluorophenyl group, a methoxycarbonyl group, a phenoxycarbonyl group, SF5 , a tosyl group, a mesyl group, a nitro group, a methylcarbonyl group, a phenylcarbonyl group, and the like are preferably used.

また、合成難易度や経済的合理性の点から、前記RおよびRの少なくとも一方が、前記(i)、(iii)および(iv)からなる群より選ばれる原子または基であってよく、前記Rおよび前記Rの少なくとも一方が、水素原子であってよい。 In addition, from the viewpoint of the degree of difficulty in synthesis and economic rationality, at least one of R3 and R4 may be an atom or group selected from the group consisting of (i), (iii) and (iv), and at least one of R3 and R4 may be a hydrogen atom.

nは、0、1、2、3または4であり、nが0のとき、EはX、RおよびRが結合する炭素原子に直接結合する。nの値は、EとXとを連結する炭素鎖の炭素数と関連する。錯体の構造の安定性の点から、前記nは、0、1または2であってよい。5員環となり錯体の構造が安定するため、nが1であることが好ましい。 n is 0, 1, 2, 3 or 4, and when n is 0, E1 is directly bonded to the carbon atom to which X1 , R5 and R6 are bonded. The value of n is related to the number of carbon atoms in the carbon chain connecting E1 and X1 . From the viewpoint of the stability of the complex structure, the n may be 0, 1 or 2. It is preferable that n is 1 because it becomes a 5-membered ring and the complex structure is stable.

前記一般式(A)において、Rは、下記一般式(B)または(C)で表される炭化水素基を表す。 In the above general formula (A), R 1 represents a hydrocarbon group represented by the following general formula (B) or (C).

[式(B)及び式(C)中、
*はEとの結合手を表し、
、R、R、R10、R11、R12およびR13は、それぞれ独立に、前記式(A)で定義する(i)~(iv)からなる群より選ばれる原子または基を表し、R、R、RおよびR10は、隣接置換基同士が互いに連結し、5~8員の、脂環式環、芳香族環、または酸素原子、窒素原子、若しくは硫黄原子から選ばれるヘテロ原子を少なくとも1つ含有する複素環を形成していてもよく、
、A、AおよびAは、それぞれ独立に、酸素原子、硫黄原子、-C(R)-、-S(O)-、-S(O)-、-N(R)-、-P(R)-、または-P(O)(R)-(ここで、Rはそれぞれ独立に、水素原子、または、ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~20の炭化水素基を表す。)を表す。
ただし、
式(B)中、A、A、AおよびAのうち、少なくとも3つが-C(R)-以外であり、
式(C)中、AおよびAはいずれも-C(R)-以外であり、且つ、R12およびR13のうち、少なくとも1つは前記(ii)および(iv)(ただしエポキシ含有基を除く)からなる群より選ばれる原子または基である。
およびWは、それぞれ独立に、炭素原子、ケイ素原子、窒素原子、リン原子、ホウ素原子、酸素原子、-P(O)-または-S(O)-を表し、窒素原子、リン原子、ホウ素原子または-P(O)-のとき、RおよびR10は存在せず、酸素原子、または-S(O)-のとき、RおよびR並びにRおよびR10は存在しない。
hおよびiは、それぞれ独立に、1~6の整数であり、W、W、R、R、RおよびR10が複数存在する場合、複数のW、W、R、R、RおよびR10はそれぞれ同一であっても異なっていてもよい。]
[In formula (B) and formula (C),
* represents a bond to E1 ;
R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and R 13 each independently represent an atom or group selected from the group consisting of (i) to (iv) defined in formula (A), and adjacent substituents of R 7 , R 8 , R 9 and R 10 may be bonded to each other to form a 5- to 8-membered alicyclic ring, aromatic ring, or heterocycle containing at least one heteroatom selected from an oxygen atom, a nitrogen atom, or a sulfur atom;
A 1 , A 2 , A 3 and A 4 each independently represent an oxygen atom, a sulfur atom, -C(R) 2 -, -S(O)-, -S(O) 2 -, -N(R)-, -P(R)- or -P(O)(R)- (wherein each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one heteroatom).
however,
In formula (B), at least three of A 1 , A 2 , A 3 and A 4 are other than —C(R) 2 —;
In formula (C), A3 and A4 are both other than -C(R) 2- , and at least one of R12 and R13 is an atom or group selected from the group consisting of (ii) and (iv) (excluding epoxy-containing groups).
W 1 and W 2 each independently represent a carbon atom, a silicon atom, a nitrogen atom, a phosphorus atom, a boron atom, an oxygen atom, -P(O)- or -S(O) 2 -; when W 1 and W 2 represent a nitrogen atom, a phosphorus atom, a boron atom or -P(O)-, R 8 and R 10 do not exist; and when W 1 and W 2 represent an oxygen atom or -S(O) 2 -, R 7 and R 8 as well as R 9 and R 10 do not exist.
h and i each independently represent an integer of 1 to 6, and when a plurality of W 1 , W 2 , R 7 , R 8 , R 9 and R 10 are present, the plurality of W 1 , W 2 , R 7 , R 8 , R 9 and R 10 may be the same or different.]

式(B)及び式(C)中、A、A、AおよびAは、それぞれ独立に、酸素原子、硫黄原子、-C(R)-、-S(O)-、-S(O)-、-N(R)-、-P(R)-、または-P(O)(R)-(ここで、Rはそれぞれ独立に、水素原子、または、ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~20の炭化水素基を表す。)を表す。前記Rにおけるヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~20の炭化水素基は、前記(iii)のうち、ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~20の炭化水素基と同様であってよい。前記Rは、合成難易度や経済的合理性の点から、水素原子、または炭素数1~20の炭化水素基であってよく、水素原子、または炭素数1~10の炭化水素基であってよく、水素原子、または炭素数1~6の炭化水素基であってよく、水素原子、または炭素数1~3の炭化水素基であってよい。 In formula (B) and formula (C), A 1 , A 2 , A 3 and A 4 each independently represent an oxygen atom, a sulfur atom, -C(R) 2 -, -S(O)-, -S(O) 2 -, -N(R)-, -P(R)- or -P(O)(R)- (wherein R each independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one heteroatom). The hydrocarbon group having 1 to 20 carbon atoms which may contain at least one heteroatom represented by R may be the same as the hydrocarbon group having 1 to 20 carbon atoms which may contain at least one heteroatom in (iii) above. From the standpoint of synthesis difficulty and economic rationality, R may be a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, or a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms.

式(B)及び式(C)中、WおよびWは、それぞれ独立に、炭素原子、ケイ素原子、窒素原子、リン原子、ホウ素原子、酸素原子、-P(O)-または-S(O)-を表し、窒素原子、リン原子、ホウ素原子または-P(O)-のとき、RおよびR10は存在せず、酸素原子、または-S(O)-のとき、RおよびR並びにRおよびR10は存在しない。
式(B)及び式(C)中、WおよびWはそれぞれ独立に、配位子の安定性の点から、炭素原子、またはケイ素原子であってよく、炭素原子であってよい。
In formula (B) and formula (C), W 1 and W 2 each independently represent a carbon atom, a silicon atom, a nitrogen atom, a phosphorus atom, a boron atom, an oxygen atom, -P(O)- or -S(O) 2 -; when W 1 and W 2 represent a nitrogen atom, a phosphorus atom, a boron atom or -P(O)-, R 8 and R 10 do not exist, and when W 1 and W 2 represent an oxygen atom or -S(O) 2 -, R 7 and R 8 as well as R 9 and R 10 do not exist.
In formula (B) and formula (C), W 1 and W 2 may each independently be a carbon atom or a silicon atom, or may be a carbon atom, in terms of the stability of the ligand.

式(B)及び式(C)中、R、R、R、R10、R11、R12およびR13は、それぞれ独立に、前記式(A)で定義する(i)~(iv)からなる群より選ばれる原子または基を表す。
、R、R、R10、およびR11は、合成難易度や経済的合理性の点から、それぞれ独立に、前記(i)および(iii)からなる群より選ばれる原子または基であってよい。R、R、R、R10、およびR11における前記(iii)としては、中でも合成難易度や経済的合理性の点から、炭素数1~4のアルキル基、または炭素数6~10のアリール基であってよい。
また、R、R、RおよびR10は、それぞれ独立に、隣接置換基同士が互いに連結し、それらの結合するWまたはWと一緒に、5~8員の脂環式環、芳香族環、または酸素原子、窒素原子、若しくは硫黄原子から選ばれるヘテロ原子を少なくとも1つ含有する複素環を形成していてもよい。例えばhまたはiが2であり、WまたはWが2つ存在する場合、R、R、RおよびR10は、それぞれ独立に、隣接置換基同士が互いに連結し、それらの結合する当該2つのWまたは2つのWと一緒に5~8員の脂環式環、芳香族環、または複素環を形成していてもよい。
In formula (B) and formula (C), R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and R 13 each independently represent an atom or group selected from the group consisting of (i) to (iv) defined in formula (A).
R 7 , R 8 , R 9 , R 10 , and R 11 may each independently be an atom or group selected from the group consisting of (i) and (iii) from the viewpoints of synthesis difficulty and economic rationality. Among them, (iii) in R 7 , R 8 , R 9 , R 10 , and R 11 may be an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms from the viewpoints of synthesis difficulty and economic rationality.
Furthermore, R 7 , R 8 , R 9 and R 10 may each independently be such that adjacent substituents are linked to each other and, together with the W 1 or W 2 to which they are bonded, form a 5-8 membered alicyclic ring, aromatic ring, or heterocycle containing at least one heteroatom selected from an oxygen atom, a nitrogen atom, or a sulfur atom. For example, when h or i is 2 and there are two W 1 or W 2 , R 7 , R 8 , R 9 and R 10 may each independently be such that adjacent substituents are linked to each other and, together with the two W 1 or the two W 2 to which they are bonded, form a 5-8 membered alicyclic ring, aromatic ring, or heterocycle.

、R、RおよびR10は、それらの結合するWまたはWと一緒に、脂環式環を形成しているものであってよく、隣接置換基同士が互いに連結した炭素数4~7のアルキレン基であってもよい。例えば、隣接するR及びRは、それらの結合するWと6員環を形成するような炭素数5のアルキレン基であってもよい。R、R、RおよびR10は、それぞれ独立に、隣接置換基のアリール基同士が互いに連結してそれらの結合するWまたはWと環を形成しているものであってよい。例えば、隣接するR及びRは、それらの結合するWと5員環を形成するようなビフェニレン基であってもよい。この場合にWが炭素原子であると、WとR及びRによりフルオレニリデンが形成される。
また、R、R、RおよびR10は、それらの結合する2つのWまたは2つのWと一緒に、脂環式環を形成しているものであってよく、隣接置換基同士が互いに連結した炭素数3~6のアルキレン基であってもよく、5または6員環となるような炭素数3または4のアルキレン基であってもよい。また、R、R、RおよびR10は、それらの結合する2つのWまたは2つのWと一緒に、炭素数6~12の芳香族環を形成しているものであってよい。
R 7 , R 8 , R 9 and R 10 may form an alicyclic ring together with W 1 or W 2 to which they are bonded, or may be an alkylene group having 4 to 7 carbon atoms in which adjacent substituents are bonded to each other. For example, adjacent R 7 and R 8 may be an alkylene group having 5 carbon atoms that forms a 6-membered ring together with W 1 to which they are bonded. R 7 , R 8 , R 9 and R 10 may each independently be a ring in which aryl groups of adjacent substituents are bonded to each other to form a ring together with W 1 or W 2 to which they are bonded. For example, adjacent R 7 and R 8 may be a biphenylene group that forms a 5-membered ring together with W 1 to which they are bonded. In this case, when W 1 is a carbon atom, W 1 , R 7 and R 8 form a fluorenylidene.
R 7 , R 8 , R 9 and R 10 may form an alicyclic ring together with the two W 1 or two W 2 to which they are bonded, may be an alkylene group having 3 to 6 carbon atoms in which adjacent substituents are bonded to each other, or may be an alkylene group having 3 or 4 carbon atoms that forms a 5- or 6-membered ring. R 7 , R 8 , R 9 and R 10 may form an aromatic ring having 6 to 12 carbon atoms together with the two W 1 or two W 2 to which they are bonded.

さらに、前記脂環式環または芳香族環の少なくとも1つの炭素原子を、酸素原子、窒素原子、若しくは硫黄原子から選ばれるヘテロ原子に置き換えた複素環であってもよい。
また、R、R、RおよびR10において形成される脂環式環、芳香族環、または複素環は、更に前記式(A)で定義する(ii)~(iv)からなる群より選ばれる原子または基を置換基として有していてもよく、当該置換基はハロゲン原子であってよい。
11は、合成難易度や経済的合理性の点から、水素原子であってよい。
Furthermore, it may be a heterocycle in which at least one carbon atom of the alicyclic ring or aromatic ring is replaced with a heteroatom selected from an oxygen atom, a nitrogen atom, or a sulfur atom.
In addition, the alicyclic ring, aromatic ring, or heterocyclic ring formed by R 7 , R 8 , R 9 , and R 10 may further have an atom or group selected from the group consisting of (ii) to (iv) defined in the above formula (A) as a substituent, and the substituent may be a halogen atom.
From the viewpoint of synthesis difficulty and economic rationality, R 11 may be a hydrogen atom.

また、R12およびR13は、それぞれ独立に、合成難易度や経済的合理性の点から、前記(i)、(iii)および(iv)からなる群より選ばれる原子または基であってよい。R12およびR13における前記(iii)としては、合成難易度や経済的合理性の点から、炭素数1~10のアルキル基、または炭素数6~10のアリール基等であってよい。R12およびR13における前記(iv)としては、合成難易度や経済的合理性の点から、OR、C(O)OR、C(O)N(R、C(O)R、OC(O)R、SR、S(O)、S(O)R、OS(O)、SF、P(O)(OR2-y(R、CN、N(H)R、N(R、Si(OR3-x(R、OSi(OR3-x(R、または、NO等であってよい。 R 12 and R 13 may each independently be an atom or group selected from the group consisting of (i), (iii) and (iv) from the viewpoints of synthesis difficulty and economic rationality. The (iii) in R 12 and R 13 may be an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms, from the viewpoints of synthesis difficulty and economic rationality. In terms of synthesis difficulty and economic rationality, the (iv) in R 12 and R 13 may be OR b , C(O)OR b , C(O)N(R a ) 2 , C(O)R b , OC(O)R b , SR b , S(O) 2R b , S(O)R b , OS(O) 2R b , SF 5 , P(O)(OR b ) 2-y (R a ) y , CN, N(H)R a , N(R b ) 2 , Si(OR a ) 3-x (R a ) x , OSi(OR a ) 3-x (R a ) x , or NO 2 , etc.

式(B)及び式(C)中、hおよびiは、それぞれ独立に、1~6の整数であり、W、W、R、R、RおよびR10が複数存在する場合、複数のW、W、R、R、RおよびR10はそれぞれ同一であっても異なっていてもよい。
hおよびiは、合成難易度や経済的合理性の点から、それぞれ独立に、1~3の整数であってよく、1または2であってよく、1であってよい。
In formula (B) and formula (C), h and i are each independently an integer of 1 to 6, and when a plurality of W 1 , W 2 , R 7 , R 8 , R 9 and R 10 are present, the plurality of W 1 , W 2 , R 7 , R 8 , R 9 and R 10 may be the same or different.
In terms of the ease of synthesis and economic rationality, h and i may each independently be an integer of 1 to 3, may be 1 or 2, or may be 1.

ただし、式(B)中、A、A、AおよびAのうち、少なくとも3つが-C(R)-以外である。すなわち、式(B)中、A、A、AおよびAのうち、少なくとも3つが、酸素原子、硫黄原子、-S(O)-、-S(O)-、-N(R)-、-P(R)-、または-P(O)(R)-である。
式(B)中、-C(R)-以外としては、合成難易度や経済的合理性の点から、酸素原子、硫黄原子または-N(R)-であってよく、酸素原子であってよい。
中でも、式(B)中、A、A、AおよびAのうち、4つが-C(R)-以外の基であってよく、4つが酸素原子であってよい。
However, in formula (B), at least three of A 1 , A 2 , A 3 and A 4 are other than -C(R) 2 -. That is, in formula (B), at least three of A 1 , A 2 , A 3 and A 4 are an oxygen atom, a sulfur atom, -S(O)-, -S(O) 2 -, -N(R)-, -P(R)- or -P(O)(R)-.
In formula (B), other than -C(R) 2 -, from the viewpoint of synthesis difficulty and economic rationality, it may be an oxygen atom, a sulfur atom or -N(R)-, or it may be an oxygen atom.
In particular, in formula (B), four of A 1 , A 2 , A 3 and A 4 may be groups other than —C(R) 2 —, and four may be oxygen atoms.

ただし、式(C)中、AおよびAはいずれも-C(R)-以外であり、且つ、R12およびR13のうち、少なくとも1つは前記(ii)および(iv)(ただしエポキシ含有基を除く)からなる群より選ばれる原子または基である。すなわち、式(C)中、AおよびAはいずれも、酸素原子、硫黄原子、-S(O)-、-S(O)-、-N(R)-、-P(R)-、または-P(O)(R)-であり、R12およびR13のうち、少なくとも1つは前記(ii)および(iv)(ただしエポキシ含有基を除く)からなる群より選ばれる原子または基である。
式(C)中、-C(R)-以外としては、合成難易度や経済的合理性の点から、酸素原子、硫黄原子、または-N(R)-であってよく、酸素原子であってよい。
式(C)中、R12およびR13における前記(ii)および(iv)(ただしエポキシ含有基を除く)からなる群より選ばれる原子または基としては、活性の点から、フッ素原子、OR、SR、N(H)R、N(R、またはOSi(OR3-x(Rであってよく、ORであってよい。また、R12およびR13におけるORとしては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、t-ブトキシ基、フェノキシ基であってよい。
In formula (C), A 3 and A 4 are both other than -C(R) 2 -, and at least one of R 12 and R 13 is an atom or group selected from the group consisting of (ii) and (iv) (excluding epoxy-containing groups). That is, in formula (C), A 3 and A 4 are both oxygen atoms, sulfur atoms, -S(O)-, -S(O) 2 -, -N(R)-, -P(R)-, or -P(O)(R)-, and at least one of R 12 and R 13 is an atom or group selected from the group consisting of (ii) and (iv) (excluding epoxy-containing groups).
In formula (C), other than -C(R) 2 -, from the viewpoint of synthesis difficulty and economic rationality, it may be an oxygen atom, a sulfur atom, or -N(R)-, or it may be an oxygen atom.
In formula (C), the atom or group selected from the group consisting of (ii) and (iv) (excluding epoxy-containing groups) in R 12 and R 13 may be, from the viewpoint of activity, a fluorine atom, OR b , SR b , N(H)R a , N(R b ) 2 , or OSi(OR a ) 3-x (R a ) x , or may be OR b . Furthermore, OR b in R 12 and R 13 may be, for example, a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, a t-butoxy group, or a phenoxy group.

中でも、活性の点から、前記一般式(C)中、AおよびAはいずれも、酸素原子、窒素原子、リン原子または硫黄原子であり、且つ、R12が前記(ii)および(iv)(ただしエポキシ含有基を除く)からなる群より選ばれる原子または基であってよく、前記一般式(C)中、AおよびAはいずれも、酸素原子であり、且つ、R12が前記(ii)および(iv)(ただしエポキシ含有基を除く)からなる群より選ばれる原子または基であってよい。 Among these, from the viewpoint of activity, in the general formula (C), A3 and A4 may both be an oxygen atom, a nitrogen atom, a phosphorus atom or a sulfur atom, and R12 may be an atom or group selected from the group consisting of (ii) and (iv) (excluding epoxy-containing groups), and in the general formula (C), A3 and A4 may both be an oxygen atom, and R12 may be an atom or group selected from the group consisting of (ii) and (iv) (excluding epoxy-containing groups).

前記一般式(A)において、Rは、前記一般式(B)または(C)で表される炭化水素基とは異なる、ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~20の炭化水素基を表し、lは1または2であり、lが2のとき、Rは存在しない。
におけるヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~20の炭化水素基としては、前記(iii)のうち、ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~20の炭化水素基と同様であってよい。
としては、炭素数3~20の炭化水素基であってよく、例えば、n-プロピル基、イソプロピル基、イソブチル基、t-ブチル基、3-ペンチル基、2,6-ジメチル-4-へプチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、ノルボルニル基、アダマンチル基、(1R,2S,5R)-2-イソプロピル-5-メチルシクロヘキサン-1-イル基(メンチル基)、フェニル基、2-メトキシフェニル基、2,6-ジエチルフェニル基(DEP)、2,6-ジメトキシフェニル基(DMP)、2’,6’-ジメトキシ[1,1’-ビフェニル]-2-イル基、(1R,2S,5R)-2-イソプロピル-5-メチルシクロヘキサン-1-イル基等が好適に用いられる。
合成難易度や経済的合理性の点から、lは2であってよい。
In the general formula (A), R2 represents a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one heteroatom and is different from the hydrocarbon group represented by the general formula (B) or (C), l is 1 or 2, and when l is 2, R2 does not exist.
The hydrocarbon group having 1 to 20 carbon atoms which may contain at least one heteroatom for R2 may be the same as the hydrocarbon group having 1 to 20 carbon atoms which may contain at least one heteroatom among the above (iii).
R2 may be a hydrocarbon group having 3 to 20 carbon atoms, and examples of such groups that are preferably used include an n-propyl group, an isopropyl group, an isobutyl group, a t-butyl group, a 3-pentyl group, a 2,6-dimethyl-4-heptyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a norbornyl group, an adamantyl group, a (1R,2S,5R)-2-isopropyl-5-methylcyclohexan-1-yl group (menthyl group), a phenyl group, a 2-methoxyphenyl group, a 2,6-diethylphenyl group (DEP), a 2,6-dimethoxyphenyl group (DMP), a 2',6'-dimethoxy[1,1'-biphenyl]-2-yl group, and a (1R,2S,5R)-2-isopropyl-5-methylcyclohexan-1-yl group.
From the viewpoint of the degree of difficulty in synthesis and economic rationality, l may be 2.

前記一般式(A)において、Zは、水素原子、脱離基、1以上4以下の価数を有するカチオンであり、mは、1以上Zの価数以下の整数である。mが1のとき、Zとしては、水素原子、リチウムイオン、ナトリウムイオン、カリウムイオンなどが例示される。mが2のとき、Zとしては、マグネシウムイオン、カルシウムイオン、亜鉛イオンなどが例示される。脱離基としては、水素原子、RS(O)基(ここでRは、炭素数1~20の炭化水素基を表す)、C(F)S(O)基、RS(O)、TiOR基などを挙げることができる。カチオンとしては、具体的には、アンモニウム、4級アンモニウムまたはホスホニウム、周期表1族~14族の金属イオンを挙げることができる。これらのうち好ましくは、水素原子、NH4+、(R(ここでRは、前記したとおりであり、4つのRは、同じでも異なっていてもよい。以下同様である。)、(R、Li、Na、K、Cu、Ag、Au,Mg2+、Ca2+、Al3+であり、さらに好ましくは、水素原子、(R、Li、Na、K、Agである。 In the general formula (A), Z is a hydrogen atom, a leaving group, or a cation having a valence of 1 to 4, and m is an integer of 1 to 4, and when m is 1, Z is exemplified by a hydrogen atom, a lithium ion, a sodium ion, a potassium ion, and the like. When m is 2, Z is exemplified by a magnesium ion, a calcium ion, a zinc ion, and the like. Examples of the leaving group include a hydrogen atom, an R b S(O) 2 group (wherein R b represents a hydrocarbon group having 1 to 20 carbon atoms), a C(F) 3 S(O) 2 group, an R b S(O) 2 group, and a TiOR b group. Specific examples of the cation include ammonium, quaternary ammonium or phosphonium, and metal ions of groups 1 to 14 of the periodic table. Among these, preferred are a hydrogen atom, NH4 + , ( Rb ) 4N + (wherein Rb is as defined above, and the four Rb may be the same or different; the same applies below), ( Rb ) 4P + , Li + , Na + , K + , Cu + , Ag + , Au + , Mg2+ , Ca2 + , and Al3 + , and more preferred are a hydrogen atom, ( Rb ) 4N + , Li + , Na + , K + , and Ag + .

一般式(A)で表される化合物の具体的な例としては、以下のような化合物が挙げられるが、これらに限定されるものではない。 Specific examples of compounds represented by general formula (A) include, but are not limited to, the following compounds:

Figure 2024052628000008
Figure 2024052628000008

Figure 2024052628000009
(式中、Rは、水素原子またはヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~20の炭化水素基を表す。)
Figure 2024052628000009
(In the formula, R represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one heteroatom.)

前記一般式(A)で表される化合物は、公知の合成法に基づいて合成することができる。例えば、EH(R(R2-l等を用いて、塩基または酸存在下でEH(R(R2-lとエポキシとを反応させることによって前記一般式(A)で表される化合物を合成することができる。また、塩基存在下でECH(R(R2-lとケトンとを反応させることによっても前記一般式(A)を合成することができる。参照可能な代表的な文献としては、特許文献5、非特許文献7、Journal of Fluorine Chemistry 2002, 117, P121-129.などが挙げられる。
H(R(R2-lで表される化合物は、市販品を適宜選択して用いてもよい。市販品を入手できない場合には、ハロゲン化ホスフィンと有機リチウム、有機マグネシウムなどの求核剤とを反応させてEX(R(R2-l(Xはハロゲン原子)を合成したのち、水素化アルミニウムリチウムなどのヒドリド還元剤を作用させることで合成できる。参照可能な代表的な文献としては、特開2021-113174などが挙げられる。
に、前記一般式(B)または(C)で表される置換基を導入するための化合物は、市販品を適宜選択して用いてもよい。市販品を入手できない場合には、分子間もしくは分子内の環化反応により、合成できる。このような環化反応の例としては、ジハロゲン分子の求核置換反応、フリーデルクラフツ反応、遷移金属を用いた環化反応などが挙げられる。参照可能な代表的な文献としては、RSC Advances 2014, 4,P16312-16319や、Bioorg. Med. Chem. Lett. 2014, 24,P2379-2382.や、Chem. Eur. J. 2013, 19,P17349-17357.や、Org. Biomol. Chem.2018, 16, P8976―8983.等が挙げられる。
The compound represented by the general formula (A) can be synthesized based on a known synthesis method. For example, the compound represented by the general formula (A) can be synthesized by using E 1 H(R 1 ) l (R 2 ) 2-l or the like and reacting E 1 H(R 1 ) l (R 2 ) 2 -l with an epoxy in the presence of a base or an acid. The compound represented by the general formula (A) can also be synthesized by reacting E 1 CH 3 (R 1 ) l (R 2 ) 2-l with a ketone in the presence of a base. Representative reference documents include Patent Document 5, Non-Patent Document 7, Journal of Fluorine Chemistry 2002, 117, P121-129.
The compound represented by E 1 H(R 1 ) l (R 2 ) 2-l may be appropriately selected and used as a commercially available product. When a commercially available product is not available, it can be synthesized by reacting a halogenated phosphine with a nucleophile such as an organolithium or an organomagnesium to synthesize E 1 X(R 1 ) l (R 2 ) 2-l (X is a halogen atom), and then reacting with a hydride reducing agent such as lithium aluminum hydride. Representative reference documents include JP 2021-113174 and the like.
The compound for introducing the substituent represented by the general formula (B) or (C) into R 1 may be appropriately selected from commercially available products. When a commercially available product is not available, it can be synthesized by an intermolecular or intramolecular cyclization reaction. Examples of such cyclization reactions include nucleophilic substitution reactions of dihalogen molecules, Friedel-Crafts reactions, and cyclization reactions using transition metals. Representative reference documents include RSC Advances 2014, 4, P16312-16319, Bioorg. Med. Chem. Lett. 2014, 24, P2379-2382., Chem. Eur. J. 2013, 19, P17349-17357., Org. Biomol. Chem.2018, 16, P8976-8983., etc.

前記一般式(A)で表される化合物は、後述する一般式(E)または(F)で表される遷移金属化合物と錯体を形成し得る配位子として機能する。特に、Xが酸素原子でありEがリン原子であるような一般式(A)で表される化合物は、アルキレン基を介してリンと酸素が結合した構造を有するので、このような化合物群を、Alkylene Linked Phosphine Alkoxide(ALPHA)配位子ということがある。 The compound represented by the general formula (A) functions as a ligand capable of forming a complex with a transition metal compound represented by the general formula (E) or (F) described later. In particular, a compound represented by the general formula (A) in which X1 is an oxygen atom and E1 is a phosphorus atom has a structure in which phosphorus and oxygen are bonded via an alkylene group, and such a compound group is sometimes called an alkylene linked phosphine alkoxide (ALPHA) ligand.

2.オレフィン重合用触媒組成物
本発明のオレフィン重合用触媒組成物は、前記一般式(A)で表される化合物と、下記一般式(E)または(F)で表される遷移金属化合物とを含む。
2. Catalyst Composition for Olefin Polymerization The catalyst composition for olefin polymerization of the present invention contains a compound represented by the above general formula (A) and a transition metal compound represented by the following general formula (E) or (F).

〔式(E)および式(F)中、
、MおよびMは、それぞれ独立に、ニッケル原子またはパラジウム原子を表し、L、L、L、L、L、L、LおよびL10は、それぞれ独立に、M、MまたはMに配位したリガンドを表し、LおよびLは、MおよびMに配位したリガンドを表し、
qは0、1または2であり、
およびLは互いに結合してMを含む環を形成してもよく、
およびLは互いに結合してMを含む環を形成してもよく、
およびLは、互いに結合してMを含む環を形成してもよく、
およびL10は、互いに結合してMを含む環を形成してもよい。]
[In the formula (E) and the formula (F),
M 1 , M 2 and M 3 each independently represent a nickel atom or a palladium atom; L 1 , L 2 , L 3 , L 4 , L 5 , L 6 , L 9 and L 10 each independently represent a ligand coordinated to M 1 , M 2 or M 3 ; L 7 and L 8 each independently represent a ligand coordinated to M 2 and M 3 ;
q is 0, 1 or 2;
L1 and L2 may be bonded to each other to form a ring containing M1 ;
L3 and L4 may be bonded to each other to form a ring containing M1 ;
L5 and L6 may be bonded to each other to form a ring containing M2 ;
L9 and L10 may be bonded to each other to form a ring including M3 .

本発明のオレフィン重合用触媒組成物において、前記一般式(A)で表される化合物は、前述と同様であってよいので、ここでの説明を省略する。
前記一般式(A)で表される化合物は、リン原子等のEにRとして少なくとも1つの前記一般式(B)または(C)で表される炭化水素基が結合する。前記一般式(B)または(C)で表される炭化水素基においては、リン原子等のEに結合する炭素原子に対してオルト位の置換基(A及びA)が環状構造を形成していることから、オルト位の置換基の自由回転が抑制される。一方で、前記一般式(B)または(C)で表される炭化水素基は適度な嵩高さを有する。2つのオルト位に自由回転可能な置換基を有するフェニル基がE1に結合する場合、当該化合物を配位子として用いると、活性中心である遷移金属近傍の立体障害が高くなりすぎるため、活性が低下しやすくなると考えられる。また、無置換のフェニル基がEに結合する場合、当該化合物を配位子として用いると、遷移金属近傍の立体障害不足のため、高分子量化しにくいと考えられる。前記一般式(A)で表される化合物は、遷移金属化合物の配位子として用いられたときに、遷移金属近傍に適度な立体障害を保つことができるために、分子量を高い水準に保ちつつ触媒の活性を上昇することができると考えられる。
また、前記一般式(A)で表される化合物において、リン原子等のEに結合するフェニル基の置換基が、酸素原子等のヘテロ原子を環構造に含めた置換基であることにより、触媒の中心金属に対する酸素原子等のヘテロ原子の配位力がより向上され、触媒は高活性化し、さらに得られる重合体は高分子量化すると考えられる。
In the catalyst composition for olefin polymerization of the present invention, the compound represented by the general formula (A) may be the same as that described above, and therefore, description thereof will be omitted here.
In the compound represented by the general formula (A), at least one hydrocarbon group represented by the general formula (B) or (C) is bonded as R 1 to E 1 such as a phosphorus atom. In the hydrocarbon group represented by the general formula (B) or (C), the substituents (A 1 and A 3 ) at the ortho positions relative to the carbon atom bonded to E 1 such as a phosphorus atom form a cyclic structure, so that the free rotation of the ortho-positioned substituent is suppressed. On the other hand, the hydrocarbon group represented by the general formula (B) or (C) has a moderate bulkiness. When a phenyl group having freely rotatable substituents at two ortho positions is bonded to E 1, if the compound is used as a ligand, it is considered that the activity is likely to decrease because the steric hindrance near the transition metal, which is the active center, becomes too high. In addition, when an unsubstituted phenyl group is bonded to E 1 , it is considered that the compound is difficult to increase the molecular weight due to insufficient steric hindrance near the transition metal when used as a ligand. It is believed that the compound represented by the general formula (A) can maintain a suitable degree of steric hindrance in the vicinity of the transition metal when used as a ligand of a transition metal compound, thereby increasing the activity of the catalyst while maintaining the molecular weight at a high level.
In addition, in the compound represented by the general formula (A), it is considered that the coordination force of the heteroatom such as an oxygen atom with respect to the central metal of the catalyst is further improved by the substituent of the phenyl group bonded to E1 such as a phosphorus atom being a substituent containing a heteroatom such as an oxygen atom in its ring structure, the catalyst is highly activated, and the obtained polymer has a high molecular weight.

前記一般式(E)または(F)におけるM、MおよびMは、それぞれ独立に、ニッケル原子またはパラジウム原子である。ここで、金属Mの価数とは、有機金属化学で用いられる形式酸化数(formal oxidation number)を意味する。
すなわち、ある元素が関与する結合中の電子対を電気陰性度の大きい元素に割り当てたとき、その元素の原子上に残る電荷の数を指す。安価に入手が可能であることから、ニッケル原子であることが好ましい。
In the general formula (E) or (F), M 1 , M 2 and M 3 are each independently a nickel atom or a palladium atom. Here, the valence of the metal M means the formal oxidation number used in organometallic chemistry.
In other words, it refers to the number of charges remaining on an atom of an element when the electron pairs in a bond involving that element are assigned to an element with a higher electronegativity. Nickel atoms are preferred because they are inexpensive and readily available.

前記一般式(E)または(F)におけるL、L、L、L、L、L、LおよびL10は、それぞれ独立に、M、MまたはMに配位したリガンドを表し、-1価の電子供与性配位子または中性の電子供与性配位子を表す。
-1価の電子供与性配位子は、電気的に陰性であり中心金属であるMにσ結合するか、または3以上の炭素原子に非極在化したπ電子を供与する配位子である。中性の電子供与性配位子は、一つの例としては電気的に中性であり不対電子をMに配位させることで配位結合を形成しうる配位子である。当該配位子は、不対電子を有する原子を有する分子であり、当該不対電子を有する原子としては、窒素原子、リン原子、ヒ素原子、酸素原子、硫黄原子、セレン等が挙げられる。また中性の電子供与性配位子のまた別の例として、π電子を供与することによってπ供与結合を形成するエチレン、シクロオクタジエン(cod)のような分子、金属に配位するオレフィンとヘテロ原子をともに有するジベンジリデンアセトン(dba)のような分子が挙げられる。L~L、L、L10として用いることができるものとしては、アセトニトリル、イソニトリル、一酸化炭素、エチレン、テトラヒドロフランなど、金属錯体の中性配位子として公知のもの、アリルやシクロペンタジエニルなどπ電子を供与する配位子を用いることができる。また、ER’R’’R’’’またはXR’R’’で示される分子を配位子とすることもできる。ここで、EはN、PまたはAsを表し、XはO、SまたはSeを示し、R’、R’’およびR’’’はそれぞれ独立して、水素原子;置換されていてもよい炭素数1~30のアルキル基、脂環式基、アルコキシ基、アリール基もしくはアリールオキシ基;またはそれぞれ独立して炭素数1~30の炭化水素で少なくとも1つの水素原子が置換されたアミノ基もしくはシリル基を表し、R’とR’’は連結してヘテロ環構造を形成していてもよく、R’、R’’およびR’’’は、Eを含んで結合し芳香族ヘテロ環構造を形成してもよい。さらに、LとL、LとL、LとL、LとL10は、互いに結合してMまたはMを含む環を形成してもよく、これらの基が環を形成するとき、当該環の最小の環員数はMを含めて5員環から10員環である。
~L、L、L10は、-1価の電子供与性配位子を有していてもよいが、金属錯体を生成する反応を容易とするために、金属錯体の価数が1または2となるように選択されることが好ましい。したがって、L~L、L、L10のうち-1価の電子供与性配位子の数は、0~2であることが好ましい。
In the general formula (E) or (F), L 1 , L 2 , L 3 , L 4 , L 5 , L 6 , L 9 and L 10 each independently represent a ligand coordinated to M 1 , M 2 or M 3 , and represent a -1-valent electron-donating ligand or a neutral electron-donating ligand.
The electron donating ligand with a valence of -1 is a ligand that is electrically negative and forms a σ bond with the central metal M, or donates delocalized π electrons to three or more carbon atoms. One example of a neutral electron donating ligand is a ligand that is electrically neutral and can form a coordinate bond by coordinating an unpaired electron to M. The ligand is a molecule having an atom with an unpaired electron, and examples of the atom having an unpaired electron include a nitrogen atom, a phosphorus atom, an arsenic atom, an oxygen atom, a sulfur atom, and selenium. Another example of a neutral electron donating ligand is a molecule such as ethylene or cyclooctadiene (cod) that forms a π donating bond by donating a π electron, and a molecule such as dibenzylideneacetone (dba) that has both an olefin and a heteroatom that coordinate to a metal. Examples of ligands that can be used for L 1 to L 6 , L 9 , and L 10 include acetonitrile, isonitrile, carbon monoxide, ethylene, tetrahydrofuran, and other ligands known as neutral ligands for metal complexes, and ligands that donate π electrons, such as allyl and cyclopentadienyl. A molecule represented by E 2 R'R''R''' or X 2 R'R'' can also be used as a ligand. Here, E 2 represents N, P, or As, X 2 represents O, S, or Se, and R', R'' and R'' each independently represent a hydrogen atom; an alkyl group, an alicyclic group, an alkoxy group, an aryl group, or an aryloxy group having 1 to 30 carbon atoms which may be substituted; or an amino group or a silyl group in which at least one hydrogen atom is substituted with a hydrocarbon having 1 to 30 carbon atoms, and R' and R'' may be linked together to form a heterocyclic structure, and R', R'' and R'' may be linked together to include E 2 to form an aromatic heterocyclic structure. Furthermore, L1 and L2 , L3 and L4 , L5 and L6 , and L9 and L10 may be bonded to each other to form a ring containing M2 or M3 , and when these groups form a ring, the minimum number of ring members, including M, is a 5-membered ring to 10-membered ring.
Although L 1 to L 6 , L 9 and L 10 may each have a −1-valent electron-donating ligand, in order to facilitate the reaction for producing a metal complex, it is preferable that the valence of the metal complex is selected to be 1 or 2. Therefore, the number of −1-valent electron-donating ligands among L 1 to L 6 , L 9 and L 10 is preferably 0 to 2.

-1価の電子供与性配位子のL~L、L、L10としては、水素原子、ハロゲン原子、又は、少なくとも1つのヘテロ原子を含んでいてもよい炭素数1~20の炭化水素基が挙げられ、炭化水素部分の構造は、直鎖状、分岐鎖状、環状のいずれであってもよく、ヘテロ原子を含む環を形成していてもよい。好ましい炭素数は1~16であり、更に好ましくは1~10である。
-1価の電子供与性配位子のL~L、L、L10の具体的な例としては、それぞれ独立にヒドリド基、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、ネオペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、シクロペンチル基、シクロヘキシル基、ベンジル基、トリメチルシリルメチル基、フェニル基、p-メチルフェニル基、p-フルオロフェニル基、フルオライド基、クロライド基、ブロマイド基、ヨード基等が挙げられる。好ましい例として、ヒドリド基、メチル基、ネオペンチル基、ベンジル基、トリメチルシリルメチル基、フェニル基、p-フルオロフェニル基、クロライド基、ブロマイド基、ヨード基が挙げられる。
The -1-valent electron donor ligands L 1 to L 6 , L 9 , and L 10 each include a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one heteroatom, and the structure of the hydrocarbon portion may be linear, branched, or cyclic, and may form a ring containing a heteroatom. The number of carbon atoms is preferably 1 to 16, and more preferably 1 to 10.
Specific examples of the -1-valent electron donating ligands L 1 to L 6 , L 9 , and L 10 each independently include a hydride group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a neopentyl group, an n-hexyl group, an n-octyl group, an n-decyl group, an n-dodecyl group, a cyclopentyl group, a cyclohexyl group, a benzyl group, a trimethylsilylmethyl group, a phenyl group, a p-methylphenyl group, a p-fluorophenyl group, a fluoride group, a chloride group, a bromide group, and an iodine group. Preferred examples include a hydride group, a methyl group, a neopentyl group, a benzyl group, a trimethylsilylmethyl group, a phenyl group, a p-fluorophenyl group, a chloride group, a bromide group, and an iodine group.

その他にL~L、L、L10の好ましいものとして、ホスフィン類、ピリジン類、ピペリジン類、アルキルエーテル類、アリールエーテル類、アルキルアリールエーテル類、環状エーテル類、アルキルニトリル誘導体、アリールニトリル誘導体、アルコール類、アミド類、脂肪族エステル類、芳香族エステル類、アミン類、環状不飽和炭化水素類等を挙げることができる。更に好ましいものとしては、ホスフィン類、ピリジン類、環状エーテル類、脂肪族エステル類、芳香族エステル類、環状オレフィン類が挙げられ、特に好ましいものとして、トリアルキルホスフィン、トリアリールホスフィン、ピリジン、ルチジン(ジメチルピリジン)、ピコリン(メチルピリジン)、RC(O)O(ここでRは、先に定義したとおりである)を挙げることができる。なお、LとL、LとL、LとL、LとL10は、互いに結合してMまたはMを含む環を形成してもよい例として、シクロオクタ-1-エニル基、アセチルアセトナート基、テトラメチルエチレンジアミン基、1,2-ジメトキシエタン基を挙げることができ、これもまた好ましい態様である。 Other preferred examples of L 1 to L 6 , L 9 , and L 10 include phosphines, pyridines, piperidines, alkyl ethers, aryl ethers, alkylaryl ethers, cyclic ethers, alkylnitrile derivatives, arylnitrile derivatives, alcohols, amides, aliphatic esters, aromatic esters, amines, and cyclic unsaturated hydrocarbons. More preferred examples include phosphines, pyridines, cyclic ethers, aliphatic esters, aromatic esters, and cyclic olefins. Particularly preferred examples include trialkylphosphines, triarylphosphines, pyridine, lutidine (dimethylpyridine), picoline (methylpyridine), and R b C(O)O (wherein R b is as defined above). Incidentally, L1 and L2 , L3 and L4 , L5 and L6 , and L9 and L10 may be bonded to each other to form a ring containing M2 or M3 . Examples of such a ring include a cyclooct-1-enyl group, an acetylacetonate group, a tetramethylethylenediamine group, and a 1,2-dimethoxyethane group, which is also a preferred embodiment.

およびLは、金属原子MおよびMに配位したリガンドを表すが、各々、MおよびMと3中心4電子結合と呼ばれる様式で結合している。LまたはLの配位子の例としては、水素原子、ハロゲン原子、炭素数1~4の炭化水素基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルコキシ基、炭素巣1~6の炭化水素基置換アミノ基、アセチル基が挙げられる。LおよびLの好ましいものとして、フルオライド基、クロライド基、ブロマイド基、ヨーダイド基、メチル基、エチル基、プロピル基、メトキシ基、フェノキシ基、ジメチルアミド基、ヒドリド基、チオメトキシ基、チオフェノキシ基、アセチル基が挙げられ、より好ましいものとしてフルオライド基、クロライド基、ブロマイド基、ヨード基、メチル基、メトキシ基、フェノキシ基、ヒドリド基、チオメトキシ基、チオフェノキシ基、アセチル基が挙げられ、さらに好ましいものとしてクロライド基、ブロマイド基、ヨード基、メトキシ基、フェノキシ基、アセチル基が挙げられる。 L7 and L8 represent ligands coordinated to metal atoms M2 and M3 , and are bonded to M2 and M3 in a manner called a three-center four-electron bond, respectively. Examples of the ligands of L7 or L8 include a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 4 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a thioalkoxy group having 1 to 6 carbon atoms, an amino group substituted with a hydrocarbon group having 1 to 6 carbon atoms, and an acetyl group. Preferred examples of L7 and L8 include a fluoride group, a chloride group, a bromide group, an iodide group, a methyl group, an ethyl group, a propyl group, a methoxy group, a phenoxy group, a dimethylamide group, a hydride group, a thiomethoxy group, a thiophenoxy group, and an acetyl group, more preferred examples include a fluoride group, a chloride group, a bromide group, an iodide group, a methyl group, a methoxy group, a phenoxy group, a hydride group, a thiomethoxy group, a thiophenoxy group, and an acetyl group, and even more preferred examples include a chloride group, a bromide group, an iodide group, a methoxy group, a phenoxy group, and an acetyl group.

前記一般式(E)において、qは、0、1、または2の値である。 In the general formula (E), q is 0, 1, or 2.

前記一般式(E)または式(F)で表される化合物の具体的な例としては、以下のような化合物が挙げられるが、これらに限定されるものではない。また、Ni(CHC(H)CH、Ni(CHC(Me)CH、Ni(CHSi(Me)(Py)(以下Pyは、ピリジンを表す。)、Ni(CHSi(Me)(Lut)(以下Lutは、2,6-ルチジンを表す。)、NiPh(Py)、NiPh(Lut),Pd(OC(O)CH等が挙げられる。
これらの化合物は、一般式(A)で表される化合物と錯体を形成すると考えられる。
Specific examples of the compound represented by the general formula (E) or (F) include, but are not limited to, the following compounds. In addition, Ni(CH 2 C(H)CH 2 ) 2 , Ni(CH 2 C(Me)CH 2 ) 2 , Ni(CH 2 Si(Me) 3 ) 2 (Py) 2 (hereinafter, Py represents pyridine), Ni(CH 2 Si(Me) 3 ) 2 (Lut) 2 (hereinafter, Lut represents 2,6-lutidine), NiPh 2 (Py) 2 , NiPh 2 (Lut) 2 , Pd(OC(O)CH 3 ) 2 , etc.
These compounds are believed to form complexes with the compound represented by formula (A).

前記一般式(A)で表される化合物は、前記一般式(E)または(F)で表される遷移金属化合物との組成物の状態で、または該遷移金属化合物との反応生成物である金属錯体の状態で、オレフィンの重合反応の触媒として用いることができる。オレフィンの重合反応において、触媒として用いられる当該生成物は、前記一般式(A)で表される化合物と、前記一般式(E)または(F)で表される遷移金属化合物とを反応させた後で生成物を単離して用いてもよいが、当該生成物を反応系から単離や洗浄を行わずに、重合反応に直接用いてもよい。これら化合物を反応させる方法は、金属錯体の合成において公知の方法を用いることができる。操作はすべて不活性ガス下で行うことが好ましい。反応は均一な溶媒中で行うが、溶媒としては一般的な炭化水素系反応溶媒を用いることができ、好ましくはトルエンである。反応溶媒中の遷移金属化合物の濃度は、飽和濃度を上限として自由に設定することができるが、好ましくは1mM~50mMの範囲である。前記一般式(A)で表される化合物(配位子)と、前記一般式(E)または(F)で表される遷移金属化合物の混合順序は制限されない。固体の配位子と固体の遷移金属化合物との混合物に溶媒を加えることもできるし、固体の配位子に溶解させた遷移金属化合物を加えることもできる。配位子と遷移金属化合物の混合比は配位子:金属=1:1~1:10の範囲とすることが好ましい。混合温度は溶媒の沸点を上限として20℃以上で適宜設定することができる。混合温度は好ましくは35℃~45℃の範囲である。混合に要する時間は好ましくは1分~24時間の範囲とすることができるが、より好ましくは10分~30分である。本発明の1つの態様は、前記一般式(A)で表される化合物と、前記一般式(E)または(F)で表される遷移金属化合物とを反応させる工程を含む、オレフィン重合用触媒の製造方法である。 The compound represented by the general formula (A) can be used as a catalyst for the polymerization reaction of olefins in the form of a composition with the transition metal compound represented by the general formula (E) or (F) or in the form of a metal complex which is a reaction product with the transition metal compound. In the polymerization reaction of olefins, the product used as a catalyst may be isolated after the reaction of the compound represented by the general formula (A) with the transition metal compound represented by the general formula (E) or (F), or the product may be directly used in the polymerization reaction without isolating or washing it from the reaction system. The method for reacting these compounds can be a method known in the synthesis of metal complexes. It is preferable to carry out all operations under an inert gas. The reaction is carried out in a homogeneous solvent, and a general hydrocarbon reaction solvent can be used as the solvent, preferably toluene. The concentration of the transition metal compound in the reaction solvent can be freely set with the saturation concentration as the upper limit, but is preferably in the range of 1 mM to 50 mM. The order of mixing the compound (ligand) represented by the general formula (A) and the transition metal compound represented by the general formula (E) or (F) is not limited. A solvent can be added to the mixture of the solid ligand and the solid transition metal compound, or a transition metal compound dissolved in the solid ligand can be added. The mixing ratio of the ligand and the transition metal compound is preferably in the range of ligand:metal = 1:1 to 1:10. The mixing temperature can be appropriately set to 20°C or higher with the boiling point of the solvent as the upper limit. The mixing temperature is preferably in the range of 35°C to 45°C. The time required for mixing can preferably be in the range of 1 minute to 24 hours, and more preferably 10 minutes to 30 minutes. One aspect of the present invention is a method for producing an olefin polymerization catalyst, which includes a step of reacting a compound represented by the general formula (A) with a transition metal compound represented by the general formula (E) or (F).

3.金属錯体
別の一態様において、本発明は、下記一般式(D)で表される金属錯体を提供する。
3. Metal Complex In another aspect, the present invention provides a metal complex represented by the following general formula (D):

[式(D)中、
、E、n、R、R、l、R、R、R、およびRは、前記一般式(A)で表される化合物で定義したとおりであって、
、LおよびLは、前記一般式(E)または(F)で表される遷移金属化合物で定義したとおりである。]
[In the formula (D),
X1 , E1 , n, R1 , R2 , l, R3 , R4 , R5 , and R6 are as defined in the compound represented by formula (A),
M 1 , L 1 and L 2 are as defined in the transition metal compound represented by the general formula (E) or (F).

前記一般式(D)で示される金属錯体の具体的な例としては、以下のような錯体を挙げることができる。ただし、これらは例示であり本発明の方法における錯体がこれら具体例に限定されるものではない。 Specific examples of the metal complex represented by the general formula (D) include the following complexes. However, these are merely examples and the complexes in the method of the present invention are not limited to these specific examples.

Figure 2024052628000013
Figure 2024052628000013

Figure 2024052628000014
Figure 2024052628000014

Figure 2024052628000015
Figure 2024052628000015

Figure 2024052628000016
(式中、Rは、水素原子または炭素数1~20の炭化水素基を表す。)
Figure 2024052628000016
(In the formula, R represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.)

本発明の前記一般式(D)で表される金属錯体は、前記一般式(A)で表される化合物と、前記一般式(E)または(F)で表される遷移金属化合物とを反応させる工程を含む方法で調製できるほか、公知の方法により調製することができる。公知の錯体調製法に基づいて当業者が原料の変更など適宜改変を加えることで、本発明の前記一般式(D)で表される金属錯体を調製することができる。 The metal complex represented by the general formula (D) of the present invention can be prepared by a method including a step of reacting a compound represented by the general formula (A) with a transition metal compound represented by the general formula (E) or (F), or by a known method. A person skilled in the art can prepare the metal complex represented by the general formula (D) of the present invention by making appropriate modifications, such as changing the raw materials, based on the known complex preparation method.

例えば、前記一般式(D)で表される金属錯体を製造する際には、前記一般式(A)で表される化合物と、前記一般式(E)または(F)で表される遷移金属化合物との反応を行う際に、さらに、一般式(D)におけるLやLに置換するための配位性化合物や共有結合性化合物を共存させてもよい。
本発明に係るMとして、ニッケルやパラジウムを用いる場合には、ルイス塩基性の配位性化合物を系内に共存させることによって、生成した金属錯体の安定性が増す場合がある。このような場合には、配位性化合物が本発明の重合反応または共重合反応を阻害しない限りにおいて、配位性化合物を共存させてもよい。
本発明で用いられる配位性化合物とは、配位結合可能な原子として、酸素原子、窒素原子、リン原子、ヒ素原子、硫黄原子、及びセレン原子からなる群より選ばれる少なくとも1種を有する炭素数1~20の炭化水素化合物、または、遷移金属に配位可能な炭素-炭素不飽和結合を有するヘテロ原子を含有していてもよい炭化水素化合物を使用することができ、前記L等のうちの中性の電子供与性配位子と同義であって良い。
For example, in producing a metal complex represented by the general formula (D), when the compound represented by the general formula (A) is reacted with the transition metal compound represented by the general formula (E) or (F), a coordinating compound or a covalent compound for substituting L1 or L2 in the general formula (D) may be coexisted.
When nickel or palladium is used as M in the present invention, the stability of the generated metal complex may be increased by allowing a Lewis basic coordination compound to coexist in the system. In such a case, the coordination compound may be allowed to coexist as long as it does not inhibit the polymerization reaction or copolymerization reaction of the present invention.
The coordinating compound used in the present invention may be a hydrocarbon compound having 1 to 20 carbon atoms and having at least one atom selected from the group consisting of oxygen atom, nitrogen atom, phosphorus atom, arsenic atom, sulfur atom, and selenium atom as an atom capable of forming a coordinate bond, or a hydrocarbon compound which may contain a heteroatom having a carbon-carbon unsaturated bond capable of coordinating to a transition metal, and may have the same meaning as the neutral electron-donating ligand among the above-mentioned L1 , etc.

また、本発明で用いられる前記共有結合性化合物とは、遷移金属化合物由来の配位子を、一般式(D)で表される金属錯体における前記L等のうちの-1価の電子供与性配位子に置換可能な化合物である。前記共有結合性化合物は、有機金属化合物であってよい。
-1価の電子供与性配位子として、少なくとも1つのヘテロ原子を含んでいてもよい炭素数1~20の炭化水素基は、重合反応の開始末端としてポリマー中に取り込まれるとともに、重合反応の初速度に大きく寄与することができる。そのため、前記一般式(D)で表される金属錯体を製造する際に、状況に応じて少なくとも1つのヘテロ原子を含んでいてもよい炭素数1~20の炭化水素基を導入するための共有結合性化合物も併用することが好ましい。
前記共有結合性化合物としては、有機リチウム化合物を挙げることができ、R14Li(ここで、R14はヘテロ原子を含有していてもよい炭素数1~20の炭化水素基)であってよく、ヘテロ原子を含有していてもよい炭素数1~10の炭化水素基を有する有機リチウム化合物であってよい。炭素数1~10の炭化水素基を有する有機リチウム化合物としては、メチルリチウム、n-ブチルリチウム、フェニルリチウム、ネオペンチルリチウム、ベンジルリチウム、トリメチルシリルメチルリチウム、p-フルオロフェニルリチウム等が挙げられる。この中でも好ましくは、メチルリチウム、フェニルリチウムであり、さらに好ましくはメチルリチウムである。
The covalent compound used in the present invention is a compound capable of substituting a ligand derived from a transition metal compound with a −1-valent electron donor ligand such as L1 in the metal complex represented by general formula (D). The covalent compound may be an organometallic compound.
As a -1-valent electron donating ligand, a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one hetero atom is incorporated into a polymer as an initiation terminal of the polymerization reaction and can greatly contribute to the initial rate of the polymerization reaction. Therefore, when producing a metal complex represented by the general formula (D), it is preferable to use a covalent compound for introducing a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one hetero atom depending on the situation.
The covalent compound may be an organolithium compound, which may be R 14 Li (wherein R 14 is a hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom), or an organolithium compound having a hydrocarbon group having 1 to 10 carbon atoms which may contain a heteroatom. Examples of organolithium compounds having a hydrocarbon group having 1 to 10 carbon atoms include methyllithium, n-butyllithium, phenyllithium, neopentyllithium, benzyllithium, trimethylsilylmethyllithium, p-fluorophenyllithium, and the like. Among these, methyllithium and phenyllithium are preferred, and methyllithium is more preferred.

4.オレフィン重合用触媒
本発明のオレフィン重合用触媒は、前記本発明のオレフィン系重合用触媒組成物を含む。
また、本発明のオレフィン重合用触媒は、前記一般式(D)で示される金属錯体を含む。
本発明のオレフィン重合用触媒は、オレフィンの重合反応時においては、前記一般式(A)で表される化合物と、前記一般式(E)または(F)で表される遷移金属化合物との生成物である金属錯体、または前記一般式(D)で示される金属錯体(以下、これらをまとめて単に「金属錯体触媒」ということがある)を含む。
本発明のオレフィン重合用触媒において、前記本発明のオレフィン系重合用触媒組成物と前記一般式(D)で示される金属錯体は前述と同様であってよいので、ここでの説明を省略する。
本発明のオレフィン重合用触媒においては、後述の実施例で示されるように、前記本発明のオレフィン系重合用触媒組成物や、前記一般式(D)で示される金属錯体を、特に精製することなくそのまま使用して、オレフィン重合用触媒として用いてもよい。
4. Olefin Polymerization Catalyst The olefin polymerization catalyst of the present invention comprises the above-mentioned olefin polymerization catalyst composition of the present invention.
The olefin polymerization catalyst of the present invention contains a metal complex represented by the above general formula (D).
The olefin polymerization catalyst of the present invention contains, during the olefin polymerization reaction, a metal complex which is a product of a compound represented by the general formula (A) and a transition metal compound represented by the general formula (E) or (F), or a metal complex represented by the general formula (D) (hereinafter, these may be collectively referred to simply as a "metal complex catalyst").
In the olefin polymerization catalyst of the present invention, the olefin polymerization catalyst composition of the present invention and the metal complex represented by the general formula (D) may be the same as those described above, and therefore, description thereof will be omitted here.
In the olefin polymerization catalyst of the present invention, as shown in the examples described later, the olefin polymerization catalyst composition of the present invention or the metal complex represented by the general formula (D) may be used as it is as an olefin polymerization catalyst without particular purification.

本発明のオレフィン重合用触媒において、オレフィン系重合用触媒組成物の前記一般式(A)で表される化合物と、下記一般式(E)または(F)で表される遷移金属化合物とはそれぞれ単独の成分を用いてもよいし、それぞれ複数種の成分を併用してもよい。またオレフィン系重合用触媒組成物には、前記一般式(D)で示される金属錯体が含まれていてよい。
本発明のオレフィン重合用触媒において含まれる前記一般式(D)で示される金属錯体は、1種単独であっても、2種以上の混合物であってもよい。
In the olefin polymerization catalyst of the present invention, the compound represented by the general formula (A) and the transition metal compound represented by the following general formula (E) or (F) of the olefin polymerization catalyst composition may be used alone or in combination of two or more kinds of components. The olefin polymerization catalyst composition may also contain a metal complex represented by the general formula (D).
The metal complex represented by the general formula (D) contained in the olefin polymerization catalyst of the present invention may be a single type alone or a mixture of two or more types.

本発明のオレフィン重合用触媒においては、金属錯体触媒に加え、さらに助触媒を加えてもよい。助触媒としては、例えば周期表第1、2または13族元素を含有する有機金属化合物が挙げられる。特に、下記一般式(1)で示される化合物、一般式(2)で示される化合物または有機アルミニウムオキシ化合物が挙げられる。これらの化合物は、複数種類が触媒組成物に含まれていてもよい。

一般式(1):Q(R20)(R21)R22
前記一般式(1)で示される化合物は、Q(R20)(R21)R22で表される、ホウ素またはアルミニウム化合物である。(式中、Qはホウ素(B)またはアルミニウム(Al)を表し、R20、R21およびR22はそれぞれ独立して、水素原子;置換されていてもよい炭素数1~30のアルキル基、脂環式基、アルコキシ基、アリール基もしくはアリールオキシ基;またはそれぞれ独立して炭素数1~30の炭化水素で1つ以上の水素原子が置換されたアミノ基もしくはシリル基を表す。)
20~R22としては、前記Rなどの説明において記載した例示等があてはまるが、化合物の調製や入手の容易さなどから、アルキル基、アリール基などの炭化水素基、またはトリフルオロメチル基、パーフルオロフェニル基などハロゲン(特にフッ素)で置換されたアルキル基またはアリール基であることが好ましい。
In the olefin polymerization catalyst of the present invention, in addition to the metal complex catalyst, a cocatalyst may be further added. Examples of the cocatalyst include organometallic compounds containing an element of Group 1, 2 or 13 of the periodic table. In particular, the cocatalyst may include a compound represented by the following general formula (1), a compound represented by the following general formula (2) or an organoaluminum oxy compound. A plurality of types of these compounds may be included in the catalyst composition.

General formula (1): Q( R20 )( R21 ) R22
The compound represented by the general formula (1) is a boron or aluminum compound represented by Q(R 20 )(R 21 )R 22. (In the formula, Q represents boron (B) or aluminum (Al), and R 20 , R 21 and R 22 each independently represent a hydrogen atom; an alkyl group, an alicyclic group, an alkoxy group, an aryl group or an aryloxy group having 1 to 30 carbon atoms which may be substituted; or an amino group or a silyl group in which one or more hydrogen atoms have been substituted by a hydrocarbon having 1 to 30 carbon atoms.)
R to R 22 may be any of the examples given in the description of R 3 etc., but from the standpoint of ease of preparation and availability of the compound, they are preferably hydrocarbon groups such as alkyl groups and aryl groups, or alkyl or aryl groups substituted with halogen (particularly fluorine), such as trifluoromethyl and perfluorophenyl groups.

前記一般式(1)で示される化合物の例は、トリメチルボラン、トリメトキシボラン、パーフルオロメチルボラン、トリフェニルボラン、トリス(パーフルオロフェニル)ボラン、トリフェノキシボラン、トリス(ジメチルアミノ)ボラン、トリス(ジフェニルアミノ)ボラン、トリメチルアルミニウム、トリエチルアルミニウム、トリ(n-プロピル)アルミニウム、トリ(n-ブチル)アルミニウム、トリイソブチルアルミニウム、トリ(n-ヘキシル)アルミニウム、トリ(n-オクチル)アルミニウム、トリ(n-デシル)アルミニウム、ジエチルアルミニウムヒドリド、ジエチルアルミニウムエトキシド、ジエチルアルミニウムジメチルアミド、ジイソブチルアルミニウムヒドリドなどであるが、これらに限定されない。 Examples of the compound represented by the general formula (1) include, but are not limited to, trimethylborane, trimethoxyborane, perfluoromethylborane, triphenylborane, tris(perfluorophenyl)borane, triphenoxyborane, tris(dimethylamino)borane, tris(diphenylamino)borane, trimethylaluminum, triethylaluminum, tri(n-propyl)aluminum, tri(n-butyl)aluminum, triisobutylaluminum, tri(n-hexyl)aluminum, tri(n-octyl)aluminum, tri(n-decyl)aluminum, diethylaluminum hydride, diethylaluminum ethoxide, diethylaluminum dimethylamide, and diisobutylaluminum hydride.

前記一般式(2):[C(R23)(R24)R25[Q(R26)(R27)(R28)R29
前記一般式(2)で示される化合物は、[C(R23)(R24)R25[Q(R26)(R27)(R28)R29で表される、ホウ素またはアルミニウムのカルボカチオンとの塩である。(式中、Qは前記一般式(2)に定義されたとおりであり、R23~R29は、それぞれ独立して、R20と同義である。)
23~R29としては、前記Rなどの説明において記載した例示等があてはまるが、化合物の調製や入手の容易さなどから、アルキル基、アリール基などの炭化水素基であることが好ましく、カルボカチオンを得やすいことから、t-ブチル基やアリール基など嵩高い炭化水素基がより好ましい。
The general formula (2): [C(R 23 )(R 24 )R 25 ] + [Q(R 26 )(R 27 )(R 28 )R 29 ]
The compound represented by the general formula (2) is a salt with a carbocation of boron or aluminum, represented by [C(R 23 )(R 24 )R 25 ] + [Q(R 26 )(R 27 )(R 28 )R 29 ] - . (In the formula, Q is as defined in the general formula (2), and R 23 to R 29 each independently have the same meaning as R 20. )
R to R 29 may be any of the examples given in the description of R 3 , etc., but from the standpoint of ease of compound preparation and availability, they are preferably hydrocarbon groups such as alkyl groups and aryl groups, and more preferably bulky hydrocarbon groups such as t-butyl groups and aryl groups, because a carbocation can be easily obtained.

前記一般式(2)で示される化合物の例は、トリチルテトラメチルボレート、トリチルテトラキス(パーフルオロメチル)ボレート、トリチルテトラフェニルボレート、トリチルテトラキス(パーフルオロフェニル)ボレート、トリチルテトラキス(ジ(トリフルオロメチル)フェニル)ボレートなどであるが、これらに限定されない。 Examples of the compound represented by the general formula (2) include, but are not limited to, trityl tetramethylborate, trityl tetrakis(perfluoromethyl)borate, trityl tetraphenylborate, trityl tetrakis(perfluorophenyl)borate, and trityl tetrakis(di(trifluoromethyl)phenyl)borate.

前記一般式(1)または(2)で示される化合物は、市販されているものを用いることができるほか、当該化合物が有する置換基に応じて、公知の方法を適宜改変することによっても得ることができる。 The compound represented by the general formula (1) or (2) may be commercially available, or may be obtained by appropriately modifying a known method depending on the substituents of the compound.

前記一般式(1)または(2)で示される化合物のほか、本発明のオレフィン重合用触媒には、有機アルミニウムオキシ化合物を加えることもできる。有機アルミニウム化合物を用いる場合の例としては、メチルアルミノキサン(MAO)や修飾メチルアルミノキサン(MMAO)が挙げられ、市販のものを用いることができる。容易に入手でき、取扱い性もよいことからMMAOが好ましい。MAO、MMAOは市販のものを用いることができ、グレード等による制限はない。 In addition to the compounds represented by the general formula (1) or (2), an organoaluminum oxy compound can also be added to the olefin polymerization catalyst of the present invention. Examples of organoaluminum compounds include methylaluminoxane (MAO) and modified methylaluminoxane (MMAO), and commercially available products can be used. MMAO is preferred because it is easily available and easy to handle. MAO and MMAO can be commercially available, and there are no restrictions on the grade, etc.

先に例示した13族元素を有する化合物のほか、メチルリチウムやn-ブチルリチウムなどのアルキルリチウムをはじめとする1族金属含有化合物、グリニャール試薬などの2族金属含有化合物のような、助触媒として従来公知の有機金属化合物もまた、助触媒として用いることもできる。これらの化合物も市販のものを用いることができ、グレード等による制限はない。 In addition to the compounds containing Group 13 elements exemplified above, organometallic compounds that are conventionally known as promoters, such as Group 1 metal-containing compounds including alkyllithiums such as methyllithium and n-butyllithium, and Group 2 metal-containing compounds such as Grignard reagents, can also be used as promoters. These compounds can also be commercially available, and there are no restrictions on the grade, etc.

これらの助触媒は、前記金属錯体触媒と同じ条件で用いることができるが、不活性ガス雰囲気下、酸素や水分を避けて使用することが好ましい。加える場合の使用量についても、当業者であれば適宜設定することができる。 These co-catalysts can be used under the same conditions as the metal complex catalysts, but it is preferable to use them under an inert gas atmosphere and avoiding oxygen and moisture. If added, the amount to be used can be appropriately determined by a person skilled in the art.

更に、前記金属錯体触媒と助触媒の接触は、触媒調製時だけでなく、オレフィンによる予備重合時又はオレフィンの重合時に行ってもよい。
前記金属錯体触媒と助触媒の接触は、窒素などの不活性ガス中において、ペンタン、ヘキサン、ヘプタン、トルエン、キシレンなどの不活性炭化水素溶媒中で行うことが好ましい。接触は、-20℃から溶媒の沸点の間の温度で行うことができ、特に室温から溶媒の沸点の間での温度で行うのが好ましい。
Furthermore, the contact of the metal complex catalyst with the co-catalyst may be carried out not only during the preparation of the catalyst but also during the prepolymerization with an olefin or during the polymerization of an olefin.
The contact of the metal complex catalyst with the co-catalyst is preferably carried out in an inert gas such as nitrogen, in an inert hydrocarbon solvent such as pentane, hexane, heptane, toluene, xylene, etc. The contact can be carried out at a temperature between −20° C. and the boiling point of the solvent, and is particularly preferably carried out at a temperature between room temperature and the boiling point of the solvent.

5.オレフィン系重合体の製造方法
本発明のオレフィン系重合体の製造方法の一実施形態は、前記本発明のオレフィン重合用触媒の存在下で、オレフィンを重合または共重合することを特徴とする。
5. Method for Producing Olefin Polymer One embodiment of the method for producing an olefin polymer of the present invention is characterized in that an olefin is polymerized or copolymerized in the presence of the olefin polymerization catalyst of the present invention.

本発明におけるオレフィンは、非環状オレフィンであっても環状オレフィンであってもよく、炭素数2~22の非環状オレフィン及び炭素数4~20の環状オレフィンからなる群より選ばれる少なくとも1種が挙げられる。
本発明における非環状オレフィンとしては、一般式:CH=CHR30で表されるα-オレフィンが挙げられる。ここで、R30は、水素原子または炭素数1~20の炭化水素基であり、分岐、環、および/または不飽和結合を有していてもよい。R30の炭素数が20より大きいと、十分な重合活性が発現しない傾向がある。このため、なかでも、好ましいオレフィンとしては、R30が水素原子または炭素数1~10の炭化水素基であるオレフィンが挙げられる。
また、α-オレフィン以外の非環状オレフィンの例としては、2-ブテン、2-ペンテン、2-ヘキセンなどが挙げられる。
また、炭素数4~20の環状オレフィンは、例えば、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、ノルボルネン、ノルボルナジエン等が挙げられる。
好ましいオレフィンとしては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、3-メチル-1-ブテン、4-メチル-1-ペンテン、ビニルシクロヘキセン、スチレン、4-メチルスチレン及びノルボルネンが挙げられる。重合体の製造効率の点から、中でも、エチレン、プロピレン、1-ブテン、及びノルボルネンからなる群から選択される1種以上であることが好ましく、更に、エチレンであることが好ましい。なお、オレフィンとしては、1種類のみを用いてもよく、2種類以上のオレフィンを同時に用いてもよい。
The olefin in the present invention may be either acyclic or cyclic olefin, and may be at least one selected from the group consisting of acyclic olefins having 2 to 22 carbon atoms and cyclic olefins having 4 to 20 carbon atoms.
The non-cyclic olefin in the present invention may be an α-olefin represented by the general formula: CH 2 ═CHR 30. Here, R 30 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and may have a branch, ring, and/or unsaturated bond. If R 30 has more than 20 carbon atoms, sufficient polymerization activity tends not to be exhibited. For this reason, particularly preferred olefins include olefins in which R 30 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
Examples of non-cyclic olefins other than α-olefins include 2-butene, 2-pentene, and 2-hexene.
Examples of the cyclic olefin having 4 to 20 carbon atoms include cyclobutene, cyclopentene, cyclohexene, cycloheptene, norbornene, and norbornadiene.
Preferred olefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 3-methyl-1-butene, 4-methyl-1-pentene, vinylcyclohexene, styrene, 4-methylstyrene, and norbornene. From the viewpoint of the production efficiency of the polymer, it is preferable to use one or more olefins selected from the group consisting of ethylene, propylene, 1-butene, and norbornene, and more preferably ethylene. It is to be noted that only one type of olefin may be used, or two or more types of olefins may be used simultaneously.

極性基含有モノマーとしては、非環状オレフィン、および環状オレフィンに極性を有する官能基(極性基)を導入したモノマーが挙げられる。非環状オレフィンのうち、α-オレフィンに極性基を導入したモノマーの例としては、一般式:CH=C(R30)(R31)で表される極性基含有モノマーが挙げられる。極性基含有モノマーの好ましい例は、(メタ)アクリル酸エステルである。ここで、R30は、水素原子または炭素数1~10の炭化水素基を表し、R31は、-C(O)OR32(ここでR32は炭素原子数1~20の炭化水素基を表す)、-C(O)N(-R32’(ここでR32’は各々独立して水素原子または炭素原子数1~20の炭化水素基を表す)、シアノ基、または置換されていてもよいアリール基を表す。より十分な重合活性を発現させることができるため、R30は、好ましくは水素原子または炭素数1~3の炭化水素基である。より好ましくは、R30は水素原子またはメチル基である。R31としては、前記置換基であれば特に制限はないが、共重合体としたときの用途が広く存在することから、-C(O)OR32またはアリール基であることが好ましい。このとき、R32の炭素数が20を超えると、重合活性が低下する傾向がある。よって、R32は、好ましくは炭素数1~12の炭化水素基であり、さらに好ましくは炭素数1~8の炭化水素基である。
また、R32としては炭素原子および水素原子で構成されるものが好ましいが、R32内には、酸素原子、硫黄原子、セレン原子、リン原子、窒素原子、ケイ素原子、フッ素原子、ホウ素原子等のヘテロ原子が含まれていてもよい。これらのヘテロ原子のうち、酸素原子、ケイ素原子、フッ素原子が好ましく、酸素原子がさらに好ましい。水素原子でない場合のR32’の好ましい範囲及び例示についても、R32と同様である。
Examples of the polar group-containing monomer include non-cyclic olefins and monomers in which a functional group having polarity (polar group) is introduced into a cyclic olefin. Among non-cyclic olefins, examples of monomers in which a polar group is introduced into an α-olefin include polar group-containing monomers represented by the general formula: CH 2 ═C(R 30 )(R 31 ). A preferred example of the polar group-containing monomer is a (meth)acrylic acid ester. Here, R 30 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and R 31 represents -C(O)OR 32 (wherein R 32 represents a hydrocarbon group having 1 to 20 carbon atoms), -C(O)N(-R 32' ) 2 (wherein R 32' each independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms), a cyano group, or an aryl group which may be substituted. R 30 is preferably a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, since it is possible to develop a more sufficient polymerization activity. More preferably, R 30 is a hydrogen atom or a methyl group. There are no particular limitations on R 31 as long as it is the above-mentioned substituent, but since there are a wide variety of applications when it is made into a copolymer, it is preferably -C(O)OR 32 or an aryl group. In this case, if the carbon number of R 32 exceeds 20, the polymerization activity tends to decrease. Therefore, R 32 is preferably a hydrocarbon group having 1 to 12 carbon atoms, and more preferably a hydrocarbon group having 1 to 8 carbon atoms.
In addition, R 32 is preferably composed of carbon atoms and hydrogen atoms, but R 32 may contain heteroatoms such as oxygen atoms, sulfur atoms, selenium atoms, phosphorus atoms, nitrogen atoms, silicon atoms, fluorine atoms, and boron atoms. Among these heteroatoms, oxygen atoms, silicon atoms, and fluorine atoms are preferred, and oxygen atoms are more preferred. When R 32' is not a hydrogen atom, the preferred range and examples are the same as those of R 32 .

α-オレフィン以外の非環状オレフィン、環状オレフィンに極性を有する官能基を導入したモノマーとしては、α-オレフィン以外の非環状オレフィンまたは環状オレフィンの例示化合物に、前記R31で表される置換基を任意の箇所に導入した化合物が挙げられる。
また、極性基含有モノマーとしては、炭酸ビニレン(1,3-ジオキソール-2-オン)であってもよい。
Examples of monomers in which a functional group having polarity has been introduced into acyclic olefins other than α-olefins or cyclic olefins include compounds in which the substituent represented by R31 has been introduced into any position of the exemplary compounds of acyclic olefins other than α-olefins or cyclic olefins.
The polar group-containing monomer may also be vinylene carbonate (1,3-dioxol-2-one).

極性基含有モノマーとしてさらに好ましい例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル、(メタ)アクリル酸-2-アミノエチル、(メタ)アクリル酸-2-メトキシエチル、(メタ)アクリル酸-3-メトキシプロピル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸-3,3,3-トリフルオロプロピル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリルアミド、(メタ)アクリルジメチルアミド、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、アクリロニトリル、10-ウンデセン酸メチル、4-アセトキシスチレン、ビニルアニソール、5-ノルボルネン-2-カルボン酸メチル、5-ノルボルネン-2-カルボン酸t-ブチル、5-ノルボルネン-2-メタノール、5-ノルボルネン-2-メチルアミン、5-ノルボルネン-2-メチルピバルアミド、酢酸5-ノルボルネン-2イル、炭酸ビニレン等が挙げられる。より好ましくは、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸t-ブチル、アクリロニトリル、10-ウンデセン酸メチル、4-アセトキシスチレン、4-ニトロスチレン、ビニルアニソール、5-ノルボルネン-2-カルボン酸メチル、5-ノルボルネン-2-カルボン酸t-ブチル、5-ノルボルネン-2-メチルピバルアミド、酢酸5-ノルボルネン-2イル、炭酸ビニレンからなる群より選ばれる少なくとも1種である。 Further preferred examples of polar group-containing monomers include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, cyclohexyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, phenyl (meth)acrylate, toluyl (meth)acrylate, benzyl (meth)acrylate, hydroxyethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, 2-aminoethyl (meth)acrylate, (meth)acrylate, 2-methoxyethyl (meth)acrylate, 3-methoxypropyl (meth)acrylate, glycidyl (meth)acrylate, trifluoromethyl (meth)acrylate, 3,3,3-trifluoropropyl (meth)acrylate, perfluoroethyl (meth)acrylate, (meth)acrylamide, (meth)acryldimethylamide, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, acrylonitrile, methyl 10-undecenoate, 4-acetoxystyrene, vinylanisole, methyl 5-norbornene-2-carboxylate, t-butyl 5-norbornene-2-carboxylate, 5-norbornene-2-methanol, 5-norbornene-2-methylamine, 5-norbornene-2-methylpivalamide, 5-norbornene-2-yl acetate, vinylene carbonate, and the like. More preferably, it is at least one selected from the group consisting of methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, t-butyl methacrylate, acrylonitrile, methyl 10-undecenoate, 4-acetoxystyrene, 4-nitrostyrene, vinyl anisole, methyl 5-norbornene-2-carboxylate, t-butyl 5-norbornene-2-carboxylate, 5-norbornene-2-methylpivalamide, 5-norbornene-2-yl acetate, and vinylene carbonate.

エチレン等の非環状オレフィンの共重合に用いられるコモノマーとしては、極性基含有モノマーおよび環状オレフィンからなる群より選ばれる少なくとも1種類のモノマーが好適に用いられる。
さらに好ましい例としては、アクリル酸t-ブチル、アクリル酸メチル、メタクリル酸メチル、10-ウンデセン酸メチル、4-メチルスチレン、4-アセトキシスチレン、ノルボルネン、5-ノルボルネン-2-カルボン酸t-ブチル、酢酸9-デセニル、1,2-エポキシ-9-デセン、炭酸ビニレンからなる群より選ばれる少なくとも1種である。
これらモノマーは単一の種類を使用してもよいし、複数種類を併用してもよい。
As the comonomer used in copolymerization of acyclic olefins such as ethylene, at least one monomer selected from the group consisting of polar group-containing monomers and cyclic olefins is suitably used.
More preferred examples include at least one selected from the group consisting of t-butyl acrylate, methyl acrylate, methyl methacrylate, methyl 10-undecenoate, 4-methylstyrene, 4-acetoxystyrene, norbornene, t-butyl 5-norbornene-2-carboxylate, 9-decenyl acetate, 1,2-epoxy-9-decene, and vinylene carbonate.
These monomers may be used alone or in combination of two or more kinds.

以上のモノマーの種類は、得られる重合体に要求される物性に合わせて適宜選択することができる。また、場合により、2種類以上のモノマーの組成物を共重合させることも可能であり、2種類以上の極性基含有モノマーからなる組成物を共重合させることも可能である。配合されるモノマーの量、各モノマー間の量比は、得られる共重合体に要求される物性に合わせて適宜設定することができる。 The types of monomers mentioned above can be appropriately selected according to the physical properties required for the resulting polymer. In some cases, it is also possible to copolymerize a composition of two or more types of monomers, and it is also possible to copolymerize a composition consisting of two or more types of polar group-containing monomers. The amount of monomers to be mixed and the ratio between the amounts of each monomer can be appropriately set according to the physical properties required for the resulting copolymer.

本発明のオレフィン系重合体の製造方法は、前記本発明のオレフィン系重合用触媒の存在下で重合されることから、極性基含有モノマーおよび環状オレフィンからなる群より選ばれる少なくとも1種類のモノマーと、非環状オレフィンとを共重合する製造方法に好適に用いられる。
また、本発明の共重合反応としては、オレフィンと(メタ)アクリル酸エステルとを共重合することが、重合活性の点から好適な態様として挙げられる。
The process for producing an olefin polymer of the present invention is suitably used as a production process for copolymerizing at least one monomer selected from the group consisting of a polar group-containing monomer and a cyclic olefin with a non-cyclic olefin, since the polymerization is performed in the presence of the olefin polymerization catalyst of the present invention.
As the copolymerization reaction of the present invention, copolymerization of an olefin with a (meth)acrylic acid ester is a preferred embodiment in terms of polymerization activity.

本発明のオレフィン系重合体の製造方法では、前記金属錯体触媒を含むオレフィン重合用触媒を、オレフィンの重合又は共重合の触媒として使用する。各金属錯体触媒は、単離したものを用いてもよいし、担体に担持したものを用いてもよい。こうした担持をオレフィンの重合やオレフィンと(メタ)アクリル酸エステル等との共重合に使用する反応器中で、これらのモノマーの存在下または非存在下で行ってもよいし、該反応器とは別の容器中で行ってもよい。 In the method for producing an olefin polymer of the present invention, an olefin polymerization catalyst containing the metal complex catalyst is used as a catalyst for the polymerization or copolymerization of olefins. Each metal complex catalyst may be used in an isolated form or may be supported on a carrier. Such support may be performed in a reactor used for the polymerization of olefins or the copolymerization of olefins with (meth)acrylic esters or the like, in the presence or absence of these monomers, or may be performed in a vessel separate from the reactor.

使用可能な担体としては、本発明の主旨をそこなわない限りにおいて、任意の担体を用いることができる。一般に、無機酸化物やポリマー担体が好適に使用できる。無機酸化物として具体的には、SiO、Al、MgO、ZrO、TiO、B、CaO、ZnO、BaO、ThO等またはこれらの混合物が挙げられ、SiO-Al、SiO-V、SiO-TiO、SiO-MgO、SiO-Cr等の混合酸化物も使用することができる。また担体として、無機ケイ酸塩、ポリエチレン担体、ポリプロピレン担体、ポリスチレン担体、ポリアクリル酸担体、ポリメタクリル酸担体、ポリアクリル酸エステル担体、ポリエステル担体、ポリアミド担体、ポリイミド担体などが使用可能である。これらの担体については、粒径、粒径分布、細孔容積、比表面積などに特に制限はなく、任意のものが使用可能である。 Any carrier can be used as long as it does not interfere with the gist of the present invention. In general, inorganic oxides and polymer carriers are preferably used. Specific examples of inorganic oxides include SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 , and mixtures thereof. Mixed oxides such as SiO 2 -Al 2 O 3 , SiO 2 -V 2 O 5 , SiO 2 -TiO 2 , SiO 2 -MgO, and SiO 2 -Cr 2 O 3 can also be used. In addition, inorganic silicates, polyethylene carriers, polypropylene carriers, polystyrene carriers, polyacrylic acid carriers, polymethacrylic acid carriers, polyacrylic acid ester carriers, polyester carriers, polyamide carriers, and polyimide carriers can also be used as carriers. There are no particular limitations on the particle size, particle size distribution, pore volume, specific surface area, etc. of these carriers, and any carrier can be used.

無機ケイ酸塩としては、粘土、粘土鉱物、ゼオライト、珪藻土等が使用可能である。これらは、合成品を用いてもよいし、天然に産出する鉱物を用いてもよい。粘土、粘土鉱物の具体例としては、アロフェン等のアロフェン族、ディッカイト、ナクライト、カオリナイト、アノーキサイト等のカオリン族、メタハロイサイト、ハロイサイト等のハロイサイト族、クリソタイル、リザルダイト、アンチゴライト等の蛇紋石族、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、イライト、セリサイト、海緑石等の雲母鉱物、アタパルジャイト、セピオライト、パイゴルスカイト、ベントナイト、木節粘土、ガイロメ粘土、ヒシンゲル石、パイロフィライト、リョクデイ石群等が挙げられる。
これらは混合層を形成していてもよい。人工合成物としては、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライト等が挙げられる。
As the inorganic silicate, clay, clay minerals, zeolite, diatomaceous earth, etc. can be used. These may be synthetic products or naturally occurring minerals. Specific examples of clay and clay minerals include allophane group such as allophane, kaolin group such as dickite, nacrite, kaolinite, anoxite, halloysite group such as metahaloysite, halloysite, serpentine group such as chrysotile, lizardite, antigorite, smectite such as montmorillonite, sauconite, beidellite, nontronite, saponite, hectorite, vermiculite minerals such as vermiculite, mica minerals such as illite, sericite, glauconite, attapulgite, sepiolite, pyrogorskite, bentonite, kibushi clay, gairome clay, hisingerite, pyrophyllite, ryokudeite group, etc.
These may form a mixed layer. Examples of the artificially synthesized substances include synthetic mica, synthetic hectorite, synthetic saponite, and synthetic taeniolite.

これら具体例のうち好ましくは、ディッカイト、ナクライト、カオリナイト、アノーキサイト等のカオリン族、メタハロサイト、ハロサイト等のハロサイト族、クリソタイル、リザルダイト、アンチゴライト等の蛇紋石族、モンモリロナイト、ソーコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、イライト、セリサイト、海緑石等の雲母鉱物、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライトが挙げられ、特に好ましくはモンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライトが挙げられる。 Among these specific examples, preferred are kaolin group such as dickite, nacrite, kaolinite, and anoxite, halloysite group such as metahaloysite and halloysite, serpentine group such as chrysotile, lizardite, and antigorite, smectites such as montmorillonite, sauconite, beidellite, nontronite, saponite, and hectorite, vermiculite minerals such as vermiculite, mica minerals such as illite, sericite, and glauconite, synthetic mica, synthetic hectorite, synthetic saponite, and synthetic taeniolite, and particularly preferred are smectites such as montmorillonite, sauconite, beidellite, nontronite, saponite, and hectorite, vermiculite minerals such as vermiculite, synthetic mica, synthetic hectorite, synthetic saponite, and synthetic taeniolite.

これらの担体は、そのまま用いてもよいが、塩酸、硝酸、硫酸等による酸処理および/または、LiCl、NaCl、KCl、CaCl、MgCl、LiSO、MgSO、ZnSO、Ti(SO、Zr(SO、Al(SO等の塩類処理を行ってもよい。該処理において、対応する酸と塩基を混合して反応系内で塩を生成させて処理を行ってもよい。また、粉砕や造粒等の形状制御や乾燥処理を行ってもよい。 These carriers may be used as they are, or may be treated with an acid such as hydrochloric acid, nitric acid, or sulfuric acid, and/or a salt such as LiCl, NaCl, KCl, CaCl2 , MgCl2 , Li2SO4 , MgSO4 , ZnSO4 , Ti( SO4 ) 2 , Zr( SO4 ) 2 , or Al2 ( SO4 ) 3 . In this treatment, the corresponding acid and base may be mixed to generate a salt in the reaction system. Also, shape control such as pulverization or granulation, or drying treatment may be performed.

本発明のオレフィン系重合体の製造方法では、前記助触媒のほか、公知の添加剤の存在下または非存在下で重合反応を行うことができる。添加剤としては、生成重合体を安定化する作用を有する添加剤が好ましい。例えば、キノン誘導体やヒンダードフェノール誘導体などが好ましい添加剤の例として挙げられる。
具体的には、モノメチルエーテルハイドロキノンや、2,6-ジ-t-ブチル4-メチルフェノール(BHT)、トリメチルアルミニウムとBHTとの反応生成物、4価チタンのアルコキサイドとBHTとの反応生成物などが使用可能である。
また、添加剤として、無機および/または有機フィラーを使用し、これらのフィラーの存在下で、またはイオン液体を添加して重合を行ってもよい。
In the method for producing an olefin polymer of the present invention, the polymerization reaction can be carried out in the presence or absence of known additives in addition to the cocatalyst. The additive is preferably an additive that has an effect of stabilizing the resulting polymer. For example, quinone derivatives and hindered phenol derivatives are given as examples of preferred additives.
Specifically, monomethyl ether hydroquinone, 2,6-di-t-butyl-4-methylphenol (BHT), a reaction product of trimethylaluminum with BHT, a reaction product of alkoxide of tetravalent titanium with BHT, and the like can be used.
Furthermore, inorganic and/or organic fillers may be used as additives, and the polymerization may be carried out in the presence of these fillers or by adding an ionic liquid.

本発明における好ましい添加剤として、ルイス塩基が挙げられる。適切なルイス塩基を選択することにより、活性、分子量、アクリル酸エステルの共重合性を改良することができる。ルイス塩基の量としては、重合系内に存在する触媒成分中の遷移金属Mに対して、0.0001当量~1000当量、好ましくは0.1当量~100当量、さらに好ましくは0.3当量~30当量である。ルイス塩基を重合系に添加する方法については、特に制限はなく、任意の手法を用いることができる。例えば、本発明のオレフィン重合用触媒に添加してもよいし、モノマーと混合して添加してもよいし、触媒成分やモノマーとは独立に重合系に添加してもよい。また、複数のルイス塩基を併用してもよい。 A preferred additive in the present invention is a Lewis base. By selecting an appropriate Lewis base, the activity, molecular weight, and copolymerizability of the acrylic ester can be improved. The amount of the Lewis base is 0.0001 to 1000 equivalents, preferably 0.1 to 100 equivalents, and more preferably 0.3 to 30 equivalents, relative to the transition metal M in the catalyst component present in the polymerization system. There is no particular restriction on the method of adding the Lewis base to the polymerization system, and any method can be used. For example, the Lewis base may be added to the olefin polymerization catalyst of the present invention, may be added by mixing with the monomer, or may be added to the polymerization system independently of the catalyst component or monomer. In addition, multiple Lewis bases may be used in combination.

ルイス塩基としては、芳香族アミン類、脂肪族アミン類、アルキルエーテル類、アリールエーテル類、アルキルアリールエーテル類、環状エーテル類、アルキルニトリル類、アリールニトリル類、アルコール類、アミド類、脂肪族エステル類、芳香族エステル類、フォスフェート類、フォスファイト類、チオフェン類、チアンスレン類、チアゾール類、オキサゾール類、モルフォリン類、環状不飽和炭化水素類などを挙げることができる。
これらのうち、特に好ましいルイス塩基は、芳香族アミン類、脂肪族アミン類、環状エーテル類、脂肪族エステル類、芳香族エステル類であり、なかでも好ましいルイス塩基は、ピリジン誘導体、ピリミジン誘導体、ピペリジン誘導体、イミダゾール誘導体、アニリン誘導体、ピペリジン誘導体、トリアジン誘導体、ピロール誘導体、フラン誘導体である。
Examples of the Lewis base include aromatic amines, aliphatic amines, alkyl ethers, aryl ethers, alkylaryl ethers, cyclic ethers, alkyl nitriles, aryl nitriles, alcohols, amides, aliphatic esters, aromatic esters, phosphates, phosphites, thiophenes, thianthrenes, thiazoles, oxazoles, morpholines, and cyclic unsaturated hydrocarbons.
Among these, particularly preferred Lewis bases are aromatic amines, aliphatic amines, cyclic ethers, aliphatic esters, and aromatic esters, and particularly preferred Lewis bases are pyridine derivatives, pyrimidine derivatives, piperidine derivatives, imidazole derivatives, aniline derivatives, piperidine derivatives, triazine derivatives, pyrrole derivatives, and furan derivatives.

具体的なルイス塩基化合物としては、ピリジン、ペンタフルオロピリジン、2,6-ルチジン、2,4-ルチジン、3,5-ルチジン、ピリミジン、N、N-ジメチルアミノピリジン、N-メチルイミダゾール、2,2’-ビピリジン、アニリン、ピペリジン、1,3,5-トリアジン、2,4,6-トリス(トリフルオロメチル)-1,3,5-トリアジン、2,4,6-トリス(2-ピリジル)-s-トリアジン、キノリン、8-メチルキノリン、フェナジン、1,10-フェナンスロリン、N-メチルピロール、1,8-ジアザビシクロ-[5.4.0]-ウンデカ-7-エン、1,4-ジアザビシクロ-[2,2,2]-オクタン、トリエチルアミン、ベンゾニトリル、ピコリン、トリフェニルアミン、N-メチル-2-ピロリドン、4-メチルモルフォリン、ベンズオキサゾール、ベンゾチアゾール、フラン、2,5-ジメチルフラン、ジベンゾフラン、キサンテン、1,4-ジオキサン、1,3,5-トリオキサン、ジベンゾチオフェン、チアンスレン、トリフェニルフォスフォニウムシクロペンタジエニド、トリフェニルフォスファイト、トリフェニルフォスフェート、トリピロリジノフォスフィンなどを挙げることができる。 Specific Lewis base compounds include pyridine, pentafluoropyridine, 2,6-lutidine, 2,4-lutidine, 3,5-lutidine, pyrimidine, N,N-dimethylaminopyridine, N-methylimidazole, 2,2'-bipyridine, aniline, piperidine, 1,3,5-triazine, 2,4,6-tris(trifluoromethyl)-1,3,5-triazine, 2,4,6-tris(2-pyridyl)-s-triazine, quinoline, 8-methylquinoline, phenazine, 1,10-phenanthroline, N-methylpyrrole, and 1,8-diazabicyclo-[5.4.0]-undeca. 7-ene, 1,4-diazabicyclo-[2,2,2]-octane, triethylamine, benzonitrile, picoline, triphenylamine, N-methyl-2-pyrrolidone, 4-methylmorpholine, benzoxazole, benzothiazole, furan, 2,5-dimethylfuran, dibenzofuran, xanthene, 1,4-dioxane, 1,3,5-trioxane, dibenzothiophene, thianthrene, triphenylphosphonium cyclopentadienide, triphenylphosphite, triphenylphosphate, tripyrrolidinophosphine, etc.

本発明において、重合形式に特に制限はない。重合形式としては、媒体中に全ての生成重合体が溶解する溶液重合、媒体中で少なくとも一部の生成重合体がスラリーとなるスラリー重合、液化したモノマー自身を媒体とするバルク重合、気化したモノマー中で行う気相重合、または、高温高圧で液化したモノマーに生成重合体の少なくとも一部が溶解する高圧イオン重合などが好ましく用いられる。また、バッチ重合、セミバッチ重合、連続重合のいずれの形式でもよい。重合反応を行う環境としては、窒素雰囲気下などの不活性ガス雰囲気下で使用することが好ましい。金属錯体触媒は、一般的な重合条件下であればその使用条件に特段の制限はない。金属錯体触媒の使用量は、触媒として用いるのに適切な範囲であれば特に制限されず、当業者であれば適宜設定することができる。 In the present invention, there is no particular restriction on the polymerization type. As the polymerization type, solution polymerization in which all the generated polymer is dissolved in the medium, slurry polymerization in which at least a part of the generated polymer becomes a slurry in the medium, bulk polymerization in which the liquefied monomer itself is the medium, gas phase polymerization in vaporized monomer, or high pressure ion polymerization in which at least a part of the generated polymer is dissolved in the monomer liquefied at high temperature and high pressure, etc. are preferably used. In addition, any of batch polymerization, semi-batch polymerization, and continuous polymerization may be used. As the environment in which the polymerization reaction is performed, it is preferable to use it under an inert gas atmosphere such as a nitrogen atmosphere. There is no particular restriction on the use conditions of the metal complex catalyst as long as it is under general polymerization conditions. There is no particular restriction on the amount of the metal complex catalyst used as long as it is within a range appropriate for use as a catalyst, and a person skilled in the art can set it appropriately.

本発明における重合反応は、液相での重合が好ましいモノマーを用いる場合においては、n-ブタン、イソブタン、n-ヘキサン、n-ヘプタン、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン等の炭化水素溶媒や液化オレフィン等の液体、クロロベンゼンや1,2-ジクロロベンゼン等のハロゲン化炭化水素溶媒、また、ジエチルエーテル、エチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサン、酢酸エチル、安息香酸メチル、アセトン、メチルエチルケトン、ホルムアミド、アセトニトリル、メタノール、イソプロピルアルコール、エチレングリコール等のような極性溶媒の存在下あるいは非存在下に行われる。また、ここで記載した液体化合物の混合物を溶媒として使用してもよい。液化オレフィンは、バルク重合に付すモノマーとして使用することもできる。さらに、イオン液体も、溶媒として使用可能である。なお、高い重合活性や高い分子量を得るうえでは、上述の炭化水素溶媒やイオン液体がより好ましい。 In the present invention, when a monomer that is preferably polymerized in a liquid phase is used, the polymerization reaction is carried out in the presence or absence of a liquid such as a hydrocarbon solvent such as n-butane, isobutane, n-hexane, n-heptane, toluene, xylene, cyclohexane, or methylcyclohexane, a liquefied olefin, a halogenated hydrocarbon solvent such as chlorobenzene or 1,2-dichlorobenzene, or a polar solvent such as diethyl ether, ethylene glycol dimethyl ether, tetrahydrofuran, dioxane, ethyl acetate, methyl benzoate, acetone, methyl ethyl ketone, formamide, acetonitrile, methanol, isopropyl alcohol, or ethylene glycol. A mixture of the liquid compounds described here may also be used as a solvent. Liquefied olefins can also be used as a monomer to be subjected to bulk polymerization. Furthermore, ionic liquids can also be used as solvents. In order to obtain high polymerization activity and high molecular weight, the above-mentioned hydrocarbon solvents and ionic liquids are more preferable.

未反応モノマーや媒体は、生成共重合体から分離し、リサイクルして使用してもよい。
リサイクルの際、これらのモノマーや媒体は、精製して再使用してもよいし、精製せずに再使用してもよい。生成共重合体と未反応モノマーおよび媒体との分離には、従来公知の方法が使用できる。例えば、濾過、遠心分離、溶媒抽出、貧溶媒を使用した再沈などの方法が使用できる。
The unreacted monomers and the medium may be separated from the resulting copolymer and recycled.
In recycling, these monomers and media may be reused after purification or without purification. The resulting copolymer may be separated from the unreacted monomers and media by a conventional method. For example, filtration, centrifugation, solvent extraction, reprecipitation using a poor solvent, etc. may be used.

重合温度、重合圧力および重合時間に、特に制限はないが、通常は、以下の範囲から生産性やプロセスの能力を考慮して、最適な設定を行うことができる。すなわち、重合温度は、通常-20℃~290℃、好ましくは0℃~250℃、より好ましくは0℃~200℃、さらに好ましくは10℃~150℃、特に好ましくは20℃~100℃である。共重合圧力は、0.1MPa~300MPa、好ましくは0.3MPa~200MPa、より好ましくは0.5MPa~150MPa、さらに好ましくは1.0MPa~100MPa、特に好ましくは1.3MPa~50MPaである。重合時間は、0.1分~100時間、好ましくは0.5分~70時間、さらに好ましくは1分~60時間の範囲から選ぶことができる。 There are no particular limitations on the polymerization temperature, polymerization pressure, and polymerization time, but they can usually be set optimally from the following ranges, taking into account productivity and process capacity. That is, the polymerization temperature is usually -20°C to 290°C, preferably 0°C to 250°C, more preferably 0°C to 200°C, even more preferably 10°C to 150°C, and particularly preferably 20°C to 100°C. The copolymerization pressure is 0.1 MPa to 300 MPa, preferably 0.3 MPa to 200 MPa, more preferably 0.5 MPa to 150 MPa, even more preferably 1.0 MPa to 100 MPa, and particularly preferably 1.3 MPa to 50 MPa. The polymerization time can be selected from the range of 0.1 minutes to 100 hours, preferably 0.5 minutes to 70 hours, and more preferably 1 minute to 60 hours.

本発明において、重合は、一般に不活性ガス雰囲気下で行われる。例えば、窒素、アルゴン雰囲気が使用でき、窒素雰囲気が好ましく使用される。なお、少量の酸素や空気の混入があってもよい。ただし、例えばエチレンのような常温で気体のモノマーを用いる場合には、反応系をエチレンで充填したうえで重合を行うことができる。
重合反応器への触媒とモノマーの供給に関しても、特に制限はなく、目的に応じて、さまざまな供給法をとることができる。たとえばバッチ重合の場合、あらかじめ所定量のモノマーを重合反応器に供給しておき、そこに触媒を供給する手法をとることが可能である。この場合、追加のモノマーや追加の触媒を重合反応器に供給してもよい。
In the present invention, the polymerization is generally carried out under an inert gas atmosphere. For example, a nitrogen or argon atmosphere can be used, and a nitrogen atmosphere is preferably used. A small amount of oxygen or air may be mixed in. However, when a monomer that is gaseous at room temperature, such as ethylene, is used, the reaction system can be filled with ethylene before polymerization.
There is no particular restriction on the supply of catalyst and monomer to the polymerization reactor, and various supply methods can be used depending on the purpose. For example, in the case of batch polymerization, a method can be used in which a predetermined amount of monomer is supplied to the polymerization reactor in advance and the catalyst is supplied thereto. In this case, additional monomer and additional catalyst may be supplied to the polymerization reactor.

共重合体の組成の制御に関しては、複数のモノマーを反応器に供給し、その供給比率を変えることによって制御する方法を一般に用いることができる。その他、触媒の構造の違いによるモノマー反応性比の違いを利用して共重合組成を制御する方法や、モノマー反応性比の重合温度依存性を利用して共重合組成を制御する方法が挙げられる。本発明において、極性基含有モノマーおよび環状オレフィンからなる群より選ばれる少なくとも1種類のモノマーと、非環状オレフィンとを共重合する場合に、共重合における全モノマー中の非環状オレフィンモノマーの合計含有割合は、所望の物性に応じて適宜選択されれば良く、全モノマー100mol%に対して、通常下限値が60.00mol%以上が挙げられ、70.00mol%以上であってもよく、80.00mol%以上であってもよく、85.00mol%以上であってもよく、90.00mol%以上であってもよい。一方、通常上限値は99.90mol%以下が挙げられ、99.80mol%以下であってもよく、99.70mol%以下であってもよく、99.60mol%以下であってもよく、99.50mol%以下であってもよい。この範囲とすることで、耐熱性などポリオレフィンが元来有する性質を大きく損なうことなく、塗料との親和性や接着性などを付与することができ、かつ物性の制御が可能である。 Regarding the control of the composition of the copolymer, a method of controlling by supplying multiple monomers to a reactor and changing the supply ratio can generally be used. Other examples include a method of controlling the copolymerization composition by utilizing the difference in monomer reactivity ratio due to the difference in catalyst structure, and a method of controlling the copolymerization composition by utilizing the polymerization temperature dependency of the monomer reactivity ratio. In the present invention, when at least one monomer selected from the group consisting of polar group-containing monomers and cyclic olefins is copolymerized with a non-cyclic olefin, the total content ratio of the non-cyclic olefin monomer in all monomers in the copolymerization may be appropriately selected according to the desired physical properties, and the lower limit is usually 60.00 mol% or more, and may be 70.00 mol% or more, 80.00 mol% or more, 85.00 mol% or more, or 90.00 mol% or more with respect to 100 mol% of all monomers. On the other hand, the upper limit is usually 99.90 mol% or less, and may be 99.80 mol% or less, 99.70 mol% or less, 99.60 mol% or less, or 99.50 mol% or less. By setting it in this range, it is possible to impart affinity and adhesiveness with paint without significantly impairing the inherent properties of polyolefins, such as heat resistance, and it is also possible to control the physical properties.

重合体の分子量制御には、従来公知の方法を使用することができ、例えば以下の方法が挙げられる。
1)重合温度の制御
2)モノマー濃度の制御
3)遷移金属錯体中の配位子構造の制御
4)水素、メタルアルキルなど公知の連鎖移動剤の使用
For controlling the molecular weight of the polymer, a conventionally known method can be used, and examples thereof include the following methods.
1) Control of polymerization temperature; 2) Control of monomer concentration; 3) Control of ligand structure in transition metal complex; 4) Use of known chain transfer agents such as hydrogen and metal alkyls.

本発明のオレフィン系重合体の製造方法により得られるオレフィン系重合体の重量平均分子量(Mw)は特に限定されるものではない。当該オレフィン系重合体の重量平均分子量(Mw)の下限は5,000以上であってよく、10,000以上であってもよい。また、当該オレフィン系重合体の重量平均分子量(Mw)の上限は1,000,000以下であってよく、500,000以下であってもよい。
当該オレフィン系重合体の重量平均分子量(Mw)はゲルパーミエーションクロマトグラフィー(GPC)によって求められる。本発明におけるGPCの測定は、後述の実施例に記載した方法によって行うことができる。
The weight average molecular weight (Mw) of the olefin polymer obtained by the method for producing an olefin polymer of the present invention is not particularly limited. The lower limit of the weight average molecular weight (Mw) of the olefin polymer may be 5,000 or more, or may be 10,000 or more. The upper limit of the weight average molecular weight (Mw) of the olefin polymer may be 1,000,000 or less, or may be 500,000 or less.
The weight average molecular weight (Mw) of the olefin polymer is determined by gel permeation chromatography (GPC). The GPC measurement in the present invention can be performed by the method described in the Examples below.

また、本発明のオレフィン系重合体の製造方法により得られるオレフィン系重合体がエチレン系重合体である場合、当該エチレン系重合体の13C-NMRにより算出されるメチル分岐度は、特に限定されるものではないが、炭素1,000個当たり10以下であってよく、5以下であってもよい。
なお、本発明におけるメチル分岐数の測定は、後述の実施例に記載した方法によって行うことができる。
In addition, when the olefin polymer obtained by the method for producing an olefin polymer of the present invention is an ethylene polymer, the methyl branching degree of the ethylene polymer calculated by 13C -NMR is not particularly limited, but may be 10 or less, or 5 or less, per 1,000 carbons.
In the present invention, the number of methyl branches can be measured by the method described in the Examples below.

本発明のオレフィン系重合体の製造方法は、高い活性でオレフィンの重合体又は共重合体を提供でき、中でも極性基含有モノマーおよび環状オレフィンからなる群より選ばれる少なくとも1種類のモノマーと、非環状オレフィンとの共重合体を提供することができるため、様々な特性を備えた重合体を提供する方法として利用可能である。また、本発明の方法で用いる触媒は、触媒性能のバランスが良く、高活性で、高分子量の(共)重合体が得られるだけでなく、触媒として単離しなくてもよいため、効率のよいオレフィン系重合体の合成に利用可能である。 The method for producing an olefin polymer of the present invention can provide an olefin polymer or copolymer with high activity, and in particular can provide a copolymer of at least one monomer selected from the group consisting of a polar group-containing monomer and a cyclic olefin with a non-cyclic olefin, and can therefore be used as a method for providing polymers with a variety of properties. Furthermore, the catalyst used in the method of the present invention has a well-balanced catalytic performance, is highly active, and not only can it produce a high molecular weight (co)polymer, but it does not need to be isolated as a catalyst, and can therefore be used for the efficient synthesis of olefin polymers.

以下、実施例および比較例を挙げて本発明をより詳細に説明するが、本発明は下記の例に限定されるものではない。以下の合成例、実施例における配位子、金属錯体の合成および重合反応は、特に断りのない限り全て窒素またはアルゴン雰囲気下で行った。
実施例で使用される以下の略語について説明する。
tBA:アクリル酸t-ブチル
MA:アクリル酸メチル
VC:炭酸ビニレン
NB:ノルボルネン
TNOA:トリn-オクチルアルミニウム
MU:10-ウンデセン酸メチル
The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to the following examples. The synthesis examples, synthesis of ligands and metal complexes, and polymerization reactions in the following examples were all carried out under a nitrogen or argon atmosphere unless otherwise specified.
The following abbreviations used in the examples are explained below.
tBA: t-butyl acrylate MA: methyl acrylate VC: vinylene carbonate NB: norbornene TNOA: tri-n-octyl aluminum MU: methyl 10-undecenoate

[合成例における構造の解析方法]
合成例で開示する化合物の構造は、JEOL日本電子社製JNM-ECS400型NMR装置、ブルカー社製Avance400型NMR装置、またはブルカー社製Avance500型NMR装置を用いH-NMR、13C-NMR、19F-NMRおよび31P{H}-NMRにより解析された。具体的な測定方法は以下の通りである。
[試料調製]
5~20mgの試料を、テトラメチルシランを含んでいない重クロロホルム(CDCl)0.6mL、テトラメチルシランを0.03%(v/v)含んだ重クロロホルム0.6mL、テトラメチルシランを0.03%(v/v)含んだ重トルエン(CCD)0.6mL、またはテトラメチルシランを含んでいないジメチルスルホキシド(DMSO)-d 0.6mLに溶解させて内径5mmφのNMR試料管に入れた。
[Method of analyzing structures in synthesis examples]
The structures of the compounds disclosed in the synthesis examples were analyzed by 1 H-NMR, 13 C-NMR, 19 F-NMR and 31 P{ 1 H}-NMR using a JEOL JEOL JNM-ECS400 NMR apparatus, a Bruker Avance 400 NMR apparatus, or a Bruker Avance 500 NMR apparatus. The specific measurement methods are as follows.
[Sample preparation]
5 to 20 mg of a sample was dissolved in 0.6 mL of deuterated chloroform (CDCl 3 ) containing no tetramethylsilane, 0.6 mL of deuterated chloroform containing 0.03% (v/v) tetramethylsilane, 0.6 mL of deuterated toluene (C 6 D 5 CD 3 ) containing 0.03% (v/v) tetramethylsilane, or 0.6 mL of dimethylsulfoxide (DMSO)-d 6 containing no tetramethylsilane, and placed in an NMR sample tube with an inner diameter of 5 mm.

H-NMR測定条件]
プローブ:5mmφのプローブ
試料温度:室温
パルス角:45°
パルス間隔:2.8秒
積算回数:8回
化学シフト:重クロロホルムを溶媒として用いた際は、化学シフトはテトラメチルシランのプロトンシグナルを0ppmまたはクロロホルムのプロトンシグナルを7.26ppmに設定し、他のプロトンによるシグナルの化学シフトはこれを基準とした。重トルエンを溶媒として用いた際は、化学シフトはテトラメチルシランのプロトンシグナルを0ppmに設定し、他のプロトンによるシグナルの化学シフトはこれを基準とした。ジメチルスルホキシド-dを溶媒として用いた際は、ジメチルスルホキシド-dのプロトンシグナルを2.50ppmに設定し、他のプロトンによるシグナルの化学シフトはこれを基準とした。
[ 1H -NMR measurement conditions]
Probe: 5 mmφ probe Sample temperature: room temperature Pulse angle: 45°
Pulse interval: 2.8 seconds Number of integrations: 8 Chemical shift: When deuterated chloroform was used as the solvent, the chemical shift was set to 0 ppm for the proton signal of tetramethylsilane or 7.26 ppm for the proton signal of chloroform, and the chemical shifts of the signals due to other protons were based on this. When deuterated toluene was used as the solvent, the chemical shift was set to 0 ppm for the proton signal of tetramethylsilane, and the chemical shifts of the signals due to other protons were based on this. When dimethylsulfoxide- d6 was used as the solvent, the proton signal of dimethylsulfoxide- d5 was set to 2.50 ppm, and the chemical shifts of the signals due to other protons were based on this.

19F-NMR]
プローブ:5mmφのプローブ
試料温度:室温
パルス角:45°
パルス間隔:1.8秒
積算回数:8回
化学シフト:化学シフトはCFClを外部標準として0ppmに設定し、他のフッ素によるシグナルの化学シフトはこれを基準とした。
[ 19F -NMR]
Probe: 5 mmφ probe Sample temperature: room temperature Pulse angle: 45°
Pulse interval: 1.8 seconds Number of accumulations: 8 Chemical shift: The chemical shift was set to 0 ppm using CFCl 3 as an external standard, and the chemical shifts of signals due to other fluorines were based on this.

31P{H}-NMR]
プローブ:5mmφのプローブ
試料温度:室温
パルス角:30°
パルス間隔:0.5秒
積算回数:64-256回
化学シフト:化学シフトは85%リン酸水溶液を外部標準として0ppmに設定し、他のリンによるシグナルの化学シフトはこれを基準とした。
[ 31 P{ 1 H}-NMR]
Probe: 5 mmφ probe Sample temperature: room temperature Pulse angle: 30°
Pulse interval: 0.5 seconds Number of accumulations: 64-256 Chemical shift: The chemical shift was set at 0 ppm using an 85% aqueous phosphoric acid solution as an external standard, and the chemical shifts of signals due to other phosphoruses were based on this.

[重合体の構造の解析方法]
実施例で得た重合体の構造は、ブルカー・バイオスピンAV400型NMR装置を用いたH-NMRおよび13C-NMR解析により決定した。具体的な測定方法は以下の通りである。
[試料調製]
100~500mgの試料を-ジクロロベンゼン(ODCB)と重水素化臭化ベンゼン(CBr)の混合溶液(体積比:ODCB/CBr=3/1)2.4mlおよび化学シフトの基準物質であるヘキサメチルジシロキサンと共に内径10mmφのNMR試料管に入れ、150℃のブロックヒーターで均一に溶解した。
[Method of analyzing polymer structure]
The structures of the polymers obtained in the examples were determined by 1 H-NMR and 13 C-NMR analysis using a Bruker Biospin AV400 NMR apparatus. The specific measurement methods are as follows.
[Sample preparation]
100 to 500 mg of the sample was placed in an NMR sample tube with an inner diameter of 10 mm together with 2.4 ml of a mixed solution of dichlorobenzene (ODCB) and deuterated bromide benzene (C 6 D 5 Br) (volume ratio: ODCB/C 6 D 5 Br = 3/1) and hexamethyldisiloxane as a chemical shift standard substance, and dissolved uniformly in a block heater at 150°C.

H-NMR測定条件]
プローブ:10mmφのクライオプローブ
試料温度:120℃
パルス角:4.5°
パルス間隔:2秒
積算回数:256-1024回
化学シフト:化学シフトはヘキサメチルジシロキサンのプロトンシグナルを0.09ppmに設定し、他のプロトンによるシグナルの化学シフトはこれを基準とした。
[ 1H -NMR measurement conditions]
Probe: 10 mmφ cryoprobe Sample temperature: 120° C.
Pulse angle: 4.5°
Pulse interval: 2 seconds Number of integrations: 256-1024 Chemical shift: The proton signal of hexamethyldisiloxane was set at 0.09 ppm, and the chemical shifts of signals due to other protons were set to this as the reference.

13C-NMR測定条件]
<エチレン/tBA>
<エチレン/MA>
<プロピレン/MU>
プローブ:10mmφのクライオプローブ
試料温度:120℃
パルス角:90°
パルス間隔:51.5秒
積算回数:256-768回
デカップリング条件:逆ゲートデカップリング法
化学シフト:化学シフトはヘキサメチルジシロキサンの13Cシグナルを1.98ppmに設定し、他の13Cによるシグナルの化学シフトはこれを基準とした。
[ 13C -NMR measurement conditions]
<Ethylene/tBA>
<Ethylene/MA>
<Propylene/MU>
Probe: 10 mmφ cryoprobe Sample temperature: 120° C.
Pulse angle: 90°
Pulse interval: 51.5 seconds Number of integrations: 256-768 times Decoupling conditions: inverse gate decoupling method Chemical shift: The chemical shift of the 13 C signal of hexamethyldisiloxane was set to 1.98 ppm, and the chemical shifts of other 13 C signals were based on this.

<エチレン(E)単独重合体>
プローブ:10mmφのクライオプローブ
試料温度:120℃
パルス角:45°
パルス間隔:27.5秒
積算回数:768-1024回
デカップリング条件:ブロードバンドデカップリング法
化学シフト:化学シフトはヘキサメチルジシロキサンの13Cシグナルを1.98ppmに設定し、他の13Cによるシグナルの化学シフトはこれを基準とした。
<Ethylene (E) homopolymer>
Probe: 10 mmφ cryoprobe Sample temperature: 120° C.
Pulse angle: 45°
Pulse interval: 27.5 seconds Number of integrations: 768-1024 Decoupling conditions: broadband decoupling method Chemical shift: The 13 C signal of hexamethyldisiloxane was set at 1.98 ppm, and the chemical shifts of other 13 C signals were set to this as the reference.

<エチレン(E)/NB共重合体>
<プロピレン(P)単独重合体>
プローブ:10mmφのクライオプローブ
試料温度:120℃
パルス角:45°
パルス間隔:38.5秒
積算回数:256-512回
デカップリング条件:ブロードバンドデカップリング法
化学シフト:化学シフトはヘキサメチルジシロキサンの13Cシグナルを1.98ppmに設定し、他の13Cによるシグナルの化学シフトはこれを基準とした。
<Ethylene (E)/NB Copolymer>
<Propylene (P) homopolymer>
Probe: 10 mmφ cryoprobe Sample temperature: 120° C.
Pulse angle: 45°
Pulse interval: 38.5 seconds Number of integrations: 256-512 Decoupling conditions: broadband decoupling method Chemical shift: The 13C signal of hexamethyldisiloxane was set at 1.98 ppm, and the chemical shifts of other 13C signals were set to this as the reference.

<エチレン(E)/VC共重合体>
プローブ:10mmφのクライオプローブ
試料温度:120℃
パルス角:90°
パルス間隔:51.5秒
積算回数:512回
デカップリング条件:逆ゲートデカップリング法
化学シフト:化学シフトはヘキサメチルジシロキサンの13Cシグナルを1.98ppmに設定し、他の13Cによるシグナルの化学シフトはこれを基準とした。
<Ethylene (E)/VC Copolymer>
Probe: 10 mmφ cryoprobe Sample temperature: 120° C.
Pulse angle: 90°
Pulse interval: 51.5 seconds Number of integrations: 512 Decoupling conditions: inverse gate decoupling method Chemical shift: The 13 C signal of hexamethyldisiloxane was set at 1.98 ppm, and the chemical shifts of other 13 C signals were set to this as the reference.

[コモノマー算出方法]
以下において、Iは積分強度を、Iの下つき添字の数値は化学シフトの範囲を示す。例えばI80.0~2.0は80.0ppmと2.0ppmの間に検出したシグナルの積分強度を示す。
<エチレン(E)/tBA共重合体>
13C-NMRスペクトルのシグナルを用いて以下の式からtBAの含有量を算出した。
tBA含有量(mol%)=I(tBA)×100/(I(E)+I(tBA)
ここで、I(tBA)、I(E)はそれぞれ、以下の式で示される量である。
(tBA)=I79.5~79.0
(E)=(I180.0~136.0+I120.0~100.0+I80.0~2.0-I(tBA)×7)/2
[Comonomer calculation method]
In the following, I represents the integrated intensity, and the subscript number of I represents the range of chemical shifts. For example, I 80.0-2.0 represents the integrated intensity of the signal detected between 80.0 ppm and 2.0 ppm.
<Ethylene (E)/tBA Copolymer>
The tBA content was calculated from the signals in the 13 C-NMR spectrum according to the following formula.
tBA content (mol%)=I (tBA) ×100/(I (E) +I (tBA) )
Here, I (tBA) and I (E) are quantities represented by the following formulas.
I (tBA) = I 79.5-79.0
I (E) = (I 180.0-136.0 + I 120.0-100.0 + I 80.0-2.0 - I (tBA) x 7) / 2

<エチレン(E)/MA共重合体>
MA含有量(mol%)
=I(MA)×100/(I(E)+I(MA)
ここで、I(MA)、I(E)はそれぞれ、以下の式で示される量である。
(MA)=I51.5~50.5
(E)=(I180.0~136.0+I120.0~100.0+I55.0~2.0-I(MA)×4)/2
<エチレン(E)/NB共重合体>
13C-NMRスペクトルのシグナルを用いて以下の式からNBの含有量を算出した。
NB含有量(mol%)=I(NB)×100/(I(E)+I(NB)
ここで、I(NB)、I(E)はそれぞれ、以下の式で示される量である。
(NB)=I48.3~41.3/4
(E)=(I180.0~136.0+I120.0~100.0+I50.0~2.0-I(NB)×7)/2
<Ethylene (E)/MA Copolymer>
MA content (mol%)
= I (MA) × 100/(I (E) + I (MA) )
Here, I (MA) and I (E) are quantities expressed by the following formulas, respectively.
I (MA) = I51.5-50.5
I (E) = (I 180.0-136.0 + I 120.0-100.0 + I 55.0-2.0 - I (MA) x 4) / 2
<Ethylene (E)/NB Copolymer>
The NB content was calculated from the following formula using the signals of the 13 C-NMR spectrum.
NB content (mol%) = I (NB) × 100 / (I (E) + I (NB) )
Here, I (NB) and I (E) are quantities expressed by the following formulas, respectively.
I (NB) = I48.3-41.3 /4
I (E) = (I 180.0-136.0 + I 120.0-100.0 + I 50.0-2.0 - I (NB) x 7) / 2

<エチレン(E)/VC共重合体>
13C-NMRスペクトルの77.7~80.2ppmのシグナルを用いて以下の式から極性基含有モノマー含量を算出した。
VC(閉環)量(mol%)=I(VC)×100/〔I(VC)+I(E)
ここで、I(VC)、I(E)はそれぞれ、以下の式で示される量である。
(VC)=(I78.8~80.2+I77.7~78.2)/2
(E)=(I2.0~120.0+I135.0~200.0-I(VC)×3)/2
<Ethylene (E)/VC Copolymer>
The polar group-containing monomer content was calculated from the signals at 77.7 to 80.2 ppm in the 13 C-NMR spectrum according to the following formula.
VC (ring closure) amount (mol%) = I (VC) × 100 / [I (VC) + I (E) ]
Here, I (VC) and I (E) are quantities expressed by the following formulas, respectively.
I (VC) = ( I78.8-80.2 + I77.7-78.2 )/2
I (E) = (I 2.0-120.0 + I 135.0-200.0 - I(VC) x 3) / 2

<プロピレン/MU共重合体>
13C-NMRスペクトルのシグナルを用いて以下の式からMUの含有量を算出した。
MU含有量(mol%)=I(MU)×100/(I(P)+I(MU)
ここで、I(MU)、I(P)はそれぞれ、以下の式で示される量である。
(MU)=I50.8~50.6
(P)=(I180.0~136.0+I120.0~100.0+I55.0~2.0-I(MU)×12)/3
<Propylene/MU Copolymer>
The MU content was calculated from the signals in the 13 C-NMR spectrum according to the following formula.
MU content (mol%)=I (MU) ×100/(I (P) +I (MU) )
Here, I (MU) and I (P) are quantities expressed by the following formulas, respectively.
I (MU) = I 50.8-50.6
I (P) = ( I180.0-136.0 + I120.0-100.0 + I55.0-2.0 - I (MU) x 12)/3

分岐構造は、13C-NMRの3級炭素原子のスペクトルにより判断することができる。例えば、メチル分岐は、13C-NMRスペクトルの20.0~19.8ppmのメチル炭素(下記構造式中のvに相当)と37.6~37.3メチレン炭素(下記構造式中のxに相当)による信号の積分強度の総和を3で割った値IB1を用い、炭素原子1,000個あたりのメチル分岐数を以下の式を用いて算出した。
メチル分岐数(個/炭素原子1000個)=IB1×1000/Itotal
ここで、IB1、Itotalはそれぞれ、以下の式で示される量である。
B1=(I20.0~19.8+I37.6~37.3)/3
total=I180.0~136.0+I120.0~100.0+I80.0~2.0
The branched structure can be determined from the spectrum of tertiary carbon atoms in 13 C-NMR. For example, the number of methyl branches per 1,000 carbon atoms was calculated using the value IB1 obtained by dividing the sum of the integrated intensities of the signals from 20.0 to 19.8 ppm of the 13 C -NMR spectrum (corresponding to v in the structural formula below) and 37.6 to 37.3 methylene carbons (corresponding to x in the structural formula below) by 3, using the following formula:
Number of methyl branches (/1000 carbon atoms) = I B1 × 1000/I total
Here, I B1 and I total are amounts expressed by the following formulas, respectively.
I B1 = (I 20.0 to 19.8 + I 37.6 to 37.3 ) / 3
I total = I 180.0-136.0 + I 120.0-100.0 + I 80.0-2.0

[プロピレン重合における立体規則性]
ポリプロピレンの立体規則性についても同様に、定量13C-NMRで構造を解析することができる。例えば、13C-NMRスペクトルで21.1ppm~22.4ppmの3本のピークがmm、20.3ppm~21.1ppmの3本のピークがmr、19.4ppm~20.3ppmの3本のピークがrrに相当し、これらの積分比を計算することでmm、mr、rrの比率を求めることができる。
[Stereoregularity in propylene polymerization]
Similarly, the stereoregularity of polypropylene can be analyzed by quantitative 13C -NMR. For example, in the 13C -NMR spectrum, three peaks from 21.1 ppm to 22.4 ppm correspond to mm, three peaks from 20.3 ppm to 21.1 ppm correspond to mr, and three peaks from 19.4 ppm to 20.3 ppm correspond to rr. The ratios of mm, mr, and rr can be calculated by calculating the integral ratios of these peaks.

[数平均分子量および重量平均分子量]
数平均分子量および重量平均分子量は、ポリスチレンを分子量の標準物質とするサイズ排除クロマトグラフィーにより算出した。GPCの具体的な測定手法は以下の通りである。
装置:Agilent Technologies社製GPC(PL-GPC220)
検出器:IR検出器
カラム:昭和電工(株)製AT806MS(3本直列)
移動相溶媒:ODCB
測定温度:140℃
流速:1.0mL/min
注入量:0.3mL
[試料の調製]
0.24mg/mLのTMP(2,3,6-トリメチルフェノール)を含むODCBを用いて、140℃で約1時間を要して試料を溶解し、1mg/mLの試料溶液を調製する。
GPC測定で得られた保持容量から分子量への換算は、予め作成しておいた標準ポリスチレン(PS)による検量線を用いて行う。使用する標準ポリスチレンは、何れも東ソー(株)製の次の銘柄である。F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000。各々が0.5mg/mLとなるように0.24mg/mLのTMPを含むODCBに溶解した標準ポリスチレン溶液を用いて較正曲線を作成する。較正曲線は、最小二乗法で近似して得られる三次式を用いる。なお、分子量への換算に使用する粘度式[η]=K×Mαは、以下の数値を用いる。
PS:K=1.38×10-4、α=0.700
PP:K=1.03×10-4、α=0.780
PE:K=3.92×10-4、α=0.733
[Number average molecular weight and weight average molecular weight]
The number average molecular weight and the weight average molecular weight were calculated by size exclusion chromatography using polystyrene as a molecular weight standard. The specific measurement method of GPC is as follows.
Apparatus: Agilent Technologies GPC (PL-GPC220)
Detector: IR detector Column: Showa Denko AT806MS (3 in series)
Mobile phase solvent: ODCB
Measurement temperature: 140°C
Flow rate: 1.0 mL / min
Injection volume: 0.3 mL
[Sample preparation]
The sample is dissolved in ODCB containing 0.24 mg/mL TMP (2,3,6-trimethylphenol) at 140° C. for about 1 hour to prepare a 1 mg/mL sample solution.
The conversion from the retention volume obtained by GPC measurement to molecular weight is performed using a calibration curve of standard polystyrene (PS) prepared in advance. The standard polystyrenes used are all the following brands manufactured by Tosoh Corporation: F380, F288, F128, F80, F40, F20, F10, F4, F1, A5000, A2500, and A1000. A calibration curve is prepared using a standard polystyrene solution dissolved in ODCB containing 0.24 mg/mL TMP so that each is 0.5 mg/mL. The calibration curve uses a cubic equation obtained by approximation using the least squares method. The viscosity equation [η] = K × M α used for conversion to molecular weight uses the following values.
PS: K = 1.38 × 10 -4 , α = 0.700
PP: K=1.03×10 −4 , α=0.780
PE: K=3.92×10 −4 , α=0.733

触媒活性は次の式により計算した。
触媒活性(kg/mol/h)=得られた重合体の収量(kg)/{使用した配位子の物質量(mol)×反応時間(h)}
The catalytic activity was calculated by the following formula:
Catalytic activity (kg/mol/h)=yield of polymer obtained (kg)/{amount of ligand used (mol)×reaction time (h)}

(合成例1:AL-39の合成)
(1)2,2,6,6-テトラメチルベンゾ[1,2-d:5,4-d’]ビス([1,3]ジオキソール)の合成
Bioorg.Med.Chem.Lett.2014,24,2379-2382.の記述に従って下記化学式の化合物を合成した。
(Synthesis Example 1: Synthesis of AL-39)
(1) Synthesis of 2,2,6,6-tetramethylbenzo[1,2-d:5,4-d']bis([1,3]dioxole) The compound of the following chemical formula was synthesized according to the description in Bioorg. Med. Chem. Lett. 2014, 24, 2379-2382.

(2)ビス(2,2,6,6-テトラメチルベンゾ[1,2-d:5,4-d’]ビス([1,3]ジオキソール)-4-イル)クロロホスフィンの合成
2,2,6,6-テトラメチルベンゾ[1,2-d:5,4-d’]ビス([1,3]ジオキソール)(5g,22.5mmol,1eq)を50mLのテトラヒドロフランに溶解させた。生じた溶液を0℃に冷やし、n-BuLi(24.8mmol,1.1eq)をゆっくりと加えて混合物を20℃で2.5時間攪拌して黄色の溶液を得た。この溶液を-78℃に冷やし、PCl(1.39g、10.1mmol,0.45eq)を一挙に加えた。当該混合物を20℃に昇温してから、1.5時間攪拌して黄色の懸濁液を得た。この懸濁液を乾固させ、5.72gの黄色の粘性のある目的物を含む混合物を得た。得られた混合物は精製せずに次の合成に用いた。
31P{H} NMR(162MHz、CDCl)δ:46.3(積分比100%)
(2) Synthesis of bis(2,2,6,6-tetramethylbenzo[1,2-d:5,4-d']bis([1,3]dioxole)-4-yl)chlorophosphine 2,2,6,6-tetramethylbenzo[1,2-d:5,4-d']bis([1,3]dioxole) (5 g, 22.5 mmol, 1 eq) was dissolved in 50 mL of tetrahydrofuran. The resulting solution was cooled to 0°C, n-BuLi (24.8 mmol, 1.1 eq) was slowly added, and the mixture was stirred at 20°C for 2.5 hours to obtain a yellow solution. This solution was cooled to -78°C, and PCl 3 (1.39 g, 10.1 mmol, 0.45 eq) was added all at once. The mixture was warmed to 20°C and stirred for 1.5 hours to obtain a yellow suspension. This suspension was dried to obtain 5.72 g of a yellow viscous mixture containing the target product. The resulting mixture was used in the next synthesis without purification.
31P { 1H }NMR (162MHz, CDCl3 ) δ: 46.3 (integral ratio 100%)

(3)ビス(2,2,6,6-テトラメチルベンゾ[1,2-d:5,4-d’]ビス([1,3]ジオキソール)-4-イル)ホスフィンの合成
ビス(2,2,6,6-テトラメチルベンゾ[1,2-d:5,4-d’]ビス([1,3]ジオキソール)-4-イル)クロロホスフィン(5.72g,11.2mmol,1eq)を50mLのテトラヒドロフランに溶解させた。生じた溶液を0℃に冷やし、水素化アルミニウムリチウム(0.64g,16.9mmol,1.5eq)を加えて混合物を20℃で12時間攪拌し、無色の懸濁液を得た。生じた懸濁液を0℃に冷やし、0.6mLの水、0.6mLの10%水酸化ナトリウム水溶液、1.8mLの水の順に加えて、生じた混合物を室温で30分攪拌して反応を停止させた。混合物を濾過し、ろ液を蒸発乾固して無色の固体を得た。続いて、得られた固体に30mLの水を加え、生成物をジクロロメタン30mLで3回抽出した。集めた有機層を硫酸ナトリウムで乾燥し、固体をろ別し、ろ液を濃縮して黄色の粗生成物を得た。粗生成物を大気下でシリカゲルクロマトグラフィー(展開溶媒:石油エーテル/酢酸エチル=20/1)により精製し、10mLのヘキサンで洗浄して3.1g(6.5mmol、58%)の目的化合物を無色の固体として得た。
H NMR(400MHz、CDCl)δ:6.26(s,2H),5.15(d,J=235Hz,1H),1.57(s,24H)
31P{H} NMR(162MHz、CDCl)δ:-126.8(s)
(3) Synthesis of bis(2,2,6,6-tetramethylbenzo[1,2-d:5,4-d']bis([1,3]dioxol)-4-yl)phosphine Bis(2,2,6,6-tetramethylbenzo[1,2-d:5,4-d']bis([1,3]dioxol)-4-yl)chlorophosphine (5.72 g, 11.2 mmol, 1 eq) was dissolved in 50 mL of tetrahydrofuran. The resulting solution was cooled to 0°C, lithium aluminum hydride (0.64 g, 16.9 mmol, 1.5 eq) was added, and the mixture was stirred at 20°C for 12 hours to obtain a colorless suspension. The resulting suspension was cooled to 0°C, and 0.6 mL of water, 0.6 mL of 10% aqueous sodium hydroxide solution, and 1.8 mL of water were added in this order, and the resulting mixture was stirred at room temperature for 30 minutes to quench the reaction. The mixture was filtered, and the filtrate was evaporated to dryness to obtain a colorless solid. Subsequently, 30 mL of water was added to the obtained solid, and the product was extracted three times with 30 mL of dichloromethane. The collected organic layer was dried over sodium sulfate, the solid was filtered off, and the filtrate was concentrated to obtain a yellow crude product. The crude product was purified by silica gel chromatography (developing solvent: petroleum ether/ethyl acetate = 20/1) under air and washed with 10 mL of hexane to obtain 3.1 g (6.5 mmol, 58%) of the target compound as a colorless solid.
1H NMR (400MHz, CDCl3 ) δ: 6.26 (s, 2H), 5.15 (d, J=235Hz, 1H), 1.57 (s, 24H)
31P { 1H }NMR(162MHz, CDCl3 ) δ:-126.8(s)

(4)AL-39の合成
シュレンク管にビス(2,2,6,6-テトラメチルベンゾ[1,2-d:5,4-d’]ビス([1,3]ジオキソール)-4-イル)ホスフィンを300mg(0.63mmol)量り取り、テトラヒドロフランを8mL加えた。生じた溶液を0℃に冷やした後、n-BuLiを0.44mL(0.69mmol)ゆっくりと滴下した。滴下終了後、当該混合物を室温で1時間10分撹拌させた。その後当該混合物を0℃に冷やし、テトラヒドロフラン2.1mLに溶解させたα-(トリフルオロメチル)スチレンオキシド119mg(0.63mmol)をゆっくり加えた。当該混合物を室温で3時間撹拌した後、0℃に冷やし、塩化水素のジエチルエーテル溶液(以下、「塩酸エーテル溶液」ともいう)を0.76mL(0.76mmol)ゆっくりと滴下した。当該混合物を0℃で1時間撹拌させた後、溶媒を留去した。得られた固体を大気下でシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/テトラヒドロフラン/トリエチルアミン=100/5/1から100/10/1へと変更した)により精製した。精製後、テトラヒドロフラン1mLとヘキサン10mLで再結晶することで157mgの固体を得た。31P NMRから求めたAL-39の純度は99%以上であった。
H NMR(400MHz、CDCl)δ:7.56(d、J=7.4Hz、2H)、7.34―7.31(m、3H)、6.27(s、1H)、6.24(s、1H)、4.66(s、1H)、4.02(dd、J=15.4,4.7Hz、1H)、2.85(d、J=15.6Hz、1H)、1.59(s、6H)、1.58(s、6H)、1.51(s、6H)、1.44(s、6H)
19F NMR(376MHz、CDCl)δ:-80.7(br)
31P{H} NMR(162MHz、CDCl)δ:-61.2(q、J=5.2Hz)
(4) Synthesis of AL-39 300 mg (0.63 mmol) of bis(2,2,6,6-tetramethylbenzo[1,2-d:5,4-d']bis([1,3]dioxol)-4-yl)phosphine was weighed out in a Schlenk flask, and 8 mL of tetrahydrofuran was added. The resulting solution was cooled to 0°C, and 0.44 mL (0.69 mmol) of n-BuLi was slowly added dropwise. After the dropwise addition was completed, the mixture was stirred at room temperature for 1 hour and 10 minutes. Then, the mixture was cooled to 0°C, and 119 mg (0.63 mmol) of α-(trifluoromethyl)styrene oxide dissolved in 2.1 mL of tetrahydrofuran was slowly added. The mixture was stirred at room temperature for 3 hours, cooled to 0°C, and 0.76 mL (0.76 mmol) of a diethyl ether solution of hydrogen chloride (hereinafter also referred to as "hydrochloric acid ether solution") was slowly added dropwise. The mixture was stirred at 0° C. for 1 hour, and the solvent was then distilled off. The resulting solid was purified by silica gel column chromatography (developing solvent: hexane/tetrahydrofuran/triethylamine=100/10/1 instead of 100/5/1) under air. After purification, the solid was recrystallized with 1 mL of tetrahydrofuran and 10 mL of hexane to obtain 157 mg of a solid. The purity of AL-39 determined by 31 P NMR was 99% or more.
1H NMR (400MHz, CDCl3 ) δ: 7.56 (d, J = 7.4 Hz, 2H), 7.34-7.31 (m, 3H), 6.27 (s, 1H), 6.24 (s, 1H), 4.66 (s, 1H), 4.02 (dd, J = 15.4, 4.7 Hz, 1H), 2.85 (d, J = 15.6 Hz, 1H), 1.59 (s, 6H), 1.58 (s, 6H), 1.51 (s, 6H), 1.44 (s, 6H).
19F NMR (376MHz, CDCl3 ) δ: -80.7 (br)
31P { 1H }NMR(162MHz, CDCl3 ) δ: -61.2 (q, J=5.2Hz)

(合成例2:AL-40の合成)
シュレンク管にビス(2,2,6,6-テトラメチルベンゾ[1,2-d:5,4-d’]ビス([1,3]ジオキソール)-4-イル)ホスフィンを400mg(0.84mmol)量り取り、テトラヒドロフランを11mL加えた。生じた溶液を-78℃に冷やした後、n-BuLiを0.58mL(0.92mmol)ゆっくりと滴下した。滴下終了後、当該混合物を-78℃で1時間撹拌させた。その後当該混合物を0℃に昇温してから、テトラヒドロフラン2.8mLに溶解させた2,2-ビス(トリフルオロメチル)オキシラン92μL(0.84mmol)をゆっくり加えた。当該混合物を室温で1時間撹拌した後、溶媒を留去した。残留物に、テトラヒドロフランを14mL加えてから0℃に冷やした後、塩酸エーテル溶液を1.0mL(1.0mmol)ゆっくりと滴下した。当該混合物を0℃で1時間撹拌させた後、大気下で水を8mL加えて洗浄し、有機層を分離した。水層にジエチルエーテルを4mL加え有機層を抽出する操作を3回繰り返した。集めた有機層を硫酸ナトリウムで乾燥させた後、濾過により硫酸ナトリウムを除去した。ろ液を蒸発乾固し、得られた固体を大気下でシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/アセトン=10/1)により精製し、242mgの固体を得た。
31P NMRから求めたAL-40の純度は、99%以上であった。
H NMR(400MHz、CDCl)δ:6.30(s、2H)、4.76(d、J=3.4Hz、1H)、3.25(brs、2H)、1.58(s、12H)、1.55(s、12H)
19F NMR(376MHz、CDCl)δ:-77.0(d、J=22.0Hz)31P{H} NMR(162MHz、CDCl)δ:-62.1(septet、J=22.9Hz)
(Synthesis Example 2: Synthesis of AL-40)
In a Schlenk flask, 400 mg (0.84 mmol) of bis(2,2,6,6-tetramethylbenzo[1,2-d:5,4-d']bis([1,3]dioxol)-4-yl)phosphine was weighed out, and 11 mL of tetrahydrofuran was added. The resulting solution was cooled to -78°C, and then 0.58 mL (0.92 mmol) of n-BuLi was slowly added dropwise. After the dropwise addition was completed, the mixture was stirred at -78°C for 1 hour. The mixture was then warmed to 0°C, and then 92 μL (0.84 mmol) of 2,2-bis(trifluoromethyl)oxirane dissolved in 2.8 mL of tetrahydrofuran was slowly added. The mixture was stirred at room temperature for 1 hour, and then the solvent was distilled off. 14 mL of tetrahydrofuran was added to the residue, and then cooled to 0°C, and then 1.0 mL (1.0 mmol) of a hydrochloric acid ether solution was slowly added dropwise. The mixture was stirred at 0°C for 1 hour, and then 8 mL of water was added under air to wash and separate the organic layer. The operation of adding 4 mL of diethyl ether to the aqueous layer and extracting the organic layer was repeated three times. The collected organic layer was dried over sodium sulfate, and then the sodium sulfate was removed by filtration. The filtrate was evaporated to dryness, and the obtained solid was purified by silica gel column chromatography (developing solvent: hexane/acetone = 10/1) under air to obtain 242 mg of solid.
The purity of AL-40 determined by 31 P NMR was 99% or more.
1H NMR (400MHz, CDCl3 ) δ: 6.30 (s, 2H), 4.76 (d, J=3.4Hz, 1H), 3.25 (brs, 2H), 1.58 (s, 12H), 1.55 (s, 12H).
19F NMR (376MHz, CDCl3 ) δ: -77.0 (d, J = 22.0Hz) 31P { 1H }NMR (162MHz, CDCl3 ) δ: -62.1 (septet, J = 22.9Hz)

(合成例3:AL-58の合成)
(1)tert-ブチル(2,2,6,6-テトラメチルベンゾ[1,2-d:5,4-d’]ビス([1,3]ジオキソール)-4-イル)ホスフィンボランの合成
2,2,6,6-テトラメチルベンゾ[1,2-d:5,4-d’]ビス([1,3]ジオキソール)(2g,9mmol,1eq)のテトラヒドロフラン溶液(20mL)を0℃に冷やし、n-BuLi(2.5M、4.0mL,1.1eq)を加えて混合物を20℃で2時間攪拌させた。生じた混合物を、-78℃に冷やしたtert-ブチルジクロロホスフィン(1.72g,10.8mmol,1.2eq)のテトラヒドロフラン溶液(10mL)に加えた。当該混合物を20℃で12時間攪拌して黄色の懸濁液を得た。この懸濁液を0℃にして、ジメチルスルフィドボラン(10M,2.7mL、3eq)を加えた。生じた混合物を20℃で12時間攪拌し、淡黄色の溶液を得た。この溶液を0℃にして、水素化リチウムアルミニウム(2.5M,10.8mL、27.0mmol)を加えた。得られた混合物を20℃で12時間攪拌し、黄色の溶液を得た。反応混合物を100mLの水に注いでよく撹拌し、ジクロロメタン(50mL×2)で有機層を抽出した。集めた有機層を50mLの飽和食塩水で洗浄し、有機層を硫酸ナトリウムで乾燥し、硫酸ナトリウムを濾別した。ろ液を減圧下濃縮して粗生成物を得た。この粗生成物の合成を何度か繰り返し、3.73gの粗生成物を得た。この粗生成物を15mLの石油エーテルを使って20℃で30分間粉砕洗浄し、3.26g(10.1mmol)の目的物を白色の固体として得た。
H NMR(400MHz,CDCl)δ:6.42(s,1H),5.32(dq,J=375,7.2Hz,1H),1.65(s、6H),1.64(s、6H),1.25(d,J=15.5Hz,9H)
31P NMR(162MHz,CDCl)δ:3.6(br).
(Synthesis Example 3: Synthesis of AL-58)
(1) Synthesis of tert-butyl(2,2,6,6-tetramethylbenzo[1,2-d:5,4-d']bis([1,3]dioxole)-4-yl)phosphineborane A tetrahydrofuran solution (20 mL) of 2,2,6,6-tetramethylbenzo[1,2-d:5,4-d']bis([1,3]dioxole) (2 g, 9 mmol, 1 eq) was cooled to 0° C., and n-BuLi (2.5 M, 4.0 mL, 1.1 eq) was added, and the mixture was stirred at 20° C. for 2 hours. The resulting mixture was added to a tetrahydrofuran solution (10 mL) of tert-butyldichlorophosphine (1.72 g, 10.8 mmol, 1.2 eq) cooled to −78° C. The mixture was stirred at 20° C. for 12 hours to obtain a yellow suspension. The suspension was cooled to 0°C, and dimethylsulfide borane (10M, 2.7mL, 3eq) was added. The resulting mixture was stirred at 20°C for 12 hours to obtain a pale yellow solution. The solution was cooled to 0°C, and lithium aluminum hydride (2.5M, 10.8mL, 27.0mmol) was added. The resulting mixture was stirred at 20°C for 12 hours to obtain a yellow solution. The reaction mixture was poured into 100mL of water and stirred well, and the organic layer was extracted with dichloromethane (50mL x 2). The collected organic layer was washed with 50mL of saturated saline, the organic layer was dried over sodium sulfate, and the sodium sulfate was filtered off. The filtrate was concentrated under reduced pressure to obtain a crude product. The synthesis of this crude product was repeated several times to obtain 3.73g of crude product. The crude product was crushed and washed with 15mL of petroleum ether at 20°C for 30 minutes to obtain 3.26g (10.1mmol) of the target product as a white solid.
1H NMR (400MHz, CDCl3 ) δ: 6.42 (s, 1H), 5.32 (dq, J = 375, 7.2Hz, 1H), 1.65 (s, 6H), 1.64 (s, 6H), 1.25 (d, J = 15.5Hz, 9H).
31P NMR (162MHz, CDCl3 ) δ: 3.6 (br).

Figure 2024052628000023
Figure 2024052628000023

(2)AL-58の合成
テトラブチルアンモニウム硫酸水素塩69mg(0.20mmol)と5%次亜塩素酸ナトリウム水溶液(13.0mmol)10.0gを混合して0℃に冷却した。当該混合物に2-トリフルオロメチルアクリル酸メチル1.09g(6.49mmol)を加えて0℃で3時間撹拌した。当該混合物からジエチルエーテル5mLで生成物を3回抽出し、集めた有機層を水で洗浄した。洗浄水からジエチルエーテル3mLで生成物を2回抽出した。エマルジョン化した水層にジエチルエーテル5mLと水5mLを加えて、-15℃で一晩冷却した。上記有機層を全てまとめて硫酸ナトリウムで乾燥させた後、濾過し、ろ液を74-17mmHgの減圧下、室温で濃縮した。ここにジエチルエーテル8mLを加え、さらに硫酸ナトリウムを加えて乾燥させた後、濾過し、ろ液を微減圧下濃縮することで、無色液体のエポキシド391mgを得た。
シュレンク管に上記(1)で合成したtert-ブチル(2,2,6,6-テトラメチルベンゾ[1,2-d:5,4-d’]ビス([1,3]ジオキソール)-4-イル)ホスフィンボラン300mg(0.925mmol)を量り取り、テトラヒドロフランを8mL加えた。生じた溶液を-78℃に冷やした後、0.6Mのカリウムヘキサメチルジシラジドのトルエン溶液1.88mL(1.13mmol)をゆっくりと滴下した。滴下終了後、この混合物を0℃まで昇温し、先に合成した無色液体のエポキシド155mgとTHF1.6mLの混合物をゆっくりと加えた。この混合物を室温で3時間撹拌した後、0℃まで冷やし、その後0.87M塩酸(3.5mmol)をゆっくりと滴下した。この混合物からジエチルエーテル5mLで生成物を3回抽出し、集めた有機層を水5mLで洗浄した。有機層を硫酸ナトリウムで乾燥させた後、脱脂綿を用いた濾過により硫酸ナトリウムを除去した。ろ液を蒸発乾固した後、得られた固体を大気下でシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/ジクロロメタン=1/2から1/3へと変更した)により精製し、216mgの白色固体を得た。
(2) Synthesis of AL-58 69 mg (0.20 mmol) of tetrabutylammonium hydrogen sulfate and 10.0 g of 5% aqueous sodium hypochlorite solution (13.0 mmol) were mixed and cooled to 0°C. 1.09 g (6.49 mmol) of methyl 2-trifluoromethylacrylate was added to the mixture and stirred at 0°C for 3 hours. The product was extracted from the mixture three times with 5 mL of diethyl ether, and the collected organic layer was washed with water. The product was extracted twice with 3 mL of diethyl ether from the washing water. 5 mL of diethyl ether and 5 mL of water were added to the emulsified aqueous layer and cooled at -15°C overnight. The organic layers were all collected and dried over sodium sulfate, filtered, and the filtrate was concentrated at room temperature under a reduced pressure of 74-17 mmHg. 8 mL of diethyl ether was added thereto, and sodium sulfate was further added thereto for drying, followed by filtration, and the filtrate was concentrated under a slightly reduced pressure to obtain 391 mg of a colorless liquid epoxide.
300 mg (0.925 mmol) of tert-butyl(2,2,6,6-tetramethylbenzo[1,2-d:5,4-d']bis([1,3]dioxol)-4-yl)phosphineborane synthesized in (1) above was weighed out in a Schlenk flask, and 8 mL of tetrahydrofuran was added. The resulting solution was cooled to -78°C, and 1.88 mL (1.13 mmol) of a toluene solution of 0.6 M potassium hexamethyldisilazide was slowly added dropwise. After the dropwise addition was completed, the mixture was heated to 0°C, and a mixture of 155 mg of the colorless liquid epoxide synthesized earlier and 1.6 mL of THF was slowly added. The mixture was stirred at room temperature for 3 hours, cooled to 0°C, and then 0.87 M hydrochloric acid (3.5 mmol) was slowly added dropwise. The product was extracted from this mixture three times with 5 mL of diethyl ether, and the collected organic layer was washed with 5 mL of water. The organic layer was dried over sodium sulfate, and then filtered through absorbent cotton to remove sodium sulfate. The filtrate was evaporated to dryness, and the resulting solid was purified by silica gel column chromatography (developing solvent: hexane/dichloromethane=1/3 instead of 1/2) under air to obtain 216 mg of a white solid.

上記の得られた固体201mg(0.407mmol)と1,4-ジアザビシクロ[2.2.2]オクタン55mg(0.49mmol)をトルエン3.5mLに溶解させた。得られた溶液を60℃に昇温してから1時間半撹拌した。撹拌後、溶液を窒素下でシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/アセトン=3/1)により精製し、180mgの固体を得た。H NMRから求めたジアステレオマーの比は1:0.3であった。
H NMR(400MHz、CDCl)δ:6.33(s、1H)、3.92(s、3H)、3.76(dd、J=14.8、4.4Hz、1H)、3.44(s、1H)、2.05(d、J=14.6Hz、1H)、1.66(s、6H)、1.59(s、6H)、1.09(d、J=13.2Hz,9H)
19F NMR(376MHz、CDCl)δ:-79.1(br)
31P{H} NMR(162MHz、CDCl)δ:-18.2(q、J=5.5Hz)
ジアステレオマー
H NMR(400MHz、CDCl)δ:6.35(s、1H)、4.07(br、1H)、3.73(s、3H)、3.43(dd、J=14.8、4.0Hz,1H)、2.00(dd、J=14.8,1.4Hz、1H)、1.65(s、6H)、1.62(s、6H)、1.11(d、J=13.7Hz、9H)
19F NMR(376MHz、CDCl)δ:-78.8(s)
31P{H} NMR(162MHz、CDCl)δ:-21.7(s)
201 mg (0.407 mmol) of the solid obtained above and 55 mg (0.49 mmol) of 1,4-diazabicyclo[2.2.2]octane were dissolved in 3.5 mL of toluene. The resulting solution was heated to 60° C. and stirred for one and a half hours. After stirring, the solution was purified by silica gel column chromatography (developing solvent: hexane/acetone=3/1) under nitrogen to obtain 180 mg of a solid. The diastereomer ratio determined from 1 H NMR was 1:0.3.
1H NMR (400MHz, CDCl3 ) δ: 6.33 (s, 1H), 3.92 (s, 3H), 3.76 (dd, J = 14.8, 4.4 Hz, 1H), 3.44 (s, 1H), 2.05 (d, J = 14.6 Hz, 1H), 1.66 (s, 6H), 1.59 (s, 6H), 1.09 (d, J = 13.2 Hz, 9H).
19F NMR (376MHz, CDCl3 ) δ: -79.1 (br)
31P { 1H }NMR(162MHz, CDCl3 ) δ: -18.2(q, J=5.5Hz)
Diastereomers
1H NMR (400MHz, CDCl3 ) δ: 6.35 (s, 1H), 4.07 (br, 1H), 3.73 (s, 3H), 3.43 (dd, J = 14.8, 4.0Hz, 1H), 2.00 (dd, J = 14.8, 1.4Hz, 1H), 1.65 (s, 6H), 1.62 (s, 6H), 1.11 (d, J = 13.7Hz, 9H).
19F NMR (376MHz, CDCl3 ) δ: -78.8 (s)
31P { 1H }NMR(162MHz, CDCl3 ) δ: -21.7(s)

Figure 2024052628000024
Figure 2024052628000024

(合成例4:AL-59の合成)
シュレンク管に合成例3の(1)と同様に合成したtert-ブチル(2,2,6,6-テトラメチルベンゾ[1,2-d:5,4-d’]ビス([1,3]ジオキソール)-4-イル)ホスフィンボラン296mg(0.913mmol)を量り取り、テトラヒドロフランを10mL加えた。生じた溶液を-78℃に冷やした後、0.6Mのカリウムヘキサメチルジシラジドのトルエン溶液2.0mL(1.2mmol)をゆっくりと滴下した。滴下終了後、この混合物を0℃に昇温してから、1時間撹拌した。この混合物に2,2-ビス(トリフルオロメチル)オキシラン0.133mL(1.22mmol)をゆっくり加えた。当該混合物を室温に昇温し、2時間撹拌した後、0℃に冷却し、0.87Mの塩酸4mL(3.48mmol)をゆっくりと滴下した。この混合物からジエチルエーテル5mLで生成物を3回抽出し、集めた有機層を5mLの水で洗浄した。集めた有機層を硫酸ナトリウムで乾燥させた後、脱脂綿を用いた濾過により硫酸ナトリウムを除去した。ろ液を蒸発乾固したあと、得られた固体を大気下でシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/ジクロロメタン=2/1)により精製し、283mgの白色固体を得た。
上記の得られた固体200mg(0.397mmol)に、トルエン3.5mLに溶解させた1,4-ジアザビシクロ[2.2.2]オクタン54mg(0.48mmol)を加え、混合物を60℃に昇温してから1時間半撹拌した。撹拌後、窒素下で、得られた溶液をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/アセトン=5/1)により精製し、234mgの固体を得た。31P{H} NMRから求めたAL-59の純度は100%であった。
H NMR(400MHz、CDCl)δ:6.38(s、1H)、4.26(d、J=8.7Hz、1H)、3.63(dd、J=16.0、3.2Hz、1H)、2.03(d、J=16.0Hz、1H)、1.65(s、6H)、1.61(s、6H)、1.13(d、J=14.2Hz、9H)
19F NMR(376MHz、CDCl)δ:-76.7(dq、J=10.9、10.9Hz)、-77.7(dq、J=10.9,10.9Hz)
31P{H} NMR(162MHz、CDCl)δ:-30.2(m)
(Synthesis Example 4: Synthesis of AL-59)
296 mg (0.913 mmol) of tert-butyl(2,2,6,6-tetramethylbenzo[1,2-d:5,4-d']bis([1,3]dioxol)-4-yl)phosphineborane synthesized in the same manner as in Synthesis Example 3 (1) was weighed out in a Schlenk flask, and 10 mL of tetrahydrofuran was added. The resulting solution was cooled to -78°C, and then 2.0 mL (1.2 mmol) of a 0.6 M toluene solution of potassium hexamethyldisilazide was slowly added dropwise. After completion of the dropwise addition, the mixture was warmed to 0°C and stirred for 1 hour. 0.133 mL (1.22 mmol) of 2,2-bis(trifluoromethyl)oxirane was slowly added to the mixture. The mixture was warmed to room temperature and stirred for 2 hours, then cooled to 0°C, and 4 mL (3.48 mmol) of 0.87 M hydrochloric acid was slowly added dropwise. The product was extracted from this mixture three times with 5 mL of diethyl ether, and the collected organic layer was washed with 5 mL of water. The collected organic layer was dried over sodium sulfate, and then filtered using absorbent cotton to remove sodium sulfate. The filtrate was evaporated to dryness, and the obtained solid was purified by silica gel column chromatography (developing solvent: hexane/dichloromethane = 2/1) under air to obtain 283 mg of a white solid.
To 200 mg (0.397 mmol) of the solid obtained above, 54 mg (0.48 mmol) of 1,4-diazabicyclo[2.2.2]octane dissolved in 3.5 mL of toluene was added, and the mixture was heated to 60° C. and stirred for one and a half hours. After stirring, the resulting solution was purified under nitrogen by silica gel column chromatography (developing solvent: hexane/acetone=5/1) to obtain 234 mg of a solid. The purity of AL-59 determined from 31 P{ 1 H} NMR was 100%.
1H NMR (400MHz, CDCl3 ) δ: 6.38 (s, 1H), 4.26 (d, J = 8.7Hz, 1H), 3.63 (dd, J = 16.0, 3.2Hz, 1H), 2.03 (d, J = 16.0Hz, 1H), 1.65 (s, 6H), 1.61 (s, 6H), 1.13 (d, J = 14.2Hz, 9H).
19F NMR (376MHz, CDCl3 ) δ: -76.7 (dq, J=10.9, 10.9Hz), -77.7 (dq, J=10.9, 10.9Hz)
31P { 1H }NMR(162MHz, CDCl3 ) δ: -30.2(m)

Figure 2024052628000025
Figure 2024052628000025

(合成例5:AL-63の合成)
(1)1,2,4,5-テトラヒドロキシベンゼンの合成
2,5-ジヒドロキシ1,4-ベンゾキノン(15g,107.7mmol,1eq)に200mLの水を加えた溶液に亜ジチオン酸ナトリウム(37.28g,214.14mmol,46.60mL、2eq)と塩酸(12M,49.07mL、5.5eq)を加えた。生じた溶液を20℃で30分攪拌して白色の懸濁液を得た。この懸濁液をろ過し、ろ液に200mLの酢酸エチルを2回加えて茶色の溶液を得た。得られた有機層を200mLの水で2回洗浄し、硫酸ナトリウムを加えて乾燥させた。その後、固体をろ別し、ろ液を濃縮して14gの茶色の固体残留物を得た。得られた化合物は精製せずに次の合成に用いた。
H NMR(500MHz、ジメチルスルホキシド-d)δ:7.93(brs、4H)、6.20(s、2H)
(Synthesis Example 5: Synthesis of AL-63)
(1) Synthesis of 1,2,4,5-tetrahydroxybenzene Sodium dithionite (37.28 g, 214.14 mmol, 46.60 mL, 2 eq) and hydrochloric acid (12 M, 49.07 mL, 5.5 eq) were added to a solution of 2,5-dihydroxy-1,4-benzoquinone (15 g, 107.7 mmol, 1 eq) in 200 mL of water. The resulting solution was stirred at 20° C. for 30 minutes to obtain a white suspension. This suspension was filtered, and 200 mL of ethyl acetate was added to the filtrate twice to obtain a brown solution. The obtained organic layer was washed twice with 200 mL of water and dried by adding sodium sulfate. Thereafter, the solid was filtered off, and the filtrate was concentrated to obtain 14 g of a brown solid residue. The obtained compound was used in the next synthesis without purification.
1H NMR (500MHz, dimethylsulfoxide- d6 ) δ: 7.93 (brs, 4H), 6.20 (s, 2H)

Figure 2024052628000026
Figure 2024052628000026

(2)ジスピロ[シクロペンタン-1,2’-ベンゾ[1,2-d:4,5-d’]ビス([1,3]ジオキソール)-6’,1”-シクロペンタン]の合成
1,2,4,5-テトラヒドロキシベンゼン(8g,56mmol,1eq)を80mLのジクロロメタンに溶解させた。生じた溶液にシクロペンタノン(18.94g,225.2mmol,19.9mL,4eq)とジクロロジメチルシラン(14.53g,112.6mmol,13.6mL、2eq)を加え、混合物を20℃で12時間攪拌して茶色の溶液を得た。生じた溶液を濃縮し、得られた粗生成物に10mLのヘプタンを加えて3分撹拌した。撹拌後生じた溶液をろ過し、ろ液に1.5mLのアセトンを加え、混合物を還流してから-10℃に冷やして再結晶を行い黒色の固体粗生成物を得た。この固体をシリカゲルカラムクロマトグラフィー(展開溶媒:石油エーテル/ジクロロメタン=10/1)により精製し、白色固体(5g,18mmol)を得た。
H NMR(400MHz、CDCl)δ:6.34(s、2H)、2.09-2.05(m、8H)、1.83-1.79(m,8H)
(2) Synthesis of dispiro[cyclopentane-1,2'-benzo[1,2-d:4,5-d']bis([1,3]dioxole)-6',1"-cyclopentane] 1,2,4,5-Tetrahydroxybenzene (8 g, 56 mmol, 1 eq) was dissolved in 80 mL of dichloromethane. Cyclopentanone (18.94 g, 225.2 mmol, 19.9 mL, 4 eq) and dichlorodimethylsilane (14.53 g, 112.6 mmol, 13.6 mL, 2 eq) were added to the resulting solution, and the mixture was stirred at 20°C for 12 hours to obtain a brown solution. The resulting solution was concentrated, and 10 mL of heptane was added to the resulting crude product and stirred for 3 minutes. After stirring, the resulting solution was filtered, 1.5 mL of acetone was added to the filtrate, and the mixture was refluxed and then cooled to -10°C for recrystallization to obtain a black solid crude product. This solid was purified by silica gel column chromatography (developing solvent: petroleum ether/dichloromethane = 10/1) to obtain a white solid (5 g, 18 mmol).
1H NMR (400MHz, CDCl3 ) δ: 6.34 (s, 2H), 2.09-2.05 (m, 8H), 1.83-1.79 (m, 8H).

Figure 2024052628000027
Figure 2024052628000027

(3)ビス(ジスピロ[シクロペンタン-1,2’-ベンゾ[1,2-d:4,5-d’]ビス([1,3]ジオキソール)-6’,1”-シクロペンタン]-4’-イル)ホスフィンの合成
ジスピロ[シクロペンタン-1,2’-ベンゾ[1,2-d:4,5-d’]ビス([1,3]ジオキソール)-6’,1”-シクロペンタン](1g,3.7mmol,1eq)を15mLのテトラヒドロフランに溶解させた。生じた溶液を0℃に冷やし、n-BuLi(2.5M,1.60mL,4.0mmol、1.1eq)をゆっくりと加えて混合物を20℃で2.5時間攪拌して黄色の溶液を得た。生じた溶液を-78℃に冷やし、PCl(225mg,1.64mmol,143μL,0.45eq)を加えた。当該混合物を20℃に昇温してから、1.5時間攪拌して黄色の懸濁液を得た。生じた黄色の懸濁液を蒸発乾固させ、1.12gの黄色の粘性のある化合物を得た。
得られた黄色の粘性のある化合物を15mLのテトラヒドロフランに溶解させた。生じた溶液を0℃に冷やし、水素化リチウムアルミニウム(2.5M,1.1mL,2.8mmol)をゆっくりと加えて混合物を20℃で12時間攪拌して茶色の懸濁液を得た。懸濁液を0℃に冷やし、0.6mLの水、0.6mLの10%水酸化ナトリウム水溶液、1.8mLの水の順に加えて、生じた混合物を室温で30分攪拌した。混合物をろ過し、ろ液を蒸発乾固して白色の固体を得た。続いて、白色の固体に30mLの水を加え、生成した有機物をジクロロメタンで抽出(30mL×3)した。集めた有機層を硫酸ナトリウムで乾燥し、固体をろ別し、ろ液を濃縮して粗生成物を黄色の固体として得た。粗生成物をシリカゲルクロマトグラフィー(展開溶媒:石油エーテル/酢酸エチル=20/1)により精製し、10mLのヘキサンで洗浄して0.16g(0.28mmol)の目的化合物を白色の固体として得た。
H NMR(400MHz、CDCl)δ:6.28(s、2H)、5.19(d、J=234Hz,1H)、1.99(br、16H)、1.76(br、16H)
31P{H} NMR(162MHz、CDCl)δ:-125.2(s)
(3) Synthesis of bis(dispiro[cyclopentane-1,2'-benzo[1,2-d:4,5-d']bis([1,3]dioxole)-6',1"-cyclopentane]-4'-yl)phosphine Dispiro[cyclopentane-1,2'-benzo[1,2-d:4,5-d']bis([1,3]dioxole)-6',1"-cyclopentane] (1 g, 3.7 mmol, 1 eq) was dissolved in 15 mL of tetrahydrofuran. The resulting solution was cooled to 0°C, and n-BuLi (2.5 M, 1.60 mL, 4.0 mmol, 1.1 eq) was slowly added and the mixture was stirred at 20°C for 2.5 hours to obtain a yellow solution. The resulting solution was cooled to -78°C, and PCl 3 (225 mg, 1.64 mmol, 143 μL, 0.45 eq) was added. The mixture was warmed to 20° C. and stirred for 1.5 hours to give a yellow suspension, which was evaporated to dryness to give 1.12 g of a yellow viscous compound.
The resulting yellow viscous compound was dissolved in 15 mL of tetrahydrofuran. The resulting solution was cooled to 0°C, lithium aluminum hydride (2.5M, 1.1 mL, 2.8 mmol) was slowly added, and the mixture was stirred at 20°C for 12 hours to obtain a brown suspension. The suspension was cooled to 0°C, and 0.6 mL of water, 0.6 mL of 10% aqueous sodium hydroxide solution, and 1.8 mL of water were added in that order, and the resulting mixture was stirred at room temperature for 30 minutes. The mixture was filtered, and the filtrate was evaporated to dryness to obtain a white solid. Subsequently, 30 mL of water was added to the white solid, and the resulting organic matter was extracted with dichloromethane (30 mL x 3). The collected organic layer was dried over sodium sulfate, the solid was filtered off, and the filtrate was concentrated to obtain a crude product as a yellow solid. The crude product was purified by silica gel chromatography (developing solvent: petroleum ether/ethyl acetate = 20/1) and washed with 10 mL of hexane to obtain 0.16 g (0.28 mmol) of the target compound as a white solid.
1H NMR (400MHz, CDCl3 ) δ: 6.28 (s, 2H), 5.19 (d, J=234Hz, 1H), 1.99 (br, 16H), 1.76 (br, 16H)
31P { 1H }NMR(162MHz, CDCl3 ) δ: -125.2(s)

Figure 2024052628000028
Figure 2024052628000028

(4)AL-63の合成
シュレンク管に上記(3)で合成したビス(ジスピロ[シクロペンタン-1,2’-ベンゾ[1,2-d:4,5-d’]ビス([1,3]ジオキソール)-6’,1”-シクロペンタン]-4’-イル)ホスフィンを300mg(0.52mmol)量り取り、テトラヒドロフランを6.8mL加えた。生じた溶液を-78℃に冷やした後、n-BuLiを0.38mL(0.57mmol)ゆっくりと滴下した。滴下終了後、この混合物を-78℃で1時間20分撹拌させた。その後この混合物を0℃まで昇温し、テトラヒドロフラン1.3mLに溶解させた2,2-ビス(トリフルオロメチル)オキシラン57μL(0.52mmol)をゆっくり加えた。2,2-ビス(トリフルオロメチル)オキシランが入っていた容器内を0.2mLのテトラヒドロフランで2回洗浄し、その洗浄液もシュレンク管に加えた。当該混合物を室温で2時間40分撹拌した後、溶媒を留去した。この残留物に、テトラヒドロフランを8mL加えてから0℃に冷やした後、塩酸エーテル溶液を0.62mL(0.62mmol)ゆっくりと滴下した。当該混合物を0℃で15分撹拌させた後、大気下で水を5mL加え洗浄し、有機層を分離した。以降の操作は全て大気下で行った。水層にジエチルエーテルを3mL加え有機層を抽出する操作を3回繰り返した。集めた有機層を硫酸ナトリウムで乾燥させた後、濾過で硫酸ナトリウムを除去した。ろ液を蒸発乾固し、得られた固体をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/アセトン=10/1)により精製し、120mgの固体を得た。31P NMRから求めたAL-63の純度は97%であった。
H NMR(400MHz、CDCl)δ:6.32(s、2H)、4.67(s、1H)、3.25(s、2H)、2.01-1.92(m、16H)、1.77-1.73(m、16H)
19F NMR(376MHz、CDCl)δ:-76.9(d、J=22.2Hz)
31P{H} NMR(162MHz、CDCl)δ:-62.2(septet、J=22.0Hz)
(4) Synthesis of AL-63 In a Schlenk flask, 300 mg (0.52 mmol) of bis(dispiro[cyclopentane-1,2'-benzo[1,2-d:4,5-d']bis([1,3]dioxole)-6',1"-cyclopentane]-4'-yl)phosphine synthesized in (3) above was weighed out, and 6.8 mL of tetrahydrofuran was added. The resulting solution was cooled to -78°C, and 0.38 mL (0.57 mmol) of n-BuLi was slowly added dropwise. After the dropwise addition was completed, the mixture was stirred at -78°C for 1 hour and 20 minutes. Thereafter, the mixture was heated to 0°C, and 57 μL (0.52 mmol) of 2,2-bis(trifluoromethyl)oxirane dissolved in 1.3 mL of tetrahydrofuran was slowly added. The container containing 2,2-bis(trifluoromethyl)oxirane was poured with 0.2 mL of The mixture was washed twice with tetrahydrofuran, and the washings were also added to the Schlenk flask. The mixture was stirred at room temperature for 2 hours and 40 minutes, and the solvent was then distilled off. 8 mL of tetrahydrofuran was added to the residue, which was then cooled to 0°C, and 0.62 mL (0.62 mmol) of a hydrochloric acid ether solution was slowly added dropwise. The mixture was stirred at 0°C for 15 minutes, and then 5 mL of water was added under air to wash the mixture, and the organic layer was separated. All subsequent operations were performed under air. The operation of adding 3 mL of diethyl ether to the aqueous layer and extracting the organic layer was repeated three times. The collected organic layer was dried over sodium sulfate, and then the sodium sulfate was removed by filtration. The filtrate was evaporated to dryness, and the obtained solid was purified by silica gel column chromatography (developing solvent: hexane/acetone = 10/1) to obtain 120 mg of a solid. The purity of AL-63 determined from 31 P NMR was 97%.
1H NMR (400MHz, CDCl3 ) δ: 6.32 (s, 2H), 4.67 (s, 1H), 3.25 (s, 2H), 2.01-1.92 (m, 16H), 1.77-1.73 (m, 16H).
19F NMR (376MHz, CDCl3 ) δ: -76.9 (d, J=22.2Hz)
31P { 1H }NMR(162MHz, CDCl3 ) δ:-62.2 (septet, J=22.0Hz)

Figure 2024052628000029
Figure 2024052628000029

(合成例6:AL-64の合成)
(1)2,3,7,8-テトラヒドロベンゾ[1,2-b:4,5-b’]ビス([1,4]ジオキシンの合成
1,2,4,5-テトラヒドロキシベンゼン(8g,56mmol,1eq)と1,2-ジブロモエタン(42.30g,225.2mmol,17.0mL,4eq)を500mLのジメチルホルムアミドに溶解させた。生じた溶液に炭酸カリウム(31.12g,225.2mmol,4eq)を加え、混合物を90℃で12時間攪拌して茶色の懸濁液を得た。H-NMRで反応の完結を確認してから反応溶液に500mLの水を加えてろ過し、粗生成物を得た。得られた粗生成物を200mLのメタノールに溶解させ、450mLのトルエンを加えてから乾固させ、19gの灰色の化合物を得た。
H NMR(400MHz、CDCl)δ:6.42(s、2H)、4.20(s、8H)
(Synthesis Example 6: Synthesis of AL-64)
(1) Synthesis of 2,3,7,8-tetrahydrobenzo[1,2-b:4,5-b']bis([1,4]dioxin) 1,2,4,5-tetrahydroxybenzene (8 g, 56 mmol, 1 eq) and 1,2-dibromoethane (42.30 g, 225.2 mmol, 17.0 mL, 4 eq) were dissolved in 500 mL of dimethylformamide. Potassium carbonate (31.12 g, 225.2 mmol, 4 eq) was added to the resulting solution, and the mixture was stirred at 90° C. for 12 hours to obtain a brown suspension. After confirming the completion of the reaction by 1 H-NMR, 500 mL of water was added to the reaction solution and filtered to obtain a crude product. The obtained crude product was dissolved in 200 mL of methanol, 450 mL of toluene was added, and the mixture was dried to obtain 19 g of a gray compound.
1H NMR (400MHz, CDCl3 ) δ: 6.42 (s, 2H), 4.20 (s, 8H)

Figure 2024052628000030
Figure 2024052628000030

(2)ビス(2,3,7,8-テトラヒドロベンゾ[1,2-b:4,5-b’]ビス([1,4]ジオキシン)-5-イル)ホスフィンの合成
2,3,7,8-テトラヒドロベンゾ[1,2-b:4,5-b’]ビス([1,4]ジオキシン(4.4g,23mmol)を100mLのテトラヒドロフランに溶解させた。生じた溶液を0℃に冷やし、n-BuLi(2.5M,9.5mL,23.8mmol)を加えて、混合物を0℃で1時間攪拌して黄色の懸濁液を得た。生じた懸濁液を、0℃に冷やした(ジエチルアミノ)ジクロロホスフィン(1.58g,9.08mmol)のトルエン溶液(10mL)に加えた。当該混合物を0℃で1時間攪拌して黄色の懸濁液を得た。この懸濁液に0℃で塩化水素のジオキサン溶液(4M,20mL)を加え、混合物を20℃で1時間撹拌して黄色の懸濁液を得た。生じた黄色の懸濁液を蒸発乾固させ、4.11gの黄色の固体を得た。
上記の黄色の固体を80mLのテトラヒドロフランに溶解させた。生じた溶液を0℃に冷やし、水素化リチウムアルミニウム(2.5M,7.3mL,18.3mmol)をゆっくりと加えて混合物を20℃で12時間攪拌して茶色の懸濁液を得た。再び懸濁液を0℃に冷やし、0.7mLの水、0.7mLの10%水酸化ナトリウム水溶液、2.1mLの水の順に加えて、生じた混合物を室温で30分攪拌した。混合物をろ過し、ろ液を蒸発乾固して白色の固体を得た。続いて、白色の固体に80mLの水を加え、有機物をジクロロメタンで抽出(40mL×3)した。集めた有機層を硫酸ナトリウムで乾燥し、固体をろ別し、ろ液を濃縮して粗生成物を黄色の固体として得た。粗生成物をシリカゲルクロマトグラフィー(展開溶媒:石油エーテル/酢酸エチル=10/1から5/1へと変更した)により精製し、10mLのヘキサンで粉砕洗浄して1.03g(2.46mmol)の目的化合物を白色の固体として得た。
H NMR(500MHz、CDCl)δ:6.36(s、2H)、5.40(d、J=243Hz,1H)、4.14(s、16H)
31P{H} NMR(202MHz、CDCl)δ:-132.3(s)
(2) Synthesis of bis(2,3,7,8-tetrahydrobenzo[1,2-b:4,5-b']bis([1,4]dioxin)-5-yl)phosphine 2,3,7,8-Tetrahydrobenzo[1,2-b:4,5-b']bis([1,4]dioxine (4.4 g, 23 mmol) was dissolved in 100 mL of tetrahydrofuran. The resulting solution was cooled to 0° C., n-BuLi (2.5 M, 9.5 mL, 23.8 mmol) was added, and the mixture was stirred at 0° C. for 1 hour to give a yellow suspension. The resulting suspension was added to a toluene solution (10 mL) of (diethylamino)dichlorophosphine (1.58 g, 9.08 mmol) cooled to 0° C. The mixture was stirred at 0° C. for 1 hour to give a yellow suspension. A dioxane solution of hydrogen chloride (4 M, 20 mL) was added to this suspension at 0° C., and the mixture was stirred at 20° C. for 1 hour to give a yellow suspension. The resulting yellow suspension was evaporated to dryness to give 4.11 g of a yellow solid.
The above yellow solid was dissolved in 80 mL of tetrahydrofuran. The resulting solution was cooled to 0°C, lithium aluminum hydride (2.5M, 7.3 mL, 18.3 mmol) was slowly added, and the mixture was stirred at 20°C for 12 hours to obtain a brown suspension. The suspension was cooled again to 0°C, and 0.7 mL of water, 0.7 mL of 10% aqueous sodium hydroxide solution, and 2.1 mL of water were added in that order, and the resulting mixture was stirred at room temperature for 30 minutes. The mixture was filtered, and the filtrate was evaporated to dryness to obtain a white solid. Subsequently, 80 mL of water was added to the white solid, and the organic matter was extracted with dichloromethane (40 mL x 3). The collected organic layer was dried over sodium sulfate, the solid was filtered off, and the filtrate was concentrated to obtain the crude product as a yellow solid. The crude product was purified by silica gel chromatography (developing solvent: petroleum ether/ethyl acetate = changed from 10/1 to 5/1), and pulverized and washed with 10 mL of hexane to obtain 1.03 g (2.46 mmol) of the target compound as a white solid.
1H NMR (500MHz, CDCl3 ) δ: 6.36 (s, 2H), 5.40 (d, J=243Hz, 1H), 4.14 (s, 16H).
31P { 1H }NMR(202MHz, CDCl3 ) δ:-132.3(s)

Figure 2024052628000031
Figure 2024052628000031

(3)AL-64の合成
シュレンク管に上記(2)で合成したビス(2,3,7,8-テトラヒドロベンゾ[1,2-b:4,5-b’]ビス([1,4]ジオキシン)-5-イル)ホスフィンを250mg(0.60mmol)量り取り、テトラヒドロフランを8mL加えた。生じた溶液を-78℃に冷やした後、n-BuLiを0.43mL(0.66mmol)ゆっくりと滴下した。滴下終了後、この混合物を-78℃で45分撹拌させた。その後この混合物を0℃まで昇温し、テトラヒドロフラン2.0mLに溶解させた2,2-ビス(トリフルオロメチル)オキシラン65μL(0.60mmol)をゆっくり加えた。2,2-ビス(トリフルオロメチル)オキシランが入っていた容器内を0.2mLのテトラヒドロフランで2回洗浄し、その洗浄液もシュレンク管に加えた。得られた混合物を室温で1時間40分撹拌した後、0℃に冷やし、塩酸エーテル溶液を0.72mL(0.72mmol)ゆっくりと滴下した。この混合物を0℃で40分撹拌させた後、大気下で水を5.7mL加え洗浄し、有機層を分離した。以降の操作は全て大気下で行った。水層にジエチルエーテルを3mL加え有機層を抽出する操作を3回繰り返した。集めた有機層を硫酸ナトリウムで乾燥させた後、濾過で硫酸ナトリウムを除去した。ろ液を蒸発乾固し、得られた固体をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/アセトン=10/1から5/1、次いで4/1、さらに2/1へと変更した)により精製し、131mgの固体を得た。31P-NMRから求めたAL-64の純度は98%であった。
H NMR(400MHz、CDCl)δ:6.41(s、2H)、5.09(d、J=5.2Hz、1H)4.15-4.08(m、16H)、3.21(s、2H)
19F NMR(376MHz、CDCl)δ:-77.3(d、J=22.2Hz)
31P{H} NMR(162MHz、CDCl)δ:-59.5(septet、J=21.1Hz)
(3) Synthesis of AL-64 250 mg (0.60 mmol) of bis(2,3,7,8-tetrahydrobenzo[1,2-b:4,5-b']bis([1,4]dioxin)-5-yl)phosphine synthesized in (2) above was weighed out in a Schlenk flask, and 8 mL of tetrahydrofuran was added. The resulting solution was cooled to -78°C, and 0.43 mL (0.66 mmol) of n-BuLi was slowly added dropwise. After the dropwise addition was completed, the mixture was stirred at -78°C for 45 minutes. The mixture was then heated to 0°C, and 65 μL (0.60 mmol) of 2,2-bis(trifluoromethyl)oxirane dissolved in 2.0 mL of tetrahydrofuran was slowly added. The inside of the container containing 2,2-bis(trifluoromethyl)oxirane was washed twice with 0.2 mL of tetrahydrofuran, and the washings were also added to the Schlenk flask. The resulting mixture was stirred at room temperature for 1 hour and 40 minutes, then cooled to 0°C, and 0.72 mL (0.72 mmol) of hydrochloric acid ether solution was slowly dropped. After stirring this mixture at 0°C for 40 minutes, 5.7 mL of water was added under air to wash, and the organic layer was separated. All subsequent operations were performed under air. The operation of adding 3 mL of diethyl ether to the aqueous layer and extracting the organic layer was repeated three times. The collected organic layer was dried over sodium sulfate, and then the sodium sulfate was removed by filtration. The filtrate was evaporated to dryness, and the obtained solid was purified by silica gel column chromatography (the developing solvent: hexane/acetone = 10/1 was changed from 5/1, then 4/1, and further to 2/1), and 131 mg of solid was obtained. The purity of AL-64 determined from 31 P-NMR was 98%.
1H NMR (400MHz, CDCl3 ) δ: 6.41 (s, 2H), 5.09 (d, J=5.2Hz, 1H) 4.15-4.08 (m, 16H), 3.21 (s, 2H).
19F NMR (376MHz, CDCl3 ) δ: -77.3 (d, J=22.2Hz)
31P { 1H }NMR(162MHz, CDCl3 ) δ:-59.5 (septet, J=21.1Hz)

Figure 2024052628000032
Figure 2024052628000032

(合成例7:AL-66の合成)
(1)ベンゾ[1,2-d:4,5-d’]ビス([1,3]ジオキソール)の合成
1,2,4,5-テトラヒドロキシベンゼン(8g、56mmol)のジメチルホルムアミド溶液(50mL)に炭酸カリウム(62.2g、450mmol)とジブロモメタン(31.6mL、78.3g、450mmol)を25℃以下で加え、得られた混合物を100℃で16時間攪拌して赤色の懸濁液を得た。懸濁液を水(150mL)に加え、有機層を酢酸エチル(150mL×3)で抽出した。集めた有機層を150mLの飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別し、ろ液を濃縮して粗生成物を得た。粗生成物をシリカゲルクロマトグラフィー(展開溶媒:石油エーテル/酢酸エチル=10/1)により精製し、0.8g(4.8mmol)の目的物を黄色の固体として得た。
H NMR(400MHz、CDCl)δ:6.50(s、2H)、5.88(s、4H)
(Synthesis Example 7: Synthesis of AL-66)
(1) Synthesis of benzo[1,2-d:4,5-d']bis([1,3]dioxole) Potassium carbonate (62.2 g, 450 mmol) and dibromomethane (31.6 mL, 78.3 g, 450 mmol) were added to a dimethylformamide solution (50 mL) of 1,2,4,5-tetrahydroxybenzene (8 g, 56 mmol) at 25°C or lower, and the resulting mixture was stirred at 100°C for 16 hours to obtain a red suspension. The suspension was added to water (150 mL), and the organic layer was extracted with ethyl acetate (150 mL x 3). The collected organic layer was washed with 150 mL of saturated saline and dried over sodium sulfate. The sodium sulfate was filtered off, and the filtrate was concentrated to obtain a crude product. The crude product was purified by silica gel chromatography (developing solvent: petroleum ether/ethyl acetate = 10/1) to obtain 0.8 g (4.8 mmol) of the target compound as a yellow solid.
1H NMR (400MHz, CDCl3 ) δ: 6.50 (s, 2H), 5.88 (s, 4H)

Figure 2024052628000033
Figure 2024052628000033

(2)ビス(ベンゾ[1,2-d:4,5-d’]ビス([1,3]ジオキソール)-4-イル)―N,N-ジエチルアミノホスフィンの合成
ベンゾ[1,2-d:4,5-d’]ビス([1,3]ジオキソール)(2g,12mmol,1eq)を20mLのテトラヒドロフランに溶解させた。生じた溶液を0℃に冷やし、n-BuLi(2.5M,5.3mL,13.3mmol、1.1eq)をゆっくりと加えて混合物を20℃にゆっくり昇温した後、2時間攪拌して黄色の溶液を得た。生じた溶液を0℃に冷やした後、10mLのテトラヒドロフランに溶かした(ジエチルアミノ)ジクロロホスフィン(942mg,5.41mmol,0.45eq)を加えた。当該混合物を0℃で1時間攪拌して黄色の溶液を得た。この溶液を乾固して2.61gの粗生成物を黄色の固体として得た。得られた固体は精製せずに次の合成に用いた。
31P{H} NMR(162MHz、CDCl)δ:21.6(s、積分比100%)
(2) Synthesis of bis(benzo[1,2-d:4,5-d']bis([1,3]dioxole)-4-yl)-N,N-diethylaminophosphine Benzo[1,2-d:4,5-d']bis([1,3]dioxole) (2 g, 12 mmol, 1 eq) was dissolved in 20 mL of tetrahydrofuran. The resulting solution was cooled to 0°C, n-BuLi (2.5 M, 5.3 mL, 13.3 mmol, 1.1 eq) was slowly added, and the mixture was slowly warmed to 20°C and stirred for 2 hours to obtain a yellow solution. The resulting solution was cooled to 0°C, and (diethylamino)dichlorophosphine (942 mg, 5.41 mmol, 0.45 eq) dissolved in 10 mL of tetrahydrofuran was added. The mixture was stirred at 0°C for 1 hour to obtain a yellow solution. The solution was dried to obtain 2.61 g of crude product as a yellow solid. The resulting solid was used in the next synthesis without purification.
31P { 1H }NMR (162MHz, CDCl3 ) δ: 21.6 (s, integral ratio 100%)

Figure 2024052628000034
Figure 2024052628000034

(3)ビス(ベンゾ[1,2-d:4,5-d’]ビス([1,3]ジオキソール)-4-イル)クロロホスフィンの合成
上記(2)で得られた粗生成物(2.61g)を40mLのトルエンに溶解させた。生じた溶液を0℃に冷やし、塩化水素のジオキサン溶液(4M,20mL)を加え、混合物を20℃で1時間撹拌して黄色の溶液を得た。生じた溶液は精製せずに次の合成に使用した。
31P{H} NMR(162MHz、CDCl)δ:41.9(s、積分比44%)
(3) Synthesis of bis(benzo[1,2-d:4,5-d']bis([1,3]dioxol)-4-yl)chlorophosphine The crude product (2.61 g) obtained in (2) above was dissolved in 40 mL of toluene. The resulting solution was cooled to 0°C, and a solution of hydrogen chloride in dioxane (4 M, 20 mL) was added, and the mixture was stirred at 20°C for 1 hour to obtain a yellow solution. The resulting solution was used in the next synthesis without purification.
31P { 1H }NMR (162MHz, CDCl3 ) δ: 41.9 (s, integral ratio 44%)

Figure 2024052628000035
Figure 2024052628000035

(4)ビス(ベンゾ[1,2-d:4,5-d’]ビス([1,3]ジオキソール)-4-イル)ホスフィンの合成
上記(3)で得られた黄色の溶液の溶媒を30mLのテトラヒドロフランに変更した。生じた溶液を0℃に冷やし、水素化リチウムアルミニウム(2.5M,3.6mL,9.0mmol)を加えて混合物をゆっくりと20℃で12時間攪拌して黄色の溶液を得た。黄色の溶液を0℃に冷やし、0.4mLの水、0.4mLの10%水酸化ナトリウム水溶液、1.2mLの水の順に加えて、生じた混合物を20℃で30分攪拌した。混合物をろ過し、ろ液を蒸発乾固して黄色の固体を得た。得られた固体をシリカゲルクロマトグラフィー(展開溶媒:石油エーテル/ジクロロメタン=5/1から1/1、さらに0/1へと変更した)により精製し、0.22gの目的化合物を白色の固体として得た。
H NMR(400MHz、CDCl)δ:6.47(s、2H)、5.89(s、8H)、5.26(d、J=235Hz,1H)
31P{H} NMR(162MHz、CDCl)δ:-126.0(s)
(4) Synthesis of bis(benzo[1,2-d:4,5-d']bis([1,3]dioxol)-4-yl)phosphine The solvent of the yellow solution obtained in (3) above was changed to 30 mL of tetrahydrofuran. The resulting solution was cooled to 0°C, lithium aluminum hydride (2.5 M, 3.6 mL, 9.0 mmol) was added, and the mixture was slowly stirred at 20°C for 12 hours to obtain a yellow solution. The yellow solution was cooled to 0°C, and 0.4 mL of water, 0.4 mL of 10% aqueous sodium hydroxide solution, and 1.2 mL of water were added in this order, and the resulting mixture was stirred at 20°C for 30 minutes. The mixture was filtered, and the filtrate was evaporated to dryness to obtain a yellow solid. The resulting solid was purified by silica gel chromatography (developing solvent: petroleum ether/dichloromethane = changed from 5/1 to 1/1, and then to 0/1), and 0.22 g of the target compound was obtained as a white solid.
1H NMR (400MHz, CDCl3 ) δ: 6.47 (s, 2H), 5.89 (s, 8H), 5.26 (d, J=235Hz, 1H).
31P { 1H }NMR(162MHz, CDCl3 ) δ: -126.0(s)

Figure 2024052628000036
Figure 2024052628000036

(5)AL-66の合成
シュレンク管に上記(4)で合成したビス(ベンゾ[1,2-d:4,5-d’]ビス([1,3]ジオキソール)-4-イル)ホスフィンを200mg(0.55mmol)量り取り、テトラヒドロフランを7.3mL加えた。生じた溶液を-78℃に冷やした後、ヘキサメチルジシラザンカリウムのトルエン溶液を1.0mL(0.61mmol)ゆっくりと滴下した。滴下終了後、この混合物を-78℃で45分撹拌させた。その後この混合物を0℃まで昇温し、テトラヒドロフラン1.8mLに溶解させた2,2-ビス(トリフルオロメチル)オキシラン60μL(0.55mmol)をゆっくり加えた。2,2-ビス(トリフルオロメチル)オキシランが入っていた容器内を0.3mLのテトラヒドロフランで2回洗浄し、その洗浄液もシュレンク管に加えた。この混合物を室温で1時間30分撹拌した後、溶媒を留去した。残留物に、テトラヒドロフランを9.7mL加えてから0℃に冷やし、塩酸エーテル溶液を0.66mL(0.66mmol)ゆっくりと滴下した。得られた混合物を0℃で1時間撹拌させた後、大気下で水を5.2mL加え洗浄し、有機層を分離した。以降の操作は全て大気下で行った。水層にジエチルエーテルを2.6mL加え有機層を抽出する操作を3回繰り返した。集めた有機層を硫酸ナトリウムで乾燥させた後、濾過で硫酸ナトリウムを除去した。ろ液を蒸発乾固してから、得られた固体をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/アセトン=10/1から5/1へと変更した)により精製し、136mgの固体を得た。31P-NMRから求めたAL-66の純度は99%以上であった。
H NMR(400MHz、CDCl)δ:6.50(s、2H)、5.86(d、J=1.2Hz、4H)、5.84(d、J=1.6Hz、4H)、4.10(d、J=2.8Hz、1H)、3.24(d、J=1.6Hz、2H)
19F NMR(376MHz、CDCl)δ:-77.1(d、J=22.2Hz)
31P{H} NMR(162MHz、CDCl)δ:-64.7(septet、J=20.6Hz)
(5) Synthesis of AL-66 200 mg (0.55 mmol) of bis(benzo[1,2-d:4,5-d']bis([1,3]dioxol)-4-yl)phosphine synthesized in (4) above was weighed out in a Schlenk flask, and 7.3 mL of tetrahydrofuran was added. The resulting solution was cooled to -78°C, and 1.0 mL (0.61 mmol) of a toluene solution of potassium hexamethyldisilazane was slowly added dropwise. After the dropwise addition was completed, the mixture was stirred at -78°C for 45 minutes. The mixture was then heated to 0°C, and 60 μL (0.55 mmol) of 2,2-bis(trifluoromethyl)oxirane dissolved in 1.8 mL of tetrahydrofuran was slowly added. The inside of the container containing 2,2-bis(trifluoromethyl)oxirane was washed twice with 0.3 mL of tetrahydrofuran, and the washings were also added to the Schlenk flask. The mixture was stirred at room temperature for 1 hour and 30 minutes, and the solvent was distilled off. 9.7 mL of tetrahydrofuran was added to the residue, which was then cooled to 0°C, and 0.66 mL (0.66 mmol) of hydrochloric acid ether solution was slowly added dropwise. The resulting mixture was stirred at 0°C for 1 hour, and then 5.2 mL of water was added under air to wash and separate the organic layer. All subsequent operations were performed under air. The operation of adding 2.6 mL of diethyl ether to the aqueous layer and extracting the organic layer was repeated three times. The collected organic layer was dried over sodium sulfate, and then the sodium sulfate was removed by filtration. The filtrate was evaporated to dryness, and the obtained solid was purified by silica gel column chromatography (the developing solvent: hexane/acetone = 10/1 was changed to 5/1), and 136 mg of solid was obtained. The purity of AL-66 determined from 31 P-NMR was 99% or more.
1H NMR (400MHz, CDCl3 ) δ: 6.50 (s, 2H), 5.86 (d, J = 1.2Hz, 4H), 5.84 (d, J = 1.6Hz, 4H), 4.10 (d, J = 2.8Hz, 1H), 3.24 (d, J = 1.6Hz, 2H).
19F NMR (376MHz, CDCl3 ) δ: -77.1 (d, J=22.2Hz)
31P { 1H }NMR(162MHz, CDCl3 ) δ:-64.7(septet, J=20.6Hz)

Figure 2024052628000037
Figure 2024052628000037

(合成例8:AL-40/NiArPyの合成)
シュレンク管にNi(cod)を393mg(1.4mmol)量り取り、トルエンを6mL加えた。その溶液にテトラメチルエチレンジアミン0.21mL(1.4mmol)、4-ブロモフルオロベンゼン0.16mL(1.4mmol)を加え、当該混合物を室温で3時間撹拌した。撹拌後上澄み液を分離し、残留物を2mLのヘキサンで洗浄する操作を3回繰り返した。洗浄後、溶媒を留去して固体1を得た。
次に、シュレンク管にAL-40を92mg(0.14mmol)量り取り、そこにテトラヒドロフラン5.3mLを加えた。その溶液を0℃に冷却し、ヘキサメチルジシラザンナトリウムのテトラヒドロフラン溶液79μL(0.15mmol)をゆっくりと加えた。当該混合物を室温で1時間撹拌させた後、溶媒を完全に留去した。得られた残留物にテトラヒドロフラン1.9mLを加えてAL-40のナトリウム溶液を得た。
シュレンク管に上記固体1を70mg(0.20mmol)量り取り、テトラヒドロフラン1.0mL加えて遷移金属化合物溶液を得た。この遷移金属化合物溶液に上記AL-40のナトリウム溶液を室温で加えた。AL-40のナトリウム溶液が入っていたシュレンク管をテトラヒドロフラン0.2mLで2回洗浄し、その洗浄液は上記遷移金属化合物溶液に加えた。当該混合物を室温で2時間30分撹拌させた後、セライトろ過を行った。濾過後、ろ液から溶媒を留去し、残留物をヘキサン2mLで8回洗浄を行った。残留物を完全に乾固することで98mgの固体2を得た。
次に、シュレンク管に上記固体2を71mg量り取り、そこにテトラヒドロフランを3.2mL加えた。生じた溶液にピリジン13μL(0.16mmol)を加え、室温で1時間撹拌した後、セライトろ過を行った。濾過後、ろ液から溶媒を留去して42mgの固体を得た。31P-NMRから求めたAL-40/NiArPyの純度は99%以上であった。
H NMR(400MHz、CCD)δ:8.57(br、2H)、7.57(dd、J=8.0,6.8Hz、2H)、6.73(t、J=7.6Hz、1H)、6.64(dd、J=9.2Hz、2H)、6.40(br、2H)、6.30(s、2H)、3.95(d、J=12.4Hz、2H)、1.43(s、12H)、1.32(s、12H)
19F NMR(376MHz、CCD)δ:-77.8(s)、-124.0(t、J=13.7Hz)
31P{H} NMR(162MHz、CCD)δ:4.4(s)
(Synthesis Example 8: Synthesis of AL-40/NiArPy)
393 mg (1.4 mmol) of Ni(cod) 2 was weighed out in a Schlenk flask, and 6 mL of toluene was added. 0.21 mL (1.4 mmol) of tetramethylethylenediamine and 0.16 mL (1.4 mmol) of 4-bromofluorobenzene were added to the solution, and the mixture was stirred at room temperature for 3 hours. After stirring, the supernatant was separated, and the residue was washed with 2 mL of hexane, which was repeated three times. After washing, the solvent was distilled off to obtain solid 1.
Next, 92 mg (0.14 mmol) of AL-40 was weighed out in a Schlenk flask, and 5.3 mL of tetrahydrofuran was added thereto. The solution was cooled to 0°C, and 79 μL (0.15 mmol) of a tetrahydrofuran solution of sodium hexamethyldisilazane was slowly added thereto. The mixture was stirred at room temperature for 1 hour, and the solvent was then completely distilled off. 1.9 mL of tetrahydrofuran was added to the resulting residue to obtain a sodium solution of AL-40.
70 mg (0.20 mmol) of the solid 1 was weighed out in a Schlenk flask, and 1.0 mL of tetrahydrofuran was added to obtain a transition metal compound solution. The sodium AL-40 solution was added to this transition metal compound solution at room temperature. The Schlenk flask containing the sodium AL-40 solution was washed twice with 0.2 mL of tetrahydrofuran, and the washings were added to the transition metal compound solution. The mixture was stirred at room temperature for 2 hours and 30 minutes, and then filtered through Celite. After filtration, the solvent was distilled off from the filtrate, and the residue was washed eight times with 2 mL of hexane. The residue was completely dried to obtain 98 mg of solid 2.
Next, 71 mg of the above solid 2 was weighed out in a Schlenk flask, and 3.2 mL of tetrahydrofuran was added thereto. 13 μL (0.16 mmol) of pyridine was added to the resulting solution, which was then stirred at room temperature for 1 hour and filtered through Celite. After filtration, the solvent was distilled off from the filtrate to obtain 42 mg of a solid. The purity of AL-40/NiArPy determined from 31 P-NMR was 99% or more.
1H NMR (400MHz, C6D5CD3 ) δ: 8.57 (br, 2H ), 7.57 (dd, J=8.0 , 6.8Hz, 2H), 6.73 (t, J=7.6Hz, 1H), 6.64 (dd, J=9.2Hz, 2H), 6.40 (br, 2H), 6.30 (s, 2H), 3.95 (d, J=12.4Hz, 2H), 1.43 (s, 12H), 1.32 (s, 12H).
19F NMR ( 376MHz , C6D5CD3 ) δ: -77.8 (s), -124.0 (t, J= 13.7Hz )
31P { 1H }NMR( 162MHz , C6D5CD3 ) δ: 4.4(s)

Figure 2024052628000038
Figure 2024052628000038

(合成例9:AL-70の合成)
(1)5-メトキシ-1,3-ベンゾジオキソールの合成
セサモール(1g、7.2mmol)のアセトン溶液(5mL)に炭酸カリウム(5.00g、36.2mmol)を加え、得られた混合物を80℃で1時間攪拌した。混合物にヨウ化メチル(0.9mL,2.06g、14.5mmol)を滴下し、混合物を80℃で12時間攪拌して白色の懸濁液を得た。懸濁液を室温まで冷やした後、ろ過し、ろ液を濃縮して黄色の油状物質を得た。油状物質をシリカゲルクロマトグラフィー(展開溶媒:石油エーテル/酢酸エチル=10/1)により精製し、1g(6.6mmol)の目的物を無色の液体として得た。
H NMR(400MHz、CDCl)δ:6.72(d、J=8.4Hz,1H)、6.50(d、J=2.4Hz,1H)、6.33(dd、J=8.4,2.4Hz、1H)、5.92(s、2H)、3.76(s、3H)
(Synthesis Example 9: Synthesis of AL-70)
(1) Synthesis of 5-methoxy-1,3-benzodioxole Potassium carbonate (5.00 g, 36.2 mmol) was added to an acetone solution (5 mL) of sesamol (1 g, 7.2 mmol), and the resulting mixture was stirred at 80° C. for 1 hour. Methyl iodide (0.9 mL, 2.06 g, 14.5 mmol) was added dropwise to the mixture, and the mixture was stirred at 80° C. for 12 hours to obtain a white suspension. The suspension was cooled to room temperature, filtered, and the filtrate was concentrated to obtain a yellow oily substance. The oily substance was purified by silica gel chromatography (developing solvent: petroleum ether/ethyl acetate=10/1) to obtain 1 g (6.6 mmol) of the target product as a colorless liquid.
1H NMR (400MHz, CDCl3 ) δ: 6.72 (d, J = 8.4 Hz, 1H), 6.50 (d, J = 2.4 Hz, 1H), 6.33 (dd, J = 8.4, 2.4 Hz, 1H), 5.92 (s, 2H), 3.76 (s, 3H).

Figure 2024052628000039
Figure 2024052628000039

(2)tert-ブチル(5-メトキシ-1,3-ベンゾジオキソール-4-イル)クロロホスフィンの合成
5-メトキシ-1,3-ベンゾジオキソール(5.3g,35mmol,1eq)を40mLのテトラヒドロフランに溶解させた。生じた溶液を-78℃に冷やし、n-BuLi(2.5M,15.3mL,38.3mmol、1.1eq)を加えて混合物を-78℃で2時間攪拌させた。生じた混合物に、5mLのテトラヒドロフランに溶かしたtert-ブチルジクロロホスフィン(6.09g,38.3mmol,1.1eq)を素早く加えた。当該混合物を25℃で1時間攪拌して白色の懸濁液を得た。この懸濁液を乾固して粗生成物を得た。得られた粗生成物は精製せずに次の合成に用いた。
31P{H} NMR(162MHz、CDCl)δ:100.6(s、積分比69%)
(2) Synthesis of tert-butyl(5-methoxy-1,3-benzodioxol-4-yl)chlorophosphine 5-Methoxy-1,3-benzodioxole (5.3 g, 35 mmol, 1 eq) was dissolved in 40 mL of tetrahydrofuran. The resulting solution was cooled to −78° C., n-BuLi (2.5 M, 15.3 mL, 38.3 mmol, 1.1 eq) was added, and the mixture was stirred at −78° C. for 2 hours. To the resulting mixture, tert-butyldichlorophosphine (6.09 g, 38.3 mmol, 1.1 eq) dissolved in 5 mL of tetrahydrofuran was quickly added. The mixture was stirred at 25° C. for 1 hour to obtain a white suspension. The suspension was dried to obtain a crude product. The obtained crude product was used in the next synthesis without purification.
31P { 1H }NMR (162MHz, CDCl3 ) δ: 100.6 (s, integral ratio 69%)

Figure 2024052628000040
Figure 2024052628000040

(3)tert-ブチル(5-メトキシ-1,3-ベンゾジオキソール-4-イル)ホスフィンの合成
上記(2)で得られたtert-ブチル(5-メトキシ-1,3-ベンゾジオキソール-4-イル)クロロホスフィン(9.57g)に30mLのテトラヒドロフランを加えた。生じた懸濁液を0℃に冷やし、水素化リチウムアルミニウム(2.5M,13mL、32.5mmol)を加えて混合物を25℃で16時間攪拌して白色の懸濁液を得た。得られた懸濁液は精製せずに次の合成に用いた。
31P{H} NMR(162MHz、CDCl)δ:-56.9(s、積分比76%)
(3) Synthesis of tert-butyl(5-methoxy-1,3-benzodioxol-4-yl)phosphine 30 mL of tetrahydrofuran was added to the tert-butyl(5-methoxy-1,3-benzodioxol-4-yl)chlorophosphine (9.57 g) obtained in (2) above. The resulting suspension was cooled to 0° C., lithium aluminum hydride (2.5 M, 13 mL, 32.5 mmol) was added, and the mixture was stirred at 25° C. for 16 hours to obtain a white suspension. The resulting suspension was used in the next synthesis without purification.
31 P{ 1 H} NMR (162 MHz, CDCl 3 ) δ: −56.9 (s, integral ratio 76%)

Figure 2024052628000041
Figure 2024052628000041

(4)tert-ブチル(5-メトキシ-1,3-ベンゾジオキソール-4-イル)ホスフィンボランの合成
上記(3)で得られた白色の懸濁液を0℃に冷やし、ボランジメチルスルフィド錯体(10M,4.74mL,2eq)を加えて、混合物を25℃で16時間攪拌して無色の溶液を得た。この溶液に、1.5mLの水、1.5mLの10%水酸化ナトリウム水溶液、4.5mLの水の順にゆっくり加えて、生じた混合物を室温で30分攪拌した。混合物をろ過し、ろ液を蒸発乾固して無色の液体を得た。得られた液体をシリカゲルクロマトグラフィー(展開溶媒:石油エーテル/酢酸エチル=20/1)により精製し、2.8g(11.0mmol)の目的化合物を白色の固体として得た。
H NMR(400MHz、CDCl)δ:6.84(d、J=8.4Hz,1H)、6.33(dd、J=8.4、3.2Hz,1H)、5.98(dd、J=10.4Hz,1.2Hz、2H)、5.48(d、J=386Hz,1H)、3.79(s、3H)、1.23(d、J=15.6Hz、9H)、1.10-0.17(br、3H)
31P{H} NMR(162MHz、CDCl)δ:6.0―(-5.0)(br)
(4) Synthesis of tert-butyl(5-methoxy-1,3-benzodioxol-4-yl)phosphineborane The white suspension obtained in (3) above was cooled to 0°C, and borane dimethylsulfide complex (10M, 4.74mL, 2eq) was added. The mixture was stirred at 25°C for 16 hours to obtain a colorless solution. 1.5mL of water, 1.5mL of 10% aqueous sodium hydroxide solution, and 4.5mL of water were slowly added to this solution in this order, and the resulting mixture was stirred at room temperature for 30 minutes. The mixture was filtered, and the filtrate was evaporated to dryness to obtain a colorless liquid. The resulting liquid was purified by silica gel chromatography (developing solvent: petroleum ether/ethyl acetate=20/1) to obtain 2.8g (11.0mmol) of the target compound as a white solid.
1H NMR (400MHz, CDCl3 ) δ: 6.84 (d, J = 8.4 Hz, 1H), 6.33 (dd, J = 8.4, 3.2 Hz, 1H), 5.98 (dd, J = 10.4 Hz, 1.2 Hz, 2H), 5.48 (d, J = 386 Hz, 1H), 3.79 (s, 3H), 1.23 (d, J = 15.6 Hz, 9H), 1.10-0.17 (br, 3H).
31P { 1H }NMR(162MHz, CDCl3 ) δ:6.0-(-5.0)(br)

Figure 2024052628000042
Figure 2024052628000042

(5)AL-70の合成
シュレンク管に上記(4)で得られたtert-ブチル(5-メトキシ-1,3-ベンゾジオキソール-4-イル)ホスフィンボランを250mg(0.98mmol)量り取り、テトラヒドロフランを13mL加えた。生じた溶液を-78℃に冷やした後、ヘキサメチルジシラザンカリウムのトルエン溶液を1.8mL(1.1mmol)ゆっくりと滴下した。滴下終了後、当該混合物を-78℃で1時間撹拌させた。その後当該混合物を0℃に昇温してから、テトラヒドロフラン3.2mLに溶解させた2,2-ビス(トリフルオロメチル)オキシラン0.11mL(0.98mmol)をゆっくり加えた。更に2,2-ビス(トリフルオロメチル)オキシランが入っていた容器内を0.5mLのテトラヒドロフランで2回洗浄し、洗浄液もシュレンク管に加えた。当該混合物を室温で2時間撹拌した後、溶媒を完全に留去した。得られた固体を大気下でシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/ジクロロメタン=15/1から10/1、さらに2/1へと変更した)により精製し、245mgの固体を得た。
上記の固体245mgにメタノールを3.6mL加え、60℃に昇温してから5時間30分撹拌した。撹拌後、溶媒を完全に留去し、シリカゲルカラムクロマトグラフィーにより精製し薄桃色の液体を得た。この液体を65℃に加熱しながら9時間真空乾燥することで131mgの固体を得た。31P-NMRから求めた純度は99%以上であった。
H NMR(400MHz、CDCl)δ:6.80(d、J=8.0Hz、1H)、6.33(dd、J=8.8,3.6Hz、1H)、5.95(d、J=1.6Hz、1H)、5.87(d、J=1.2Hz、1H)、4.47(d、J=9.2Hz、1H)、3.78(s、3H)、3.69(dd、J=16.0、1.2Hz、1H)、2.06(ddd、J=16.0、1.2、1.2Hz、1H)、1.10(d、J=14.0Hz、9H)
19F NMR(376MHz、CDCl)δ:-77.0(q、J=12.8Hz)、-77.9(q、J=12.9Hz)
31P{H} NMR(162MHz、CDCl)δ:-29.7-(-30.5)(m)
(5) Synthesis of AL-70 250 mg (0.98 mmol) of tert-butyl(5-methoxy-1,3-benzodioxol-4-yl)phosphineborane obtained in (4) above was weighed out in a Schlenk flask, and 13 mL of tetrahydrofuran was added. The resulting solution was cooled to −78° C., and then 1.8 mL (1.1 mmol) of a toluene solution of potassium hexamethyldisilazane was slowly added dropwise. After the dropwise addition was completed, the mixture was stirred at −78° C. for 1 hour. The mixture was then heated to 0° C., and 0.11 mL (0.98 mmol) of 2,2-bis(trifluoromethyl)oxirane dissolved in 3.2 mL of tetrahydrofuran was slowly added. Furthermore, the inside of the container containing 2,2-bis(trifluoromethyl)oxirane was washed twice with 0.5 mL of tetrahydrofuran, and the washings were also added to the Schlenk flask. The mixture was stirred at room temperature for 2 hours, and the solvent was then completely removed by distillation. The obtained solid was purified by silica gel column chromatography in the atmosphere (developing solvent: hexane/dichloromethane=15/1 changed to 10/1, and further changed to 2/1) to obtain 245 mg of a solid.
3.6 mL of methanol was added to 245 mg of the above solid, and the mixture was heated to 60° C. and stirred for 5 hours and 30 minutes. After stirring, the solvent was completely removed and the mixture was purified by silica gel column chromatography to obtain a pale pink liquid. This liquid was vacuum-dried for 9 hours while heating to 65° C. to obtain 131 mg of a solid. The purity determined by 31 P-NMR was 99% or more.
1H NMR (400MHz, CDCl3 ) δ: 6.80 (d, J = 8.0 Hz, 1H), 6.33 (dd, J = 8.8, 3.6 Hz, 1H), 5.95 (d, J = 1.6 Hz, 1H), 5.87 (d, J = 1.2 Hz, 1H), 4.47 (d, J = 9.2 Hz, 1H), 3.78 (s, 3H), 3.69 (dd, J = 16.0, 1.2 Hz, 1H), 2.06 (ddd, J = 16.0, 1.2, 1.2 Hz, 1H), 1.10 (d, J = 14.0 Hz, 9H).
19F NMR (376MHz, CDCl3 ) δ: -77.0 (q, J=12.8Hz), -77.9 (q, J=12.9Hz)
31P { 1H }NMR(162MHz, CDCl3 ) δ:-29.7-(-30.5)(m)

Figure 2024052628000043
Figure 2024052628000043

(合成例10:AL-72の合成)
(1)8-トリメチルシリル-2,2,6,6-テトラメチルベンゾ[1,2-d:5,4-d’]ビス([1,3]ジオキソール)の合成
2,2,6,6-テトラメチルベンゾ[1,2-d:5,4-d’]ビス([1,3]ジオキソール)(1g,4.5mmol,1eq)を20mLのテトラヒドロフランに溶解させた。生じた溶液を0℃に冷やし、n-BuLi(2.5M,2.1mL、5.3mmol、1.2eq)をゆっくりと滴下して混合物を0℃で30分攪拌した。生じた溶液を0℃に保ったまま、クロロトリメチルシラン(0.98g,9.0mmol,1.1mL,2eq)をゆっくりと滴下した。当該混合物を0℃で30分攪拌して黄色の溶液を得た。この溶液に50mLの炭酸水素ナトリウム水溶液を加えて反応を停止させ、生成物を酢酸エチルで抽出(50mL×3)した。集めた有機層を硫酸ナトリウムで乾燥し、固体をろ別し、ろ液を濃縮して粗生成物を黄色の固体として得た。粗生成物をシリカゲルクロマトグラフィー(展開溶媒:石油エーテル/酢酸エチル=50/1)により精製し、1g(3.40mmol)の目的化合物を淡黄色の固体として得た。
H NMR(400MHz、CDCl)δ:6.30(s、1H)、1.61(s、12H)、0.31(s、9H)
(Synthesis Example 10: Synthesis of AL-72)
(1) Synthesis of 8-trimethylsilyl-2,2,6,6-tetramethylbenzo[1,2-d:5,4-d']bis([1,3]dioxole) 2,2,6,6-tetramethylbenzo[1,2-d:5,4-d']bis([1,3]dioxole) (1 g, 4.5 mmol, 1 eq) was dissolved in 20 mL of tetrahydrofuran. The resulting solution was cooled to 0°C, n-BuLi (2.5 M, 2.1 mL, 5.3 mmol, 1.2 eq) was slowly added dropwise, and the mixture was stirred at 0°C for 30 minutes. While keeping the resulting solution at 0°C, chlorotrimethylsilane (0.98 g, 9.0 mmol, 1.1 mL, 2 eq) was slowly added dropwise. The mixture was stirred at 0°C for 30 minutes to obtain a yellow solution. 50 mL of aqueous sodium bicarbonate solution was added to this solution to stop the reaction, and the product was extracted with ethyl acetate (50 mL x 3). The combined organic layer was dried over sodium sulfate, the solid was filtered off, and the filtrate was concentrated to obtain a crude product as a yellow solid. The crude product was purified by silica gel chromatography (developing solvent: petroleum ether/ethyl acetate=50/1) to obtain 1 g (3.40 mmol) of the target compound as a pale yellow solid.
1H NMR (400MHz, CDCl3 ) δ: 6.30 (s, 1H), 1.61 (s, 12H), 0.31 (s, 9H)

Figure 2024052628000044
Figure 2024052628000044

(2)ビス(8-トリメチルシリル-2,2,6,6-テトラメチルベンゾ[1,2-d:5,4-d’]ビス([1,3]ジオキソール)-4-イル)クロロホスフィンの合成
8-トリメチルシリル-2,2,6,6-テトラメチルベンゾ[1,2-d:5,4-d’]ビス([1,3]ジオキソール)(5.5g,18.7mmol,1eq)を55mLのテトラヒドロフランに溶解させた。生じた溶液を0℃に冷やし、n-BuLi(2.5M,8.2mL,20.5mmol、1.1eq)をゆっくりと滴下して混合物を0℃で2.5時間攪拌して黄色の溶液を得た。生じた溶液を、-78℃に冷やしたPCl(1.15g,8.4mmol,735μL,0.45eq)のテトラヒドロフラン溶液(8mL)に加えた。当該混合物を0℃で1.5時間攪拌して黄色の懸濁液を得た。生じた懸濁液を乾固させ、12.2gの黄色の固体を得た。得られた化合物は精製せずに次の合成に用いた。
(2) Synthesis of bis(8-trimethylsilyl-2,2,6,6-tetramethylbenzo[1,2-d:5,4-d']bis([1,3]dioxole)-4-yl)chlorophosphine 8-Trimethylsilyl-2,2,6,6-tetramethylbenzo[1,2-d:5,4-d']bis([1,3]dioxole) (5.5 g, 18.7 mmol, 1 eq) was dissolved in 55 mL of tetrahydrofuran. The resulting solution was cooled to 0°C, and n-BuLi (2.5 M, 8.2 mL, 20.5 mmol, 1.1 eq) was slowly added dropwise, and the mixture was stirred at 0°C for 2.5 hours to obtain a yellow solution. The resulting solution was added to a tetrahydrofuran solution (8 mL) of PCl 3 (1.15 g, 8.4 mmol, 735 μL, 0.45 eq) cooled to -78°C. The mixture was stirred at 0° C. for 1.5 hours to give a yellow suspension. The resulting suspension was evaporated to dryness to give 12.2 g of a yellow solid. The resulting compound was used in the next synthesis without purification.

Figure 2024052628000045
Figure 2024052628000045

(3)ビス(8-トリメチルシリル-2,2,6,6-テトラメチルベンゾ[1,2-d:5,4-d’]ビス([1,3]ジオキソール)-4-イル)ホスフィンの合成
上記(2)で得られたビス(8-トリメチルシリル-2,2,6,6-テトラメチルベンゾ[1,2-d:5,4-d’]ビス([1,3]ジオキソール)-4-イル)クロロホスフィン(6.1g)を60mLのテトラヒドロフランに溶解させた。生じた溶液を0℃に冷やし、水素化リチウムアルミニウム(2.5M,5.6mL,14.0mmol)を加えて混合物をゆっくりと20℃に昇温し、12時間攪拌して黄色の溶液を得た。この溶液を0℃に冷やし、1mLの水、1mLの10%水酸化ナトリウム水溶液、3mLの水の順に加えて、生じた混合物を20℃で30分攪拌して反応を停止させた。混合物をろ過し、ろ液を蒸発乾固して黄色の固体を得た。得られた固体をシリカゲルクロマトグラフィーにより精製し、5.7g(9.21mmol,49%)の目的化合物を白色の固体として得た。
H NMR(400MHz、CDCl)δ:5.13(d、J=241Hz,1H)、1.54(s、24H)、0.26(s、18H)
31P{H} NMR(162MHz、CDCl)δ:-126.5(s)
(3) Synthesis of bis(8-trimethylsilyl-2,2,6,6-tetramethylbenzo[1,2-d:5,4-d']bis([1,3]dioxol)-4-yl)phosphine Bis(8-trimethylsilyl-2,2,6,6-tetramethylbenzo[1,2-d:5,4-d']bis([1,3]dioxol)-4-yl)chlorophosphine (6.1 g) obtained in (2) above was dissolved in 60 mL of tetrahydrofuran. The resulting solution was cooled to 0°C, lithium aluminum hydride (2.5 M, 5.6 mL, 14.0 mmol) was added, and the mixture was slowly heated to 20°C and stirred for 12 hours to obtain a yellow solution. This solution was cooled to 0°C, and 1 mL of water, 1 mL of 10% aqueous sodium hydroxide solution, and 3 mL of water were added in this order, and the resulting mixture was stirred at 20°C for 30 minutes to stop the reaction. The mixture was filtered, and the filtrate was evaporated to dryness to obtain a yellow solid. The resulting solid was purified by silica gel chromatography to obtain 5.7 g (9.21 mmol, 49%) of the target compound as a white solid.
1H NMR (400MHz, CDCl3 ) δ: 5.13 (d, J=241Hz, 1H), 1.54 (s, 24H), 0.26 (s, 18H).
31P { 1H }NMR(162MHz, CDCl3 ) δ: -126.5(s)

Figure 2024052628000046
Figure 2024052628000046

(4)AL-72の合成
シュレンク管に上記(3)で得られたビス(8-トリメチルシリル-2,2,6,6-テトラメチルベンゾ[1,2-d:5,4-d’]ビス([1,3]ジオキソール)-4-イル)ホスフィンを300mg(0.485mmol)量り取り、テトラヒドロフランを10mL加えた。生じた溶液を-78℃に冷やした後、カリウムヘキサメチルジシラジドの0.6Mトルエン溶液を1.05mL(0.630mmol)ゆっくりと滴下した。滴下終了後、当該混合物を0℃に昇温し、テトラヒドロフランを2mL加え、1時間撹拌した。当該混合物に2,2-ビス(トリフルオロメチル)オキシランを60.0μL(0.549mmol)加え、当該混合物を室温に昇温して2時間半撹拌した。当該混合物を0℃で20分撹拌した後、0.3M塩酸5mL(1.45mmol)をゆっくりと滴下した。混合物にジクロロメタン5mLと水5mLを加えて有機層を分離した後、水層にジクロロメタン5mLを加えて有機層を抽出する操作を3回繰り返した。集めた有機層を硫酸ナトリウムで乾燥させた後、濾過により硫酸ナトリウムを除去し、残留物をジクロロメタン3mLで3回洗浄した。ろ液を蒸発乾固し、大気下で得られた固体をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/アセトン=5/1)により精製し、249mgの固体を得た。
H NMR(400MHz、CDCl)δ:5.07(s、1H)、3.24(s、2H)、1.53(s、12H)、1.51(s、12H)、0.26(s、18H)
19F NMR(376MHz、CDCl)δ:-76.8(d、J=22.0Hz)
31P{H} NMR(162MHz、CDCl)δ:-60.8(septet、J=24.8Hz)
(4) Synthesis of AL-72 300 mg (0.485 mmol) of bis(8-trimethylsilyl-2,2,6,6-tetramethylbenzo[1,2-d:5,4-d']bis([1,3]dioxol)-4-yl)phosphine obtained in (3) above was weighed out in a Schlenk flask, and 10 mL of tetrahydrofuran was added. The resulting solution was cooled to -78°C, and 1.05 mL (0.630 mmol) of a 0.6 M toluene solution of potassium hexamethyldisilazide was slowly added dropwise. After completion of the dropwise addition, the mixture was warmed to 0°C, 2 mL of tetrahydrofuran was added, and the mixture was stirred for 1 hour. 60.0 μL (0.549 mmol) of 2,2-bis(trifluoromethyl)oxirane was added to the mixture, and the mixture was warmed to room temperature and stirred for 2.5 hours. The mixture was stirred at 0°C for 20 minutes, and then 5 mL (1.45 mmol) of 0.3 M hydrochloric acid was slowly added dropwise. 5 mL of dichloromethane and 5 mL of water were added to the mixture to separate the organic layer, and then 5 mL of dichloromethane was added to the aqueous layer to extract the organic layer. This operation was repeated three times. The collected organic layer was dried over sodium sulfate, and then sodium sulfate was removed by filtration, and the residue was washed three times with 3 mL of dichloromethane. The filtrate was evaporated to dryness, and the solid obtained under air was purified by silica gel column chromatography (developing solvent: hexane/acetone = 5/1) to obtain 249 mg of solid.
1H NMR (400MHz, CDCl3 ) δ: 5.07 (s, 1H), 3.24 (s, 2H), 1.53 (s, 12H), 1.51 (s, 12H), 0.26 (s, 18H).
19F NMR (376MHz, CDCl3 ) δ: -76.8 (d, J=22.0Hz)
31P { 1H }NMR(162MHz, CDCl3 ) δ:-60.8 (septet, J=24.8Hz)

Figure 2024052628000047
Figure 2024052628000047

(合成例11:AL-73の合成)
(1)5-メトキシ-2,2-ジメチル-1,3-ベンゾジオキソールの合成
Organic&Biomolecular Chemistry、2021、19,1555-1564.を参照して下記化学式の化合物を合成した。
(Synthesis Example 11: Synthesis of AL-73)
(1) Synthesis of 5-methoxy-2,2-dimethyl-1,3-benzodioxole The compound of the following chemical formula was synthesized with reference to Organic & Biomolecular Chemistry, 2021, 19, 1555-1564.

Figure 2024052628000048
Figure 2024052628000048

(2)tert-ブチル(5-メトキシ-2,2-ジメチル-1,3-ベンゾジオキソール-4-イル)クロロホスフィンの合成
0℃に冷やした5-メトキシ-2,2-ジメチル-1,3-ベンゾジオキソール(5g、28mmol)のTHF溶液(40mL)にn-BuLi(2.5M,12.2mL、30.5mmol)を加え、得られた混合物を25℃で2時間攪拌した。上記混合物を-78℃に冷やし、tert-ブチルジクロロホスフィン(4.85g、30.5mmol)のTHF溶液(5mL)を上記混合物に素早く加え、25℃で1時間攪拌して白色の懸濁液を得た。溶媒を留去して粗生成物を黄色の固体として得た。
31P{H} NMR(202MHz、CDCl)δ:100.8(s,積分強度比100%)
(2) Synthesis of tert-butyl(5-methoxy-2,2-dimethyl-1,3-benzodioxol-4-yl)chlorophosphine To a THF solution (40 mL) of 5-methoxy-2,2-dimethyl-1,3-benzodioxole (5 g, 28 mmol) cooled to 0° C., n-BuLi (2.5 M, 12.2 mL, 30.5 mmol) was added, and the resulting mixture was stirred at 25° C. for 2 hours. The mixture was cooled to −78° C., and a THF solution (5 mL) of tert-butyldichlorophosphine (4.85 g, 30.5 mmol) was quickly added to the mixture, and the mixture was stirred at 25° C. for 1 hour to obtain a white suspension. The solvent was evaporated to obtain a crude product as a yellow solid.
31P { 1H }NMR (202MHz, CDCl3 ) δ: 100.8 (s, integrated intensity ratio 100%)

Figure 2024052628000049
Figure 2024052628000049

(3)tert-ブチル(5-メトキシ-2,2-ジメチル-1,3-ベンゾジオキソール-4-イル)ホスフィンボランの合成
0℃に冷やしたtert-ブチル(5-メトキシ-2,2-ジメチル-1,3-ベンゾジオキソール-4-イル)クロロホスフィン(8.4g、28mmol)のTHF溶液(45mL)に水素化リチウムアルミニウム(2.5M,13.7mL、34.3mmol)を加え、得られた混合物を25℃で16時間攪拌して黄色の溶液を得た。この溶液にジメチルスルフィドボラン(10M,5.6mL、56mmol)を0℃で加え、生じた混合物を25℃で16時間攪拌して無色の溶液を得た。水(1.5mL)をゆっくりと溶液に加え、続いて15%の水酸化ナトリウム水溶液(1.5mL)をゆっくりと加え、さらに水(4.5mL)をゆっくりと加えた。生じた混合物を室温で30分撹拌し、ろ過し、ろ液を濃縮して無色の油状物質を得た。油状物質をシリカゲルクロマトグラフィー(展開溶媒:石油エーテル/酢酸エチル=20/1)により精製し、1.8g(6.4mmol)の目的物を白い固体として得た。
H NMR(400MHz、CDCl)δ:6.74(d、J=7.6Hz,1H)、6.29(br、1H)、5.41(d、J=376Hz,1H)、3.77(s、3H)、1.67(br、6H)、1.23(d、J=15.2Hz,9H)、1.00-0.20(br、3H)
31P{H} NMR(162MHz、CDCl)δ:4.0―(-3.0)(br)
(3) Synthesis of tert-butyl(5-methoxy-2,2-dimethyl-1,3-benzodioxol-4-yl)phosphineborane Lithium aluminum hydride (2.5 M, 13.7 mL, 34.3 mmol) was added to a THF solution (45 mL) of tert-butyl(5-methoxy-2,2-dimethyl-1,3-benzodioxol-4-yl)chlorophosphine (8.4 g, 28 mmol) cooled to 0° C., and the resulting mixture was stirred at 25° C. for 16 hours to obtain a yellow solution. Dimethylsulfide borane (10 M, 5.6 mL, 56 mmol) was added to this solution at 0° C., and the resulting mixture was stirred at 25° C. for 16 hours to obtain a colorless solution. Water (1.5 mL) was slowly added to the solution, followed by the slow addition of 15% aqueous sodium hydroxide solution (1.5 mL), and then water (4.5 mL) was slowly added. The resulting mixture was stirred at room temperature for 30 minutes, filtered, and the filtrate was concentrated to obtain a colorless oil. The oily substance was purified by silica gel chromatography (developing solvent: petroleum ether/ethyl acetate=20/1) to obtain 1.8 g (6.4 mmol) of the target product as a white solid.
1H NMR (400MHz, CDCl3 ) δ: 6.74 (d, J = 7.6Hz, 1H), 6.29 (br, 1H), 5.41 (d, J = 376Hz, 1H), 3.77 (s, 3H), 1.67 (br, 6H), 1.23 (d, J = 15.2Hz, 9H), 1.00-0.20 (br, 3H).
31P { 1H }NMR(162MHz, CDCl3 ) δ: 4.0-(-3.0)(br)

Figure 2024052628000050
Figure 2024052628000050

(4)AL-73の合成
シュレンク管に上記(3)のtert-ブチル(5-メトキシ-2,2-ジメチル-1,3-ベンゾジオキソール-4-イル)ホスフィンボランを250mg(0.89mmol)量り取り、テトラヒドロフランを12mL加えた。生じた溶液を-78℃に冷やした後、ヘキサメチルジシラザンカリウムのトルエン溶液を1.6mL(0.98mmol)ゆっくりと滴下した。滴下終了後、当該混合物を-78℃で1時間撹拌させた。その後当該混合物を0℃に昇温してから、テトラヒドロフラン3.3mLに溶解させた2,2-ビス(トリフルオロメチル)オキシラン97μL(0.89mmol)をゆっくり加えた。当該混合物を室温で1時間30分撹拌した後、溶媒を完全に留去した。得られた固体を大気下でシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/ジクロロメタン=4/1から2/1へと変更した)により精製し、134mgの固体を得た。
上記の固体134mgにメタノールを1.9mL加え、60℃に昇温してから5時間30分撹拌した。撹拌後、溶媒を完全に留去することで116mgの固体を得た。31P-NMRから求めた純度は98%であった。
H NMR(400MHz、CDCl)δ:6.70(d、J=8.4Hz、1H)、6.28(dd、J=8.8、3.6Hz、1H)、4.55(d、J=9.2Hz、1H)、3.76(s、3H)、3.71(dd、J=16.0,1.6Hz、1H)、2.04(d、J=16.0Hz、1H)、1.66(s、3H)、1.63(s、3H)、1.09(d、J=14.0Hz、9H)
19F NMR(376MHz、CDCl)δ:-76.9(q、J=12.8Hz)、-77.8(q、J=11.0Hz)
31P{H} NMR(162MHz、CDCl)δ:-30.5(m)
(4) Synthesis of AL-73 250 mg (0.89 mmol) of tert-butyl(5-methoxy-2,2-dimethyl-1,3-benzodioxol-4-yl)phosphineborane from (3) above was weighed out in a Schlenk flask, and 12 mL of tetrahydrofuran was added. The resulting solution was cooled to −78° C., and then 1.6 mL (0.98 mmol) of a toluene solution of potassium hexamethyldisilazane was slowly added dropwise. After the dropwise addition was completed, the mixture was stirred at −78° C. for 1 hour. The mixture was then heated to 0° C., and 97 μL (0.89 mmol) of 2,2-bis(trifluoromethyl)oxirane dissolved in 3.3 mL of tetrahydrofuran was slowly added. The mixture was stirred at room temperature for 1 hour and 30 minutes, and the solvent was completely distilled off. The obtained solid was purified by silica gel column chromatography (developing solvent: hexane/dichloromethane=changed from 4/1 to 2/1) under air, and 134 mg of solid was obtained.
1.9 mL of methanol was added to 134 mg of the above solid, and the mixture was heated to 60° C. and stirred for 5 hours and 30 minutes. After stirring, the solvent was completely distilled off to obtain 116 mg of a solid. The purity determined by 31 P-NMR was 98%.
1H NMR (400MHz, CDCl3 ) δ: 6.70 (d, J = 8.4 Hz, 1H), 6.28 (dd, J = 8.8, 3.6 Hz, 1H), 4.55 (d, J = 9.2 Hz, 1H), 3.76 (s, 3H), 3.71 (dd, J = 16.0, 1.6 Hz, 1H), 2.04 (d, J = 16.0 Hz, 1H), 1.66 (s, 3H), 1.63 (s, 3H), 1.09 (d, J = 14.0 Hz, 9H).
19F NMR (376MHz, CDCl3 ) δ: -76.9 (q, J = 12.8Hz), -77.8 (q, J = 11.0Hz)
31P { 1H }NMR(162MHz, CDCl3 ) δ: -30.5(m)

Figure 2024052628000051
Figure 2024052628000051

[比較合成例1](AL-2alの合成)
国際公開第2001/092342号の51~52ページを参照して下記化学式で表されるAL-2alを合成した。比較例1には31P{H}-NMRの純度が90%の錯体を、比較例2には31P{H}-NMRの純度が76%の錯体を用いた。
Comparative Synthesis Example 1 (Synthesis of AL-2al)
AL-2al represented by the following chemical formula was synthesized with reference to pages 51-52 of International Publication No. 2001/092342. A complex having a 31P { 1H }-NMR purity of 90% was used in Comparative Example 1, and a complex having a 31P { 1H }-NMR purity of 76% was used in Comparative Example 2.

Figure 2024052628000052
Figure 2024052628000052

以下の重合実験において使用したオートクレーブは、充分に乾燥し、窒素置換を行ってから使用した。
[実施例1]
フラスコにNi(cod)を68.3mg(0.25mmol)量り取り、25mLのトルエンに溶解させた。また、別のフラスコに合成例1で得られたAL-39を13.3mg(0.020mmol)量り取った。Ni(cod)のトルエン溶液を20mL量り取り、この溶液をAL-39の入ったフラスコに加えた。生じた触媒組成物の溶液を40℃の水浴で温め、15分攪拌して触媒組成物溶液(以下,触媒溶液という。AL-39濃度:約1mM)を得た。
0.2Lのオートクレーブにトルエンを94mL加え、90℃に昇温した。このオートクレーブの内圧が0.5MPaになるように窒素を加えた。続いて、オートクレーブの内圧が3.0MPaになるようにエチレンを加えた。触媒シリンダーに0.1mLの上記触媒溶液を注入し、さらにトルエン3mLを非常にゆっくり加えた。その後、得られた触媒溶液を高圧窒素でオートクレーブに押し込み、この時点を反応開始時刻とした。0.4mLの触媒溶液を触媒シリンダーに注入し、さらにトルエン2mLを非常にゆっくり加え、得られた触媒溶液を反応開始5分後に高圧窒素でオートクレーブに加えた。さらに、0.5mLの触媒溶液を触媒シリンダーに注入し、続いてトルエン3mLを非常にゆっくり加え、得られた触媒溶液を反応開始11分後に高圧窒素でオートクレーブに加えた。反応開始12分後、3mLのトルエンで触媒シリンダーを洗浄し、高圧窒素で洗浄液をオートクレーブに加えた。反応開始45分後、3mLの1,2-ブタンジオールのトルエン溶液(0.2M)を加えて反応を停止した。エチレンを脱圧し、当該オートクレーブを室温に戻し、アセトン100mLを加えた。析出した固体を濾過により回収し、アセトン100mLで2回洗浄し、減圧乾燥した。得られたポリマーは3.17gであった。
The autoclave used in the following polymerization experiments was thoroughly dried and purged with nitrogen before use.
[Example 1]
68.3 mg (0.25 mmol) of Ni(cod) 2 was weighed out into a flask and dissolved in 25 mL of toluene. In addition, 13.3 mg (0.020 mmol) of AL-39 obtained in Synthesis Example 1 was weighed out into a separate flask. 20 mL of the toluene solution of Ni(cod) 2 was weighed out and added to the flask containing AL-39. The resulting solution of the catalyst composition was warmed in a water bath at 40° C. and stirred for 15 minutes to obtain a catalyst composition solution (hereinafter referred to as the catalyst solution; AL-39 concentration: approximately 1 mM).
94 mL of toluene was added to a 0.2 L autoclave, and the temperature was raised to 90°C. Nitrogen was added so that the internal pressure of the autoclave was 0.5 MPa. Then, ethylene was added so that the internal pressure of the autoclave was 3.0 MPa. 0.1 mL of the above catalyst solution was injected into the catalyst cylinder, and 3 mL of toluene was added very slowly. Then, the obtained catalyst solution was pushed into the autoclave with high-pressure nitrogen, and this point was set as the reaction start time. 0.4 mL of the catalyst solution was injected into the catalyst cylinder, and 2 mL of toluene was added very slowly, and the obtained catalyst solution was added to the autoclave with high-pressure nitrogen 5 minutes after the start of the reaction. Furthermore, 0.5 mL of the catalyst solution was injected into the catalyst cylinder, and then 3 mL of toluene was added very slowly, and the obtained catalyst solution was added to the autoclave with high-pressure nitrogen 11 minutes after the start of the reaction. 12 minutes after the start of the reaction, the catalyst cylinder was washed with 3 mL of toluene, and the washing liquid was added to the autoclave with high-pressure nitrogen. 45 minutes after the start of the reaction, 3 mL of a toluene solution (0.2 M) of 1,2-butanediol was added to stop the reaction. The ethylene pressure was released, the autoclave was returned to room temperature, and 100 mL of acetone was added. The precipitated solid was collected by filtration, washed twice with 100 mL of acetone, and dried under reduced pressure. The obtained polymer weighed 3.17 g.

[実施例2]
Ni(cod)を68.9mg(0.25mmol)、トルエンを12mL、AL-39を13.7mg(0.020mmol)、AL-39に加えたNi(cod)のトルエン溶液を10mLに変更した以外は、実施例1と同様に行って10mLの触媒溶液(AL-39濃度:約2mM)を調製した。
0.2Lのオートクレーブにトルエンを90mL(以下、トルエン)加えた。試薬投入口からtBAを0.3mL(2.1mmol)(以下、コモノマーとその添加量)、TNOAのトルエン溶液(0.1M)を0.3mL注入した(以下、TNOAの添加量)。オートクレーブ内を90℃に昇温し、このオートクレーブの内圧が0.5MPaになるように窒素を加えた(以下、窒素圧)。続いて、オートクレーブの内圧が3.0MPaになるようにエチレンを加えた(以下、エチレン圧)。触媒シリンダーに2mLの上記触媒溶液(以下、初期触媒)を注入し、高圧窒素でオートクレーブに加え、この時点を反応開始時刻とした。反応開始3分後に3mLのトルエンで触媒シリンダーを洗浄し、高圧窒素で洗浄液をオートクレーブに加えた(以下、初期洗浄とその時間)。反応開始60分後(以下、反応時間)に3mLの1,2-ブタンジオールのトルエン溶液(0.2M)を加えて反応を停止し(以下、反応停止剤)、エチレンを脱圧した。当該オートクレーブを室温に戻し、アセトン100mLを加えた。析出した固体を濾過により回収し、固体をアセトン100mLで2回洗浄し(以下、精製方法)、減圧乾燥した。得られたポリマーは0.83gであった。
[Example 2]
A 10 mL catalyst solution (AL-39 concentration: about 2 mM) was prepared in the same manner as in Example 1, except that 68.9 mg (0.25 mmol) of Ni(cod) 2 , 12 mL of toluene, 13.7 mg (0.020 mmol) of AL-39 and the toluene solution of Ni(cod) 2 added to AL-39 were changed to 10 mL.
90 mL of toluene (hereinafter, toluene) was added to a 0.2 L autoclave. 0.3 mL (2.1 mmol) of tBA (hereinafter, comonomer and its added amount) and 0.3 mL of a toluene solution of TNOA (0.1 M) were injected from the reagent inlet (hereinafter, TNOA added amount). The temperature inside the autoclave was raised to 90° C., and nitrogen was added so that the internal pressure of the autoclave was 0.5 MPa (hereinafter, nitrogen pressure). Then, ethylene was added so that the internal pressure of the autoclave was 3.0 MPa (hereinafter, ethylene pressure). 2 mL of the above catalyst solution (hereinafter, initial catalyst) was injected into the catalyst cylinder and added to the autoclave with high-pressure nitrogen, and this point was the reaction start time. 3 minutes after the start of the reaction, the catalyst cylinder was washed with 3 mL of toluene, and the washing liquid was added to the autoclave with high-pressure nitrogen (hereinafter, initial washing and its time). 60 minutes after the start of the reaction (hereinafter, reaction time), 3 mL of a toluene solution (0.2 M) of 1,2-butanediol was added to stop the reaction (hereinafter, reaction stopper), and the ethylene pressure was released. The autoclave was returned to room temperature, and 100 mL of acetone was added. The precipitated solid was collected by filtration, washed twice with 100 mL of acetone (hereinafter, purification method), and dried under reduced pressure. The polymer obtained was 0.83 g.

[実施例3]
Ni(cod)を87.6mg(0.32mmol)、トルエンを8mL、AL-39を15.9mg(0.024mmol)、AL-39に加えたNi(cod)のトルエン溶液を6mLに変更した以外は、実施例1と同様に行って6mLの触媒溶液(AL-39濃度:約4mM)を調製した。
上記で調製した触媒溶液を用いて、触媒の追加を下記のように行い、重合条件を下記のように変更した以外は実施例2と同様に重合を行い、2.85gのポリマーを得た。
トルエン:87mL
コモノマーとその添加量:tBA(1.2mL、8.3mmol)
TNOAの添加量:1.0mL(0.10mmol)
初期触媒:触媒溶液3mL
触媒の追加:反応開始15分後に触媒溶液2mLを触媒シリンダーに注入し、高圧窒素でオートクレーブに追加した。さらに、反応開始17分後にトルエン3mLで触媒シリンダーを洗浄し、高圧窒素で洗浄液をオートクレーブに追加した。
[Example 3]
The same procedure as in Example 1 was carried out except that 87.6 mg (0.32 mmol) of Ni(cod) 2 , 8 mL of toluene, 15.9 mg (0.024 mmol) of AL-39 and the toluene solution of Ni(cod) 2 added to AL-39 were changed to 6 mL, and 6 mL of catalyst solution (AL-39 concentration: about 4 mM) was prepared.
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the catalyst was added as described below and the polymerization conditions were changed as described below, to obtain 2.85 g of a polymer.
Toluene: 87 mL
Comonomer and its amount added: tBA (1.2 mL, 8.3 mmol)
Amount of TNOA added: 1.0 mL (0.10 mmol)
Initial catalyst: 3 mL of catalyst solution
Addition of catalyst: 15 minutes after the start of the reaction, 2 mL of catalyst solution was injected into the catalyst cylinder and added to the autoclave with high-pressure nitrogen. Furthermore, 17 minutes after the start of the reaction, the catalyst cylinder was washed with 3 mL of toluene and the washing liquid was added to the autoclave with high-pressure nitrogen.

[実施例4]
Ni(cod)を87.9mg(0.32mmol)、トルエンを8mL、AL-39を16.0mg(0.024mmol)、AL-39に加えたNi(cod)のトルエン溶液を6mLに変更した以外は、実施例1と同様に行って6mLの触媒溶液(AL-39濃度:約4mM)を調製した。
上記で調製した触媒溶液を用いて、触媒の追加を下記のように行い、重合条件を下記のように変更した以外は実施例2と同様に重合を行い、3.06gのポリマーを得た。
トルエン:88mL
コモノマーとその添加量:tBA(2.2mL、15mmol)
TNOAの添加量:1.0mL(0.10mmol)
初期触媒:触媒溶液2.5mL
初期洗浄とその時間:洗浄なし
触媒の追加:反応開始3分後に2.5mLの触媒溶液2.5mLを触媒シリンダーに注入し、高圧窒素でオートクレーブに追加した。反応開始5分後にトルエン3mLで触媒シリンダーを洗浄し、高圧窒素で洗浄液をオートクレーブに追加した。
[Example 4]
The same procedure as in Example 1 was carried out except that 87.9 mg (0.32 mmol) of Ni(cod) 2 , 8 mL of toluene, 16.0 mg (0.024 mmol) of AL-39 and the toluene solution of Ni(cod) 2 added to AL-39 were changed to 6 mL, and 6 mL of catalyst solution (AL-39 concentration: about 4 mM) was prepared.
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the catalyst was added as described below and the polymerization conditions were changed as described below, to obtain 3.06 g of a polymer.
Toluene: 88 mL
Comonomer and its amount added: tBA (2.2 mL, 15 mmol)
Amount of TNOA added: 1.0 mL (0.10 mmol)
Initial catalyst: 2.5 mL of catalyst solution
Initial washing and its time: No washing. Addition of catalyst: 3 minutes after the start of the reaction, 2.5 mL of catalyst solution was poured into the catalyst cylinder and added to the autoclave with high-pressure nitrogen. 5 minutes after the start of the reaction, the catalyst cylinder was washed with 3 mL of toluene and the washing solution was added to the autoclave with high-pressure nitrogen.

[実施例5]
Ni(cod)を65.8mg(0.24mmol)、トルエンを6mL、AL-39を10.5mg(0.016mmol)、AL-39に加えたNi(cod)のトルエン溶液を4mLに変更した以外は、実施例1と同様に行って4mLの触媒溶液(AL-39濃度:約4mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例2と同様に重合を行い、1.04gのポリマーを得た。
トルエン:90mL
コモノマーとその添加量:tBA(3.6mL、25mmol)
TNOAの添加量:0.5mL(0.050mmol)
初期触媒:触媒溶液2.5mL
初期洗浄とその時間:反応開始2分後にトルエン3mLで洗浄した。
精製方法:アセトン100mLでポリマーを析出後、100mLのアセトンと1mLの塩酸水溶液(10wt%)を加え、1晩冷蔵庫で保管した。その後、ポリマーをアセトン100mLで2回洗浄した。
[Example 5]
The same procedure as in Example 1 was carried out except that 65.8 mg (0.24 mmol) of Ni(cod) 2 , 6 mL of toluene, 10.5 mg (0.016 mmol) of AL-39, and the toluene solution of Ni(cod) 2 added to AL-39 were changed to 4 mL, to prepare 4 mL of catalyst solution (AL-39 concentration: about 4 mM).
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the polymerization conditions were changed as follows, to obtain 1.04 g of a polymer.
Toluene: 90 mL
Comonomer and its amount added: tBA (3.6 mL, 25 mmol)
Amount of TNOA added: 0.5 mL (0.050 mmol)
Initial catalyst: 2.5 mL of catalyst solution
Initial washing and its time: 2 minutes after the start of the reaction, washing was performed with 3 mL of toluene.
Purification method: After the polymer was precipitated with 100 mL of acetone, 100 mL of acetone and 1 mL of an aqueous hydrochloric acid solution (10 wt%) were added and stored in a refrigerator overnight. After that, the polymer was washed twice with 100 mL of acetone.

[実施例6]
Ni(cod)を77.0mg(0.28mmol)、トルエンを7mL、AL-39を13.4mg(0.020mmol)、AL-39に加えたNi(cod)のトルエン溶液を5mLに変更した以外は、実施例1と同様に行って5mLの触媒溶液(AL-39濃度:約4mM)を調製した。
上記で調製した触媒溶液を用いて、触媒の追加を下記のように行い、重合条件を下記のように変更した以外は実施例2と同様に重合を行い、2.46gのポリマーを得た。
トルエン:93mL
コモノマーとその添加量:MA(0.9mL、10mmol)
TNOAの添加量:0.5mL(0.050mmol)
初期触媒:触媒溶液2.5mL
触媒の追加:反応開始15分後に触媒溶液1.5mLを触媒シリンダーに注入し、高圧窒素でオートクレーブに追加した。反応開始から19分後にトルエン3mLで触媒シリンダーを洗浄し、高圧窒素で洗浄液をオートクレーブに追加した。
精製方法:アセトン100mLでポリマーを析出後、100mLのアセトンと1mLの塩酸水溶液(10wt%)を加え、1晩冷蔵庫で保管した。その後、ポリマーをアセトン100mLで2回洗浄した。
[Example 6]
The same procedure as in Example 1 was carried out except that 77.0 mg (0.28 mmol) of Ni(cod) 2 , 7 mL of toluene, 13.4 mg (0.020 mmol) of AL-39, and the toluene solution of Ni(cod) 2 added to AL-39 were changed to 5 mL, to prepare 5 mL of a catalyst solution (AL-39 concentration: about 4 mM).
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the catalyst was added as described below and the polymerization conditions were changed as described below, to obtain 2.46 g of a polymer.
Toluene: 93 mL
Comonomer and its amount added: MA (0.9 mL, 10 mmol)
Amount of TNOA added: 0.5 mL (0.050 mmol)
Initial catalyst: 2.5 mL of catalyst solution
Addition of catalyst: 15 minutes after the start of the reaction, 1.5 mL of catalyst solution was injected into the catalyst cylinder and added to the autoclave with high-pressure nitrogen. 19 minutes after the start of the reaction, the catalyst cylinder was washed with 3 mL of toluene and the washings were added to the autoclave with high-pressure nitrogen.
Purification method: After the polymer was precipitated with 100 mL of acetone, 100 mL of acetone and 1 mL of an aqueous hydrochloric acid solution (10 wt%) were added and stored in a refrigerator overnight. After that, the polymer was washed twice with 100 mL of acetone.

[実施例7]
Ni(cod)の代わりにNi(acac)を10.7mg(0.04mmol)、トルエンを8mL、AL-39を19.7mg(0.03mmol)、AL-39に加えた金属錯体のトルエン溶液を6mLに変更以外は、実施例1と同様に行って6mLの触媒溶液(AL-39濃度:約5mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例2と同様に重合を行い、1.30gのポリマーを得た。
トルエン:93mL
コモノマーとその添加量:MA(0.9mL、10mmol)
TNOAの添加量:0.5mL(0.050mmol)
初期触媒:触媒溶液2mL
初期洗浄とその時間:反応開始5分後に3mLのトルエンで洗浄した。
反応停止剤:1,2-ブタンジオールのトルエン溶液の代わりに、1.0mLの重酢酸のトルエン溶液(2M)を加えた。
[Example 7]
The same procedure as in Example 1 was carried out except that 10.7 mg (0.04 mmol) of Ni(acac) 2 was used instead of Ni(cod) 2 , 8 mL of toluene, 19.7 mg (0.03 mmol) of AL-39, and the amount of the toluene solution of the metal complex added to AL-39 was changed to 6 mL, to prepare 6 mL of a catalyst solution (AL-39 concentration: about 5 mM).
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the polymerization conditions were changed as follows, to obtain 1.30 g of a polymer.
Toluene: 93 mL
Comonomer and its amount added: MA (0.9 mL, 10 mmol)
Amount of TNOA added: 0.5 mL (0.050 mmol)
Initial catalyst: 2 mL of catalyst solution
Initial washing and its time: 5 minutes after the start of the reaction, washing with 3 mL of toluene was performed.
Reaction quencher: Instead of the 1,2-butanediol in toluene, 1.0 mL of a 2M solution of diacetic acid in toluene was added.

[実施例8]
Ni(acac)を10.3mg(0.04mmol)、トルエンを8mL、AL-39を9.9mg(0.015mmol)、AL-39に加えたNi(acac)のトルエン溶液を3mLに変更した以外は、実施例7と同様に行って3mLの触媒溶液(AL-39濃度:約5mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例2と同様に重合を行い、1.33gのポリマーを得た。
トルエン:94mL
コモノマーとその添加量:MA(0.9mL、10mmol)
TNOAの添加量:0.3mL(0.030mmol)
反応温度:100℃
初期触媒:触媒溶液1.2mL
初期洗浄とその時間:反応開始2分後に3mLのトルエンで洗浄した。
反応停止剤:1,2-ブタンジオールのトルエン溶液の代わりに、0.3mLの重酢酸のトルエン溶液(2M)を加えた。
[Example 8]
The same procedure as in Example 7 was carried out except that 10.3 mg (0.04 mmol) of Ni(acac) 2 , 8 mL of toluene, 9.9 mg (0.015 mmol) of AL-39 and the toluene solution of Ni(acac) 2 added to AL-39 were changed to 3 mL, and 3 mL of the catalyst solution (AL-39 concentration: about 5 mM) was prepared.
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the polymerization conditions were changed as follows, to obtain 1.33 g of a polymer.
Toluene: 94 mL
Comonomer and its amount added: MA (0.9 mL, 10 mmol)
Amount of TNOA added: 0.3 mL (0.030 mmol)
Reaction temperature: 100°C
Initial catalyst: 1.2 mL of catalyst solution
Initial washing and its time: 2 minutes after the start of the reaction, washing with 3 mL of toluene was performed.
Reaction quencher: Instead of the toluene solution of 1,2-butanediol, 0.3 mL of a toluene solution of diacetic acid (2 M) was added.

[実施例9]
Ni(cod)を68.4mg(0.25mmol)、AL-39を13.2mg(0.02mmol)に変更した以外は、実施例1と同様に行って20mLの触媒溶液(AL-39濃度:約1mM)を調製した。
上記で調製した触媒溶液を用いて、触媒の追加を下記のように行い、重合条件を下記のように変更した以外は実施例2と同様に重合を行い、0.55gのポリマーを得た。
トルエン:64mL
コモノマーとその添加量:VC(約9.9mL、13.5g、157mmol)
TNOAの添加量:0.5mL(0.050mmol)
窒素圧:0MPa
エチレン圧:2.5MPa
初期触媒:触媒溶液1mL
初期洗浄とその時間:反応開始2.5分後にトルエン3mLで洗浄した。
触媒の追加:反応開始7分後に触媒溶液2mL、及び、反応開始10分、14分、16分後にそれぞれ触媒溶液3mLを触媒シリンダーに注入し、高圧窒素でオートクレーブに加えた。反応開始19分後にトルエン3mLで触媒シリンダーを洗浄し、高圧窒素で洗浄液をオートクレーブに追加した。
反応時間:35分
[Example 9]
Except for changing the amount of Ni(cod) 2 to 68.4 mg (0.25 mmol) and the amount of AL-39 to 13.2 mg (0.02 mmol), the same procedure as in Example 1 was carried out to prepare 20 mL of a catalyst solution (AL-39 concentration: about 1 mM).
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the catalyst was added as described below and the polymerization conditions were changed as described below, to obtain 0.55 g of a polymer.
Toluene: 64 mL
Comonomer and its amount added: VC (approximately 9.9 mL, 13.5 g, 157 mmol)
Amount of TNOA added: 0.5 mL (0.050 mmol)
Nitrogen pressure: 0 MPa
Ethylene pressure: 2.5 MPa
Initial catalyst: 1 mL of catalyst solution
Initial washing and its time: 2.5 minutes after the start of the reaction, washing was performed with 3 mL of toluene.
Addition of catalyst: 7 minutes after the start of the reaction, 2 mL of catalyst solution, and 10 minutes, 14 minutes, and 16 minutes after the start of the reaction, 3 mL of catalyst solution were injected into the catalyst cylinder and added to the autoclave with high-pressure nitrogen. 19 minutes after the start of the reaction, the catalyst cylinder was washed with 3 mL of toluene, and the washings were added to the autoclave with high-pressure nitrogen.
Reaction time: 35 min

[実施例10]
Ni(cod)を66.0mg(0.24mmol)、トルエンを24mL、AL-39の代わりに合成例2で得られたAL-40を12.9mg(0.02mmol)、AL-40に加えたNi(cod)のトルエン溶液を20mLに変更した以外は、実施例1と同様に行って20mLの触媒溶液(AL-40濃度:約1mM)を調製した。
上記で調製した触媒溶液を用いて、触媒の追加を下記のように行い、重合条件を下記のように変更した以外は実施例2と同様に重合を行い、3.17gのポリマーを得た。
トルエン:96mL
コモノマーとその添加量:tBA(0.3mL、2.1mmol)
TNOAの添加量:0.1mL(0.010mmol)
初期触媒:触媒溶液1mL
触媒の追加:反応開始17分後に触媒溶液1mLを触媒シリンダーに注入し、高圧窒素でオートクレーブに追加した。反応開始19分後にトルエン3mLで触媒シリンダーを洗浄し、高圧窒素で洗浄液をオートクレーブに追加した。
反応時間:42分
[Example 10]
The same procedure as in Example 1 was carried out except that 66.0 mg (0.24 mmol) of Ni(cod) 2 , 24 mL of toluene, 12.9 mg (0.02 mmol) of AL-40 obtained in Synthesis Example 2 instead of AL-39, and 20 mL of the toluene solution of Ni(cod) 2 added to AL-40 were used, to prepare 20 mL of a catalyst solution (AL-40 concentration: about 1 mM).
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the catalyst was added as described below and the polymerization conditions were changed as described below, to obtain 3.17 g of a polymer.
Toluene: 96 mL
Comonomer and its amount added: tBA (0.3 mL, 2.1 mmol)
Amount of TNOA added: 0.1 mL (0.010 mmol)
Initial catalyst: 1 mL of catalyst solution
Addition of catalyst: 17 minutes after the start of the reaction, 1 mL of catalyst solution was injected into the catalyst cylinder and added to the autoclave with high-pressure nitrogen. 19 minutes after the start of the reaction, the catalyst cylinder was washed with 3 mL of toluene and the washings were added to the autoclave with high-pressure nitrogen.
Reaction time: 42 min

[実施例11]
Ni(cod)を65.7mg(0.24mmol)、トルエンを12mL、AL-40を13.6mg(0.02mmol)、AL-40に加えたNi(cod)のトルエン溶液を10mLに変更した以外は、実施例10と同様に行って10mLの触媒溶液(AL-40濃度:約2mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例2と同様に重合を行い、2.83gのポリマーを得た。
トルエン:92mL
コモノマーとその添加量:tBA(1.2mL、8.3mmol)
TNOAの添加量:0.3mL(0.030mmol)
初期触媒:触媒溶液3mL
初期洗浄とその時間:反応開始2分後にトルエン3mLで洗浄した。
反応時間:21分
[Example 11]
The same procedure as in Example 10 was carried out to prepare 10 mL of a catalyst solution (AL-40 concentration: approximately 2 mM), except that 65.7 mg (0.24 mmol) of Ni(cod) 2 , 12 mL of toluene, 13.6 mg (0.02 mmol) of AL-40, and the toluene solution of Ni(cod) 2 added to AL-40 were changed to 10 mL.
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the polymerization conditions were changed as follows, to obtain 2.83 g of a polymer.
Toluene: 92 mL
Comonomer and its amount added: tBA (1.2 mL, 8.3 mmol)
Amount of TNOA added: 0.3 mL (0.030 mmol)
Initial catalyst: 3 mL of catalyst solution
Initial washing and its time: 2 minutes after the start of the reaction, washing was performed with 3 mL of toluene.
Reaction time: 21 min

[実施例12]
Ni(cod)を55.3mg(0.20mmol)、トルエンを10mL、AL-40を10.0mg(0.016mmol)、AL-40に加えたNi(cod)のトルエン溶液の量を8mLに変更した以外は、実施例10と同様に行って8mLの触媒溶液(AL-40濃度:約2mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例2と同様に重合を行い、2.42gのポリマーを得た。
トルエン:91mL
コモノマーとその添加量:tBA(3.5mL、24mmol)
TNOAの添加量:0.25mL(0.025mmol)
初期触媒:触媒溶液2.5mL
初期洗浄とその時間:反応開始2分後にトルエン3mLで洗浄した。
[Example 12]
The same procedure as in Example 10 was carried out except that the amount of Ni(cod) 2 was changed to 55.3 mg (0.20 mmol), toluene to 10 mL, AL-40 to 10.0 mg (0.016 mmol), and the amount of the toluene solution of Ni(cod) 2 added to AL-40 was changed to 8 mL, to prepare 8 mL of catalyst solution (AL-40 concentration: about 2 mM).
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the polymerization conditions were changed as follows, to obtain 2.42 g of a polymer.
Toluene: 91 mL
Comonomer and its amount added: tBA (3.5 mL, 24 mmol)
Amount of TNOA added: 0.25 mL (0.025 mmol)
Initial catalyst: 2.5 mL of catalyst solution
Initial washing and its time: 2 minutes after the start of the reaction, washing was performed with 3 mL of toluene.

[実施例13]
Ni(cod)を54.7mg(0.20mmol)、トルエンを10mL、AL-40を10.6mg(0.016mmol)、AL-40に加えたNi(cod)のトルエン溶液を8mLに変更した以外は、実施例10と同様に行って8mLの触媒溶液(AL-40濃度:約2mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例2と同様に重合を行い、1.85gのポリマーを得た。
トルエン:87mL
コモノマーとその添加量:tBA(7.0mL、49mmol)
TNOAの添加量:0.25mL(0.025mmol)
初期触媒:触媒溶液2.5mL
初期洗浄とその時間:反応開始2分後にトルエン3mLで洗浄した。
精製方法:アセトン100mLでポリマーを析出後、100mLのアセトンと1mLの塩酸水溶液(10wt%)を加え、室温で30分間攪拌した。その後、ポリマーをアセトン100mLで2回洗浄した。
[Example 13]
The same procedure as in Example 10 was carried out to prepare 8 mL of a catalyst solution (AL-40 concentration: approximately 2 mM), except that 54.7 mg (0.20 mmol) of Ni(cod) 2 , 10 mL of toluene, 10.6 mg (0.016 mmol) of AL-40, and the toluene solution of Ni(cod) 2 added to AL-40 were changed to 8 mL.
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the polymerization conditions were changed as follows, to obtain 1.85 g of a polymer.
Toluene: 87 mL
Comonomer and its amount added: tBA (7.0 mL, 49 mmol)
Amount of TNOA added: 0.25 mL (0.025 mmol)
Initial catalyst: 2.5 mL of catalyst solution
Initial washing and its time: 2 minutes after the start of the reaction, washing was performed with 3 mL of toluene.
Purification method: After the polymer was precipitated with 100 mL of acetone, 100 mL of acetone and 1 mL of an aqueous hydrochloric acid solution (10 wt%) were added and stirred at room temperature for 30 minutes. Then, the polymer was washed twice with 100 mL of acetone.

[実施例14]
Ni(cod)を54.8mg(0.20mmol)、トルエンを10mL、AL-40を10.6mg(0.016mmol)、AL-40に加えたNi(cod)のトルエン溶液を8mLに変更した以外は、実施例10と同様に行って8mLの触媒溶液(AL-40濃度:約2mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例2と同様に重合を行い、2.44gのポリマーを得た。
トルエン:92mL
コモノマーとその添加量:MA(1.6mL、18mmol)
TNOAの添加量:0.3mL(0.030mmol)
初期触媒:触媒溶液3mL
初期洗浄とその時間:反応開始2分後にトルエン3mLで洗浄した。
精製方法:アセトン100mLでポリマーを析出後、100mLのアセトンと1mLの塩酸水溶液(10wt%)を加え、1晩冷蔵庫で保管した。その後、ポリマーをアセトン100mLで2回洗浄した。
[Example 14]
The same procedure as in Example 10 was carried out to prepare 8 mL of a catalyst solution (AL-40 concentration: approximately 2 mM), except that 54.8 mg (0.20 mmol) of Ni(cod) 2 , 10 mL of toluene, 10.6 mg (0.016 mmol) of AL-40, and the toluene solution of Ni(cod) 2 added to AL-40 were changed to 8 mL.
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the polymerization conditions were changed as follows, to obtain 2.44 g of a polymer.
Toluene: 92 mL
Comonomer and its amount added: MA (1.6 mL, 18 mmol)
Amount of TNOA added: 0.3 mL (0.030 mmol)
Initial catalyst: 3 mL of catalyst solution
Initial washing and its time: 2 minutes after the start of the reaction, washing was performed with 3 mL of toluene.
Purification method: After the polymer was precipitated with 100 mL of acetone, 100 mL of acetone and 1 mL of an aqueous hydrochloric acid solution (10 wt%) were added and stored in a refrigerator overnight. After that, the polymer was washed twice with 100 mL of acetone.

[実施例15]
Ni(cod)の代わりにNi(acac)を10.3mg(0.04mmol)、トルエンを8mL、AL-40を9.7mg(0.015mmol)、AL-40に加えた金属錯体のトルエン溶液を3mLに変更した以外は、実施例10と同様に行って3mLの触媒溶液(AL-40濃度:約5mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例2と同様に重合を行い、1.99gのポリマーを得た。
トルエン:94mL
コモノマーとその添加量:MA(1.6mL、18mmol)
TNOAの添加量:0.3mL(0.030mmol)
初期触媒:触媒溶液1.2mL
反応停止剤:1,2-ブタンジオールのトルエン溶液の代わりに、0.3mLの重酢酸のトルエン溶液(2M)を加えた。
反応時間:43分
[Example 15]
The same procedure as in Example 10 was carried out to prepare 3 mL of a catalyst solution (AL-40 concentration: approximately 5 mM), except that 10.3 mg (0.04 mmol) of Ni(acac)2 was used instead of Ni(cod)2, 8 mL of toluene, 9.7 mg (0.015 mmol) of AL-40, and 3 mL of the toluene solution of the metal complex added to AL-40 were used.
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the polymerization conditions were changed as follows, to obtain 1.99 g of a polymer.
Toluene: 94 mL
Comonomer and its amount added: MA (1.6 mL, 18 mmol)
Amount of TNOA added: 0.3 mL (0.030 mmol)
Initial catalyst: 1.2 mL of catalyst solution
Reaction quencher: Instead of the toluene solution of 1,2-butanediol, 0.3 mL of a toluene solution of diacetic acid (2 M) was added.
Reaction time: 43 min

[実施例16]
Ni(cod)を55.7mg(0.20mmol)、トルエンを20mL、AL-40を10.4mg(0.016mmol)、AL-40に加えたNi(cod)のトルエン溶液を16mLに変更した以外は、実施例10と同様に行って16mLの触媒溶液(AL-40濃度:約1mM)を調製した。
上記で調製した触媒溶液を用いて、触媒の追加を下記のように行い、重合条件を下記のように変更した以外は実施例2と同様に重合を行い、1.01gのポリマーを得た。
トルエン:90mL
コモノマーとその添加量:NBのトルエン溶液(約3.9mL、3.64g、0.753g/g、29mmol)
TNOA:なし
窒素圧:0.2MPa
エチレン圧:0.8MPa(内圧1.0MPa)
初期触媒:触媒溶液1mLを注入し、さらにトルエン2mLを非常にゆっくり加えた。その後、得られた触媒溶液を高圧窒素でオートクレーブに加えた。
初期洗浄とその時間:反応開始4分後にトルエン3mLで洗浄した。
触媒の追加:反応開始15分後、18分後にそれぞれ触媒溶液2mLを触媒シリンダーに注入し、高圧窒素でオートクレーブに追加した。反応開始20分後にトルエン3mLで触媒シリンダーを洗浄し、高圧窒素で洗浄液をオートクレーブに追加した。さらに、反応開始26分後、29分後にそれぞれ触媒溶液3mLを触媒シリンダーに注入し、高圧窒素でオートクレーブに追加した。反応開始33分後にトルエン3mLで触媒シリンダーを洗浄し、高圧窒素で洗浄液をオートクレーブに追加した。
反応時間:48分
[Example 16]
The same procedure as in Example 10 was carried out except that 55.7 mg (0.20 mmol) of Ni(cod) 2 , 20 mL of toluene, 10.4 mg (0.016 mmol) of AL-40 and the toluene solution of Ni(cod) 2 added to AL-40 were changed to 16 mL, and 16 mL of catalyst solution (AL-40 concentration: about 1 mM) was prepared.
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the catalyst was added as described below and the polymerization conditions were changed as described below, to obtain 1.01 g of a polymer.
Toluene: 90 mL
Comonomer and its amount added: Toluene solution of NB (approximately 3.9 mL, 3.64 g, 0.753 g/g, 29 mmol)
TNOA: None Nitrogen pressure: 0.2 MPa
Ethylene pressure: 0.8 MPa (internal pressure 1.0 MPa)
Initial catalyst: 1 mL of catalyst solution was injected, followed by very slow addition of 2 mL of toluene, after which the resulting catalyst solution was added to the autoclave with high pressure nitrogen.
Initial washing and its time: 4 minutes after the start of the reaction, washing was performed with 3 mL of toluene.
Addition of catalyst: 15 minutes and 18 minutes after the start of the reaction, 2 mL of catalyst solution was injected into the catalyst cylinder and added to the autoclave with high-pressure nitrogen. 20 minutes after the start of the reaction, the catalyst cylinder was washed with 3 mL of toluene, and the washing liquid was added to the autoclave with high-pressure nitrogen. Furthermore, 26 minutes and 29 minutes after the start of the reaction, 3 mL of catalyst solution was injected into the catalyst cylinder and added to the autoclave with high-pressure nitrogen. 33 minutes after the start of the reaction, the catalyst cylinder was washed with 3 mL of toluene, and the washing liquid was added to the autoclave with high-pressure nitrogen.
Reaction time: 48 min

[実施例17]
Ni(cod)を88.1mg(0.32mmol)、トルエンを8mL、AL-40を15.7mg(0.024mmol)、AL-40に加えたNi(cod)のトルエン溶液を6mLに変更した以外は、実施例10と同様に行って6mLの触媒溶液(AL-40濃度:約4mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例2と同様に重合を行い、2.82gのポリマーを得た。
トルエン:64mL
コモノマーとその添加量:VC(約9.7mL、13.2g、153mmol)
TNOA:0.5mL(0.05mmol)
窒素圧:0MPa
エチレン圧:2.5MPa
初期触媒:触媒溶液2.5mL
初期洗浄とその時間:なし
反応時間:1分
[Example 17]
The same procedure as in Example 10 was carried out except that 88.1 mg (0.32 mmol) of Ni(cod) 2 , 8 mL of toluene, 15.7 mg (0.024 mmol) of AL-40, and the toluene solution of Ni(cod) 2 added to AL-40 were changed to 6 mL, to prepare 6 mL of catalyst solution (AL-40 concentration: about 4 mM).
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the polymerization conditions were changed as follows, to obtain 2.82 g of a polymer.
Toluene: 64 mL
Comonomer and its amount added: VC (approximately 9.7 mL, 13.2 g, 153 mmol)
TNOA: 0.5 mL (0.05 mmol)
Nitrogen pressure: 0 MPa
Ethylene pressure: 2.5 MPa
Initial catalyst: 2.5 mL of catalyst solution
Initial washing and its time: None Reaction time: 1 minute

[実施例18]
合成例8で得られたAL-40/NiArPyを13.1mg(0.015mmol)量り取り、3mLのトルエンを加えて金属錯体溶液(以下触媒溶液という)を作成した(AL-40濃度:約5mM)。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例2と同様に重合操作を行い、2.48gのポリマーを得た。
トルエン:94mL
コモノマーとその添加量:MA(1.6mL、18mmol)
初期触媒:触媒溶液1.2mL
初期洗浄とその時間:反応開始2分後にトルエン3mLで洗浄した。
反応時間:48分
[Example 18]
13.1 mg (0.015 mmol) of AL-40/NiArPy obtained in Synthesis Example 8 was weighed out, and 3 mL of toluene was added thereto to prepare a metal complex solution (hereinafter referred to as catalyst solution) (AL-40 concentration: about 5 mM).
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the polymerization conditions were changed as follows, to obtain 2.48 g of a polymer.
Toluene: 94 mL
Comonomer and its amount added: MA (1.6 mL, 18 mmol)
Initial catalyst: 1.2 mL of catalyst solution
Initial washing and its time: 2 minutes after the start of the reaction, washing was performed with 3 mL of toluene.
Reaction time: 48 min

[実施例19]
Ni(cod)の代わりにNi(acac)を15.1mg(0.06mmol)、トルエンを6mL、AL-39の代わりに合成例3で得られたAL-58を19.0mg(0.04mmol)、AL-58に加えたNi(acac)のトルエン溶液を4mLに変更した以外は、実施例1と同様に行って4mLの触媒溶液(AL-58濃度:約10mM)を調製した。
上記で調製した触媒溶液を用いて、触媒の追加を下記のように行い、重合条件を下記のように変更した以外は実施例2と同様に重合操作を行い、0.17gのポリマーを得た。
トルエン:93mL
コモノマーとその添加量:MA(1.6mL、18mmol)
TNOAの添加量:1.0mL(0.10mmol)
初期触媒:触媒溶液1.0mL
初期洗浄とその時間:反応開始2分後にトルエン3mLで洗浄した。
触媒の追加:反応開始23分後に2mLの触媒溶液を触媒シリンダーに注入し、高圧窒素でオートクレーブに加えた。反応開始26分後に3mLのトルエンで触媒シリンダーを洗浄し、高圧窒素で洗浄液をオートクレーブに加えた。
[Example 19]
The same procedure as in Example 1 was carried out except that 15.1 mg (0.06 mmol) of Ni(acac) 2 was used instead of Ni(cod) 2 , 6 mL of toluene was used, 19.0 mg (0.04 mmol) of AL-58 obtained in Synthesis Example 3 was used instead of AL-39, and the amount of the toluene solution of Ni(acac) 2 added to AL-58 was changed to 4 mL, and 4 mL of the catalyst solution (AL-58 concentration: about 10 mM) was prepared.
Using the catalyst solution prepared above, the polymerization was carried out in the same manner as in Example 2, except that the catalyst was added as described below and the polymerization conditions were changed as described below, to obtain 0.17 g of a polymer.
Toluene: 93 mL
Comonomer and its amount added: MA (1.6 mL, 18 mmol)
Amount of TNOA added: 1.0 mL (0.10 mmol)
Initial catalyst: 1.0 mL of catalyst solution
Initial washing and its time: 2 minutes after the start of the reaction, washing was performed with 3 mL of toluene.
Addition of catalyst: 23 minutes after the start of the reaction, 2 mL of catalyst solution was injected into the catalyst cylinder and added to the autoclave with high-pressure nitrogen. 26 minutes after the start of the reaction, the catalyst cylinder was washed with 3 mL of toluene and the washings were added to the autoclave with high-pressure nitrogen.

[実施例20]
Ni(cod)の代わりにNi(acac)を15.6mg(0.06mmol)、トルエンを6mL、AL-39の代わりに合成例4で得られたAL-59を19.6mg(0.04mmol)、AL-59に加えたNi(acac)のトルエン溶液を4mLに変更した以外は、実施例1と同様に行って4mLの触媒溶液(AL-59濃度:約10mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例2と同様に重合操作を行い、1.64gのポリマーを得た。
トルエン:93mL
コモノマーとその添加量:MA(1.6mL、18mmol)
TNOAの添加量:1.0mL(0.10mmol)
初期触媒:触媒溶液1.0mL
初期洗浄とその時間:反応開始2分後にトルエン3mLで洗浄した。
[Example 20]
The same procedure as in Example 1 was carried out except that 15.6 mg (0.06 mmol) of Ni(acac) 2 was used instead of Ni(cod) 2 , 6 mL of toluene was used, 19.6 mg (0.04 mmol) of AL-59 obtained in Synthesis Example 4 was used instead of AL-39, and the amount of the toluene solution of Ni(acac) 2 added to AL-59 was changed to 4 mL, and 4 mL of the catalyst solution (AL-59 concentration: about 10 mM) was prepared.
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the polymerization conditions were changed as follows, to obtain 1.64 g of a polymer.
Toluene: 93 mL
Comonomer and its amount added: MA (1.6 mL, 18 mmol)
Amount of TNOA added: 1.0 mL (0.10 mmol)
Initial catalyst: 1.0 mL of catalyst solution
Initial washing and its time: 2 minutes after the start of the reaction, washing was performed with 3 mL of toluene.

[実施例21]
Ni(cod)の代わりにNi(acac)を10.2mg(0.04mmol)、トルエンを8mL、AL-39の代わりに合成例5で得られたAL-63を11.2mg(0.015mmol)、AL-63に加えたNi(acac)のトルエン溶液を3mLに変更した以外は、実施例1と同様に行って3mLの触媒溶液(AL-63濃度:約5mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例2と同様に重合操作を行い、3.79gのポリマーを得た。
トルエン:94mL
コモノマーとその添加量:MA(1.6mL、18mmol)
初期触媒:触媒溶液1.2mL
初期洗浄とその時間:反応開始2分後にトルエン3mLで洗浄した。
[Example 21]
The same procedure as in Example 1 was carried out except that 10.2 mg (0.04 mmol) of Ni(acac) 2 was used instead of Ni(cod) 2 , 8 mL of toluene, 11.2 mg (0.015 mmol) of AL-63 obtained in Synthesis Example 5 was used instead of AL-39, and the amount of the toluene solution of Ni(acac) 2 added to AL-63 was changed to 3 mL, and 3 mL of the catalyst solution (AL-63 concentration: about 5 mM) was prepared.
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the polymerization conditions were changed as follows, to obtain 3.79 g of a polymer.
Toluene: 94 mL
Comonomer and its amount added: MA (1.6 mL, 18 mmol)
Initial catalyst: 1.2 mL of catalyst solution
Initial washing and its time: 2 minutes after the start of the reaction, washing was performed with 3 mL of toluene.

[実施例22]
Ni(cod)の代わりにNi(acac)を15.4mg(0.06mmol)、トルエンを6mL、AL-39の代わりに合成例6で得られたAL-64を23.8mg(0.04mmol)、AL-64に加えたNi(acac)のトルエン溶液を4mLに変更した以外は、実施例1と同様に行って4mLの触媒溶液(AL-64濃度:約10mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例2と同様に重合操作を行い、4.80gのポリマーを得た。
トルエン:94mL
TNOAの添加量:1.0mL(0.10mmol)
初期洗浄とその時間:反応開始2分後にトルエン3mLで洗浄した。
反応時間:45分
[Example 22]
The same procedure as in Example 1 was carried out except that 15.4 mg (0.06 mmol) of Ni(acac) 2 was used instead of Ni(cod) 2 , 6 mL of toluene was used, 23.8 mg (0.04 mmol) of AL-64 obtained in Synthesis Example 6 was used instead of AL-39, and the amount of the toluene solution of Ni(acac) 2 added to AL-64 was changed to 4 mL, and 4 mL of the catalyst solution (AL-64 concentration: about 10 mM) was prepared.
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the polymerization conditions were changed as follows, to obtain 4.80 g of a polymer.
Toluene: 94 mL
Amount of TNOA added: 1.0 mL (0.10 mmol)
Initial washing and its time: 2 minutes after the start of the reaction, washing was performed with 3 mL of toluene.
Reaction time: 45 min

[実施例23]
Ni(cod)の代わりにNi(acac)を15.6mg(0.060mmol)、トルエンを6mL、AL-39の代わりに合成例7で得られたAL-66を21.9mg(0.040mmol)、AL-66に加えたNi(acac)のトルエン溶液を4mLに変更した以外は、実施例1と同様に行って4mLの触媒溶液(AL-66濃度:約10mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例2と同様に重合操作を行い、3.11gのポリマーを得た。
トルエン:94mL
TNOAの添加量:0.5mL(0.05mmol)
コモノマーとその添加量:MA(0.9mL、10mmol)
初期触媒:触媒溶液1.0mL
初期洗浄とその時間:反応開始2分後にトルエン3mLで洗浄した。
反応停止剤:1,2-ブタンジオールの代わりに0.5mLの重酢酸を加えた。
反応時間:43分
[Example 23]
The same procedure as in Example 1 was carried out except that 15.6 mg (0.060 mmol) of Ni(acac) 2 was used instead of Ni(cod) 2 , 6 mL of toluene was used, 21.9 mg (0.040 mmol) of AL-66 obtained in Synthesis Example 7 was used instead of AL-39, and the amount of the toluene solution of Ni(acac) 2 added to AL-66 was changed to 4 mL, and 4 mL of the catalyst solution (AL-66 concentration: about 10 mM) was prepared.
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the polymerization conditions were changed as follows, to obtain 3.11 g of a polymer.
Toluene: 94 mL
Amount of TNOA added: 0.5 mL (0.05 mmol)
Comonomer and its amount added: MA (0.9 mL, 10 mmol)
Initial catalyst: 1.0 mL of catalyst solution
Initial washing and its time: 2 minutes after the start of the reaction, washing was performed with 3 mL of toluene.
Reaction quencher: 0.5 mL of diacetic acid was added in place of 1,2-butanediol.
Reaction time: 43 min

[実施例24]
Ni(cod)の代わりにNi(acac)を15.4mg(0.060mmol)、トルエンを6mL、AL-39の代わりに合成例9で得られたAL-70を16.9mg(0.040mmol)、AL-70に加えたNi(acac)のトルエン溶液を4mLに変更した以外は、実施例1と同様に行って4mLの触媒溶液(AL-70濃度:約10mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例2と同様に重合操作を行い、0.25gのポリマーを得た。
トルエン:94mL
TNOAの添加量:1.0mL(0.10mmol)
コモノマーとその添加量:MA(0.3mL、3.3mmol)
初期触媒:触媒溶液1.0mL
初期洗浄とその時間:反応開始2分後にトルエン3mLで洗浄した。
反応停止剤:1,2-ブタンジオールの代わりに0.5mLの重酢酸を加えた。
[Example 24]
The same procedure as in Example 1 was carried out except that 15.4 mg (0.060 mmol) of Ni(acac) 2 was used instead of Ni(cod) 2 , 6 mL of toluene was used, 16.9 mg (0.040 mmol) of AL-70 obtained in Synthesis Example 9 was used instead of AL-39, and the amount of the toluene solution of Ni(acac) 2 added to AL-70 was changed to 4 mL, and 4 mL of the catalyst solution (AL-70 concentration: about 10 mM) was prepared.
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the polymerization conditions were changed as follows, to obtain 0.25 g of a polymer.
Toluene: 94 mL
Amount of TNOA added: 1.0 mL (0.10 mmol)
Comonomer and its amount added: MA (0.3 mL, 3.3 mmol)
Initial catalyst: 1.0 mL of catalyst solution
Initial washing and its time: 2 minutes after the start of the reaction, washing was performed with 3 mL of toluene.
Reaction quencher: 0.5 mL of diacetic acid was added in place of 1,2-butanediol.

[実施例25]
Ni(cod)の代わりにNi(acac)を10.3mg(0.040mmol)、トルエンを8mL、AL-39の代わりに合成例10で得られたAL-72を12.4mg(0.015mmol)、AL-72に加えたNi(acac)のトルエン溶液を3mLに変更した以外は、実施例1と同様に行って3mLの触媒溶液(AL-72濃度:約5mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例2と同様に重合操作を行い、2.29gのポリマーを得た。
トルエン:94mL
コモノマーとその添加量:MA(1.6mL、18mmol)
初期触媒:触媒溶液1.2mL
初期洗浄とその時間:反応開始2分後にトルエン3mLで洗浄した。
反応停止剤:1,2-ブタンジオールの代わりに0.3mLの重酢酸を加えた。
[Example 25]
The same procedure as in Example 1 was carried out except that 10.3 mg (0.040 mmol) of Ni(acac) 2 was used instead of Ni(cod) 2 , 8 mL of toluene, 12.4 mg (0.015 mmol) of AL-72 obtained in Synthesis Example 10 was used instead of AL-39, and the amount of the toluene solution of Ni(acac) 2 added to AL-72 was changed to 3 mL, and 3 mL of the catalyst solution (AL-72 concentration: about 5 mM) was prepared.
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 2, except that the polymerization conditions were changed as follows, to obtain 2.29 g of a polymer.
Toluene: 94 mL
Comonomer and its amount added: MA (1.6 mL, 18 mmol)
Initial catalyst: 1.2 mL of catalyst solution
Initial washing and its time: 2 minutes after the start of the reaction, washing was performed with 3 mL of toluene.
Reaction quencher: 0.3 mL of diacetic acid was added in place of 1,2-butanediol.

[実施例26]
Ni(cod)の代わりにNi(acac)を15.1mg(0.060mmol)、トルエンを6mL、AL-39の代わりに合成例11で得られたAL-73を17.6mg(0.040mmol)、AL-73に加えたNi(acac)のトルエン溶液を4mLに変更した以外は、実施例1と同様に行って4mLの触媒溶液(AL-73濃度:約10mM)を調製した。
上記で調製した触媒溶液を用いて、触媒の追加を下記のように行い、重合条件を下記のように変更した以外は実施例2と同様に重合操作を行い、2.72gのポリマーを得た。
トルエン:95mL
コモノマーとその添加量:MA(0.3mL、3.3mmol)
TNOAの添加量:1.0mL(0.10mmol)
初期触媒:触媒溶液1.0mL
初期洗浄とその時間:反応開始2分後にトルエン3mLで洗浄した。
触媒の追加:反応開始9分後に1mLの触媒溶液を触媒シリンダーに注入し、高圧窒素でオートクレーブに加えた。反応開始14分後に3mLのトルエンで触媒シリンダーを洗浄し、高圧窒素で洗浄液をオートクレーブに加えた。
反応時間:39分
[Example 26]
The same procedure as in Example 1 was carried out except that 15.1 mg (0.060 mmol) of Ni(acac) 2 was used instead of Ni(cod) 2 , 6 mL of toluene was used, 17.6 mg (0.040 mmol) of AL-73 obtained in Synthesis Example 11 was used instead of AL-39, and the amount of the toluene solution of Ni(acac) 2 added to AL-73 was changed to 4 mL, and 4 mL of the catalyst solution (AL-73 concentration: about 10 mM) was prepared.
Using the catalyst solution prepared above, the polymerization was carried out in the same manner as in Example 2, except that the catalyst was added as described below and the polymerization conditions were changed as described below, to obtain 2.72 g of a polymer.
Toluene: 95 mL
Comonomer and its amount added: MA (0.3 mL, 3.3 mmol)
Amount of TNOA added: 1.0 mL (0.10 mmol)
Initial catalyst: 1.0 mL of catalyst solution
Initial washing and its time: 2 minutes after the start of the reaction, washing was performed with 3 mL of toluene.
Addition of catalyst: 9 minutes after the start of the reaction, 1 mL of catalyst solution was injected into the catalyst cylinder and added to the autoclave with high-pressure nitrogen. 14 minutes after the start of the reaction, the catalyst cylinder was washed with 3 mL of toluene and the washings were added to the autoclave with high-pressure nitrogen.
Reaction time: 39 min

[実施例27]
Ni(cod)を16.8mg(0.060mmol)、トルエンを6mL、AL-39の代わりに合成例3で得られたAL-58を19.8mg(0.040mmol)、AL-58に加えたNi(cod)のトルエン溶液を4mLに変更した以外は、実施例1と同様に行って4mLの触媒溶液(AL-58濃度:約10mM)を調製した。
0.2Lのオートクレーブにトルエンを50mL加えた。プロピレンを25g加え、オートクレーブ内を50℃に昇温した。触媒シリンダーに2mLの上記触媒溶液(以下、初期触媒-2)を注入し、高圧窒素でオートクレーブに加え、この時点を反応開始時刻とした。反応開始3分後に3mLのトルエンで触媒シリンダーを洗浄し、高圧窒素で洗浄液をオートクレーブに加えた(以下、初期洗浄とその時間-2)。反応開始60分後(以下、反応時間-2)に3mLの1,2-ブタンジオールのトルエン溶液(0.2M)を加えて反応を停止し、プロピレンを脱圧した。
精製方法:回収したトルエン溶液を濃縮し、黄色の油状ポリマーを得た。得られたポリマーを10mLのヘプタンに溶解させ、ISOLUTE(登録商標)SCX-2(Biotage社製)を100mg加えた。混合物を80℃で一時間撹拌し、SCX-2を濾過で取り除き、エバポレーターで濃縮して無色透明のポリマーを得た。ポリマーを80℃で3時間以上真空乾燥し、0.03gのポリマーを得た。
[Example 27]
The same procedure as in Example 1 was carried out except that 16.8 mg (0.060 mmol) of Ni(cod) 2 , 6 mL of toluene, 19.8 mg (0.040 mmol) of AL-58 obtained in Synthesis Example 3 was used instead of AL-39, and the amount of the toluene solution of Ni(cod) 2 added to AL-58 was changed to 4 mL, to prepare 4 mL of a catalyst solution (AL-58 concentration: about 10 mM).
50 mL of toluene was added to a 0.2 L autoclave. 25 g of propylene was added, and the temperature inside the autoclave was raised to 50°C. 2 mL of the above catalyst solution (hereinafter, initial catalyst-2) was poured into the catalyst cylinder and added to the autoclave with high-pressure nitrogen, and this point was the reaction start time. 3 minutes after the start of the reaction, the catalyst cylinder was washed with 3 mL of toluene, and the washing solution was added to the autoclave with high-pressure nitrogen (hereinafter, initial washing and its time-2). 60 minutes after the start of the reaction (hereinafter, reaction time-2), 3 mL of a toluene solution of 1,2-butanediol (0.2 M) was added to stop the reaction, and propylene was depressurized.
Purification method: The collected toluene solution was concentrated to obtain a yellow oily polymer. The obtained polymer was dissolved in 10 mL of heptane, and 100 mg of ISOLUTE (registered trademark) SCX-2 (Biotage) was added. The mixture was stirred at 80°C for one hour, the SCX-2 was removed by filtration, and the mixture was concentrated in an evaporator to obtain a colorless and transparent polymer. The polymer was vacuum-dried at 80°C for more than 3 hours to obtain 0.03 g of polymer.

[実施例28]
Ni(cod)を16.4mg(0.060mmol)、トルエンを6mL、AL-39の代わりに合成例4で得られたAL-59を19.9mg(0.040mmol)、AL-59に加えたNi(cod)のトルエン溶液を4mLに変更した以外は、実施例1と同様に行って4mLの触媒溶液(AL-59濃度:約10mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例27と同様に重合操作を行い、6.11gのポリマーを得た。
初期洗浄とその時間-2:反応開始5分後に3mLのトルエンで洗浄した。
[Example 28]
The same procedure as in Example 1 was carried out except that 16.4 mg (0.060 mmol) of Ni(cod) 2 , 6 mL of toluene, 19.9 mg (0.040 mmol) of AL-59 obtained in Synthesis Example 4 instead of AL-39, and 4 mL of the toluene solution of Ni(cod) 2 added to AL-59 were used, to prepare 4 mL of a catalyst solution (AL-59 concentration: about 10 mM).
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 27, except that the polymerization conditions were changed as follows, to obtain 6.11 g of a polymer.
Initial washing and its time-2: Five minutes after the start of the reaction, washing was performed with 3 mL of toluene.

[実施例29]
Ni(cod)を16.3mg(0.060mmol)、トルエンを6mL、AL-39の代わりに合成例4で得られたAL-59を14.9mg(0.030mmol)、AL-59に加えたNi(cod)のトルエン溶液を3mLに変更した以外は、実施例1と同様に行って3mLの触媒溶液(AL-59濃度:約10mM)を調製した。
0.2Lのオートクレーブにトルエンを43mL加えた。試薬投入口からMUを2.2mL(10mmol)、Al(OiPr)のトルエン溶液(0.1M)を0.2mL加えた。プロピレンを25g加え、オートクレーブ内を50℃に昇温した。触媒シリンダーに2mLの上記触媒溶液を注入し、高圧窒素でオートクレーブに加え、この時点を反応開始時刻とした。反応開始2分後に3mLのトルエンで触媒シリンダーを洗浄し、高圧窒素で洗浄液をオートクレーブに加えた。反応開始60分後に3mLの1,2-ブタンジオールのトルエン溶液(0.2M)を加えて反応を停止し、プロピレンを脱圧した。
精製方法:回収したトルエン溶液を濃縮し、黄色の油状液体を得た。得られた液体を120℃に加熱し、20分真空乾燥した。続いて、ポリマーを150℃に熱し、40分真空乾燥した。10mLのヘプタンを加え、ISOLUTE(登録商標)SCX-2(Biotage社製)を100mg加えた。混合物を80℃で一時間撹拌し、SCX-2を濾過で取り除き、エバポレーターで濃縮して無色透明のポリマーを得た。得られた液体を80℃で3時間以上乾燥し、0.57gのポリマーを得た。
[Example 29]
The same procedure as in Example 1 was carried out except that 16.3 mg (0.060 mmol) of Ni(cod) 2 , 6 mL of toluene, 14.9 mg (0.030 mmol) of AL-59 obtained in Synthesis Example 4 instead of AL-39, and 3 mL of the toluene solution of Ni(cod) 2 added to AL-59 were used, to prepare 3 mL of a catalyst solution (AL-59 concentration: about 10 mM).
43 mL of toluene was added to a 0.2 L autoclave. 2.2 mL (10 mmol) of MU and 0.2 mL of a toluene solution (0.1 M) of Al(OiPr) 3 were added from the reagent inlet. 25 g of propylene was added, and the temperature inside the autoclave was raised to 50°C. 2 mL of the above catalyst solution was injected into the catalyst cylinder and added to the autoclave with high-pressure nitrogen, and this point was designated as the reaction start time. Two minutes after the start of the reaction, the catalyst cylinder was washed with 3 mL of toluene, and the washings were added to the autoclave with high-pressure nitrogen. 60 minutes after the start of the reaction, 3 mL of a toluene solution (0.2 M) of 1,2-butanediol was added to stop the reaction, and the propylene was depressurized.
Purification method: The recovered toluene solution was concentrated to obtain a yellow oily liquid. The obtained liquid was heated to 120°C and dried in vacuum for 20 minutes. The polymer was then heated to 150°C and dried in vacuum for 40 minutes. 10 mL of heptane was added, and 100 mg of ISOLUTE® SCX-2 (Biotage) was added. The mixture was stirred at 80°C for 1 hour, the SCX-2 was removed by filtration, and the mixture was concentrated in an evaporator to obtain a colorless and transparent polymer. The obtained liquid was dried at 80°C for more than 3 hours to obtain 0.57 g of polymer.

[実施例30]
Ni(cod)を13.8mg(0.050mmol)、トルエンを5mL、AL-39の代わりに合成例5で得られたAL-63を23.0mg(0.030mmol)、AL-63に加えたNi(cod)のトルエン溶液を3mLに変更した以外は、実施例1と同様に行って3mLの触媒溶液(AL-63濃度:約10mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例27と同様に重合操作を行い、4.80gのポリマーを得た。
初期触媒-2:1.0mL
初期洗浄とその時間-2:反応開始2分後に3mLのトルエンで洗浄した。
反応時間-2:6分
[Example 30]
The same procedure as in Example 1 was carried out except that 13.8 mg (0.050 mmol) of Ni(cod) 2 , 5 mL of toluene, 23.0 mg (0.030 mmol) of AL-63 obtained in Synthesis Example 5 instead of AL-39, and 3 mL of the toluene solution of Ni(cod) 2 added to AL-63 were used, to prepare 3 mL of a catalyst solution (AL-63 concentration: about 10 mM).
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 27, except that the polymerization conditions were changed as follows, to obtain 4.80 g of a polymer.
Initial catalyst-2: 1.0 mL
Initial washing and its time-2: 2 minutes after the start of the reaction, washing was performed with 3 mL of toluene.
Reaction time-2: 6 minutes

[実施例31]
Ni(cod)を13.8mg(0.050mmol)、トルエンを5mL、AL-39の代わりに合成例6で得られたAL-64を17.9mg(0.030mmol)、AL-64に加えたNi(cod)のトルエン溶液を3mLに変更した以外は、実施例1と同様に行って3mLの触媒溶液(AL-64濃度:約10mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例27と同様に重合操作を行い、6.87gのポリマーを得た。
初期触媒-2:1.0mL
初期洗浄とその時間-2:反応開始2分後に3mLのトルエンで洗浄した。
[Example 31]
The same procedure as in Example 1 was carried out except that 13.8 mg (0.050 mmol) of Ni(cod) 2 , 5 mL of toluene, 17.9 mg (0.030 mmol) of AL-64 obtained in Synthesis Example 6 was used instead of AL-39, and the amount of the toluene solution of Ni(cod) 2 added to AL-64 was changed to 3 mL, to prepare 3 mL of a catalyst solution (AL-64 concentration: about 10 mM).
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 27, except that the polymerization conditions were changed as follows, to obtain 6.87 g of a polymer.
Initial catalyst-2: 1.0 mL
Initial washing and its time-2: 2 minutes after the start of the reaction, washing was performed with 3 mL of toluene.

[実施例32]
Ni(cod)を13.8mg(0.050mmol)、トルエンを5mL、AL-39の代わりに合成例7で得られたAL-66を16.3mg(0.030mmol)、AL-66に加えたNi(cod)のトルエン溶液を3mLに変更した以外は、実施例1と同様に行って3mLの触媒溶液(AL-66濃度:約10mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例27と同様に重合操作を行い、6.30gのポリマーを得た。
初期触媒-2:1.0mL
初期洗浄とその時間-2:反応開始2分後に3mLのトルエンで洗浄した。
[Example 32]
The same procedure as in Example 1 was carried out except that 13.8 mg (0.050 mmol) of Ni(cod) 2 , 5 mL of toluene, 16.3 mg (0.030 mmol) of AL-66 obtained in Synthesis Example 7 was used instead of AL-39, and the amount of the toluene solution of Ni(cod) 2 added to AL-66 was changed to 3 mL, to prepare 3 mL of a catalyst solution (AL-66 concentration: about 10 mM).
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 27, except that the polymerization conditions were changed as follows, to obtain 6.30 g of a polymer.
Initial catalyst-2: 1.0 mL
Initial washing and its time-2: 2 minutes after the start of the reaction, washing was performed with 3 mL of toluene.

[実施例33]
Ni(cod)を16.9mg(0.060mmol)、トルエンを6mL、AL-39の代わりに合成例9で得られたAL-70を17.2mg(0.040mmol)、AL-70に加えたNi(cod)のトルエン溶液を4mLに変更した以外は、実施例1と同様に行って4mLの触媒溶液(AL-70濃度:約10mM)を調製した。
上記で調製した触媒溶液を用いて、重合条件を下記のように変更した以外は実施例27と同様に重合操作を行い、1.11gのポリマーを得た。
初期触媒-2:1.0mL
[Example 33]
The same procedure as in Example 1 was carried out except that 16.9 mg (0.060 mmol) of Ni(cod) 2 , 6 mL of toluene, 17.2 mg (0.040 mmol) of AL-70 obtained in Synthesis Example 9 was used instead of AL-39, and the amount of the toluene solution of Ni(cod) 2 added to AL-70 was changed to 4 mL, to prepare 4 mL of a catalyst solution (AL-70 concentration: about 10 mM).
Using the catalyst solution prepared above, polymerization was carried out in the same manner as in Example 27, except that the polymerization conditions were changed as follows, to obtain 1.11 g of a polymer.
Initial catalyst-2: 1.0 mL

[比較例1]
フラスコにトリス(ペンタフルオロフェニル)ボラン92.6mg(0.18mmol)を量り取り、6mLのトルエンを加えて溶解させた。別のフラスコにAL-2alを13.0mg(0.03mmol)量り取り、これにトリス(ペンタフルオロフェニル)ボランのトルエン溶液を5mL加えた。この溶液を室温で30分間攪拌させ、触媒溶液(6mM)を調製した。
0.2Lのオートクレーブにトルエンを92mL加え、90℃に昇温した。このオートクレーブの内圧が0.5MPaになるように窒素を加えた。続いて、オートクレーブの内圧が3.0MPaになるようにエチレンを加えた。上記触媒溶液0.5mLと2.5mLのトルエンを触媒シリンダーに加えて、得られた触媒溶液を3.3MPaの窒素でオートクレーブに加え、この時点を反応開始時刻とした。反応開始5分後、12分後にそれぞれ1.0mL、2.5mLの触媒溶液を追加した。反応開始16分後に触媒シリンダーを3mLのトルエンで洗浄し、洗浄液をオートクレーブに加えた。反応開始60分後に1,2-ブタンジオールのトルエン溶液(0.2M)を加えて反応を停止し、エチレンを脱圧した。当該オートクレーブを室温に戻し、アセトン(100mL)を加えた。析出した固体を、濾過により回収し、固体をアセトンで洗浄し(100mL×2)、減圧乾燥した。得られたポリマーは0.57gであった。
[Comparative Example 1]
92.6 mg (0.18 mmol) of tris(pentafluorophenyl)borane was weighed out in a flask, and 6 mL of toluene was added to dissolve it. 13.0 mg (0.03 mmol) of AL-2al was weighed out in a separate flask, and 5 mL of a toluene solution of tris(pentafluorophenyl)borane was added thereto. This solution was stirred at room temperature for 30 minutes to prepare a catalyst solution (6 mM).
92 mL of toluene was added to a 0.2 L autoclave, and the temperature was raised to 90°C. Nitrogen was added so that the internal pressure of the autoclave was 0.5 MPa. Then, ethylene was added so that the internal pressure of the autoclave was 3.0 MPa. 0.5 mL of the above catalyst solution and 2.5 mL of toluene were added to the catalyst cylinder, and the resulting catalyst solution was added to the autoclave with 3.3 MPa of nitrogen, and this point was the reaction start time. 5 minutes and 12 minutes after the start of the reaction, 1.0 mL and 2.5 mL of the catalyst solution were added, respectively. 16 minutes after the start of the reaction, the catalyst cylinder was washed with 3 mL of toluene, and the washing solution was added to the autoclave. 60 minutes after the start of the reaction, a toluene solution (0.2 M) of 1,2-butanediol was added to stop the reaction, and ethylene was depressurized. The autoclave was returned to room temperature, and acetone (100 mL) was added. The precipitated solid was collected by filtration, washed with acetone (100 mL x 2), and dried under reduced pressure. The obtained polymer was 0.57 g.

[比較例2]
トリス(ペンタフルオロフェニル)ボランを383.5mg(0.75mmol)、トルエンを15mL、AL-2alを25.9mg(0.06mmol)、トリス(ペンタフルオロフェニル)ボランのトルエン溶液を6mLに変更した以外は、比較例1と同様にして触媒溶液(10mM)を調製した。
0.2Lのオートクレーブにトルエンを91mL、tBAを0.3mL(2.1mmol)加え、TNOAのトルエン溶液(0.1M)を100μL加え、90℃に昇温した。
このオートクレーブの内圧が0.5MPaになるように窒素を加えた。続いて、オートクレーブの内圧が3.0MPaになるようにエチレンを加えた。上記触媒溶液2.5mLを触媒シリンダーに加えて、3.3MPaの窒素でオートクレーブに加えた時点を反応開始時刻とした。反応開始3分後に2.5mLの触媒溶液を追加した。反応開始6分後に触媒シリンダーを3mLのトルエンで洗浄し、洗浄液をオートクレーブに加えた。反応開始60分後に1,2-ブタンジオールのトルエン溶液(0.2M)を加えて反応を停止し、エチレンを脱圧した。当該オートクレーブを室温に戻し、アセトン100mLを加えた。析出した固体を、濾過により回収し、固体をアセトン100mLで2回洗浄し、減圧乾燥した。得られたポリマーは0.016gであった。
[Comparative Example 2]
A catalyst solution (10 mM) was prepared in the same manner as in Comparative Example 1, except that the amount of tris(pentafluorophenyl)borane was changed to 383.5 mg (0.75 mmol), the amount of toluene was changed to 15 mL, the amount of AL-2al was changed to 25.9 mg (0.06 mmol), and the amount of the toluene solution of tris(pentafluorophenyl)borane was changed to 6 mL.
To a 0.2 L autoclave, 91 mL of toluene, 0.3 mL (2.1 mmol) of tBA, and 100 μL of a toluene solution of TNOA (0.1 M) were added, and the temperature was raised to 90°C.
Nitrogen was added to the autoclave so that the internal pressure was 0.5 MPa. Ethylene was then added to the autoclave so that the internal pressure was 3.0 MPa. 2.5 mL of the above catalyst solution was added to the catalyst cylinder, and the reaction was started when 3.3 MPa of nitrogen was added to the autoclave. 3 minutes after the reaction started, 2.5 mL of the catalyst solution was added. 6 minutes after the reaction started, the catalyst cylinder was washed with 3 mL of toluene, and the washings were added to the autoclave. 60 minutes after the reaction started, a toluene solution (0.2 M) of 1,2-butanediol was added to stop the reaction, and the ethylene was depressurized. The autoclave was returned to room temperature, and 100 mL of acetone was added. The precipitated solid was collected by filtration, washed twice with 100 mL of acetone, and dried under reduced pressure. The polymer obtained was 0.016 g.

[比較例3]
フラスコにトリス(ペンタフルオロフェニル)ボラン384.0mg(0.75mmol)を量り取り、15mLのトルエンを加えて溶解させた。別のフラスコにAL-2alを26.0mg(0.06mmol)量り取り、これにトリス(ペンタフルオロフェニル)ボランのトルエン溶液を6mL加えた。この溶液を室温で30分間攪拌させ、触媒溶液(10mM)を調製した。
0.2Lのオートクレーブにトルエンを50mL、プロピレンを25g加え、オートクレーブ内を50℃に昇温した。触媒シリンダーに2.5mLの上記触媒溶液を注入し、高圧窒素でオートクレーブに加え、この時点を反応開始時刻とした。反応開始4分後に3mLのトルエンで触媒シリンダーを洗浄し、高圧窒素で洗浄液をオートクレーブに加えた。反応開始8分後に2.5mLの上記触媒溶液を触媒シリンダーに注入し、高圧窒素でオートクレーブに加えた。反応開始10分後に3mLのトルエンで触媒シリンダーを洗浄し、高圧窒素で洗浄液をオートクレーブに加えた。反応開始60分後に3mLの1,2-ブタンジオールのトルエン溶液(0.2M)を加えて反応を停止し、プロピレンを脱圧した。当該オートクレーブを室温に戻し、トルエンを留去して油状のポリプロピレンを得た。得られたポリプロピレンは、大気下でシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン100%)により精製した。得られた油状の物質を減圧乾燥し、0.021gのポリプロピレンを得た。
[Comparative Example 3]
384.0 mg (0.75 mmol) of tris(pentafluorophenyl)borane was weighed out into a flask, and 15 mL of toluene was added to dissolve it. 26.0 mg (0.06 mmol) of AL-2al was weighed out into another flask, and 6 mL of a toluene solution of tris(pentafluorophenyl)borane was added thereto. This solution was stirred at room temperature for 30 minutes to prepare a catalyst solution (10 mM).
50 mL of toluene and 25 g of propylene were added to a 0.2 L autoclave, and the temperature inside the autoclave was raised to 50°C. 2.5 mL of the above catalyst solution was poured into the catalyst cylinder and added to the autoclave with high-pressure nitrogen, and this point was the reaction start time. 4 minutes after the start of the reaction, the catalyst cylinder was washed with 3 mL of toluene, and the washing liquid was added to the autoclave with high-pressure nitrogen. 8 minutes after the start of the reaction, 2.5 mL of the above catalyst solution was poured into the catalyst cylinder and added to the autoclave with high-pressure nitrogen. 10 minutes after the start of the reaction, the catalyst cylinder was washed with 3 mL of toluene, and the washing liquid was added to the autoclave with high-pressure nitrogen. 60 minutes after the start of the reaction, 3 mL of a toluene solution of 1,2-butanediol (0.2 M) was added to stop the reaction, and propylene was depressurized. The autoclave was returned to room temperature, and toluene was distilled off to obtain oily polypropylene. The obtained polypropylene was purified by silica gel column chromatography (developing solvent: 100% hexane) under air. The resulting oily substance was dried under reduced pressure to give 0.021 g of polypropylene.

以上の実施例1~26の重合条件を表1に、得られた結果を表2に、実施例27~33の重合条件を表3に、得られた結果を表4に、比較例1~3の重合条件を表5に、及び得られた結果を表6または7にまとめた。なお、表中「n.m.」は未測定(測定に充分なサンプル量が得られなかった)、「n.d.」は未検出(検出限界以下)を意味する。 The polymerization conditions for Examples 1 to 26 are summarized in Table 1, the results obtained are summarized in Table 2, the polymerization conditions for Examples 27 to 33 are summarized in Table 3, the results obtained are summarized in Table 4, the polymerization conditions for Comparative Examples 1 to 3 are summarized in Table 5, and the results obtained are summarized in Table 6 or 7. In the tables, "n.m." means not measured (sufficient sample amount for measurement was not obtained), and "n.d." means not detected (below detection limit).

Figure 2024052628000053
Figure 2024052628000053

Figure 2024052628000054
Figure 2024052628000054

Figure 2024052628000055
Figure 2024052628000055

Figure 2024052628000056
Figure 2024052628000056

Figure 2024052628000057
Figure 2024052628000057

Figure 2024052628000058
Figure 2024052628000058

Figure 2024052628000059
Figure 2024052628000059

前記本発明の実施例と比較例との比較により、本発明の配位子として用いられ得る新規な化合物、当該新規な化合物を用いた金属錯体、オレフィン重合用触媒組成物、及びオレフィン重合用触媒、並びに、当該触媒を用いたオレフィン系重合体の製造方法によれば、活性や分子量などの触媒性能が改善されて、オレフィンの重合又は共重合に使用できる、中でも極性基含有モノマーおよび環状オレフィンからなる群より選ばれる少なくとも1種類のモノマーと、非環状オレフィンを共重合できることが明らかにされた。 By comparing the above-mentioned examples of the present invention with the comparative examples, it has been revealed that the novel compound that can be used as a ligand of the present invention, the metal complex using the novel compound, the catalyst composition for olefin polymerization, and the catalyst for olefin polymerization, as well as the process for producing an olefin-based polymer using the catalyst, have improved catalytic performance such as activity and molecular weight, and can be used for the polymerization or copolymerization of olefins, and in particular can copolymerize a non-cyclic olefin with at least one monomer selected from the group consisting of polar group-containing monomers and cyclic olefins.

Claims (16)

下記一般式(A)で表される化合物。
[式(A)中、
は、酸素原子または硫黄原子を表し、
は、窒素原子、リン原子、砒素原子またはアンチモン原子を表し、
Zは、水素原子、脱離基または1以上4以下の価数を有するカチオンを表し、
mは、1以上Zの価数以下の整数であり、
nは、0、1、2、3または4であり、nが0のとき、EはX、RおよびRが結合する炭素原子に直接結合し、
は、下記一般式(B)または(C)で表される炭化水素基を表し、
は、下記一般式(B)または(C)で表される炭化水素基とは異なる、ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~20の炭化水素基を表し、
lは1または2であり、lが2のとき、Rは存在しない。
、R、R、およびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
(i)水素原子
(ii)ハロゲン原子
(iii)ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~30の炭化水素基
(iv)OR、C(O)OR、C(O)OM’、C(O)N(R、C(O)R、OC(O)R、SR、S(O)、S(O)R、OS(O)、SF、P(O)(OR2-y(R、CN、N(H)R、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、S(O)OM’、P(O)(OM’)、P(O)(ORM’またはエポキシ含有基(ここで、Rはそれぞれ独立に、水素原子または炭素数1~20の炭化水素基を表し、Rはそれぞれ独立に、炭素数1~20の炭化水素基を表し、M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0、1、2または3、yは0、1または2を表す)。R、R、R、およびRは、隣接置換基同士が互いに連結し、5~8員の、脂環式環または酸素原子、窒素原子、若しくは硫黄原子から選ばれるヘテロ原子を少なくとも1つ含有する複素環を形成していてもよい。]
[式(B)及び式(C)中、
*はEとの結合手を表し、
、R、R、R10、R11、R12およびR13は、それぞれ独立に、前記式(A)で定義する(i)~(iv)からなる群より選ばれる原子または基を表し、R、R、RおよびR10は、隣接置換基同士が互いに連結し、5~8員の、脂環式環、芳香族環、または酸素原子、窒素原子、若しくは硫黄原子から選ばれるヘテロ原子を少なくとも1つ含有する複素環を形成していてもよく、
、A、AおよびAは、それぞれ独立に、酸素原子、硫黄原子、-C(R)-、-S(O)-、-S(O)-、-N(R)-、-P(R)-、または-P(O)(R)-(ここで、Rはそれぞれ独立に、水素原子、または、ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~20の炭化水素基を表す。)を表す。
ただし、
式(B)中、A、A、AおよびAのうち、少なくとも3つが-C(R)-以外であり、
式(C)中、AおよびAはいずれも-C(R)-以外であり、且つ、R12およびR13のうち、少なくとも1つは前記(ii)および(iv)(ただしエポキシ含有基を除く)からなる群より選ばれる原子または基である。
およびWは、それぞれ独立に、炭素原子、ケイ素原子、窒素原子、リン原子、ホウ素原子、酸素原子、-P(O)-または-S(O)-を表し、窒素原子、リン原子、ホウ素原子または-P(O)-のとき、RおよびR10は存在せず、酸素原子または-S(O)-のとき、RおよびR並びにRおよびR10は存在しない。
hおよびiは、それぞれ独立に、1~6の整数であり、W、W、R、R、RおよびR10が複数存在する場合、複数のW、W、R、R、RおよびR10はそれぞれ同一であっても異なっていてもよい。]
A compound represented by the following general formula (A):
[In the formula (A),
X1 represents an oxygen atom or a sulfur atom;
E1 represents a nitrogen atom, a phosphorus atom, an arsenic atom, or an antimony atom;
Z represents a hydrogen atom, a leaving group, or a cation having a valence of 1 to 4,
m is an integer from 1 to the valence of Z,
n is 0, 1, 2, 3 or 4, and when n is 0, E 1 is directly bonded to the carbon atom to which X 1 , R 5 and R 6 are bonded;
R 1 represents a hydrocarbon group represented by the following general formula (B) or (C):
R2 represents a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one heteroatom and which is different from the hydrocarbon group represented by the following general formula (B) or (C),
l is 1 or 2, and when l is 2, R2 is absent.
R 3 , R 4 , R 5 , and R 6 each independently represent an atom or group selected from the group consisting of the following (i) to (iv):
(i) a hydrogen atom; (ii) a halogen atom; (iii) a hydrocarbon group having 1 to 30 carbon atoms which may contain at least one heteroatom; (iv) OR b , C(O)OR b , C(O)OM', C(O)N(R a ) 2 , C(O)R b , OC(O)R b , SR b , S(O) 2 R b , S(O)R b , OS(O) 2 R b , SF 5 , P(O)(OR b ) 2-y (R a ) y , CN, N(H)R a , N(R b ) 2 , Si(OR a ) 3-x (R a ) x , OSi(OR a ) 3-x (R a ) x , NO 2 , S(O) 2 OM', P(O)(OM') 2 , P(O)(OR b ) 2 M', or an epoxy-containing group (wherein R a each independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, R b each independently represents a hydrocarbon group having 1 to 20 carbon atoms, M' represents an alkali metal, an alkaline earth metal, ammonium, a quaternary ammonium or a phosphonium, x represents 0, 1, 2 or 3, and y represents 0, 1 or 2). Adjacent substituents of R 3 , R 4 , R 5 and R 6 may be linked together to form a 5-8 membered alicyclic ring or a heterocycle containing at least one heteroatom selected from an oxygen atom, a nitrogen atom or a sulfur atom. ]
[In formula (B) and formula (C),
* represents a bond to E1 ;
R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and R 13 each independently represent an atom or group selected from the group consisting of (i) to (iv) defined in formula (A), and adjacent substituents of R 7 , R 8 , R 9 and R 10 may be bonded to each other to form a 5- to 8-membered alicyclic ring, aromatic ring, or heterocycle containing at least one heteroatom selected from an oxygen atom, a nitrogen atom, or a sulfur atom;
A 1 , A 2 , A 3 and A 4 each independently represent an oxygen atom, a sulfur atom, -C(R) 2 -, -S(O)-, -S(O) 2 -, -N(R)-, -P(R)- or -P(O)(R)- (wherein each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one heteroatom).
however,
In formula (B), at least three of A 1 , A 2 , A 3 and A 4 are other than —C(R) 2 —;
In formula (C), A3 and A4 are both other than -C(R) 2- , and at least one of R12 and R13 is an atom or group selected from the group consisting of (ii) and (iv) (excluding epoxy-containing groups).
W 1 and W 2 each independently represent a carbon atom, a silicon atom, a nitrogen atom, a phosphorus atom, a boron atom, an oxygen atom, -P(O)- or -S(O) 2 -; when W 1 and W 2 represent a nitrogen atom, a phosphorus atom, a boron atom or -P(O)-, R 8 and R 10 do not exist, and when W 1 and W 2 represent an oxygen atom or -S(O) 2 -, R 7 and R 8 , as well as R 9 and R 10 do not exist.
h and i each independently represent an integer of 1 to 6, and when a plurality of W 1 , W 2 , R 7 , R 8 , R 9 and R 10 are present, the plurality of W 1 , W 2 , R 7 , R 8 , R 9 and R 10 may be the same or different.]
下記一般式(D)で表される金属錯体。
[式(D)中、
は、酸素原子または硫黄原子を表し、
は、窒素原子、リン原子、砒素原子またはアンチモン原子を表し、
nは、0、1、2、3または4であり、nが0のとき、EはX、RおよびRが結合する炭素原子に直接結合し、
は、下記一般式(B)または(C)で表される炭化水素基を表し、
は、下記一般式(B)または(C)で表される炭化水素基とは異なる、ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~20の炭化水素基を表し、
lは1または2であり、lが2のとき、Rは存在しない。
、R、R、およびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
(i)水素原子
(ii)ハロゲン原子
(iii)ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~30の炭化水素基
(iv)OR、C(O)OR、C(O)OM’、C(O)N(R、C(O)R、OC(O)R、SR、S(O)、S(O)R、OS(O)、SF、P(O)(OR2-y(R、CN、N(H)R、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、S(O)OM’、P(O)(OM’)、P(O)(ORM’またはエポキシ含有基(ここで、Rはそれぞれ独立に、水素原子または炭素数1~20の炭化水素基を表し、Rはそれぞれ独立に、炭素数1~20の炭化水素基を表し、M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0、1、2または3、yは0、1または2を表す)。R、R、R、およびRは、隣接置換基同士が互いに連結し、5~8員の、脂環式環または酸素原子、窒素原子、若しくは硫黄原子から選ばれるヘテロ原子を少なくとも1つ含有する複素環を形成していてもよい。
は、ニッケル原子またはパラジウム原子を表し、
およびLは、それぞれ独立に、Mに配位したリガンドを表し、
およびLは互いに結合してMを含む環を形成してもよい。]
[式(B)及び式(C)中、
*はEとの結合手を表し、
、R、R、R10、R11、R12およびR13は、それぞれ独立に、前記式(A)で定義する(i)~(iv)からなる群より選ばれる原子または基を表し、R、R、RおよびR10は、隣接置換基同士が互いに連結し、5~8員の、脂環式環、芳香族環、または酸素原子、窒素原子、若しくは硫黄原子から選ばれるヘテロ原子を少なくとも1つ含有する複素環を形成していてもよく、
、A、AおよびAは、それぞれ独立に、酸素原子、硫黄原子、-C(R)-、-S(O)-、-S(O)-、-N(R)-、-P(R)-、または-P(O)(R)-(ここで、Rはそれぞれ独立に、水素原子、または、ヘテロ原子を少なくとも1つ含んでいてもよい炭素数1~20の炭化水素基を表す。)を表す。
ただし、
式(B)中、A、A、AおよびAのうち、少なくとも3つが-C(R)-以外であり、
式(C)中、AおよびAはいずれも-C(R)-以外であり、且つ、R12およびR13のうち、少なくとも1つは前記(ii)および(iv)(ただしエポキシ含有基を除く)からなる群より選ばれる原子または基である。
およびWは、それぞれ独立に、炭素原子、ケイ素原子、窒素原子、リン原子、ホウ素原子、酸素原子、-P(O)-または-S(O)-を表し、窒素原子、リン原子、ホウ素原子または-P(O)-のとき、RおよびR10は存在せず、酸素原子または-S(O)-のとき、RおよびR並びにRおよびR10は存在しない。
hおよびiは、それぞれ独立に、1~6の整数であり、W、W、R、R、RおよびR10が複数存在する場合、複数のW、W、R、R、RおよびR10はそれぞれ同一であっても異なっていてもよい。]
A metal complex represented by the following general formula (D):
[In the formula (D),
X1 represents an oxygen atom or a sulfur atom;
E1 represents a nitrogen atom, a phosphorus atom, an arsenic atom, or an antimony atom;
n is 0, 1, 2, 3 or 4, and when n is 0, E 1 is directly bonded to the carbon atom to which X 1 , R 5 and R 6 are bonded;
R 1 represents a hydrocarbon group represented by the following general formula (B) or (C):
R2 represents a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one heteroatom and which is different from the hydrocarbon group represented by the following general formula (B) or (C),
l is 1 or 2, and when l is 2, R2 is absent.
R 3 , R 4 , R 5 , and R 6 each independently represent an atom or group selected from the group consisting of the following (i) to (iv):
(i) a hydrogen atom; (ii) a halogen atom; (iii) a hydrocarbon group having 1 to 30 carbon atoms which may contain at least one heteroatom; (iv) OR b , C(O)OR b , C(O)OM', C(O)N(R a ) 2 , C(O)R b , OC(O)R b , SR b , S(O) 2 R b , S(O)R b , OS(O) 2 R b , SF 5 , P(O)(OR b ) 2-y (R a ) y , CN, N(H)R a , N(R b ) 2 , Si(OR a ) 3-x (R a ) x , OSi(OR a ) 3-x (R a ) x , NO 2 , S(O) 2 OM', P(O)(OM') 2 , P(O)(OR b ) 2 M' or an epoxy-containing group (wherein R a each independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, R b each independently represents a hydrocarbon group having 1 to 20 carbon atoms, M' represents an alkali metal, an alkaline earth metal, ammonium, a quaternary ammonium or a phosphonium, x represents 0, 1, 2 or 3, y represents 0, 1 or 2). Adjacent substituents of R 3 , R 4 , R 5 and R 6 may be linked together to form a 5-8 membered alicyclic ring or a heterocycle containing at least one heteroatom selected from an oxygen atom, a nitrogen atom or a sulfur atom.
M1 represents a nickel atom or a palladium atom;
L1 and L2 each independently represent a ligand coordinated to M1 ;
L1 and L2 may be bonded to each other to form a ring containing M1 .
[In formula (B) and formula (C),
* represents a bond to E1 ;
R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and R 13 each independently represent an atom or group selected from the group consisting of (i) to (iv) defined in formula (A), and adjacent substituents of R 7 , R 8 , R 9 and R 10 may be bonded to each other to form a 5- to 8-membered alicyclic ring, aromatic ring, or heterocycle containing at least one heteroatom selected from an oxygen atom, a nitrogen atom, or a sulfur atom;
A 1 , A 2 , A 3 and A 4 each independently represent an oxygen atom, a sulfur atom, -C(R) 2 -, -S(O)-, -S(O) 2 -, -N(R)-, -P(R)- or -P(O)(R)- (wherein each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one heteroatom).
however,
In formula (B), at least three of A 1 , A 2 , A 3 and A 4 are other than —C(R) 2 —;
In formula (C), A3 and A4 are both other than -C(R) 2- , and at least one of R12 and R13 is an atom or group selected from the group consisting of (ii) and (iv) (excluding epoxy-containing groups).
W 1 and W 2 each independently represent a carbon atom, a silicon atom, a nitrogen atom, a phosphorus atom, a boron atom, an oxygen atom, -P(O)- or -S(O) 2 -; when W 1 and W 2 represent a nitrogen atom, a phosphorus atom, a boron atom or -P(O)-, R 8 and R 10 do not exist, and when W 1 and W 2 represent an oxygen atom or -S(O) 2 -, R 7 and R 8 , as well as R 9 and R 10 do not exist.
h and i each independently represent an integer of 1 to 6, and when a plurality of W 1 , W 2 , R 7 , R 8 , R 9 and R 10 are present, the plurality of W 1 , W 2 , R 7 , R 8 , R 9 and R 10 may be the same or different.]
請求項1に記載の前記一般式(A)で表される化合物と、下記一般式(E)または(F)で表される遷移金属化合物とを含む、オレフィン重合用触媒組成物。
〔式(E)および式(F)中、
は、ニッケル原子またはパラジウム原子を表し、
およびLは、それぞれ独立に、Mに配位したリガンドを表し、
およびLは互いに結合してMを含む環を形成してもよい。
およびMは、それぞれ独立に、ニッケル原子またはパラジウム原子を表し、
、L、L、L、LおよびL10は、それぞれ独立に、M、MまたはMに配位したリガンドを表し、LおよびLは、それぞれ独立に、MおよびMに配位したリガンドを表し、
qは0、1または2であり、
およびLは互いに結合してMを含む環を形成してもよく、
およびLは、互いに結合してMを含む環を形成してもよく、
およびL10は、互いに結合してMを含む環を形成してもよい。]
A catalyst composition for olefin polymerization comprising the compound represented by the general formula (A) according to claim 1 and a transition metal compound represented by the following general formula (E) or (F):
[In the formula (E) and the formula (F),
M1 represents a nickel atom or a palladium atom;
L1 and L2 each independently represent a ligand coordinated to M1 ;
L1 and L2 may be bonded to each other to form a ring containing M1 .
M2 and M3 each independently represent a nickel atom or a palladium atom;
L3 , L4 , L5 , L6 , L9 and L10 each independently represent a ligand coordinated to M1 , M2 or M3 ; L7 and L8 each independently represent a ligand coordinated to M2 and M3 ;
q is 0, 1 or 2;
L3 and L4 may be bonded to each other to form a ring containing M1 ;
L5 and L6 may be bonded to each other to form a ring containing M2 ;
L9 and L10 may be bonded to each other to form a ring including M3 .
前記RおよびRの少なくとも一方が、前記(i)、(iii)および(iv)からなる群より選ばれる原子または基であることを特徴とする、請求項1に記載の化合物。 The compound according to claim 1, wherein at least one of R5 and R6 is an atom or group selected from the group consisting of (i), (iii) and (iv). 前記RおよびRの少なくとも一方が、前記(i)、(iii)および(iv)からなる群より選ばれる原子または基であることを特徴とする、請求項2に記載の金属錯体。 3. The metal complex according to claim 2, wherein at least one of R5 and R6 is an atom or group selected from the group consisting of (i), (iii) and (iv). 前記RおよびRの少なくとも一方が、前記(i)、(iii)および(iv)からなる群より選ばれる原子または基であることを特徴とする、請求項3に記載のオレフィン重合用触媒組成物。 The catalyst composition for olefin polymerization according to claim 3, wherein at least one of R5 and R6 is an atom or group selected from the group consisting of (i), (iii) and (iv). 前記Rが、前記(i)および(iii)からなる群より選ばれる原子または基であって、前記Rが、前記(i)、(iii)、C(O)OR、C(O)N(R、C(O)R、S(O)およびP(O)(OR2-y(Rからなる群より選ばれる原子または基である(ここで、R、R、yは、請求項1で定義したとおりである。)ことを特徴とする、請求項1に記載の化合物。 The compound according to claim 1, characterized in that R 5 is an atom or group selected from the group consisting of (i) and (iii), and R 6 is an atom or group selected from the group consisting of (i), (iii), C(O)OR b , C(O)N(R a ) 2 , C(O)R b , S(O) 2 R b and P(O)(OR b ) 2-y (R a ) y (wherein R a , R b and y are as defined in claim 1). 前記Rが、前記(i)および(iii)からなる群より選ばれる原子または基であって、前記Rが、前記(i)、(iii)、C(O)OR、C(O)N(R、C(O)R、S(O)およびP(O)(OR2-y(Rからなる群より選ばれる原子または基である(ここで、R、R、yは、請求項2で定義したとおりである。)ことを特徴とする、請求項2に記載の金属錯体。 The metal complex according to claim 2, wherein R 5 is an atom or group selected from the group consisting of (i) and (iii), and R 6 is an atom or group selected from the group consisting of (i), (iii), C(O)OR b , C(O)N(R a ) 2 , C(O)R b , S(O) 2 R b and P(O)(OR b ) 2-y (R a ) y (wherein R a , R b and y are as defined in claim 2). 前記Rが、前記(i)および(iii)からなる群より選ばれる原子または基であって、前記Rが、前記(i)、(iii)、C(O)OR、C(O)N(R、C(O)R、S(O)およびP(O)(OR2-y(Rからなる群より選ばれる原子または基である(ここで、R、R、yは、請求項1で定義したとおりである。)ことを特徴とする、請求項3に記載のオレフィン重合用触媒組成物。 The catalyst composition for olefin polymerization according to claim 3, characterized in that R 5 is an atom or group selected from the group consisting of (i) and (iii), and R 6 is an atom or group selected from the group consisting of (i), (iii), C(O)OR b , C(O)N(R a ) 2 , C(O)R b , S(O) 2 R b and P(O)(OR b ) 2-y (R a ) y (wherein R a , R b and y are as defined in claim 1). 前記RおよびRの少なくとも一方が、前記(i)、(iii)および(iv)からなる群より選ばれる原子または基であることを特徴とする、請求項1、4および7のいずれか1項に記載の化合物。 The compound according to any one of claims 1, 4 and 7, characterized in that at least one of R3 and R4 is an atom or group selected from the group consisting of (i), (iii) and (iv). 前記RおよびRの少なくとも一方が、前記(i)、(iii)および(iv)からなる群より選ばれる原子または基であることを特徴とする、請求項2、5および8のいずれか1項に記載の金属錯体。 The metal complex according to any one of claims 2, 5 and 8, wherein at least one of R3 and R4 is an atom or group selected from the group consisting of (i), (iii) and (iv). 前記RおよびRの少なくとも一方が、前記(i)、(iii)および(iv)からなる群より選ばれる原子または基であることを特徴とする、請求項3、6および9のいずれか1項に記載のオレフィン重合用触媒組成物。 The catalyst composition for olefin polymerization according to any one of claims 3, 6 and 9, characterized in that at least one of R3 and R4 is an atom or group selected from the group consisting of (i), (iii) and (iv). 請求項3に記載のオレフィン系重合用触媒組成物を含む、オレフィン重合用触媒。 An olefin polymerization catalyst comprising the olefin polymerization catalyst composition according to claim 3. 請求項2に記載の金属錯体を含む、オレフィン重合用触媒。 An olefin polymerization catalyst comprising the metal complex according to claim 2. 請求項13または14に記載のオレフィン系重合用触媒の存在下、オレフィンを重合または共重合することを特徴とする、オレフィン系重合体の製造方法。 A method for producing an olefin polymer, comprising polymerizing or copolymerizing an olefin in the presence of the olefin polymerization catalyst according to claim 13 or 14. 非環状オレフィンと、極性基含有モノマーおよび環状オレフィンからなる群より選ばれる少なくとも1種類のモノマーとを共重合することを特徴とする、請求項15に記載のオレフィン系重合体の製造方法。 The method for producing an olefin-based polymer according to claim 15, characterized in that a non-cyclic olefin is copolymerized with at least one monomer selected from the group consisting of a polar group-containing monomer and a cyclic olefin.
JP2023169810A 2022-09-30 2023-09-29 Compound, metal complex, catalyst composition for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer Pending JP2024052628A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022158698 2022-09-30
JP2022158698 2022-09-30

Publications (1)

Publication Number Publication Date
JP2024052628A true JP2024052628A (en) 2024-04-11

Family

ID=90622533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023169810A Pending JP2024052628A (en) 2022-09-30 2023-09-29 Compound, metal complex, catalyst composition for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer

Country Status (1)

Country Link
JP (1) JP2024052628A (en)

Similar Documents

Publication Publication Date Title
US7847099B2 (en) Non-metallocene organometallic complexes and related methods and systems
CN103492397A (en) Pyridyldiamido transition metal complexes, production and use thereof
JP2010150246A (en) New triarylphosphine or triarylarsine compound, alpha-olefin polymerization catalyst using them, and method for producing alpha olefin copolymer
JP2010202647A (en) NEW TRIARYLPHOSPHINE OR TRIARYLARSINE COMPOUNDS, alpha-OLEFIN POLYMERIZATION CATALYSTS USING THE SAME, AND METHOD OF PRODUCING alpha-OLEFIN-BASED COPOLYMER
KR20050117571A (en) Polymerisation catalysts
JP2008506806A (en) Polymerization catalyst
JP2021534281A (en) Bis-phenyl-phenoxypolyolefin procatalyst with two anthracenyl ligands
EP3476858A1 (en) Metal complex and production method therefor, catalyst component for olefin polymerization and catalyst for olefin polymerization containing metal complex, and method for producing polymer and copolymer of -olefin using catalyst for olefin polymerization
CN106573998B (en) Olefin polymerization catalyst and process for producing olefin polymer
EP1134236B1 (en) Bidentate diimine nickel and palladium complexes and polymerization catalysts obtained therefrom
JP5694846B2 (en) Novel triarylphosphine or triarylarsine compound, α-olefin polymerization catalyst using them, and method for producing α-olefin polymer
WO2022211091A1 (en) Polymerization catalyst for olefin-based polymer
JP2024052628A (en) Compound, metal complex, catalyst composition for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
JP6867761B2 (en) A metal complex and a method for producing the same, a catalyst component for olefin polymerization containing the metal complex, a catalyst for olefin polymerization, and a method for producing an α-olefin polymer using the catalyst for olefin polymerization.
JP2012229190A (en) Novel triarylphosphine or triarylarsine compound, olefin polymerization catalyst obtained by using the same, and manufacturing method of olefin copolymer
Dong et al. Homo-and copolymerization of norbornene using tridentate IzQO palladium catalysts with dimethylaminoethyl as a side arm
WO2024071415A1 (en) Compound, metal complex, catalyst composition for olefin polymerization, catalyst for olefin polymerization and method for producing olefin polymer
JP6938265B2 (en) A metal complex and a method for producing the same, a catalyst component for olefin polymerization containing the metal complex, a catalyst for olefin polymerization, and a method for producing an α-olefin polymer using the catalyst for olefin polymerization.
JP2024052627A (en) Compound, metal complex, catalyst composition for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
KR102165484B1 (en) Transition metal compound used to prepare catalyst for polymerizing olefin and catalyst for polymerizing olefin comprising the same
US11739171B2 (en) Method for producing α-olefin/(meth)acrylic acid ester copolymer
JP6581912B2 (en) NOVEL CARBENE PRECURSOR COMPOUNDS, OLEFIN POLYMERIZATION CATALYST, AND METHOD FOR PRODUCING OLEFIN COPOLYMER
JP5989572B2 (en) Metal complex and method for producing α-olefin and (meth) acrylic acid ester copolymer using the same
JP6938264B2 (en) A metal complex and a method for producing the same, a catalyst component for olefin polymerization and a catalyst for olefin polymerization containing the metal complex, and a method for producing an α-olefin polymer and a copolymer using the catalyst for olefin polymerization.
JP2024056642A (en) Metal complex, olefin polymerization catalyst component and olefin polymerization catalyst which comprise that metal complex, and production method of olefin polymer using that olefin polymerization catalyst

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231027

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20240510