Nothing Special   »   [go: up one dir, main page]

JP2024046951A - Filtration apparatus and filtration treatment method - Google Patents

Filtration apparatus and filtration treatment method Download PDF

Info

Publication number
JP2024046951A
JP2024046951A JP2022152341A JP2022152341A JP2024046951A JP 2024046951 A JP2024046951 A JP 2024046951A JP 2022152341 A JP2022152341 A JP 2022152341A JP 2022152341 A JP2022152341 A JP 2022152341A JP 2024046951 A JP2024046951 A JP 2024046951A
Authority
JP
Japan
Prior art keywords
filtration
return prevention
prevention member
filter medium
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022152341A
Other languages
Japanese (ja)
Inventor
秀隆 氏家
Hidetaka Ujiie
仁貴 富澤
Kimitaka Tomizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishigaki Co Ltd
Original Assignee
Ishigaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishigaki Co Ltd filed Critical Ishigaki Co Ltd
Priority to JP2022152341A priority Critical patent/JP2024046951A/en
Publication of JP2024046951A publication Critical patent/JP2024046951A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtration Of Liquid (AREA)

Abstract

To provide a filtration apparatus and a filtration treatment method where stable filtration treatment can be continued by keeping the compaction state of a filter medium layer and performing the filtration of suspended matter while separating foams.SOLUTION: In a downflow type filtration apparatus where settleable granular fiber filter medium is compacted at the front stage of a filtration treatment step S4 and compaction state is kept by a return prevention member 9, filtration efficiency is not lowered since filtration can be continued while floating and concentrating suspended matter by that a net body 21 having a flow hole is stretched at a cylindrical frame body 23 and the return prevention member 9 being stood in the vicinity of a filter medium surface layer part 11, keeping the compaction state and moving up and down and a foam separation device 12 being integrated with the return prevention member 9 and jetting fine bubbles are possessed.SELECTED DRAWING: Figure 1

Description

本発明は、粒状繊維ろ材を用いて被処理液のろ過を行う下向流式ろ過装置に関し、ろ材から剥離した懸濁物質を除去しながらろ過を行うろ過装置及びろ過処理方法に関する。 The present invention relates to a downflow filtration device that uses granular fiber filter media to filter the liquid being treated, and to a filtration device and filtration method that performs filtration while removing suspended solids that have detached from the filter media.

従来、沈降した不定形ろ材に被処理液を下向流で通水してろ過処理を行うろ過装置が知られている。ろ過時間の経過とともに、ろ材の内部や表面に懸濁物質が付着し、ろ過性能が低下するため、定期的にろ材を洗浄する必要があった。ろ材洗浄は、ろ過処理工程後に実施しており、排水側からの逆洗浄通水、曝気、機械撹拌、あるいはこれらの組み合わせ等により行っていた。 Conventionally, filtration devices have been known that perform filtration by passing the liquid to be treated through settled irregular filter media in a downward flow. As filtration time passes, suspended matter adheres to the inside and surface of the filter media, causing a decrease in filtration performance, and so the filter media had to be cleaned periodically. Filter media cleaning is carried out after the filtration process, and is carried out by backwashing water from the wastewater side, aeration, mechanical agitation, or a combination of these.

例えば、特許文献1には、ろ材層の洗浄時に底部から空気を供給し、ろ材を流動させて懸濁物質を離した後、ろ材層上部に具備した微細気泡発生装置から微細気泡を供給して懸濁物質を浮上濃縮させ、浮上濃縮した懸濁物質を底部から供給した洗浄水にてろ過装置上部から排出するろ材洗浄技術が開示されている。また、ろ過工程時に、微細気泡を導入した原水を供給し、ろ材に付着した懸濁物質を浮上濃縮させて排出する技術も記されている。 For example, Patent Document 1 discloses a filter media cleaning technology in which air is supplied from the bottom when cleaning the filter media, the filter media is made to flow and the suspended matter is released, then fine bubbles are supplied from a fine bubble generator provided above the filter media layer to cause the suspended matter to float and concentrate, and the floating and concentrated suspended matter is discharged from the top of the filtration device with cleaning water supplied from the bottom. The document also describes a technology in which raw water with fine bubbles introduced is supplied during the filtration process, and the suspended matter attached to the filter media is caused to float and concentrate, and then discharged.

特許文献2の図7には、ろ過装置底部から洗浄処理液を注水した後、曝気してろ材操作部材を上方へ移動させた状態でろ材を撹拌してろ材に付着した懸濁物質を剥離し、ろ過装置上部から排出するろ材洗浄技術が開示されている。また、ろ過処理時における懸濁物質の捕捉率を高めるために、ろ過装置内部にろ材操作部材を配置し、底部で排水する際の流れの圧力によって、ろ材の間隙を縮める技術も開示されている。 Figure 7 of Patent Document 2 discloses a filter media cleaning technology in which a cleaning treatment liquid is poured into the bottom of the filtration device, and then the filter media is stirred while being aerated and a filter media manipulation member is moved upward to remove suspended solids adhering to the filter media, which are then discharged from the top of the filtration device. The document also discloses a technology in which a filter media manipulation member is placed inside the filtration device to increase the capture rate of suspended solids during filtration, and the gaps in the filter media are reduced by the pressure of the flow when draining at the bottom.

特許第5850793号公報Patent No. 5850793 特許第4475924号公報(図7)Japanese Patent No. 4475924 (Fig. 7)

従来のろ材洗浄技術では、ろ材を撹拌洗浄するため洗浄効果は高いが、ろ過処理時にろ過装置内に積層された粒状繊維ろ材が十分に圧密されておらず、ろ材層の空隙率が高くなっている。これに伴い、上部より供給された被処理液に微小な粒子が多く含まれていた場合には、含有する懸濁物質がろ材層で十分に捕捉されないまま下部より排出されるため、ろ過精度を高めることができなかった。 In conventional filter media cleaning technology, the filter media is agitated and cleaned, which provides a high cleaning effect, but the granular fiber filter media stacked inside the filtration device is not sufficiently compacted during the filtration process, resulting in a high porosity in the filter media layer. As a result, when the treated liquid supplied from above contains a large number of fine particles, the suspended matter contained therein is discharged from the bottom without being sufficiently captured by the filter media layer, making it impossible to improve filtration accuracy.

特許文献1には、ろ過工程において、微細気泡を導入した原水をろ過装置に供給し、懸濁物質を浮上濃縮させて除去する技術が開示されているが、ろ材が十分に圧密されていないないため、懸濁物質を効率よく捕捉できず、懸濁物質の除去率を低減できなかった。また、ろ材洗浄時において、空気供給管より供給された空気によってろ材から剥離した懸濁物質を、微細気泡発生装置にて浮上濃縮させているが、微細気泡発生装置が昇降可能である等の記載及び示唆はない。そのため、ろ材層の位置が変化した際、所望の位置に微細気泡を供給できず、懸濁物質を効率よく除去できなかった。 Patent Document 1 discloses a technology in which raw water containing fine bubbles is supplied to a filtration device in the filtration process, and suspended matter is removed by floating and concentrating it; however, because the filter medium is not sufficiently compacted, suspended matter cannot be captured efficiently, and the rate of suspended matter removal could not be reduced. In addition, when cleaning the filter medium, suspended matter detached from the filter medium by air supplied from an air supply pipe is caused to float and concentrate in a fine bubble generator, but there is no description or suggestion that the fine bubble generator can be raised and lowered. Therefore, when the position of the filter medium layer changes, fine bubbles cannot be supplied to the desired position, and suspended matter cannot be removed efficiently.

特許文献2の技術は、ろ材層上方にろ材操作部材を設けているため、ろ過処理時に粒状繊維ろ材同士を十分に圧密させることが可能であるが、ろ材操作部材の押圧力および開放力が原水の通水量や懸濁物質の含有量、曝気量等に依存しているため、安定的なろ過処理を行うことが困難であった。また、ろ過処理中において、ろ材層を圧密した状態でろ材の洗浄を行うことはできなかった。 The technology of Patent Document 2 provides a filter media manipulation member above the filter media layer, which makes it possible to sufficiently compress the granular fiber filter media during the filtration process. However, since the pressing force and releasing force of the filter media manipulation member depend on the amount of raw water passing through, the content of suspended solids, the amount of aeration, etc., it is difficult to perform a stable filtration process. In addition, it is not possible to wash the filter media while the filter media layer is compressed during the filtration process.

本発明は、このような実情に鑑みてなされたもので、ろ過処理工程時に、ろ材層の戻り防止部材をろ材表層部で静置させて均一な空隙率のろ材層を形成するとともに、ろ材から剥離した懸濁物質を浮上濃縮して除去することで、安定したろ過運転を継続できるろ過装置及びろ過処理方法を提供する。 The present invention was made in consideration of these circumstances, and provides a filtration device and filtration method that can continue stable filtration operation by leaving a return prevention member of the filter layer stationary on the surface of the filter during the filtration process to form a filter layer with uniform porosity, and by removing suspended solids that have detached from the filter layer by floating and concentrating them.

ろ過処理工程の前段で沈降性の粒状繊維ろ材を圧密し、戻り防止部材にて圧密状態を維持する下向流式のろ過装置において、円筒状の枠体に通水孔を有する網体を張設し、ろ材表層部近傍に静置して圧密状態を維持する昇降可能な戻り防止部材と、戻り防止部材と一体的に構成し、微細気泡を噴出する泡沫分離装置と、を備えたことで、ろ材層の圧密状態を維持できるとともに微細気泡を所望の位置から噴出可能であるため、ろ過槽内を浮上する懸濁物質を効率よく除去できる。 In a downflow filtration device that compresses settleable granular fiber filter media in the first stage of the filtration process and maintains the compressed state with a return prevention member, a mesh body with water holes is stretched over a cylindrical frame, and the return prevention member that can be raised and lowered is placed near the surface of the filter media to maintain the compressed state, and a foam separation device that is integral with the return prevention member and sprays fine bubbles is provided. This allows the filter media layer to be maintained in a compressed state and fine bubbles to be sprayed from the desired position, allowing suspended solids that float up in the filter tank to be efficiently removed.

前記泡沫分離装置は、微細気泡をろ材表層部に向けて噴出する噴出部を備えたことで、ろ材表層部に向かって噴出した微細気泡によってろ材表層部より懸濁物質を剥離できるとともに浮上分離できる。 The foam separation device is equipped with a spray section that sprays fine bubbles toward the surface of the filter medium, so that the fine bubbles sprayed toward the surface of the filter medium can detach suspended matter from the surface of the filter medium and cause it to float and be separated.

前記戻り防止部材に、ろ材表層部で捕捉された懸濁物質を撹拌する撹拌流体噴出装置を備えるとともに、泡沫分離装置の噴出部を上向きに設けたことで、撹拌流体噴出装置から噴出された撹拌流体でろ材表層部から懸濁物質を剥離した後、剥離した懸濁物質を泡沫分離装置から噴出された微細気泡で浮上分離できる。 The return prevention member is equipped with an agitation fluid ejection device that agitates the suspended matter captured on the surface of the filter medium, and the ejection portion of the foam separation device is arranged facing upwards, so that the suspended matter can be peeled off from the surface of the filter medium by the agitation fluid ejected from the agitation fluid ejection device, and then the peeled suspended matter can be floated and separated by fine air bubbles ejected from the foam separation device.

前記泡沫分離装置は、枠体の枠体内壁に亘って形成された配管と、配管に形成され、微
細な噴出孔を有する噴出部と、を備えたことで、配管内に供給された流体を噴出部から微細気泡として噴出できる。
The foam separation device is equipped with a pipe formed along the inner wall of the frame body, and an ejection section formed in the pipe and having fine ejection holes, so that fluid supplied into the pipe can be ejected as fine bubbles from the ejection section.

沈降性の粒状繊維ろ材で形成したろ材層で被処理液中の懸濁物質を捕捉する下向流式のろ過処理方法において、ろ過槽内に所定の水位まで圧密水を貯留する圧密水貯留工程と、貯留した圧密水排出時の水流によりろ材層を圧密する圧密工程と、網体を張設した戻り防止部材をろ材表層部近傍に静置してろ材層の圧密状態を維持する戻り防止工程を行った後、ろ過処理工程を開始するとともに、ろ過処理工程の際に、戻り防止部材に一体的に取り付けた泡沫分離装置から微細気泡を噴出し、懸濁物質を泡沫分離することで、均一で高い圧密度のろ材層を維持した状態でろ過処理を行うことが可能になるとともに、懸濁物質を効率よく除去できるため、安定したろ過処理を継続できる。 In a downward flow filtration method in which suspended solids in the liquid being treated are captured by a filter layer formed of a settling granular fiber filter medium, the method includes a compressed water storage process in which compressed water is stored in a filter tank up to a specified water level, a consolidation process in which the filter layer is consolidated by the water flow when the stored compressed water is discharged, and a return prevention process in which a return prevention member with a stretched mesh body is placed near the surface of the filter medium to maintain the consolidation state of the filter layer. After this, the filtration process is started, and during the filtration process, fine bubbles are sprayed from a foam separation device attached integrally to the return prevention member to foam-separate the suspended solids, making it possible to perform the filtration process while maintaining a uniform and highly compacted filter layer, and since the suspended solids can be removed efficiently, stable filtration process can be continued.

本発明のろ過装置及びろ過処理方法は、泡沫分離装置を昇降可能な戻り防止部材に一体的に設けたものであり、戻り防止部材をろ材表層部近傍に静置することで、ろ材層の圧密を維持した状態での運転が可能となるため、長時間にわたって安定したろ過を継続できる。また、微細気泡を所望の位置より噴出できるため、供給された被処理液中に含まれる懸濁物質を効率よく除去できる。ろ過工程中に泡沫分離を行うことで、ろ材で捕捉できない微小な懸濁物質も除去されるため、懸濁物質の除去率を向上させることができる。さらに、撹拌流体噴出装置によって、ろ材表層部に向けて撹拌流体を噴出することで、ろ材表層部への懸濁物質の堆積を防止できるため、ろ材表層部の目詰まりが発生し難い。これに伴い、ろ過工程後に行うろ材洗浄の時間や頻度の低減も可能となる。特に、空隙率が高く圧縮性の大きい繊維ろ材に有効であり、ろ過処理工程中においても均一で高い圧密度を維持した状態で運転を継続することが可能である。 The filtration device and filtration method of the present invention are provided with a foam separation device integrally attached to a return prevention member that can be raised and lowered. By placing the return prevention member near the surface layer of the filter medium, operation is possible while maintaining the compaction of the filter medium layer, so stable filtration can be continued for a long time. In addition, since fine bubbles can be ejected from a desired position, suspended matter contained in the supplied liquid to be treated can be efficiently removed. By performing foam separation during the filtration process, even fine suspended matter that cannot be captured by the filter medium is removed, so the removal rate of suspended matter can be improved. Furthermore, by ejecting the agitated fluid toward the surface layer of the filter medium using the agitation fluid ejection device, the accumulation of suspended matter on the surface layer of the filter medium can be prevented, so clogging of the surface layer of the filter medium is unlikely to occur. As a result, it is also possible to reduce the time and frequency of cleaning the filter medium after the filtration process. This is particularly effective for fibrous filter medium with high porosity and high compressibility, and it is possible to continue operation while maintaining a uniform and high compaction degree even during the filtration process.

本発明に係るろ過装置の縦断面図である。1 is a vertical cross-sectional view of a filtering device according to the present invention. 同じく、戻り防止部材の上面図である。FIG. 同じく、戻り防止部材の下面図である。FIG. 同じく、ろ過処理の運転立上時の模式図である。FIG. 13 is a schematic diagram showing the start-up of a filtration process. 同じく、圧密水貯留工程の模式図である。FIG. 2 is a schematic diagram of the consolidation water storage process. 同じく、圧密工程の模式図である。FIG. 同じく、戻り防止工程の模式図である。FIG. 同じく、ろ過処理工程の模式図である。FIG.

図1は本発明に係るろ過装置の縦断面図である。
ろ過装置1は、円筒状のろ過槽2を立設し、内部に繊維ろ材を充填してろ過槽2下方の流出防止スクリーン3上にろ材層4を形成している。繊維ろ材は、沈降性の粒状繊維ろ材であって、球状や柱状等、形を限定しない。上方の被処理液管5から被処理液を供給し、ろ材層4にて懸濁物質を捕捉して処理水を下方の処理液管6から外部に排出する。また、必要に応じて、被処理液管5側への繊維ろ材の流出を防止するスクリーンをろ過槽2の上方に張設してもよい。
FIG. 1 is a vertical sectional view of a filtering device according to the present invention.
The filtration device 1 has a cylindrical filtration tank 2 set upright, and a fibrous filter medium is filled inside to form a filter medium layer 4 on an outflow prevention screen 3 below the filtration tank 2. The fibrous filter medium is a sedimentary granular fibrous filter medium, and the shape is not limited to a spherical or columnar shape. The liquid to be treated is supplied from an upper treated liquid pipe 5, suspended solids are captured by the filter medium layer 4, and the treated water is discharged to the outside from a lower treated liquid pipe 6. If necessary, a screen may be installed above the filtration tank 2 to prevent the outflow of the fibrous filter medium toward the treated liquid pipe 5.

ろ過槽2の内部には、圧縮したろ材層4が上方の開放方向に緩み、ろ材層4の空隙率が不均一となることを防止する戻り防止機構を配設している。 A return prevention mechanism is provided inside the filter tank 2 to prevent the compressed filter layer 4 from loosening in the upward opening direction, causing the porosity of the filter layer 4 to become uneven.

戻り防止機構は、ろ過槽2の上方に設置した駆動機7と、駆動機7の動力にて駆動する送りねじ部材8と、送りねじ部材8に螺合して昇降する戻り防止部材9と、送りねじ部材8の端部を回転自在に支持する支持杆10で構成している。支持杆10は、ろ過槽2の内壁から送りねじ部材8まで延設しており、端部には送りねじ部材8を挿通可能な筒状部材34を有している。筒状部材34は、戻り防止部材9を貫通して下方に延設された送りねじ部材8端部の振れ止めとして機能する。なお、本実施形態では送りねじ部材8を3本用いており、そのうち、1本は駆動機7に連結して正逆回転可能に構成し、残りは駆動機7から伝達された動力にて駆動できる構成としている。駆動機7の動力は、各送りねじ部材8に設けた駆動プーリー31及び従動プーリー32に懸架したタイミングベルト等の駆動伝達部材33にて伝達される。 The return prevention mechanism is composed of a driver 7 installed above the filtration tank 2, a feed screw member 8 driven by the power of the driver 7, a return prevention member 9 that is screwed into the feed screw member 8 and moves up and down, and a support rod 10 that rotatably supports the end of the feed screw member 8. The support rod 10 extends from the inner wall of the filtration tank 2 to the feed screw member 8, and has a cylindrical member 34 at its end through which the feed screw member 8 can be inserted. The cylindrical member 34 functions as a vibration prevention device for the end of the feed screw member 8 that extends downward through the return prevention member 9. In this embodiment, three feed screw members 8 are used, one of which is connected to the driver 7 and configured to be able to rotate forward and backward, and the remaining ones are configured to be driven by the power transmitted from the driver 7. The power of the driver 7 is transmitted by a drive transmission member 33 such as a timing belt suspended on a drive pulley 31 and a driven pulley 32 provided on each feed screw member 8.

各送りねじ部材8は、ろ過槽2の軸心と並行となるように垂直方向に垂設してあり、周面には、少なくとも戻り防止部材9の昇降範囲に亘って螺旋状のスクリューねじで形成されている。スクリューねじのピッチや駆動機7との連結方式(直結またはウォームギア等)は、ろ過装置1の仕様や昇降速度に応じて適宜選択する。 Each feed screw member 8 is installed vertically so as to be parallel to the axis of the filtration tank 2, and a helical screw thread is formed on the periphery at least over the lifting range of the return prevention member 9. The pitch of the screw thread and the connection method with the driver 7 (direct connection, worm gear, etc.) are appropriately selected according to the specifications of the filtration device 1 and the lifting speed.

戻り防止部材9は、ろ材層4に供給される被処理液中の懸濁物質を微細気泡により浮上分離してろ過槽2上方の排出管20から泡沫とともに排出する泡沫分離装置12と、ろ材表層部11に堆積する懸濁物質に撹拌流体(気体又は液体)を噴射して撹拌する撹拌流体噴出装置13とを一体的に備えている。泡沫分離装置12と撹拌流体噴出装置13には、戻り防止部材9の昇降作用に応じて伸縮可能な可撓式の供給管18を接続している。供給管18には、流体供給源19を接続しており、泡沫分離装置12及び撹拌流体噴出装置13に流体を供給できる構成としてある。 The return prevention member 9 is integrally equipped with a foam separator 12 that separates suspended matter in the treated liquid supplied to the filter layer 4 by using fine air bubbles to float and separate the suspended matter and discharges it together with the foam from a discharge pipe 20 above the filtration tank 2, and an agitation fluid jetting device 13 that jets an agitation fluid (gas or liquid) onto the suspended matter accumulated on the filter surface layer 11 to agitate it. A flexible supply pipe 18 that can expand and contract in response to the lifting and lowering action of the return prevention member 9 is connected to the foam separator 12 and the agitation fluid jetting device 13. A fluid supply source 19 is connected to the supply pipe 18, and the structure is such that fluid can be supplied to the foam separator 12 and the agitation fluid jetting device 13.

本実施形態では、戻り防止部材9を複数の送りねじ部材8に螺合させているが、送りねじ部材8を、ろ過槽2の中心部に1本垂設した形態としてもよい。この形態で、軸心から偏心する位置にガイドバー(図示しない)を垂設することで、戻り防止部材9の前後左右へのブレを防止できる。このように戻り防止部材9を昇降できる機構であれば、送りねじ部材8の本数や、昇降機構の形態等は本実施形態に限定されない。 In this embodiment, the return prevention member 9 is screwed to multiple feed screw members 8, but a single feed screw member 8 may be installed vertically in the center of the filtration tank 2. In this configuration, a guide bar (not shown) can be installed vertically at a position eccentric to the axis to prevent the return prevention member 9 from wobbling forward, backward, left, or right. As long as there is a mechanism that can raise and lower the return prevention member 9 in this way, the number of feed screw members 8 and the form of the lifting mechanism are not limited to this embodiment.

図2は戻り防止部材の上面図である。
戻り防止部材9は、ろ材表層部11近傍に静置してろ材層4の圧密状態を維持する部材であり、所定の厚みを有する円筒状の枠体23内に、微小な通水孔を有する網体21を張設している。枠体23は、図1に示すろ過槽2の内壁に近接させており、ろ過槽2との間に形成される間隙からろ材が通過できないように設定している。必要に応じて、枠体23の外周に摺動部材を周設してもよい。
FIG. 2 is a top view of the anti-return member.
The return prevention member 9 is a member that is placed near the filter media surface portion 11 to maintain the compressed state of the filter media layer 4, and is made of a mesh body 21 having minute water passage holes stretched inside a cylindrical frame body 23 having a predetermined thickness. The frame body 23 is placed close to the inner wall of the filtration tank 2 shown in Fig. 1, and is set so that the filter media cannot pass through the gap formed between the frame body 2 and the filtration tank 2. If necessary, a sliding member may be provided around the outer periphery of the frame body 23.

網体21は、微小孔を貫設した板材や、メッシュ部材等で形成している。網体21の通水孔は、被処理液管5からの被処理水をろ材層4へ通水可能で、且つ、上方へのろ材の流出を防止できる径とする。 The mesh body 21 is formed from a plate material with tiny holes drilled through it, a mesh member, etc. The water passage holes of the mesh body 21 are of a diameter that allows the water to be treated from the treated liquid pipe 5 to pass through to the filter layer 4, and prevents the filter material from flowing out upwards.

戻り防止部材9の中心部から偏心する位置には、各送りねじ部材8と螺合する螺旋状のねじ溝27を形成している。本実施形態では、ねじ溝27を、網体21上に設置した所定の高さを有する筒状部材35の内周面に形成してある。筒状部材35は、網体21に形成された開口部(図示しない)と連通するように配設されているため、送りねじ部材8を上方から挿通可能であり、送りねじ部材8を挿通させた状態で回動させることで、戻り防止部材9が上下方向に昇降できる。本実施形態におけるねじ溝27及び筒状部材35等の構成は一例であり、送りねじ部材8を係合可能な構成であればこれに限定されない。 At a position eccentric to the center of the return prevention member 9, a helical screw groove 27 that screws into each feed screw member 8 is formed. In this embodiment, the screw groove 27 is formed on the inner peripheral surface of a tubular member 35 having a predetermined height that is installed on the net body 21. The tubular member 35 is arranged so as to communicate with an opening (not shown) formed in the net body 21, so that the feed screw member 8 can be inserted from above, and the return prevention member 9 can be raised and lowered in the vertical direction by rotating the feed screw member 8 with it inserted. The configuration of the screw groove 27 and the tubular member 35 in this embodiment is one example, and is not limited to this as long as it is a configuration that can engage the feed screw member 8.

なお、戻り防止部材9の鉛直方向に必要に応じて補強用リブを追加してもよい。また、所定の間隔をあけて網体21を上下二段で設けた場合、下段の網体21から流出した繊維ろ材を上段の網体21で捕捉できる。 If necessary, reinforcing ribs may be added in the vertical direction of the return prevention member 9. Also, if the mesh body 21 is provided in two levels, upper and lower, with a specified distance between them, the fiber filter material that flows out from the lower level mesh body 21 can be captured by the upper level mesh body 21.

本実施形態では、戻り防止部材9に配管16A(主管17A、枝管26A)及び噴出部15Aを有する泡沫分離装置12を一体的に設置している。主管17A及び枝管26Aは、枠体内壁30に亘って形成してある。具体的には、供給管18に接続した主管17Aを枠体23に架橋し、主管17Aから複数の枝管26Aを鉛直方向に分岐した構成としている。配管16A(主管17A、枝管26A)は、枠体23あるいは網体21に公知の方法にて固定する。 In this embodiment, the return prevention member 9 is integrally provided with the piping 16A (main pipe 17A, branch pipe 26A) and the foam separator 12 having the ejection section 15A. The main pipe 17A and the branch pipe 26A are formed across the inner wall 30 of the frame. Specifically, the main pipe 17A connected to the supply pipe 18 is bridged to the frame 23, and multiple branch pipes 26A are branched vertically from the main pipe 17A. The piping 16A (main pipe 17A, branch pipe 26A) is fixed to the frame 23 or the mesh 21 by a known method.

配管16Aは、上面に多数の噴出孔14Aを形成した噴出部15Aを複数装着し、供給管18から主管17A及び枝管26A内に流入する圧縮空気を、微細気泡として上方に向かって噴出する。各噴出部15Aは、配管16Aに脱着可能に取り付けており、噴出孔14Aが閉塞した場合に任意の噴出部15Aのみメンテナンスできるため、維持管理性が高い。 The pipe 16A is fitted with multiple ejection parts 15A with numerous ejection holes 14A formed on the upper surface, and ejects compressed air flowing from the supply pipe 18 into the main pipe 17A and the branch pipe 26A upward as fine bubbles. Each ejection part 15A is detachably attached to the pipe 16A, and in the event that an ejection hole 14A becomes clogged, maintenance can be performed on only the desired ejection part 15A, making it easy to maintain.

各噴出部15Aは、上面に合成樹脂膜や合成ゴム膜に、多数の微細孔(噴出孔14A)を設けた公知のメンブレン式のものを用いて微細気泡を発生させている。配管16A内に供給された圧縮空気によってメンブレンが膨らみ、微細孔(噴出孔14A)が開くことによって、散気が行われる。圧縮空気の供給を停止した際には、微細孔(噴出孔14A)は、閉じた状態にある。 Each nozzle 15A generates microscopic bubbles using a known membrane type nozzle with a synthetic resin or synthetic rubber membrane on the upper surface and numerous microscopic holes (emission holes 14A). The membrane expands due to the compressed air supplied into the pipe 16A, opening the microscopic holes (emission holes 14A), thereby dispersing the air. When the supply of compressed air is stopped, the microscopic holes (emission holes 14A) are in a closed state.

なお、微細気泡を発生できる装置であればよいため、散気式ではなくその他の微細気泡発生機構を用いてもよい。また、配管16の材質は、金属や合成樹脂、セラミック等、条件に応じて適宜選択する。 Note that any device capable of generating fine bubbles may be used, and other fine bubble generating mechanisms may be used instead of the aeration type. The material of the pipe 16 may be selected appropriately depending on the conditions, such as metal, synthetic resin, or ceramic.

図3は戻り防止部材の下面図である。
本実施形態では、戻り防止部材9に配管16B(主管17B、枝管26B)及び噴出部15Bを有する撹拌流体噴出装置13を、図2で詳述した戻り防止部材9の下部に一体的に設置している。主管17B及び枝管26Bは、枠体内壁30に亘って形成してある。配管16B(主管17B、枝管26B)は、泡沫分離装置12と同様に、枠体23あるいは網体21に公知の方法にて固定する。
FIG. 3 is a bottom view of the anti-return member.
In this embodiment, the agitating fluid jetting device 13 having the piping 16B (main pipe 17B, branch pipe 26B) and the jetting portion 15B is integrally installed at the lower part of the return prevention member 9 described in detail in Fig. 2. The main pipe 17B and the branch pipe 26B are formed across the inner wall 30 of the frame. The piping 16B (main pipe 17B, branch pipe 26B) is fixed to the frame 23 or the mesh 21 by a known method, similar to the foam separation device 12.

配管16Bには、下向きに複数の噴射孔14B形成した噴出部15Bを有しており、主管17Bの周面に接続された供給管18から導入した撹拌流体を噴出できる。主管17Bを省略して供給管18を枝管26Bに直接接続する構成としてもよい。本実施形態では、
撹拌流体噴出装置13を複数の配管16Bにて構成したが、ろ材表層部11に堆積する懸濁物質を撹拌できる機構であれば、これに限定されない。
The pipe 16B has an ejection section 15B having a plurality of downwardly facing ejection holes 14B, and can eject the agitated fluid introduced from a supply pipe 18 connected to the circumferential surface of the main pipe 17B. The main pipe 17B may be omitted, and the supply pipe 18 may be directly connected to the branch pipe 26B. In this embodiment,
Although the agitating fluid jetting device 13 is configured with a plurality of pipes 16B, the present invention is not limited to this as long as the mechanism is capable of agitating the suspended solids accumulated on the filter media surface portion 11.

なお、泡沫分離装置12及び撹拌流体噴出装置13を構成する配管16A、16Bは、網体21から所定の間隔をあけて設置することが望ましい。これにより、設置した配管16によって網体21の通水孔を塞ぎ、通水効率が低下することを防止できる。また、戻り防止部材9とともに昇降できればよいため、配管16A、16Bを枠体内壁30に架橋しても、枠体内壁30から離間する形態としてもよい。さらに、主管17Bから分岐する枝管26Bは、放射線状、同心円状に分岐してもよく、枝管26Bからさらに分岐してもよい。主管17Bに枝管26Bを重設して連通させてもよい。 The pipes 16A and 16B constituting the foam separator 12 and the agitated fluid ejection device 13 are preferably installed at a predetermined distance from the mesh body 21. This prevents the installed pipes 16 from blocking the water passage holes of the mesh body 21, which would otherwise reduce the water passage efficiency. As long as they can be raised and lowered together with the return prevention member 9, the pipes 16A and 16B may be bridged to the inner wall 30 of the frame, or may be spaced apart from the inner wall 30 of the frame. Furthermore, the branch pipes 26B branching off from the main pipe 17B may branch out radially or concentrically, or may further branch off from the branch pipe 26B. The branch pipes 26B may be laid over the main pipe 17B to communicate with it.

撹拌流体として微細気泡を使用する際には、泡沫分離装置12と撹拌流体噴出装置13を構成する主管17を共通とし、主管17の上方に噴出部15Aを設け下方に噴出部15Bを設ける構成としてもよい。 When using fine bubbles as the agitated fluid, the main pipe 17 constituting the foam separation device 12 and the agitated fluid ejection device 13 may be shared, with the ejection section 15A provided above the main pipe 17 and the ejection section 15B provided below.

泡沫分離装置12及び撹拌流体噴出装置13を構成する噴出部15A、15Bの数量や位置及び噴出孔14A、14Bの径や形状、噴出角度等に関しても設計条件に応じて適宜選択する。 The number and positions of the ejection sections 15A and 15B constituting the foam separation device 12 and the agitated fluid ejection device 13, as well as the diameter, shape, and ejection angle of the ejection holes 14A and 14B, are also appropriately selected according to the design conditions.

本実施形態では、以下に記載の図4~図7の工程を実施した後、図8のろ過処理工程を
行う。
図4はろ過処理の運転立上時の模式図である。
ろ過槽2に新たにろ材を投入、あるいはろ過処理工程S4後に繊維ろ材を洗浄した後、ろ過槽2の水を排水した際に、繊維ろ材が流出防止スクリーン3上に堆積した状態となっている。戻り防止部材9は、ろ過槽2の上方に上昇させてあり、繊維ろ材の交換時やろ材洗浄工程S5時に邪魔にならない位置で静置している。
In this embodiment, after the steps shown in FIGS. 4 to 7 described below are performed, the filtration process step shown in FIG. 8 is carried out.
FIG. 4 is a schematic diagram of the filtration process at the start-up stage.
When new filter media is added to the filtration tank 2, or when the water in the filtration tank 2 is drained after the filtration treatment step S4 and the fibrous filter media is washed, the fibrous filter media is piled up on the outflow prevention screen 3. The return prevention member 9 is raised above the filtration tank 2 and is left in a position where it does not get in the way when replacing the fibrous filter media or during the filter media washing step S5.

ろ材層4は、自然沈降した状態であり、繊維ろ材間で大きな空隙を有している。この状態で被処理液を通水すると、被処理液中の懸濁物質が繊維ろ材で捕捉されずに、ろ材層4を通過して処理液と共に排出されてしまうため、ろ過処理工程S4の前段で、ろ材層4を圧密する各工程S1~S3を行う。 The filter layer 4 is in a naturally settled state, with large gaps between the fibrous filter media. If the liquid to be treated is passed through in this state, the suspended matter in the liquid to be treated will not be captured by the fibrous filter media, but will pass through the filter layer 4 and be discharged together with the treated liquid. Therefore, steps S1 to S3 are carried out prior to the filtration process S4 to consolidate the filter layer 4.

<圧密水貯留工程S1>
図5は圧密水貯留工程の模式図である。
圧密水貯留工程S1では、ろ過槽2内に圧密水の貯留を行う。被処理液管5からろ過槽2内に圧密水を供給する。処理液管6に介装する弁V2は閉止してあり、圧密水はろ過槽2内に貯留されていく。このとき、排出管20に介装する弁V3は開放し、ろ過槽2上方より空気を吸入及び排出できるようにしておく。所定の水位まで圧密水を貯留すると、圧密水の供給を停止する。このとき、戻り防止部材9は、ろ材表層部11の近傍まで近接させておくことが望ましい。
<Compressed water storage step S1>
FIG. 5 is a schematic diagram of the consolidation water storage process.
In the compressed water storage step S1, compressed water is stored in the filtration tank 2. Compressed water is supplied into the filtration tank 2 from the treated liquid pipe 5. The valve V2 installed in the treated liquid pipe 6 is closed, and the compressed water is stored in the filtration tank 2. At this time, the valve V3 installed in the discharge pipe 20 is open, allowing air to be sucked in and exhausted from above the filtration tank 2. When the compressed water has been stored up to a predetermined water level, the supply of compressed water is stopped. At this time, it is desirable to position the return prevention member 9 close to the vicinity of the surface layer 11 of the filter medium.

本実施形態では、圧密水として、新たに外部からろ過槽2に供給しているが、ろ材洗浄工程S5後にろ過槽2に貯留している洗浄液を圧密水として利用してもよい。 In this embodiment, the consolidated water is newly supplied from outside to the filtration tank 2, but the cleaning liquid stored in the filtration tank 2 after the filter media cleaning process S5 may also be used as the consolidated water.

<圧密工程S2>
図6は圧密工程の模式図である。
圧密工程S2では、繊維ろ材を圧密してろ材層4を形成する。所定の水位まで圧密水を
貯留した後、処理液管6に介装する弁V2を開放し、圧密水を下方に向かって一気に排出する。このとき、ろ過槽2底部に向かう水流によって、繊維ろ材は流出防止スクリーン3の上方で圧密され、十分な圧密度を有するろ材層4を形成する。圧密工程S2を行うと繊維ろ材間の間隙が小さくなり、自然沈降時と比較してろ材層4の高さが低くなる。必要に応じて、ろ過槽2に圧密水を貯留して排出する圧密工程S2を複数回行ってもよい。
<Consolidation step S2>
FIG. 6 is a schematic diagram of the consolidation process.
In the consolidation step S2, the fibrous filter media is consolidated to form the filter media layer 4. After the consolidated water is stored up to a predetermined water level, the valve V2 installed in the treatment liquid pipe 6 is opened, and the consolidated water is discharged downwards in one go. At this time, the fibrous filter media is consolidated above the outflow prevention screen 3 by the water flow toward the bottom of the filtration tank 2, forming a filter media layer 4 with a sufficient degree of compaction. When the consolidation step S2 is performed, the gaps between the fibrous filter media become smaller, and the height of the filter media layer 4 becomes lower compared to when natural settling occurs. If necessary, the consolidation step S2, in which the consolidated water is stored in the filtration tank 2 and then discharged, may be performed multiple times.

<戻り防止工程S3>
図7は戻り防止工程の模式図である。
戻り防止工程S3では、戻り防止部材9をろ材表層部11近傍に静置させて、ろ材層4の圧密状態を維持する。圧密工程S2と同時に駆動機7を駆動し、駆動機7と連結する送りねじ部材8を正転させる。送りねじ部材8と螺合しながら戻り防止部材9が下降を開始する。
<Return prevention process S3>
FIG. 7 is a schematic diagram of the anti-return process.
In the return prevention step S3, the return prevention member 9 is placed near the filter media surface layer 11 to maintain the consolidated state of the filter media layer 4. Simultaneously with the consolidation step S2, the driver 7 is driven to rotate the feed screw member 8 connected to the driver 7 in the forward direction. The return prevention member 9 starts to descend while being screwed into the feed screw member 8.

圧密水により適度に圧縮されたろ材表層部11まで戻り防止部材9が下降したことを検知すると、駆動機7を停止し、戻り防止部材9をその位置で静置させる。戻り防止部材9の下降検知は、例えば、ろ過槽2に配置した回転計24や位置検知装置25、駆動機7の連結部に配置したトルク計28等によって判断する。 When it is detected that the return prevention member 9 has descended to the surface layer 11 of the filter medium, which has been appropriately compressed by the compressed water, the driver 7 is stopped and the return prevention member 9 is left stationary in that position. The descent of the return prevention member 9 is detected, for example, by a tachometer 24 or a position detector 25 disposed in the filtration tank 2, or a torque meter 28 disposed at the connection part of the driver 7, etc.

回転計24は、送りねじ部材8あるいは、駆動機の7の回転数を計測するもので、予め定めた回転数に到達すると、駆動機7に停止信号を送信する。 The tachometer 24 measures the number of rotations of the feed screw member 8 or the driver 7, and sends a stop signal to the driver 7 when a predetermined number of rotations is reached.

また、位置検知装置25は、公知の接触あるいは、非接触型の装置を用いて、戻り防止部材9が予め定めた位置に到達すると、駆動機7に停止信号を送信する。 The position detection device 25 also uses a known contact or non-contact type device to send a stop signal to the drive machine 7 when the return prevention member 9 reaches a predetermined position.

さらに、トルク計28は、戻り防止部材9がろ材表層部11に到達した際に、急増するトルクを計測するもので、予め定めた計測値以上のトルクを計測すると、駆動機7に停止信号を送信する。なお、下降検知は上記手法に限らず、条件に応じ適宜決定する。 Furthermore, the torque meter 28 measures the sudden increase in torque when the return prevention member 9 reaches the filter media surface layer 11, and sends a stop signal to the driver 7 when the torque measurement exceeds a predetermined measurement value. Note that the method of detecting the descent is not limited to the above method, but can be determined appropriately depending on the conditions.

戻り防止部材9の下降速度は、圧密工程S2時の圧密水による繊維ろ材の下降速度より遅くすることが望ましい。繊維ろ材が圧密水によって圧縮される前に、戻り防止部材9で圧縮されると、ろ材層4上方部の圧縮率のみが高くなり、均一な空隙率のろ材層4の形成が阻害される。条件によって、繊維ろ材の下降速度よりも速い速度を設定した場合には、下降するろ材表層部11を追い越さないように調整する。 It is desirable to set the descent speed of the return prevention member 9 slower than the descent speed of the fibrous filter medium caused by the consolidation water during the consolidation step S2. If the fibrous filter medium is compressed by the return prevention member 9 before being compressed by the consolidation water, only the compression ratio of the upper part of the filter medium layer 4 will increase, preventing the formation of a filter medium layer 4 with a uniform porosity. Depending on the conditions, if a speed faster than the descent speed of the fibrous filter medium is set, it is adjusted so as not to overtake the descending filter medium surface portion 11.

ろ材表層部11近傍で静置した戻り防止部材9は、送りねじ部材8と螺合しているため、圧縮されたろ材層4の反発力により上方に移動することはない。同様に、ろ過処理工程S4時に被処理液を通水する際に、下方のろ材層4を押圧することがない。 The return prevention member 9, which is placed stationary near the filter media surface layer 11, is screwed into the feed screw member 8 and does not move upward due to the repulsive force of the compressed filter media layer 4. Similarly, when the liquid to be treated is passed through during the filtration process S4, the lower filter media layer 4 is not pressed.

本実施形態では、圧密工程S2と戻り防止工程S3を同時に行っているが、ろ材層4が圧密された直後に、戻り防止部材9をろ材表層部11まで下降させる形態であればよい。例えば、圧密工程S2より前に戻り防止工程S3を開始する場合、ゆっくりと戻り防止部材9を下降させつつ、圧密水によりろ材層4を圧密し、圧縮されたろ材層4の上方の開放方向への緩みが発生する前に戻り防止部材9をろ材表層部11に到達するようにしてもよい。 In this embodiment, the consolidation step S2 and the return prevention step S3 are performed simultaneously, but it is sufficient that the return prevention member 9 is lowered to the filter surface layer 11 immediately after the filter layer 4 is consolidated. For example, if the return prevention step S3 is started before the consolidation step S2, the filter layer 4 may be consolidated with compressed water while the return prevention member 9 is slowly lowered, so that the return prevention member 9 reaches the filter surface layer 11 before the compressed filter layer 4 loosens in the upward opening direction.

圧密水にてろ材層4を圧密し、通水可能な戻り防止部材9をろ材表層部11に摺接させて、圧縮したろ材層4による開放方向への緩みを防止した状態でろ過処理工程S4を開始する。ろ材層4は圧密水により均一で圧密度が高いろ材層4を形成しているため、運転初期から安定したろ過処理を行うことができる。 The filter layer 4 is compressed with compressed water, and a water-permeable return prevention member 9 is brought into sliding contact with the filter surface layer 11 to prevent the compressed filter layer 4 from loosening in the opening direction, and the filtration process S4 is started. The filter layer 4 is formed by the compressed water in a uniform and highly compressed form, allowing for stable filtration from the beginning of operation.

<ろ過処理工程S4>
図8はろ過処理工程の模式図である。
ろ過処理工程S4では、被処理液をろ過槽2内に供給してろ過処理を行う。被処理液管5からろ過槽2内に被処理液を供給し、ろ過槽2内に充填されたろ材層4を通過させる。このとき、処理液管6に介装する弁V2を開放し、ろ材層4通過後の処理液を排出できるようにしておく。また、排出管20に介装する弁V3も開放しておき、槽内に供給されるエアによってエア溜まりが発生するため、エア抜きを実施してろ過槽2内の圧力が上昇しすぎないように調整しておく。
<Filtration process S4>
FIG. 8 is a schematic diagram of the filtration process.
In the filtration process S4, the liquid to be treated is supplied into the filtration tank 2 for filtration. The liquid to be treated is supplied into the filtration tank 2 from the treated liquid pipe 5 and passed through the filter media layer 4 filled in the filtration tank 2. At this time, the valve V2 installed in the treated liquid pipe 6 is opened so that the treated liquid after passing through the filter media layer 4 can be discharged. The valve V3 installed in the discharge pipe 20 is also opened, and since air supplied into the tank causes air to accumulate, the air is removed to adjust the pressure in the filtration tank 2 so that it does not rise too much.

被処理液の供給を開始し、被処理液が所定の水位まで上昇した後、泡沫分離装置12に接続された流体供給源19を駆動し、供給管18から配管16Aに向かって圧縮空気を供給する。圧縮空気は、図2に示す主管17A(配管16A)に流入した後、各枝管26A(配管16A)を介して各噴出部15Aに形成された噴出孔14Aから微細気泡として上方に向かって噴出される。本実施形態では、ろ過処理工程S4中に微細気泡を常時噴出するため、ろ過中に生じる懸濁物質を効率よく浮上分離できる。なお、圧縮空気の供給開始のタイミングは、条件に応じて適宜決定する。 After the supply of the liquid to be treated is started and the liquid to be treated rises to a predetermined water level, the fluid supply source 19 connected to the foam separation device 12 is driven to supply compressed air from the supply pipe 18 toward the pipe 16A. The compressed air flows into the main pipe 17A (pipe 16A) shown in FIG. 2, and then passes through each branch pipe 26A (pipe 16A) and is sprayed upward as fine bubbles from the nozzle holes 14A formed in each spray section 15A. In this embodiment, fine bubbles are constantly sprayed during the filtration process S4, so suspended solids generated during filtration can be efficiently floated and separated. The timing of starting the supply of compressed air is determined appropriately depending on the conditions.

噴出された多数の微細気泡は、上方より供給される被処理液中に混在する懸濁物質や、水圧等の影響を受けてろ材層4から自然に剥離した懸濁物質を吸着し、水面に向かって浮上する。そして、次々と浮上してくる懸濁物質を吸着した気泡が水面に集まって、水面に泡沫を形成する。水面に形成された泡沫は、ろ過槽2上方の排出管20より排出される。 The many fine bubbles ejected adsorb suspended matter mixed in the treated liquid supplied from above, and suspended matter that has naturally detached from the filter media layer 4 due to the effects of water pressure, etc., and rise to the water surface. The bubbles adsorbing the suspended matter that rise one after another then gather at the water surface, forming foam on the water surface. The foam formed on the water surface is discharged from the discharge pipe 20 above the filtration tank 2.

ろ過処理工程S4開始から所定時間経過後、ろ材層4を通過する被処理液中に含まれる懸濁物質がろ材表層部11に徐々に堆積する。本実施形態ではろ材表層部11に戻り防止部材9を静置し、均一な圧密状態を維持した状態でろ過処理を行うため、ろ材間にて効率よく懸濁物質を捕捉できるが、ろ過時間の経過とともに、ろ材表層部11に懸濁物質が堆積して短時間でろ過圧力が上昇し、ろ過効率の低下を引き起こすことがある。 After a predetermined time has elapsed since the start of the filtration process S4, suspended matter contained in the treated liquid passing through the filter layer 4 gradually accumulates on the filter surface layer 11. In this embodiment, the return prevention member 9 is placed stationary on the filter surface layer 11, and the filtration process is performed while maintaining a uniform compaction state, so suspended matter can be efficiently captured between the filter media. However, as the filtration time passes, suspended matter accumulates on the filter surface layer 11, causing the filtration pressure to rise in a short period of time, which can cause a decrease in filtration efficiency.

そこで、本実施形態では、ろ過処理工程S4中にろ材表層部11に向かって撹拌流体を噴出し、ろ材表層部11に堆積する懸濁物質を剥離しながらろ過を行う。 Therefore, in this embodiment, during the filtration process S4, an agitated fluid is sprayed toward the filter media surface layer 11, and filtration is performed while peeling off the suspended matter that has accumulated on the filter media surface layer 11.

ろ材表層部11の撹拌は、戻り防止部材9の下部に設けた撹拌流体噴出装置13とろ材表層部11との間に所定の隙間Xが形成されたタイミングで行う。形成される所定の隙間Xは、数cm~十数cm程度であり、ろ過処理中にろ材表層部11が被処理液の供給圧を受けて徐々に圧密されることで形成される。本実施形態では、圧縮性の高い繊維ろ材を使用しているため、被処理液の水圧を受けてろ材層4が圧密され、所定の隙間Xが形成される。 The filter media surface layer 11 is stirred when a predetermined gap X is formed between the stirred fluid ejection device 13 provided at the bottom of the return prevention member 9 and the filter media surface layer 11. The predetermined gap X is several centimeters to several tens of centimeters, and is formed when the filter media surface layer 11 is gradually consolidated by the supply pressure of the liquid being treated during the filtration process. In this embodiment, a highly compressible fibrous filter media is used, so the filter media layer 4 is consolidated by the water pressure of the liquid being treated, forming the predetermined gap X.

所定の隙間Xが形成された後、撹拌流体噴出装置13に接続した流体供給源19を駆動し、供給管18から図3に示す主管17B(配管16B)に向かって撹拌流体を供給する。主管17B(配管16B)に供給された撹拌流体は、主管17B(配管16B)に連通する複数の枝管26Bに形成された噴出孔14Bからろ材表層部11に向かって噴出される。 After the specified gap X is formed, the fluid supply source 19 connected to the agitating fluid ejection device 13 is driven to supply the agitating fluid from the supply pipe 18 toward the main pipe 17B (piping 16B) shown in FIG. 3. The agitating fluid supplied to the main pipe 17B (piping 16B) is ejected toward the filter media surface layer 11 from the ejection holes 14B formed in multiple branch pipes 26B that communicate with the main pipe 17B (piping 16B).

ろ材層表層部11は、撹拌流体が噴出された後、撹拌され、懸濁物質が剥離する。剥離した懸濁物質は、戻り防止部材9の網体21に開口した通水孔を抜けて上方へと浮上し、泡沫分離装置12からろ過槽2内に常時供給される微細気泡に吸着された後、水面に向かってさらに浮上していく。そして、次々と浮上する気泡によって水面に泡沫が形成される。 After the stirring fluid is sprayed, the surface portion 11 of the filter layer is stirred, and suspended matter is separated from the surface portion 11. The separated suspended matter passes through the water passage holes opened in the mesh body 21 of the return prevention member 9 and floats upward. After being adsorbed by fine air bubbles constantly supplied from the foam separator 12 into the filter tank 2, it continues to rise toward the water surface. Then, the air bubbles that rise one after another form foam on the water surface.

なお、所定の隙間Xの確認は、例えば、ろ過槽2の一部に設けた検視窓から位置を測定できるセンサにより確認する方法や、撮像装置を用いて撮影して確認する方法等とする。その他、ろ過槽2内の圧力を継続的に計測し、計測値が所定値を示した際にろ材層4の厚みが変化したと認識して行う方法等であってもよい。また、本実施形態では、ろ過槽表層部11近傍に戻り防止部材9を静置させているため、ろ材層4が上方または下方に移動することはないが、例えば、ろ材表層部11から撹拌流体噴出装置13までの間隔が所定の隙間X以上が望ましい場合等には、撹拌流体噴出装置13を移動させて任意の位置からろ材撹拌流体を噴出してもよい。 The predetermined gap X may be confirmed, for example, by a sensor capable of measuring the position through an inspection window provided in a part of the filtration tank 2, or by photographing and confirming using an imaging device. Alternatively, the pressure in the filtration tank 2 may be continuously measured, and when the measured value reaches a predetermined value, the thickness of the filter layer 4 is recognized as having changed. In this embodiment, the return prevention member 9 is stationary near the filter tank surface layer 11, so the filter layer 4 does not move upward or downward. However, for example, when it is desired that the distance from the filter surface layer 11 to the agitation fluid ejection device 13 is equal to or greater than the predetermined gap X, the agitation fluid ejection device 13 may be moved to eject the filter agitation fluid from any position.

水面に形成された泡沫は、散気部15から上方に向かって常時噴出される微細気泡とともに排出管20から排出される。排出管20に介装する弁V3は、ろ過工程中に常時開放状態としてあるため、ろ過槽2内の水面に形成された泡沫は、散気部15から排出管20に向かって常時排出される微細気泡とともに排出される。 The foam formed on the water surface is discharged from the discharge pipe 20 together with the fine bubbles constantly sprayed upward from the aeration section 15. Since the valve V3 interposed in the discharge pipe 20 is always open during the filtration process, the foam formed on the water surface in the filtration tank 2 is discharged together with the fine bubbles constantly discharged from the aeration section 15 toward the discharge pipe 20.

このとき、弁V3の開度は、排出管20に設けたろ過槽2内の水位を計測するレベル計29の値に応じて適宜調整する。本実施形態では、ろ過槽2内の水位を一定に保った状態でろ過を行うために、排出管20にレベル計29を設け、常時水位を計測しているが、計測された水位が事前に定めた所定値から外れた場合、弁V3の開度を調整する。例えば、計測された水位が所定値よりも低い場合、弁の開度を大きくし、泡沫及び微細気泡の排出量を増やして水位を所定値まで上昇させる。ろ過槽2上方に大量の空気が滞留すると、ろ過槽2内の水位低下につながるため、レベル計29の計測値をもとに上記操作を実施する。なお、泡沫の排出方法は、本実施形態に限定されず、排出管20から常時オーバーフローさせながら排出させる形態等としてもよい。 At this time, the opening degree of the valve V3 is appropriately adjusted according to the value of the level gauge 29 that measures the water level in the filtration tank 2 and is provided in the discharge pipe 20. In this embodiment, in order to perform filtration while maintaining the water level in the filtration tank 2 constant, the level gauge 29 is provided in the discharge pipe 20 and the water level is constantly measured. If the measured water level deviates from a predetermined value, the opening degree of the valve V3 is adjusted. For example, if the measured water level is lower than the predetermined value, the opening degree of the valve is increased, and the amount of foam and fine bubbles discharged is increased to raise the water level to a predetermined value. If a large amount of air remains above the filtration tank 2, it will lead to a drop in the water level in the filtration tank 2, so the above operation is performed based on the measurement value of the level gauge 29. Note that the method of discharging the foam is not limited to this embodiment, and it may be a form in which the foam is constantly overflowing and discharged from the discharge pipe 20.

ろ過処理工程S4終了後、被処理液の供給を停止し、弁V1を閉める。同時に流体供給源19の駆動を停止し、泡沫分離操作を終了する。なお、被処理液の供給は、泡沫分離時のみならず、ろ材表層部11の撹拌時も継続的に行い、予め定めた所定時間や所定時刻、所定圧力等に到達した時点で終了する。 After the filtration process S4 is completed, the supply of the liquid to be treated is stopped and valve V1 is closed. At the same time, the operation of the fluid supply source 19 is stopped and the foam separation operation is terminated. The supply of the liquid to be treated is continued not only during foam separation but also during stirring of the filter media surface layer 11, and is terminated when a predetermined time, a predetermined time, a predetermined pressure, etc. is reached.

また、撹拌流体噴出の開始及び終了のタイミングに関しても、予め定めた所定時間や所定時刻、所定圧力等を指標として行う。撹拌流体は連続的に噴出しても、断続的に噴出してもよい。 The timing of starting and ending the ejection of the stirred fluid is also determined based on a predetermined time, a predetermined time, a predetermined pressure, etc. The stirred fluid may be ejected continuously or intermittently.

本実施形態では、戻り防止部材9の下方に撹拌流体噴出装置13を設置し、上方に泡沫分離装置12を設置したことで、撹拌流体噴出装置13から供給された撹拌流体にて剥離された直後の懸濁物質に、微細気泡を供給できる。そのため、懸濁物質が水面に浮上するまでの間に微細気泡に吸着することが可能となり、効率よく泡沫を生成できる。また、泡沫分離装置12及び撹拌流体噴出装置13が昇降可能であるため、ろ材表層部11近傍に撹拌流体噴出装置13を配設可能となり、ろ材表層部11に懸濁物質が堆積することを防ぐ。 In this embodiment, the agitation fluid jetting device 13 is installed below the return prevention member 9, and the foam separation device 12 is installed above it, so that fine air bubbles can be supplied to the suspended matter immediately after it has been detached by the agitation fluid supplied from the agitation fluid jetting device 13. This allows the suspended matter to be adsorbed onto the fine air bubbles before it rises to the water surface, allowing for efficient foam generation. In addition, because the foam separation device 12 and the agitation fluid jetting device 13 can be raised and lowered, the agitation fluid jetting device 13 can be disposed near the filter media surface layer 11, preventing suspended matter from accumulating on the filter media surface layer 11.

そして、ろ過処理工程S4時のろ材表層部11は、常時洗浄された状態となるため、ろ過効率が低下しない。このように常時、ろ材表層部11を洗浄しながらろ過を継続することで、早期のろ過圧力上昇を防止し、ろ過継続時間を延ばすとともに、ろ材洗浄の時間や頻度を低減できる。 The filter surface layer 11 during the filtration process S4 is constantly cleaned, so the filtration efficiency does not decrease. By constantly cleaning the filter surface layer 11 while continuing filtration in this way, it is possible to prevent an early rise in filtration pressure, extend the duration of filtration, and reduce the time and frequency of cleaning the filter.

本実施形態では、泡沫分離装置12の噴出部15を上向きに構成したが、噴出部15を下向きにして戻り防止部材9に設置し、1つの装置でろ材の表層撹拌及び泡沫分離を実施できる形態としてもよい。この形態とする場合には、網体21と泡沫分離装置12との間に所定の隙間を設け、網体21の上方から微細気泡を噴出できる構成とすることが望ましい。網体21上方に所定の隙間を設けることで、被処理液の圧密によって所定の隙間Xが形成される前からろ材表層部の撹拌を実施できる。また、噴出口を上方に向けた泡沫分離装置12のみを戻り防止部材9と一体的に設置した構成とし、ろ過処理工程S4中において、泡沫分離のみ行う形態としてもよい。 In this embodiment, the ejection part 15 of the foam separation device 12 is configured to face upward, but the ejection part 15 may be configured to face downward and installed on the return prevention member 9, so that one device can perform surface stirring of the filter medium and foam separation. In this case, it is desirable to provide a predetermined gap between the mesh body 21 and the foam separation device 12, so that fine bubbles can be ejected from above the mesh body 21. By providing a predetermined gap above the mesh body 21, it is possible to perform stirring of the surface of the filter medium before the predetermined gap X is formed by the consolidation of the treated liquid. In addition, it is also possible to provide a configuration in which only the foam separation device 12 with an ejection port facing upward is installed integrally with the return prevention member 9, so that only foam separation is performed during the filtration process S4.

<ろ材洗浄工程S5>
ろ材洗浄工程S5では、図4に示すように、ろ材表層部11に摺接している戻り防止部材9を所定位置まで引き上げ、処理液管6からろ過槽2内に洗浄液を供給して繊維ろ材の洗浄を行う。ろ材を洗浄した後の洗浄排液は、排出管20より排出される。このとき、弁V2及び弁V3は開放状態である。本実施形態では、公知の方法にてろ材洗浄を実施しているが、ろ材洗浄工程S5前段で懸濁物質を除去しながらろ過を行っているため、ろ材表層部11の目詰まりが発生し難い。従って、ろ材洗浄の時間や頻度等を低減できる。
<Filter cleaning process S5>
In the filter media cleaning step S5, as shown in Fig. 4, the return prevention member 9 in sliding contact with the filter media surface layer 11 is raised to a predetermined position, and cleaning liquid is supplied from the treatment liquid pipe 6 into the filtration tank 2 to clean the fiber filter media. The cleaning waste liquid after cleaning the filter media is discharged from the discharge pipe 20. At this time, the valves V2 and V3 are in an open state. In this embodiment, the filter media is cleaned by a known method, but since filtration is performed while removing suspended matter in the preliminary stage of the filter media cleaning step S5, clogging of the filter media surface layer 11 is unlikely to occur. Therefore, the time and frequency of cleaning the filter media can be reduced.

本発明は、上記に詳述した実施形態に限られるものではない。本発明の趣旨を逸脱しない範囲で適宜変形実施可能である。 The present invention is not limited to the embodiment described above. Modifications can be made as appropriate without departing from the spirit of the present invention.

本発明は、ろ材層の圧密状態を維持した状態でろ材表層部に堆積する懸濁物質を除去しながらろ過を行うため、ろ材層の目詰まりが発生し難く、安定したろ過処理を継続できる。また、ろ材洗浄工程の前段で懸濁物質を除去するため、長時間にわたってろ過運転を継続可能となり、ろ材洗浄の時間や頻度を低減できる。表層ろ過になりやすい凝集ろ過や高濁度水、あるいは、プール等の高清澄度が要求される特殊な用途にも捕捉率の高い繊維ろ材を使用でき、深層ろ過を行うことで、洗浄頻度が少なく長時間のろ過処理工程を行うことができる有益なろ過処理方法となる。 The present invention performs filtration while removing suspended matter that accumulates on the surface of the filter media while maintaining the compacted state of the filter media layer, making it difficult for the filter media layer to become clogged, and stable filtration processing can be continued. In addition, because suspended matter is removed prior to the filter media cleaning process, filtration operation can be continued for long periods of time, reducing the time and frequency of filter media cleaning. Fiber filter media with a high capture rate can be used for coagulation filtration and highly turbid water that are prone to surface filtration, or for special applications that require high clarity, such as pools, and by performing deep layer filtration, it is a useful filtration method that allows for a long filtration process with less frequent cleaning.

1 ろ過装置
2 ろ過槽
4 ろ材層
9 戻り防止部材
11 ろ材表層部
12 泡沫分離装置
13 撹拌流体噴出装置
14A 噴出孔
15A 噴出部
16A 配管
21 網体
23 枠体
30 枠体内壁
S1 圧密水貯留工程
S2 圧密工程
S3 戻り防止工程
S4 ろ過処理工程
Reference Signs List 1 Filtration device 2 Filtration tank 4 Filter layer 9 Return prevention member 11 Filter surface layer 12 Foam separator 13 Agitation fluid ejection device 14A Ejection hole 15A Ejection part 16A Pipe 21 Mesh body 23 Frame body 30 Frame body inner wall S1 Consolidated water storage step S2 Consolidation step S3 Return prevention step S4 Filtration treatment step

Claims (5)

ろ過処理工程(S4)の前段で沈降性の粒状繊維ろ材を圧密し、戻り防止部材(9)にて圧密状態を維持する下向流式のろ過装置において、
円筒状の枠体(23)に通水孔を有する網体(21)を張設し、ろ材表層部(11)近傍に静置して圧密状態を維持する昇降可能な戻り防止部材(9)と、
戻り防止部材(9)と一体的に構成し、微細気泡を噴出する泡沫分離装置(12)と、を備えた
ことを特徴とするろ過装置。
In a downflow filtration device, a sedimentary granular fiber filter medium is compressed in a stage prior to a filtration treatment step (S4) and the compressed state is maintained by a return prevention member (9),
a cylindrical frame (23) having a mesh body (21) with water holes stretched thereon, and a liftable return prevention member (9) that is placed near the surface layer (11) of the filter medium to maintain a compressed state;
A filtration device comprising: a foam separator (12) integrally formed with a return prevention member (9) and adapted to eject fine bubbles.
前記泡沫分離装置(12)は、微細気泡をろ材表層部(11)に向けて噴出する噴出部(15A)を備えた
ことを特徴とする請求項1に記載のろ過装置。
2. The filtering device according to claim 1, wherein the foam separation device (12) is provided with an ejection section (15A) that ejects fine bubbles toward a surface portion (11) of the filter medium.
前記戻り防止部材(9)に、ろ材表層部(11)で捕捉された懸濁物質を撹拌する撹拌流体噴出装置(13)を備えるとともに、
泡沫分離装置(12)の噴出部(15A)を上向きに設けた
ことを特徴とする請求項1に記載のろ過装置。
The return prevention member (9) is provided with an agitating fluid ejection device (13) for agitating the suspended matter captured by the surface layer portion (11) of the filter medium,
2. The filtering device according to claim 1, wherein the foam separator (12) has a jet portion (15A) facing upward.
前記泡沫分離装置(12)は、枠体(23)の枠体内壁(30)に亘って形成された配管(16A)と、
配管(16A)に形成され、微細な噴出孔(14A)を有する噴出部(15A)と、を備えた
ことを特徴とする請求項1から請求項3までのいずれか一項に記載のろ過装置。
The foam separation device (12) includes a pipe (16A) formed along the inner wall (30) of the frame (23);
4. The filtering device according to claim 1, further comprising: a jetting portion (15A) formed in the pipe (16A) and having fine jetting holes (14A).
沈降性の粒状繊維ろ材で形成したろ材層(4)で被処理液中の懸濁物質を捕捉する下向流式のろ過処理方法において、
ろ過槽(2)内に所定の水位まで圧密水を貯留する圧密水貯留工程(S1)と、
貯留した圧密水排出時の水流によりろ材層(4)を圧密する圧密工程(S2)と、
網体(21)を張設した戻り防止部材(9)をろ材表層部(11)近傍に静置してろ材層(4)の圧密状態を維持する戻り防止工程(S3)を行った後、ろ過処理工程(S4)を開始するとともに、
ろ過処理工程(S4)の際に、
戻り防止部材(9)に一体的に取り付けた泡沫分離装置(12)から微細気泡を噴出し、懸濁物質を泡沫分離する
ことを特徴とするろ過処理方法。
A downward flow filtration method in which suspended solids in a liquid to be treated are captured by a filter layer (4) formed of a sedimentary granular fiber filter medium,
A consolidated water storage step (S1) of storing consolidated water in a filtration tank (2) up to a predetermined water level;
A consolidation step (S2) of consolidating the filter layer (4) by a water flow when the stored consolidated water is discharged;
After a return prevention step (S3) is performed in which a return prevention member (9) with a mesh body (21) stretched thereon is placed near the filter medium surface portion (11) to maintain the compressed state of the filter medium layer (4), a filtration treatment step (S4) is started, and
During the filtration process (S4),
A filtration treatment method characterized in that fine bubbles are ejected from a foam separator (12) attached integrally to a return prevention member (9) to separate suspended matter by foam separation.
JP2022152341A 2022-09-26 2022-09-26 Filtration apparatus and filtration treatment method Pending JP2024046951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022152341A JP2024046951A (en) 2022-09-26 2022-09-26 Filtration apparatus and filtration treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022152341A JP2024046951A (en) 2022-09-26 2022-09-26 Filtration apparatus and filtration treatment method

Publications (1)

Publication Number Publication Date
JP2024046951A true JP2024046951A (en) 2024-04-05

Family

ID=90527307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022152341A Pending JP2024046951A (en) 2022-09-26 2022-09-26 Filtration apparatus and filtration treatment method

Country Status (1)

Country Link
JP (1) JP2024046951A (en)

Similar Documents

Publication Publication Date Title
US10112847B2 (en) Method and apparatus for treating liquid containing impurities
US4547286A (en) Water filtration process and apparatus having upflow filter with buoyant filter media and downflow filter with nonbuoyant filter media
KR920007874B1 (en) Apparatus for clarification of water
JPH07204419A (en) Method and device for filtrating and backwashing solid particulate from liquid
US20050029204A1 (en) Liquid filtration apparatus and method embodying super-buoyant filtration particles
FI90500C (en) Water clarification equipment for the removal of fines larger than a predetermined size
US4178245A (en) Filtration method
JP2004160432A (en) Filter
KR100774583B1 (en) A screw-type high flow sand filter
JP5902538B2 (en) Solid-liquid separator and solid-liquid separator cleaning method
RU2440170C2 (en) Sand filter
US4212737A (en) Processes and apparatus for removing suspended matter from suspensions by filtration through foams
JP5319592B2 (en) Suspended water filtration method and filtration apparatus
JP2001120912A (en) Filtering device
JP2024046951A (en) Filtration apparatus and filtration treatment method
CN114620828A (en) Biological filter reactor and treatment method
JP2754452B2 (en) Moving bed continuous filtration equipment for liquids
US3846304A (en) Method for cleaning liquid filter beds
CA1191794A (en) Process and apparatus for high rate upflow water filtration with buoyant filter media
JP2023031355A (en) Filtration processing method
JP2002191908A (en) Filter and septic tank
US2217689A (en) Filtering system, device used therein, and method of filtration
JP2008093552A (en) Moving-bed filtration apparatus
JPH09164304A (en) Filter water purifier
JP2003220305A (en) Mobile filter bed-type filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240902