Nothing Special   »   [go: up one dir, main page]

JP2023177366A - Ammonia recovery apparatus - Google Patents

Ammonia recovery apparatus Download PDF

Info

Publication number
JP2023177366A
JP2023177366A JP2022082835A JP2022082835A JP2023177366A JP 2023177366 A JP2023177366 A JP 2023177366A JP 2022082835 A JP2022082835 A JP 2022082835A JP 2022082835 A JP2022082835 A JP 2022082835A JP 2023177366 A JP2023177366 A JP 2023177366A
Authority
JP
Japan
Prior art keywords
concentration
liquid
forward osmosis
ammonia
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022082835A
Other languages
Japanese (ja)
Other versions
JP7392959B1 (en
Inventor
博史 池田
Hiroshi Ikeda
洋亮 山川
Yosuke Yamakawa
和夫 熊谷
Kazuo Kumagai
秀人 松山
Hideto Matsuyama
卓司 新谷
Takuji Shintani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Chemical Plants Co Ltd
Kobe University NUC
Original Assignee
Kimura Chemical Plants Co Ltd
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Chemical Plants Co Ltd, Kobe University NUC filed Critical Kimura Chemical Plants Co Ltd
Priority to JP2022082835A priority Critical patent/JP7392959B1/en
Application granted granted Critical
Publication of JP7392959B1 publication Critical patent/JP7392959B1/en
Publication of JP2023177366A publication Critical patent/JP2023177366A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

To provide a recovery apparatus that efficiently recovers ammonia from a liquid to be treated that contains ammonia nitrogen and organic nitrogen.SOLUTION: An ammonia recovery apparatus includes: a first concentration mechanism 10 in which to-be-treated water containing ammonia nitrogen and organic nitrogen is separated by a first forward osmosis membrane into a first permeate liquid and a first concentrated liquid that does not permeate the membrane; an anaerobic membrane separation mechanism 20 in which the first concentrated liquid is subjected to anaerobic fermentation to decompose organic nitrogen into methane gas and ammonia nitrogen, and the anaerobic fermented liquid is subjected to permeation through a separation membrane to separate it into a liquid that contains microorganisms and does not permeate the separation membrane and a separation membrane permeate that has permeated it; a second concentration mechanism 30 in which the separation membrane permeate is subjected to permeation using a second forward osmosis membrane to separate it into a permeate that has passed through the second membrane and a second concentrate that has not permeated the membrane and shows an increased concentration of ammonia nitrogen; and a distillation mechanism 50 in which the second concentrate is distilled and separated into bottom liquid and distillate vapor that contains ammonia nitrogen at a high concentration.SELECTED DRAWING: Figure 1

Description

特許法第30条第2項適用申請有り ウェブサイトの掲載日 令和4年3月9日 掲載アドレス https://stin-2.webex.com/stin-2/j.php?MTID=m7cefd85273ea207d04c1c53834f72ac9Application for application of Article 30, Paragraph 2 of the Patent Act has been filed Website publication date March 9, 2020 Publication address https://stin-2. webex. com/stin-2/j. php? MTID=m7cefd85273ea207d04c1c53834f72ac9

本発明は、アンモニア回収装置に関し、詳しくは、アンモニア態窒素および有機態窒素を含有する被処理液からアンモニアを回収するためのアンモニア回収装置に関する。 The present invention relates to an ammonia recovery apparatus, and more particularly to an ammonia recovery apparatus for recovering ammonia from a liquid to be treated containing ammonia nitrogen and organic nitrogen.

アンモニア態窒素や有機態窒素などを含有する工場排水は、窒素の総量規制に関する法律などにより、そのまま放出することができないのが実情である。 The reality is that industrial wastewater containing ammonia nitrogen, organic nitrogen, etc. cannot be discharged as is, due to laws regarding the regulation of the total amount of nitrogen.

そこで、例えば、特許文献1には、メタン発酵法により、被処理物中の有機物を分解してメタン発酵処理水を得るメタン発酵工程と、好気性微生物の作用により、メタン発酵処理水中のアンモニアを酸化して硝酸とすると共に、有機物を分解して硝化処理水を得る工程と、硝化処理水を蒸発濃縮して、濃縮水と凝縮水とを得る蒸発濃縮工程と、を有する被処理物の処理方法が開示されている。 For example, Patent Document 1 describes a methane fermentation process in which methane fermentation treated water is obtained by decomposing organic matter in a material to be treated using a methane fermentation method, and ammonia in the methane fermentation treated water is removed by the action of aerobic microorganisms. Treatment of a material to be treated, which includes a step of oxidizing to nitric acid and decomposing organic matter to obtain nitrified water, and an evaporative concentration step of evaporating and concentrating the nitrified water to obtain concentrated water and condensed water. A method is disclosed.

また、特許文献1には、アンモニア濃度が窒素換算で10~10000ppm、Cl-濃度は1~50000ppm、CODは10~100000ppm、BODは10~10000ppmの被処理水の処理方法であって、好気性微生物の作用により、被処理水中のアンモニアを酸化して硝酸とすると共に、有機物を分解して硝化処理水を得る好気性微生物処理工程と、硝化処理水を蒸発濃縮して、濃縮水と凝縮水とを得る蒸発濃縮工程とを有し、蒸発濃縮工程に供する硝化処理水のpH値を8.5以上に調整するようにした被処理水の処理方法が開示されている。 Further, Patent Document 1 describes a method for treating water with an ammonia concentration of 10 to 10,000 ppm in terms of nitrogen, a Cl concentration of 1 to 50,000 ppm, a COD of 10 to 100,000 ppm, and a BOD of 10 to 10,000 ppm, which method uses an aerobic method. An aerobic microbial treatment process that oxidizes ammonia in the water to be treated to nitric acid through the action of microorganisms and decomposes organic matter to obtain nitrified water; and evaporates and concentrates the nitrified water to produce concentrated water and condensed water. Disclosed is a method for treating water to be treated, which includes an evaporation concentration step to obtain the following:

そして、上述の被処理物の処理方法によれば、有機物、アンモニア、および溶解性塩類を含有する被処理物を、低廉な設備コストおよび操業コストで処理することが可能になるとされている。 According to the above-described method for treating a workpiece, it is possible to treat a workpiece containing organic matter, ammonia, and soluble salts at low equipment costs and operating costs.

特開2020-62631号公報JP2020-62631A

ところで、アンモニアは、肥料や、メラミン樹脂、合成繊維(ナイロン)などの原料として種々の用途に用いられているとともに、近年は、二酸化炭素を発生しない燃料としての用途にも着目されている。 By the way, ammonia is used for various purposes as a raw material for fertilizers, melamine resin, synthetic fibers (nylon), etc., and in recent years, attention has been paid to its use as a fuel that does not generate carbon dioxide.

しかしながら、上述の特許文献1の被処理物の処理方法は、好気性微生物の作用により、アンモニアを酸化して硝酸とするように構成されているので、アンモニアを回収することはできない。 However, the method for treating the object disclosed in Patent Document 1 is configured to oxidize ammonia to nitric acid through the action of aerobic microorganisms, and therefore cannot recover ammonia.

本発明は、上記課題を解決するものであり、アンモニア態窒素および有機態窒素と、水とを含む被処理液から、アンモニアを効率よく回収することが可能なアンモニア回収装置を提供することを目的とする。 The present invention solves the above problems, and aims to provide an ammonia recovery device that can efficiently recover ammonia from a liquid to be treated containing ammonia nitrogen, organic nitrogen, and water. shall be.

上記課題を解決するために、本発明のアンモニア回収装置は、
アンモニア態窒素および有機態窒素と、水とを含有する被処理液を、第一正浸透膜を用いて透過処理を行うことにより、前記第一正浸透膜を透過した第一正浸透膜透過液と、前記第一正浸透膜を透過せず、前記被処理液に含まれる成分が濃縮された第一濃縮液とに分離する第一濃縮機構と、
前記第一濃縮機構で濃縮された前記第一濃縮液を、嫌気性微生物により嫌気性発酵させることで、前記有機態窒素を分解してメタンガスとアンモニア態窒素に転換させるとともに、嫌気性発酵させた後の嫌気性発酵処理液を、前記嫌気性微生物よりも小さい孔径を有する分離膜を用いて透過処理を行うことにより、前記分離膜を透過しない、前記嫌気性微生物を含む微生物含有液と、前記分離膜を透過した、アンモニア態窒素と、水とを含む分離膜透過液とに分離する嫌気性膜分離機構と、
前記嫌気性膜分離機構で分離された前記分離膜透過液を、第二正浸透膜を用いて透過処理を行うことにより、前記第二正浸透膜を透過した第二正浸透膜透過液と、前記第二正浸透膜を透過せず、アンモニア態窒素の濃度が上昇した第二濃縮液に分離する第二濃縮機構と、
前記第二濃縮機構でアンモニア態窒素の濃度を上昇させた前記第二濃縮液を蒸留して、アンモニア態窒素が除去された缶出液と、前記第二濃縮液よりも高い濃度でアンモニア態窒素を含む留出ベーパとに分離する蒸留機構と
を備えていることを特徴としている。
In order to solve the above problems, the ammonia recovery device of the present invention includes:
A first forward osmosis membrane permeated liquid that has permeated the first forward osmosis membrane by permeating the liquid to be treated containing ammonia nitrogen, organic nitrogen, and water using the first forward osmosis membrane. and a first concentration mechanism that does not pass through the first forward osmosis membrane and separates the liquid into a first concentrated liquid in which the components contained in the liquid to be treated are concentrated.
The first concentrated liquid concentrated by the first concentration mechanism is subjected to anaerobic fermentation by anaerobic microorganisms, thereby decomposing the organic nitrogen and converting it into methane gas and ammonia nitrogen, as well as anaerobic fermentation. A microorganism-containing liquid containing the anaerobic microorganisms that does not pass through the separation membrane by permeabilizing the subsequent anaerobic fermentation-treated liquid using a separation membrane having a pore size smaller than that of the anaerobic microorganisms; an anaerobic membrane separation mechanism that separates ammonia nitrogen that has passed through the separation membrane and a separation membrane permeate containing water;
A second forward osmosis membrane permeate that has passed through the second forward osmosis membrane by permeating the separation membrane permeate separated by the anaerobic membrane separation mechanism using a second forward osmosis membrane; a second concentration mechanism that does not pass through the second forward osmosis membrane and separates into a second concentrated liquid with an increased concentration of ammonia nitrogen;
The second concentrated liquid in which the concentration of ammonia nitrogen has been increased in the second concentration mechanism is distilled to produce a bottom liquor from which ammonia nitrogen has been removed, and ammonia nitrogen at a higher concentration than the second concentrated liquid. and a distillation mechanism that separates the distillate vapor from the distillate vapor containing the vapor.

本発明のアンモニア回収装置においては、前記第一濃縮機構で濃縮された前記第一濃縮液における、全窒素の濃度が3000ppm以下となるように構成されていることが好ましい。 The ammonia recovery apparatus of the present invention is preferably configured such that the total nitrogen concentration in the first concentrated liquid concentrated by the first concentration mechanism is 3000 ppm or less.

また、前記第二濃縮機構でアンモニア態窒素の濃度を上昇させた前記第二濃縮液における全窒素の濃度が15000ppm以下となるように構成されていることが好ましい。 Further, it is preferable that the second concentration liquid, in which the concentration of ammonia nitrogen is increased in the second concentration mechanism, has a total nitrogen concentration of 15,000 ppm or less.

また、前記第一濃縮機構において、前記第一正浸透膜を用いて透過処理を行うにあたり、前記被処理液を、前記第一正浸透膜を介して第一駆動溶液と接触させた状態で透過処理を行い、かつ、前記第一駆動溶液として、前記被処理液よりも浸透圧の高い溶液を使用し、
前記第二濃縮機構において、前記第二正浸透膜を用いて透過処理を行うにあたり、前記分離膜透過液を、前記第二正浸透膜を介して第二駆動溶液と接触させた状態で透過処理を行い、かつ、前記第二駆動溶液として、前記分離膜透過液よりも浸透圧の高い溶液を使用するように構成されていることが好ましい。
Further, in the first concentration mechanism, when permeation treatment is performed using the first forward osmosis membrane, the liquid to be treated is permeated through the first forward osmosis membrane while being in contact with the first driving solution. carrying out the treatment, and using a solution having a higher osmotic pressure than the liquid to be treated as the first driving solution,
In the second concentration mechanism, when performing permeation treatment using the second forward osmosis membrane, the permeation treatment is performed while the separation membrane permeate is brought into contact with the second driving solution through the second forward osmosis membrane. It is preferable that the second driving solution is configured such that a solution having a higher osmotic pressure than the separation membrane permeate is used as the second driving solution.

また、前記第一および第二駆動溶液として、海水、無機塩溶解水、温度応答性イオン液体、および温度応答性ポリマーからなる群より選ばれる少なくとも1種を用いることが好ましい。 Further, as the first and second driving solutions, it is preferable to use at least one selected from the group consisting of seawater, inorganic salt-dissolved water, temperature-responsive ionic liquids, and temperature-responsive polymers.

また、前記第二濃縮液が、pH9.0以上となるようにpH調整された後、前記蒸留機構に供給されるように構成されていることが好ましい。 Moreover, it is preferable that the second concentrated liquid is configured to be supplied to the distillation mechanism after the pH is adjusted to pH 9.0 or higher.

また、前記第二濃縮液のpHを調整するためのpH調整機構を備えていることが好ましい。 Moreover, it is preferable that a pH adjustment mechanism for adjusting the pH of the second concentrated liquid is provided.

本発明のアンモニア回収装置は、上述のように、第一濃縮機構と、嫌気性膜分離機構と、第二濃縮機構と、蒸留機構とを備えており、第一濃縮機構では、第一正浸透膜を用いて透過処理を行うことにより、被処理液に含まれる成分を濃縮するようにしているので、蒸留などの相変化を伴う方法で濃縮する場合に比べて、省エネルギーを図りつつ、被処理液を濃縮することができる。 As described above, the ammonia recovery device of the present invention includes a first concentration mechanism, an anaerobic membrane separation mechanism, a second concentration mechanism, and a distillation mechanism, and the first concentration mechanism includes a first forward osmosis mechanism. By performing permeation treatment using a membrane, we are trying to concentrate the components contained in the liquid to be treated, so compared to concentrating by a method that involves a phase change such as distillation, we are saving energy while liquid can be concentrated.

また、第一濃縮機構では、正浸透膜を使用して正浸透法により濃縮するようにしているので、逆浸透膜を用いて逆浸透法で濃縮する場合に比べて、省エネルギーを図ることができる。 In addition, the first concentration mechanism uses a forward osmosis membrane to concentrate by the forward osmosis method, so it can save energy compared to the case of concentrating by the reverse osmosis method using a reverse osmosis membrane. .

また、第一濃縮機構で濃縮された第一濃縮液を、嫌気性微生物により嫌気性発酵させるようにしているので、有機態窒素を分解してメタンガスとアンモニア態窒素に転換させるとともに、嫌気性発酵させた後の嫌気性発酵処理液を、嫌気性微生物よりも小さい孔径を有する分離膜を用いて透過処理を行うことにより、分離膜を透過しない微生物含有液と、分離膜を透過したアンモニア態窒素と水とを含む分離膜透過液とに分離することが可能になり、アンモニア態窒素の回収率を向上させることができる。 In addition, since the first concentrated liquid concentrated in the first concentration mechanism is subjected to anaerobic fermentation by anaerobic microorganisms, organic nitrogen is decomposed and converted into methane gas and ammonia nitrogen, and anaerobic fermentation By permeabilizing the anaerobic fermentation solution using a separation membrane with a pore size smaller than that of the anaerobic microorganisms, the microorganism-containing solution that does not pass through the separation membrane and the ammonia nitrogen that has passed through the separation membrane are separated. It becomes possible to separate the ammonia nitrogen into a separation membrane permeate liquid containing water and water, and the recovery rate of ammonia nitrogen can be improved.

また、有機態窒素を分解してメタンガスに転換するようにしているので、発生したメタンガスを例えば発電設備のエネルギーとして有効に利用することができる。 Furthermore, since organic nitrogen is decomposed and converted into methane gas, the generated methane gas can be effectively used as energy for power generation equipment, for example.

また、嫌気性発酵の場合、好気性発酵の場合には必要となるような曝気が不要
であることから、省エネルギーを図ることができる。
Furthermore, in the case of anaerobic fermentation, there is no need for aeration, which is required in the case of aerobic fermentation, so energy can be saved.

さらに、第二濃縮機構では、嫌気性膜分離機構で分離された分離膜透過液を、第二正浸透膜を用いて透過処理を行うようにしているので、水を正浸透膜透過液として分離して、アンモニア態窒素濃度の高い第二濃縮液を得ることができる。 Furthermore, in the second concentration mechanism, the separation membrane permeate separated by the anaerobic membrane separation mechanism is permeated using the second forward osmosis membrane, so water is separated as the forward osmosis membrane permeate. As a result, a second concentrated liquid having a high concentration of ammonia nitrogen can be obtained.

なお、第二濃縮機構でも、正浸透膜を使用して正浸透法により濃縮するようにしているので、逆浸透膜を用いて逆浸透法で濃縮する場合に比べて、省エネルギーを図ることができる。 In addition, the second concentration mechanism also uses a forward osmosis membrane to concentrate by the forward osmosis method, so it is possible to save energy compared to the case of concentrating by the reverse osmosis method using a reverse osmosis membrane. .

さらに、蒸留機構では、第二濃縮機構でアンモニア態窒素の濃度を上昇させた第二濃縮液の蒸留が行われ、アンモニア態窒素を含まない缶出液と、第二濃縮液よりも高い濃度でアンモニア態窒素を含む留出ベーパとに分離されることから、高濃度のアンモニア態窒素(すなわちアンモニア)を含む留出ベーパを回収することができる。 Furthermore, in the distillation mechanism, a second concentrate with an increased concentration of ammonia nitrogen is distilled in a second concentration mechanism, and a bottom liquid containing no ammonia nitrogen and a bottom liquid with a higher concentration than the second concentrate are distilled. Since the vapor is separated from the distilled vapor containing ammonia nitrogen, the distilled vapor containing a high concentration of ammonia nitrogen (ie, ammonia) can be recovered.

上述のように、第一濃縮機構と、嫌気性膜分離機構と、第二濃縮機構と、蒸留機構とを組み合わせた本発明のアンモニア回収装置によれば、省エネルギーを図りつつ、濃度の高いアンモニアを効率よく回収することが可能になる。 As described above, according to the ammonia recovery device of the present invention that combines the first concentration mechanism, anaerobic membrane separation mechanism, second concentration mechanism, and distillation mechanism, it is possible to save energy while recovering highly concentrated ammonia. It becomes possible to collect efficiently.

また、第一濃縮機構で正浸透法により濃縮を行う場合、アンモニア態窒素や有機体窒素などに由来する全窒素の濃度が高くなりすぎると、後工程である嫌気性膜分離機構での生物処理の効率が低下する傾向があるが、第一濃縮機構で濃縮された第一濃縮液における、全窒素の濃度を3000ppm以下に抑えることにより、嫌気性膜分離機構での生物処理効率の低下を抑制することが可能になる。 In addition, when concentrating by forward osmosis in the first concentration mechanism, if the concentration of total nitrogen derived from ammonia nitrogen or organic nitrogen becomes too high, biological treatment in the anaerobic membrane separation mechanism, which is a subsequent process, may occur. However, by suppressing the total nitrogen concentration in the first concentrated liquid concentrated by the first concentration mechanism to 3000 ppm or less, the decrease in biological treatment efficiency in the anaerobic membrane separation mechanism is suppressed. It becomes possible to do so.

なお、嫌気性膜分離機構では、嫌気性微生物により嫌気性発酵させ、有機態窒素を分解してメタンガスとアンモニア態窒素に転換させることが可能になり、効率よくメタンガスとアンモニア態窒素を回収することが可能になる。 In addition, the anaerobic membrane separation mechanism allows anaerobic fermentation using anaerobic microorganisms to decompose organic nitrogen and convert it into methane gas and ammonia nitrogen, making it possible to efficiently recover methane gas and ammonia nitrogen. becomes possible.

また、本発明のアンモニア回収装置において、第二濃縮機構で正浸透法により濃縮された第二濃縮液中の全窒素(アンモニア態窒素)の濃度が15000ppm以下となるようにした場合、第二濃縮機構での濃縮速度の低下を抑制して、効率よく、アンモニア態窒素の濃縮を行うことができる。 In addition, in the ammonia recovery apparatus of the present invention, when the concentration of total nitrogen (ammonia nitrogen) in the second concentrated liquid concentrated by the forward osmosis method in the second concentration mechanism is 15,000 ppm or less, the second concentration Ammonia nitrogen can be efficiently concentrated by suppressing a decrease in the concentration rate in the mechanism.

また、第一濃縮機構において、第一正浸透膜を用いて透過処理を行うにあたり、被処理液を、第一正浸透膜を介して第一駆動溶液と接触させた状態で透過処理を行い、かつ、第一駆動溶液として、被処理液よりも浸透圧の高い溶液を使用し、第二濃縮機構において、第二正浸透膜を用いて透過処理を行うにあたり、嫌気性膜分離機構における分離膜を透過した分離膜透過液を、第二正浸透膜を介して第二駆動溶液と接触させた状態で透過処理を行い、かつ、第二駆動溶液として、上記分離膜透過液よりも浸透圧の高い溶液を使用するようにした場合、第一および第二濃縮機構において、効率のよい濃縮を行うことが可能になる。 In addition, in the first concentration mechanism, when performing permeation treatment using the first forward osmosis membrane, the permeation treatment is performed while the liquid to be treated is in contact with the first driving solution through the first forward osmosis membrane, In addition, when a solution having a higher osmotic pressure than the liquid to be treated is used as the first driving solution and a second forward osmosis membrane is used for permeation treatment in the second concentration mechanism, the separation membrane in the anaerobic membrane separation mechanism is used. The permeate through the separation membrane is subjected to permeation treatment in a state in which it is brought into contact with the second driving solution via the second forward osmosis membrane, and as the second driving solution, the liquid having an osmotic pressure higher than that of the separation membrane permeate is used as the second driving solution. When a high concentration solution is used, efficient concentration can be performed in the first and second concentration mechanisms.

また、第一および第二駆動溶液として、海水、無機塩溶解水、温度応答性イオン液体、および温度応答性ポリマーからなる群より選ばれる少なくとも1種を用いることにより、第一および第二濃縮機構において、確実に効率のよい濃縮を行うことが可能になる。 Further, by using at least one selected from the group consisting of seawater, inorganic salt dissolved water, temperature-responsive ionic liquid, and temperature-responsive polymer as the first and second driving solutions, the first and second concentration mechanisms , it becomes possible to reliably perform efficient concentration.

さらに、本発明のアンモニア回収装置において、第二濃縮液を、pH9.0以上となるようにpH調整した後、蒸留機構に供給するようにした場合、アンモニア態窒素がNH3として遊離するため、蒸留機構でのアンモニア(アンモニア態窒素)の分離、回収を確実に行うことが可能になる。 Furthermore, in the ammonia recovery apparatus of the present invention, if the second concentrated liquid is supplied to the distillation mechanism after adjusting the pH to 9.0 or higher, ammonia nitrogen is liberated as NH3, so the distillation It becomes possible to reliably separate and recover ammonia (ammonium nitrogen) in the mechanism.

また、本発明の他のアンモニア回収装置において、第二濃縮液のpHを調整するためのpH調整機構を備えた構成とすることにより、容易かつ確実にpHを調整することが可能になり、本発明をより実効あらしめることができる。 In addition, in another ammonia recovery apparatus of the present invention, by having a configuration equipped with a pH adjustment mechanism for adjusting the pH of the second concentrated liquid, it becomes possible to easily and reliably adjust the pH, and the present invention The invention can be made more effective.

本発明の実施形態にかかるアンモニア回収装置を示すフローシートである。1 is a flow sheet showing an ammonia recovery apparatus according to an embodiment of the present invention.

以下に本発明の実施形態を示して、本発明の特徴とするところをさらに詳しく説明する。 Embodiments of the present invention will be shown below, and features of the present invention will be explained in more detail.

本願の実施形態にかかるアンモニア回収装置100は、アンモニア態窒素および有機態窒素と、無機塩類と、水とを含有する被処理液からアンモニアを回収するために用いられるアンモニア回収装置である。なお、被処理液には、アンモニア態窒素および有機態窒素以外の有機物質が含まれていてもよい。 The ammonia recovery device 100 according to the embodiment of the present application is an ammonia recovery device used to recover ammonia from a liquid to be treated containing ammonia nitrogen, organic nitrogen, inorganic salts, and water. Note that the liquid to be treated may contain organic substances other than ammonia nitrogen and organic nitrogen.

また,本実施形態にかかるアンモニア回収装置100は、被処理液からメタンガス(具体的にはメタンを主たる成分とし、発電用の燃料などに用いることが可能なバイオガス)を回収することができるように構成されている。 Furthermore, the ammonia recovery apparatus 100 according to the present embodiment is capable of recovering methane gas (specifically, biogas whose main component is methane and which can be used as fuel for power generation, etc.) from the liquid to be treated. It is composed of

図1に示すように、アンモニア回収装置100は、第一濃縮機構10と、嫌気性膜分離機構20と、第二濃縮機構30と、pH調整機構40と、蒸留機構50とを備えている。 As shown in FIG. 1, the ammonia recovery apparatus 100 includes a first concentration mechanism 10, an anaerobic membrane separation mechanism 20, a second concentration mechanism 30, a pH adjustment mechanism 40, and a distillation mechanism 50.

第一濃縮機構10は、アンモニア態窒素および有機態窒素と、無機塩類と、水とを含有する被処理液を、第一正浸透膜(Forward Osmosis膜(FO膜))を用いて透過処理を行うことにより、第一正浸透膜を透過した第一正浸透膜透過液と、第一正浸透膜を透過せず、被処理液に含まれる成分が濃縮された第一濃縮液とに分離するための機構である。 The first concentration mechanism 10 permeates a liquid to be treated containing ammonia nitrogen, organic nitrogen, inorganic salts, and water using a first forward osmosis membrane (FO membrane). By doing so, the first forward osmosis membrane permeated liquid that has passed through the first forward osmosis membrane is separated into the first concentrated liquid that has not passed through the first forward osmosis membrane and has concentrated components contained in the liquid to be treated. It is a mechanism for

本実施形態にかかるアンモニア回収装置100では、第一濃縮機構10において、第一正浸透膜を用いて透過処理を行うにあたり、被処理液を、第一正浸透膜を介して第一駆動溶液と接触させた状態で透過処理を行ようにしている。そして、第一駆動溶液として、被処理液よりも浸透圧の高い溶液を使用するようにしている。 In the ammonia recovery apparatus 100 according to the present embodiment, when performing permeation treatment using the first forward osmosis membrane in the first concentration mechanism 10, the liquid to be treated is passed through the first forward osmosis membrane to the first driving solution. Transmission processing is performed while they are in contact. A solution having a higher osmotic pressure than the liquid to be treated is used as the first driving solution.

第一駆動溶液としては、海水、無機塩溶解水、温度応答性イオン液体、および温度応答性ポリマーからなる群より選ばれる少なくとも1種を用いることができる。なお、本実施形態では海水を使用している。 As the first driving solution, at least one selected from the group consisting of seawater, inorganic salt-dissolved water, temperature-responsive ionic liquids, and temperature-responsive polymers can be used. Note that seawater is used in this embodiment.

第一濃縮機構10における濃縮は、正浸透膜法による濃縮であり、蒸留などの相変化を伴う方法で濃縮する場合に比べて、省エネルギーを図りつつ、被処理液を所定の濃度まで濃縮することができる。また、上述のような第一駆動溶液を用いることにより、効率のよい濃縮を行うことができる。 Concentration in the first concentration mechanism 10 is performed by a forward osmosis membrane method, which allows the liquid to be processed to be concentrated to a predetermined concentration while saving energy compared to concentration using a method that involves a phase change such as distillation. Can be done. Furthermore, by using the first driving solution as described above, efficient concentration can be performed.

また、正浸透膜法による濃縮を行う第一濃縮機構10では、逆浸透膜を用いて逆浸透法により濃縮する場合に比べて、省エネルギーを図ることができる。 Moreover, in the first concentration mechanism 10 that performs concentration using a forward osmosis membrane method, energy saving can be achieved compared to a case where concentration is performed using a reverse osmosis method using a reverse osmosis membrane.

第一濃縮機構10としては、正浸透膜法による濃縮に用いられる、公知の種々の構成のものを用いることが可能である。 As the first concentration mechanism 10, it is possible to use various known structures used for concentration by the forward osmosis membrane method.

なお、第一濃縮機構10で用いる第一正浸透膜としては、濃縮条件などを考慮して、公知の種々の正浸透膜から適切なものを選択して用いることが可能である。 In addition, as the first forward osmosis membrane used in the first concentration mechanism 10, it is possible to select and use an appropriate one from various known forward osmosis membranes in consideration of concentration conditions and the like.

本実施形態では、被処理液として、アンモニア態窒素および有機態窒素と、無機塩類と、水とを含有する被処理液が、66.7Ton/hの割合で第一濃縮機構10に供給されるように構成されている。 In this embodiment, a liquid to be treated containing ammonia nitrogen, organic nitrogen, inorganic salts, and water is supplied to the first concentration mechanism 10 at a rate of 66.7 Ton/h. It is configured as follows.

第一濃縮機構10に供給される、まだ処理が行われていない被処理液(66.7Ton/h)は、アンモニア態窒素および有機態窒素に由来する全窒素(TN)24.5kg/h、全炭素(TC)66kg/h、無機塩類に由来する総溶解固形物(TDS)93.3kg/hを含む。 The unprocessed liquid (66.7 Ton/h) supplied to the first concentration mechanism 10 contains 24.5 kg/h of total nitrogen (TN) derived from ammonia nitrogen and organic nitrogen; It contains 66 kg/h of total carbon (TC) and 93.3 kg/h of total dissolved solids (TDS) derived from inorganic salts.

そして、第一濃縮機構10においては、第一正浸透膜を透過した、水を主たる成分とする第一正浸透膜透過液54.7Ton/hと、第一正浸透膜を透過せず、被処理液中に溶解している成分が濃縮された第一濃縮液12.0Ton/hが得られる。 In the first concentration mechanism 10, 54.7 T/h of the first forward osmosis membrane permeate liquid containing water as a main component that has permeated the first forward osmosis membrane and the first forward osmosis membrane permeate liquid that has not passed through the first forward osmosis membrane and is A first concentrated liquid of 12.0 tons/h in which the components dissolved in the processing liquid are concentrated is obtained.

第一正浸透膜透過液54.7Ton/hは、全窒素(TN)0.5kg/hを含み、全炭素(TC)および総溶解固形物(TDS)を含まない。また、第一濃縮液は、全窒素(TN)24kg/h、全炭素(TC)66kg/h、総溶解固形物(TDS)93.3kg/hを含む。 The first forward osmosis membrane permeate of 54.7 Ton/h contains 0.5 kg/h of total nitrogen (TN) and does not contain total carbon (TC) and total dissolved solids (TDS). The first concentrate also contains 24 kg/h of total nitrogen (TN), 66 kg/h of total carbon (TC), and 93.3 kg/h of total dissolved solids (TDS).

また、第一濃縮機構10で第一正浸透膜を使用して正浸透法により濃縮を行う場合、全窒素(TN))の濃度が高くなりすぎると、後工程である嫌気性膜分離機構20での生物処理の効率が低下する傾向があるので、第一濃縮機構10で濃縮された被処理液(第一濃縮液)における、全窒素(TN)の濃度を3000ppm以下に抑えることが望ましい。 Furthermore, when concentration is performed by the forward osmosis method using the first forward osmosis membrane in the first concentration mechanism 10, if the concentration of total nitrogen (TN) becomes too high, the anaerobic membrane separation mechanism 20, which is a subsequent process, Since the efficiency of biological treatment tends to decrease, it is desirable to suppress the concentration of total nitrogen (TN) in the liquid to be treated (first concentrated liquid) concentrated in the first concentration mechanism 10 to 3000 ppm or less.

また、第一濃縮機構10で濃縮された被処理液(第一濃縮液)における、総溶解固形物(TDS)についても、15000ppm以下とすることが望ましい。 Further, the total dissolved solids (TDS) in the liquid to be treated (first concentrated liquid) concentrated in the first concentration mechanism 10 is also desirably 15,000 ppm or less.

なお、上記の第一濃縮液の全窒素(TN)の濃度は2000ppmとなり、無機塩類に相当する総溶解固形物(TDS)の濃度は約7800ppmとなる。 Note that the concentration of total nitrogen (TN) in the first concentrated liquid is 2000 ppm, and the concentration of total dissolved solids (TDS) corresponding to inorganic salts is about 7800 ppm.

また、嫌気性膜分離機構20は、第一濃縮機構10で濃縮された第一濃縮液を、嫌気性微生物により嫌気性発酵させることにより、被処理液に含まれる有機態窒素を分解してメタンガスとアンモニア態窒素に転換させるための機構である。 In addition, the anaerobic membrane separation mechanism 20 anaerobically ferments the first concentrated liquid concentrated by the first concentration mechanism 10 using anaerobic microorganisms, thereby decomposing organic nitrogen contained in the liquid to be treated and producing methane gas. This is the mechanism for converting it into ammonia nitrogen.

なお、嫌気性膜分離機構20では、被処理液がアンモニア態窒素および有機態窒素以外の有機化合物を含有している場合にも、その多くをメタンガスに転換させることができる。したがって、メタンガスやアンモニア態窒素などの有価物質を効率よく回収することができる。 Note that in the anaerobic membrane separation mechanism 20, even when the liquid to be treated contains organic compounds other than ammonia nitrogen and organic nitrogen, most of the organic compounds can be converted into methane gas. Therefore, valuable substances such as methane gas and ammonia nitrogen can be efficiently recovered.

また、嫌気性発酵の場合、好気性発酵の場合に必要な曝気が不要であることから、エネルギー消費を抑制することができる。 In addition, in the case of anaerobic fermentation, the aeration required in the case of aerobic fermentation is not required, so energy consumption can be suppressed.

なお、嫌気性膜分離機構20の具体的な構成には、特別の制約はなく、公知の種々の構成のものを採用することができる。 Note that there are no particular restrictions on the specific configuration of the anaerobic membrane separation mechanism 20, and various known configurations can be adopted.

本実施形態では、嫌気性膜分離機構20において、嫌気性発酵させた後の嫌気性発酵処理液を、嫌気性微生物よりも小さい孔径を有する分離膜を用いて透過処理を行うことにより、分離膜を透過しない、嫌気性微生物を含む微生物含有液(消化液)0.12Ton/hと、分離膜を透過した、アンモニア態窒素と、無機塩類と、水とを含む分離膜透過液11.88Ton/hと、バイオガス121m3/hが得られる。 In this embodiment, in the anaerobic membrane separation mechanism 20, the anaerobic fermentation treated liquid after anaerobic fermentation is permeated using a separation membrane having a pore size smaller than that of the anaerobic microorganisms. 0.12T/h of a microorganism-containing liquid (digested fluid) containing anaerobic microorganisms that does not pass through the separation membrane, and 11.88T/h of a separation membrane permeated liquid containing ammonia nitrogen, inorganic salts, and water that has passed through the separation membrane. h and 121 m3/h of biogas are obtained.

なお、嫌気性膜分離機構20における分離膜としては、嫌気性微生物よりも小さい孔径を有する、公知の種々の精密ろ過膜を用いることができる。 Note that as the separation membrane in the anaerobic membrane separation mechanism 20, various known microfiltration membranes having pore sizes smaller than those of anaerobic microorganisms can be used.

分離膜を透過しない微生物含有液(消化液)0.12Ton/hは、全窒素(TN)0.2kg/h、全炭素(TC)0.35kg/h、総溶解固形物(TDS)0.9kg/hを含む。 The microorganism-containing liquid (digested fluid) that does not pass through the separation membrane at 0.12 Ton/h has total nitrogen (TN) of 0.2 kg/h, total carbon (TC) of 0.35 kg/h, and total dissolved solids (TDS) of 0. Including 9kg/h.

分離膜透過液11.88Ton/hは、全窒素(TN)23.8kg/h、全炭素(TC)0.65kg/h、総溶解固形物(TDS)92.4kg/hを含む。 The separation membrane permeate liquid of 11.88 Ton/h contains 23.8 kg/h of total nitrogen (TN), 0.65 kg/h of total carbon (TC), and 92.4 kg/h of total dissolved solids (TDS).

バイオガス121m3/hは、メタンと二酸化炭素をモル比約6:4で含む。なお、バイオガス121m3/hに含まれる、メタンと二酸化炭素に由来する炭素の合計量(全炭素TC)は65kg/hとなる。3 The 121 m 3 /h of biogas contains methane and carbon dioxide in a molar ratio of approximately 6:4. Note that the total amount of carbon derived from methane and carbon dioxide (total carbon TC) contained in 121 m 3 /h of biogas is 65 kg/h. 3

第二濃縮機構30は、嫌気性膜分離機構20において分離された分離膜透過液を、第二正浸透膜を用いて透過処理を行うことにより、主成分が水である第二正浸透膜透過液と、第二正浸透膜を透過せず、アンモニア態窒素の濃度が上昇した第二濃縮液とに分離する機構である。なお、第二濃縮機構30の具体的な構成に特別の制約はなく、公知の種々の構成のものを採用することが可能である。 The second concentration mechanism 30 performs permeation treatment on the separation membrane permeate separated in the anaerobic membrane separation mechanism 20 using a second forward osmosis membrane. This mechanism separates the liquid into a second concentrated liquid that does not pass through the second forward osmosis membrane and has an increased concentration of ammonia nitrogen. Note that there is no particular restriction on the specific configuration of the second concentration mechanism 30, and various known configurations may be employed.

第二濃縮機構30で用いる第二正浸透膜としては、濃縮条件などを考慮して、公知の種々の正浸透膜から適切なものを選択して用いることができる。
また、条件によっては、第二正浸透膜として、上述の第一濃縮機構10において用いた第一正浸透膜と同じ正浸透膜を用いることが可能である。
As the second forward osmosis membrane used in the second concentration mechanism 30, an appropriate one can be selected from a variety of known forward osmosis membranes in consideration of concentration conditions and the like.
Further, depending on the conditions, it is possible to use the same forward osmosis membrane as the first forward osmosis membrane used in the above-described first concentration mechanism 10 as the second forward osmosis membrane.

本実施形態にかかるアンモニア回収装置100では、第二濃縮機構30において、第二正浸透膜を用いて透過処理を行うにあたり、嫌気性膜分離機構20において分離された分離膜透過液を、第二正浸透膜を介して第二駆動溶液と接触させた状態で透過処理を行うようにしている。そして、第二駆動溶液として、嫌気性膜分離機構20において分離された分離膜透過液よりも浸透圧の高い溶液を使用するようにしている。 In the ammonia recovery apparatus 100 according to the present embodiment, when performing permeation treatment using the second forward osmosis membrane in the second concentration mechanism 30, the separation membrane permeate separated in the anaerobic membrane separation mechanism 20 is transferred to the second concentration mechanism 30. The permeation treatment is carried out in a state in which it is brought into contact with the second driving solution through a forward osmosis membrane. A solution having a higher osmotic pressure than the separation membrane permeate liquid separated in the anaerobic membrane separation mechanism 20 is used as the second driving solution.

第二駆動溶液としては、海水、無機塩溶解水、温度応答性イオン液体、および温度応答性ポリマーからなる群より選ばれる少なくとも1種を用いることができる。 As the second driving solution, at least one selected from the group consisting of seawater, inorganic salt dissolved water, temperature-responsive ionic liquid, and temperature-responsive polymer can be used.

この第二濃縮機構30における濃縮も、上述の第一濃縮機構10における濃縮の場合と同様に、正浸透膜法による濃縮であり、蒸留などの相変化を伴う方法で濃縮する場合に比べて、省エネルギーを図りつつ、被処理液を所定の濃度まで濃縮することができる。また、上述のような第二駆動溶液を用いることにより、効率のよい濃縮を行うことができる。 Concentration in this second concentration mechanism 30 is also a concentration using a forward osmosis membrane method, similar to the concentration in the first concentration mechanism 10 described above, and compared to concentration by a method involving a phase change such as distillation, The liquid to be treated can be concentrated to a predetermined concentration while saving energy. Furthermore, by using the second driving solution as described above, efficient concentration can be performed.

また、正浸透膜法による濃縮を行う第二濃縮機構30では、逆浸透膜を用いて逆浸透法により濃縮する場合に比べて、省エネルギーを図ることができる。 Moreover, in the second concentration mechanism 30 that performs concentration using a forward osmosis membrane method, energy saving can be achieved compared to a case where concentration is performed using a reverse osmosis method using a reverse osmosis membrane.

第二正浸透膜を透過した透過液(第二正浸透膜透過液)9.2Ton/hは、全窒素(TN)0.7kg/hを含み、全炭素(TC)および総溶解固形物(TDS)を含まない。 The permeate that has passed through the second forward osmosis membrane (second forward osmosis membrane permeate) 9.2Ton/h contains total nitrogen (TN) 0.7kg/h, total carbon (TC) and total dissolved solids ( TDS) is not included.

また、第二正浸透膜を透過せず、アンモニア態窒素の濃度が上昇した第二濃縮液2.68Ton/hは、全窒素(TN)23.1kg/h、全炭素(TC)0.65kg/h、総溶解固形物(TDS)92.4kg/hを含む。 In addition, the second concentrated liquid 2.68 Ton/h, which does not pass through the second forward osmosis membrane and has an increased concentration of ammonia nitrogen, has a total nitrogen (TN) of 23.1 kg/h and a total carbon (TC) of 0.65 kg. /h, including total dissolved solids (TDS) 92.4 kg/h.

なお、本発明の実施形態にかかるアンモニア回収装置100において、第二濃縮機構30で正浸透法により濃縮される第二濃縮液における全窒素(TN)の濃度を15000ppm以下とすることにより、第二濃縮機構30における濃縮速度(アンモニア態窒素含有水が第二正浸透膜を透過する速度)の低下を抑制して、効率のよい濃縮を行うことが可能になる。 In addition, in the ammonia recovery apparatus 100 according to the embodiment of the present invention, by setting the concentration of total nitrogen (TN) in the second concentrated liquid concentrated by forward osmosis in the second concentration mechanism 30 to 15000 ppm or less, the second concentration It becomes possible to perform efficient concentration by suppressing a decrease in the concentration rate (the rate at which ammonia nitrogen-containing water passes through the second forward osmosis membrane) in the concentration mechanism 30.

なお、上記の第二濃縮液の全窒素(TN)の濃度は8620ppmとなり、無機塩類に相当する総溶解固形物(TDS)の濃度は約34480ppmとなる。 Note that the concentration of total nitrogen (TN) in the second concentrated solution is 8,620 ppm, and the concentration of total dissolved solids (TDS) corresponding to inorganic salts is about 34,480 ppm.

pH調整機構40は、第二濃縮機構30で濃縮された第二濃縮液に、アルカリを加えてpHの調整を行い、アンモニア態窒素を遊離させて、蒸留により分離を行うことができるようにするための機構である。 The pH adjustment mechanism 40 adjusts the pH of the second concentrated liquid concentrated by the second concentration mechanism 30 by adding alkali to liberate ammonia nitrogen so that it can be separated by distillation. It is a mechanism for

pH調整機構40は、特に図示しないが、第二濃縮機構30で濃縮された第二濃縮液にアルカリ(本実施形態では48wt%のNaOH水溶液)を供給するための供給装置(例えばポンプ)と、pHを検出するための検出装置(例えばpHメータ)と、検出されるpHに連動してNaOH水溶液の供給量を制御するための制御手段を備えている。なお、pH調整機構40の具体的な構成に特別の制約はない。 Although not particularly illustrated, the pH adjustment mechanism 40 includes a supply device (for example, a pump) for supplying an alkali (48 wt % NaOH aqueous solution in this embodiment) to the second concentrated liquid concentrated by the second concentration mechanism 30; It includes a detection device (for example, a pH meter) for detecting pH, and a control means for controlling the amount of NaOH aqueous solution supplied in conjunction with the detected pH. Note that there are no particular restrictions on the specific configuration of the pH adjustment mechanism 40.

本実施形態にかかるアンモニア回収装置100においては、pH調整機構40により、第二濃縮機構30で濃縮された第二濃縮液2.68Ton/hに対して、48wt%のNaOH水溶液0.137Ton/hが添加され、pHが12に調整されるように構成されている。 In the ammonia recovery apparatus 100 according to the present embodiment, the pH adjustment mechanism 40 produces 0.137 Ton/h of the 48 wt% NaOH aqueous solution with respect to 2.68 Ton/h of the second concentrated liquid concentrated by the second concentration mechanism 30. is added to adjust the pH to 12.

上述のように、pHを12に調整することにより、第二濃縮液中のアンモニア態窒素が遊離し、後述の蒸留機構50における蒸留により、アンモニアを分離、回収することが可能になる。 As described above, by adjusting the pH to 12, ammonia nitrogen in the second concentrated liquid is liberated, and ammonia can be separated and recovered by distillation in the distillation mechanism 50 described later.

48wt%のNaOH水溶液が0.137Ton/hの割合で添加されたpH調整後の第二濃縮液2.817Ton/hは、全窒素(TN)23.1kg/h、全炭素(TC)0.65kg/h、総溶解固形物(TDS)130.4kg/hを含む。 The second concentrated solution, 2.817 Ton/h after pH adjustment, in which 48 wt% NaOH aqueous solution was added at a rate of 0.137 Ton/h, has a total nitrogen (TN) of 23.1 kg/h and a total carbon (TC) of 0. 65 kg/h, including total dissolved solids (TDS) 130.4 kg/h.

なお、pH調整後の第二濃縮液において、総溶解固形物(TDS)が、pH調整前の第二濃縮液よりも増加しているのは、pH調整のためにNaOHが添加されたことによるものである。 The reason why the total dissolved solids (TDS) in the second concentrated solution after pH adjustment is higher than that in the second concentrated solution before pH adjustment is due to the addition of NaOH for pH adjustment. It is something.

なお、本発明のアンモニア回収装置100において、蒸留機構50に供給される第二濃縮液のpH値に上限はないが、通常はpHを12程度とすることにより、アンモニア態窒素を確実に遊離させて、蒸留が可能な状態とすることができる。 In addition, in the ammonia recovery apparatus 100 of the present invention, there is no upper limit to the pH value of the second concentrated liquid supplied to the distillation mechanism 50, but usually the pH is set to about 12 to ensure that ammonia nitrogen is liberated. This allows distillation to be carried out.

また、本実施形態にかかるアンモニア回収装置100を構成する蒸留機構50は、第二濃縮機構30で濃縮してアンモニア態窒素の濃度を上昇させた第二濃縮液(本実施形態ではpH調整が行われた後の第二濃縮液)を蒸留して、缶出液である水と、第二濃縮液よりも高い濃度でアンモニアを含む留出ベーパとに分離する機構である。 In addition, the distillation mechanism 50 constituting the ammonia recovery apparatus 100 according to the present embodiment is provided with a second concentrated liquid (in this embodiment, pH adjustment is performed) which is concentrated in the second concentration mechanism 30 to increase the concentration of ammonia nitrogen. This is a mechanism that separates the second concentrated liquid (second concentrated liquid) into water, which is the bottom liquid, and distilled vapor containing ammonia at a higher concentration than the second concentrated liquid.

この蒸留機構50では、第二濃縮機構30で正浸透膜を用いて濃縮を行った第二濃縮液(すなわち、正浸透膜を用いてそれ以上に濃縮を行うことが有利ではない濃度にまでアンモニア態窒素の濃度が高められた第二濃縮液)の蒸留が行われることになるので、エネルギーを適切に使用して、高濃度のアンモニアを回収することが可能になる。 In this distillation mechanism 50, the second concentrated liquid that has been concentrated using a forward osmosis membrane in the second concentration mechanism 30 (i.e., ammonia is reduced to a concentration where it is not advantageous to further concentrate using a forward osmosis membrane). Since the distillation of the second concentrated liquid with an increased concentration of nitrogen is carried out, it becomes possible to use energy appropriately and recover ammonia with a high concentration.

蒸留機構50には、アルカリ添加液(pH調整後の第二濃縮液)が2.817Ton/hの割合で供給される。なお、アルカリ添加液(pH調整後の第二濃縮液)2.817Ton/hは、上述のように、全窒素(TN)23.1kg/h、全炭素(TC)0.65kg/h、総溶解固形物(TDS)130.4kg/hを含んでいる。 The alkali additive liquid (second concentrated liquid after pH adjustment) is supplied to the distillation mechanism 50 at a rate of 2.817 tons/h. In addition, as mentioned above, the alkaline additive liquid (second concentrated liquid after pH adjustment) of 2.817 Ton/h contains total nitrogen (TN) of 23.1 kg/h, total carbon (TC) of 0.65 kg/h, and total Contains 130.4 kg/h of dissolved solids (TDS).

そして、蒸留機構50に供給された2.817Ton/hのアルカリ添加液は、蒸留機構50において蒸留され、蒸留塔の塔頂から回収される留出ベーパ0.038Ton/hと、蒸留塔の塔底からの缶出液(アンモニア態窒素を含まない水)2.78Ton/hとに分離される。 The 2.817 Ton/h alkaline additive liquid supplied to the distillation mechanism 50 is distilled in the distillation mechanism 50, and 0.038 Ton/h of distilled vapor is recovered from the top of the distillation column and the column of the distillation column. The bottoms from the bottom (water containing no ammonia nitrogen) is separated into 2.78 tons/h.

なお、留出ベーパ0.038Ton/hは、全窒素(TN)23.1kg/hを含み、全炭素(TC)および総溶解固形物(TDS)を含まない。 Note that 0.038 Ton/h of distilled vapor includes 23.1 kg/h of total nitrogen (TN) and does not include total carbon (TC) and total dissolved solids (TDS).

留出ベーパ中の全窒素(TN)23.1kg/hは、NH3換算で28kg/hとなる。したがって、留出ベーパ中のNH3濃度は74wt%となる。 The total nitrogen (TN) in the distilled vapor is 23.1 kg/h, which is 28 kg/h in terms of NH3. Therefore, the NH3 concentration in the distilled vapor is 74 wt%.

74wt%と高い濃度でNH3を含む留出ベーパは、そのままで用いることも可能であり、また、蒸留塔の後段に吸収装置を設け、NH3を水で吸収させて常温で保管しやすい濃度のアンモニア水溶液とすることも可能である。 Distilled vapor containing NH3 at a high concentration of 74 wt% can be used as is, or an absorption device is installed at the latter stage of the distillation column to absorb the NH3 with water and produce ammonia at a concentration that is easy to store at room temperature. It is also possible to form an aqueous solution.

一方、缶出液2.78Ton/hは、全窒素(TN)を含まず、全炭素(TC)0.65kg/h、総溶解固形物(TDS)130.4kg/hを含む。この缶出液は、特に水処理を行うことなく、または、必要に応じて水処理を行った後、工場排水などとして系外に排出することができる。 On the other hand, 2.78 Ton/h of bottoms does not contain total nitrogen (TN), contains 0.65 kg/h of total carbon (TC), and 130.4 kg/h of total dissolved solids (TDS). This bottoms can be discharged outside the system as factory wastewater or the like without any particular water treatment or after water treatment if necessary.

上述のように、蒸留機構50に供給されるpH調整後の第二濃縮液は、NH3が遊離しているので、蒸留により確実に分離することが可能で、効率よくアンモニアの回収を行うことができる。 As mentioned above, since NH3 is liberated in the second concentrated liquid after pH adjustment supplied to the distillation mechanism 50, it is possible to reliably separate it by distillation, and it is possible to efficiently recover ammonia. can.

なお、本実施形態にかかるアンモニア回収装置100において、缶出液は全窒素(TN)を含んでいないが、アンモニアの回収率に大きな影響がなく、系外に排出された後の水処理に負担をかけない程度の全窒素(TN)は含まれていてもよい。
また、缶出液が全窒素(TN)を含んでいても問題のないような工程に送られる場合などには、缶出液がある程度の全窒素(TN)を含んでいることが許容される場合がある。
In addition, in the ammonia recovery apparatus 100 according to the present embodiment, the bottoms do not contain total nitrogen (TN), but this does not have a large effect on the ammonia recovery rate and does not burden the water treatment after being discharged outside the system. Total nitrogen (TN) may be included to the extent that it does not cause any damage.
In addition, if the bottom liquid is sent to a process where there is no problem even if the bottom liquid contains total nitrogen (TN), it is acceptable for the bottom liquid to contain a certain amount of total nitrogen (TN). There are cases.

上述のように、本発明の実施形態にかかるアンモニア回収装置100は、第一濃縮機構10と、嫌気性膜分離機構20と、第二濃縮機構30と、pH調整機構40と、蒸留機構50とを適切に組み合わせた構成を備えているので、全体として十分な省エネルギーを図りつつ、濃度の高いアンモニアを効率よく回収することが可能で、かつ、安定した操業を継続して行うことが可能なアンモニア回収装置を提供することができる。 As described above, the ammonia recovery apparatus 100 according to the embodiment of the present invention includes the first concentration mechanism 10, the anaerobic membrane separation mechanism 20, the second concentration mechanism 30, the pH adjustment mechanism 40, and the distillation mechanism 50. As it has a structure that appropriately combines the following, it is possible to efficiently recover highly concentrated ammonia while achieving sufficient energy savings as a whole, and it is possible to continue stable operation. A collection device can be provided.

本発明は、上述の実施形態に限定されるものではなく、発明の範囲内において、種々の応用、変形を加えることが可能である。 The present invention is not limited to the above-described embodiments, and various applications and modifications can be made within the scope of the invention.

100 アンモニア回収装置
10 第一濃縮機構
20 嫌気性膜分離機構
30 第二濃縮機構
40 pH調整機構
50 蒸留機構
100 Ammonia recovery device 10 First concentration mechanism 20 Anaerobic membrane separation mechanism 30 Second concentration mechanism 40 pH adjustment mechanism 50 Distillation mechanism

Claims (7)

アンモニア態窒素および有機態窒素と、水とを含有する被処理液を、第一正浸透膜を用いて透過処理を行うことにより、前記第一正浸透膜を透過した第一正浸透膜透過液と、前記第一正浸透膜を透過せず、前記被処理液に含まれる成分が濃縮された第一濃縮液とに分離する第一濃縮機構と、
前記第一濃縮機構で濃縮された前記第一濃縮液を、嫌気性微生物により嫌気性発酵させることで、前記有機態窒素を分解してメタンガスとアンモニア態窒素に転換させるとともに、嫌気性発酵させた後の嫌気性発酵処理液を、前記嫌気性微生物よりも小さい孔径を有する分離膜を用いて透過処理を行うことにより、前記分離膜を透過しない、前記嫌気性微生物を含む微生物含有液と、前記分離膜を透過した、アンモニア態窒素と、水とを含む分離膜透過液とに分離する嫌気性膜分離機構と、
前記嫌気性膜分離機構で分離された前記分離膜透過液を、第二正浸透膜を用いて透過処理を行うことにより、前記第二正浸透膜を透過した第二正浸透膜透過液と、前記第二正浸透膜を透過せず、アンモニア態窒素の濃度が上昇した第二濃縮液に分離する第二濃縮機構と、
前記第二濃縮機構でアンモニア態窒素の濃度を上昇させた前記第二濃縮液を蒸留して、アンモニア態窒素が除去された缶出液と、前記第二濃縮液よりも高い濃度でアンモニア態窒素を含む留出ベーパとに分離する蒸留機構と
を備えていることを特徴とするアンモニア回収装置。
A first forward osmosis membrane permeated liquid that has permeated the first forward osmosis membrane by permeating the liquid to be treated containing ammonia nitrogen, organic nitrogen, and water using the first forward osmosis membrane. and a first concentration mechanism that does not pass through the first forward osmosis membrane and separates the liquid into a first concentrated liquid in which the components contained in the liquid to be treated are concentrated.
The first concentrated liquid concentrated by the first concentration mechanism is subjected to anaerobic fermentation by anaerobic microorganisms, thereby decomposing the organic nitrogen and converting it into methane gas and ammonia nitrogen, and anaerobically fermenting it. A microorganism-containing liquid containing the anaerobic microorganisms that does not permeate the separation membrane by permeabilizing the subsequent anaerobic fermentation-treated liquid using a separation membrane having a pore size smaller than that of the anaerobic microorganisms; an anaerobic membrane separation mechanism that separates ammonia nitrogen that has passed through the separation membrane and a separation membrane permeate containing water;
A second forward osmosis membrane permeate that has passed through the second forward osmosis membrane by permeating the separation membrane permeate separated by the anaerobic membrane separation mechanism using a second forward osmosis membrane; a second concentration mechanism that does not pass through the second forward osmosis membrane and separates into a second concentrated liquid with an increased concentration of ammonia nitrogen;
The second concentrated liquid in which the concentration of ammonia nitrogen has been increased in the second concentration mechanism is distilled to produce a bottoms from which ammonia nitrogen has been removed, and ammonia nitrogen at a higher concentration than the second concentrated liquid. An ammonia recovery device comprising: a distillation mechanism for separating distilled vapor from distilled vapor containing distilled vapor;
前記第一濃縮機構で濃縮された前記第一濃縮液における、全窒素の濃度が3000ppm以下となるように構成されていることを特徴とする請求項1に記載のアンモニア回収装置。 The ammonia recovery apparatus according to claim 1, wherein the ammonia recovery apparatus is configured so that the total nitrogen concentration in the first concentrated liquid concentrated by the first concentration mechanism is 3000 ppm or less. 前記第二濃縮機構でアンモニア態窒素の濃度を上昇させた前記第二濃縮液における全窒素の濃度が15000ppm以下となるように構成されていることを特徴とする請求項1に記載のアンモニア回収装置。 The ammonia recovery device according to claim 1, characterized in that the ammonia recovery device is configured such that the total nitrogen concentration in the second concentrated liquid in which the concentration of ammonia nitrogen is increased in the second concentration mechanism is 15,000 ppm or less. . 前記第一濃縮機構において、前記第一正浸透膜を用いて透過処理を行うにあたり、前記被処理液を、前記第一正浸透膜を介して第一駆動溶液と接触させた状態で透過処理を行い、かつ、前記第一駆動溶液として、前記被処理液よりも浸透圧の高い溶液を使用し、
前記第二濃縮機構において、前記第二正浸透膜を用いて透過処理を行うにあたり、前記分離膜透過液を、前記第二正浸透膜を介して第二駆動溶液と接触させた状態で透過処理を行い、かつ、前記第二駆動溶液として、前記分離膜透過液よりも浸透圧の高い溶液を使用するように構成されていることを特徴とする請求項1~3のいずれかに記載のアンモニア回収装置。
In the first concentration mechanism, when performing permeation treatment using the first forward osmosis membrane, the permeation treatment is performed while the liquid to be treated is brought into contact with the first driving solution through the first forward osmosis membrane. and using a solution having a higher osmotic pressure than the liquid to be treated as the first driving solution,
In the second concentration mechanism, when performing permeation treatment using the second forward osmosis membrane, the permeation treatment is performed while the separation membrane permeate is brought into contact with the second driving solution through the second forward osmosis membrane. Ammonia according to any one of claims 1 to 3, characterized in that the second driving solution is configured to use a solution having a higher osmotic pressure than the separation membrane permeate. Collection device.
前記第一および第二駆動溶液として、海水、無機塩溶解水、温度応答性イオン液体、および温度応答性ポリマーからなる群より選ばれる少なくとも1種を用いることを特徴とする請求項4に記載のアンモニア回収装置。 5. The method according to claim 4, wherein at least one kind selected from the group consisting of seawater, inorganic salt dissolved water, temperature-responsive ionic liquid, and temperature-responsive polymer is used as the first and second driving solutions. Ammonia recovery equipment. 前記第二濃縮液が、pH9.0以上となるようにpH調整された後、前記蒸留機構に供給されるように構成されていることを特徴とする請求項1に記載のアンモニア回収装置。 The ammonia recovery apparatus according to claim 1, wherein the second concentrated liquid is configured to be supplied to the distillation mechanism after being pH-adjusted to be pH 9.0 or higher. 前記第二濃縮液のpHを調整するためのpH調整機構を備えていることを特徴とする請求項6に記載のアンモニア回収装置。 The ammonia recovery apparatus according to claim 6, further comprising a pH adjustment mechanism for adjusting the pH of the second concentrated liquid.
JP2022082835A 2022-05-20 2022-05-20 Ammonia recovery equipment Active JP7392959B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022082835A JP7392959B1 (en) 2022-05-20 2022-05-20 Ammonia recovery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022082835A JP7392959B1 (en) 2022-05-20 2022-05-20 Ammonia recovery equipment

Publications (2)

Publication Number Publication Date
JP7392959B1 JP7392959B1 (en) 2023-12-06
JP2023177366A true JP2023177366A (en) 2023-12-14

Family

ID=89023260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022082835A Active JP7392959B1 (en) 2022-05-20 2022-05-20 Ammonia recovery equipment

Country Status (1)

Country Link
JP (1) JP7392959B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118526802A (en) * 2024-05-27 2024-08-23 武汉大学 Ammonia liquor recycling and carbon fixing integrated system and method based on membrane distillation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014061487A (en) * 2012-09-21 2014-04-10 Kubota Corp Water treatment method and water treatment system
JP2014512952A (en) * 2011-04-25 2014-05-29 オアシス ウォーター,インコーポレーテッド Osmotic separation system and method
CN104016477A (en) * 2014-05-13 2014-09-03 浙江师范大学 Immersed anaerobic positive permeable membrane bioreactor
CN105859057A (en) * 2016-06-15 2016-08-17 青岛理工大学 Method and system for extracting substances and energy from sewage
JP2018015684A (en) * 2016-07-25 2018-02-01 水ing株式会社 Wastewater treatment apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512952A (en) * 2011-04-25 2014-05-29 オアシス ウォーター,インコーポレーテッド Osmotic separation system and method
JP2014061487A (en) * 2012-09-21 2014-04-10 Kubota Corp Water treatment method and water treatment system
CN104016477A (en) * 2014-05-13 2014-09-03 浙江师范大学 Immersed anaerobic positive permeable membrane bioreactor
CN105859057A (en) * 2016-06-15 2016-08-17 青岛理工大学 Method and system for extracting substances and energy from sewage
JP2018015684A (en) * 2016-07-25 2018-02-01 水ing株式会社 Wastewater treatment apparatus and method

Also Published As

Publication number Publication date
JP7392959B1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
CN110803835B (en) Recycling treatment method for quaternary ammonium salt wastewater
US8343328B2 (en) Brine purification
AU2015249375B2 (en) Electrodialysis stacks, systems, and methods for recovering ammonia and monovalent salts from anaerobic digestate
US20150021264A1 (en) Treatment methods and treatment systems for plant effluents
CN104803448A (en) Forward osmosis treatment method of wastewater with high salinity and high organic matter concentration
US11634348B2 (en) System and method for treating hydrocarbon-containing feed streams
WO2014098874A1 (en) Vinasse treatment for water reuse, fertilizer and biogas production
JP2010247115A (en) Anaerobic treatment apparatus equipped with evaporative concentration means for methane fermentation treated water, and anaerobic treatment method using the same
JP7392959B1 (en) Ammonia recovery equipment
JP4632356B2 (en) Biological nitrogen removal method and system
CN108128968A (en) The pesticide wastewater resource processing system and method for a kind of sodium chloride-containing
CN106430793A (en) Zero discharging method and device for vitamin B2 production waste water
CN108975598A (en) A kind of zero-emission old-age group Landfill Leachate processing unit
KR102156161B1 (en) Forward osmosis composting method for collecting phosphors and nitrogen in recycle water of waste water treatment equipment
CN110563232A (en) Mineral recovery and zero discharge process for high-salinity high-organic-matter wastewater
CN113800720A (en) Leachate treatment method and leachate treatment system
CN110156236B (en) Method for recycling high-salt-content organic wastewater
CN112694186A (en) Method for treating waste water containing organic amine
JP2007078291A (en) Treatment method, treatment device, and its usage for styrene monomer manufacturing device boiler feed water
JP7094674B2 (en) Organic wastewater treatment method and treatment equipment
CN110451706B (en) Separation process of high-concentration organic matters and salt in zero-emission process of strong brine and special equipment
AU2011253905B2 (en) Generation of fresh water
WO2023150297A1 (en) System and method for treatment of biomass containing wastewater for renewable energy
Drioli et al. Process Intensification in Water Treatment Using Membrane Technology
CN113788587A (en) Zero-discharge treatment method and system for electroplating wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220523

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20220524

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231115

R150 Certificate of patent or registration of utility model

Ref document number: 7392959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150