Nothing Special   »   [go: up one dir, main page]

JP2023167628A - Method for manufacturing steel material joint body - Google Patents

Method for manufacturing steel material joint body Download PDF

Info

Publication number
JP2023167628A
JP2023167628A JP2022078948A JP2022078948A JP2023167628A JP 2023167628 A JP2023167628 A JP 2023167628A JP 2022078948 A JP2022078948 A JP 2022078948A JP 2022078948 A JP2022078948 A JP 2022078948A JP 2023167628 A JP2023167628 A JP 2023167628A
Authority
JP
Japan
Prior art keywords
steel
joined
steel materials
heating
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022078948A
Other languages
Japanese (ja)
Inventor
拓哉 鈴木
Takuya Suzuki
真宏 塚原
Masahiro Tsukahara
修 井戸原
Osamu Idohara
節雄 ▲高▼木
Setsuo Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP2022078948A priority Critical patent/JP2023167628A/en
Priority to KR1020220111421A priority patent/KR20230036983A/en
Priority to EP22194137.0A priority patent/EP4148159A1/en
Priority to CN202211098897.7A priority patent/CN115770941A/en
Priority to US17/903,168 priority patent/US12011775B2/en
Priority to US18/220,649 priority patent/US20230364702A1/en
Publication of JP2023167628A publication Critical patent/JP2023167628A/en
Priority to US18/439,323 priority patent/US20240181557A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

To provide a method for manufacturing a steel material joint body, which can easily and effectively increase the joining strength of steel materials.SOLUTION: This steel material joint body manufacturing method for joining a plurality of steel materials comprises: an arrangement step of arranging a carbonaceous material on the joined surface of at least one of steel materials to be joined; a stacking step of stacking the steel materials by self-weight or applying a pressing load only by pressing the joined surfaces of the steel materials to be joined to each other via the carbonaceous material; a heating step of heating the steel materials at a reached highest temperature generated by a liquid phase of the carbonaceous material by the self-weight or applying the pressing load only by pressing the steel materials the joined surfaces of which have been stacked; and a cooling step of cooling the heated steel materials.SELECTED DRAWING: Figure 1

Description

本発明は、鋼材接合体の製造方法に関する。 The present invention relates to a method of manufacturing a steel joined body.

従来、熱間鋼材の接合を実際の工場で簡単にかつ能率的に行うことができ、しかも後続の圧延工程に支障のない程度に高い接合強度を得られる技術の開発を課題として、接合面に炭素質物質を塗布または散布して熱間鋼材を重ね合わせ又は突き合わせて、還元雰囲気下で加熱し圧接する鋼材の熱間接合方法が開示されている(特許文献1を参照)。 Previously, the challenge was to develop a technology that could easily and efficiently join hot-worked steel materials in an actual factory, and that could also obtain high enough joint strength that it would not interfere with the subsequent rolling process. A hot joining method for steel materials is disclosed in which a carbonaceous material is applied or dispersed, the hot steel materials are overlapped or abutted, and the hot steel materials are heated and pressure-welded in a reducing atmosphere (see Patent Document 1).

特開平6-7970号公報Japanese Patent Application Publication No. 6-7970

しかしながら、特許文献1に記載の技術で得られる鋼材接合体は、鋼材同士の接合強度が有効に向上したものとはいえなかった。そこで、本発明は、鋼材同士の接合強度を簡便にかつ有効に向上させることができる鋼材接合体の製造方法を提供することを目的とする。 However, the steel joined body obtained by the technique described in Patent Document 1 could not be said to have effectively improved the bonding strength between the steel materials. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for manufacturing a steel joined body that can simply and effectively improve the bonding strength between steel materials.

本発明に係る鋼材接合体の製造方法は、複数の鋼材同士が接合された鋼材接合体の製造方法であって、接合する鋼材同士の少なくともどちらか一方の接合面に炭素質物質を配置する配置工程と、前記炭素質物質を介して前記接合する鋼材の接合面同士を押し当てるのみで自重により又は押し当て荷重をかけながら重ね合わせる重ね合わせ工程と、前記接合面同士を重ね合わせた鋼材を押し当てるのみで自重により又は押し当て荷重をかけながら前記炭素質物質の液相が生成する最高到達温度で加熱する加熱工程と、前記加熱した鋼材を冷却する冷却工程と、を備える。 The method for manufacturing a joined steel material according to the present invention is a method for manufacturing a joined steel material in which a plurality of steel materials are joined together, and the method includes arranging a carbonaceous substance on at least one joint surface of the steel materials to be joined. a superimposition step in which the joint surfaces of the steel materials to be joined are pressed against each other via the carbonaceous substance, either by their own weight or while applying a pressing load; and a superposition step in which the steel materials with the joint surfaces overlapped are pressed The method includes a heating step of heating the carbonaceous material to a maximum temperature at which a liquid phase is produced by applying a pressing load or by applying a pressing load, and a cooling step of cooling the heated steel material.

本発明によれば、鋼材同士の接合強度を簡便にかつ有効に向上させることができる鋼材接合体の製造方法を提供できる。 According to the present invention, it is possible to provide a method for manufacturing a steel joined body that can simply and effectively improve the bonding strength between steel materials.

本発明の実施形態に係る鋼材接合体の製造方法を説明するための工程フロー図である。FIG. 2 is a process flow diagram for explaining a method for manufacturing a steel joined body according to an embodiment of the present invention. 本発明の具体的な第1の実施形態に係る鋼材接合体の製造方法を説明するための概念図である。FIG. 1 is a conceptual diagram for explaining a method for manufacturing a steel joined body according to a first specific embodiment of the present invention. 本発明の具体的な第2の実施形態に係る鋼材接合体の製造方法を説明するための概念図である。FIG. 7 is a conceptual diagram for explaining a method for manufacturing a steel joined body according to a second specific embodiment of the present invention. 本発明の効果を説明するための鉄-セメンタイト系の状態図である。FIG. 2 is a phase diagram of an iron-cementite system for explaining the effects of the present invention. 本発明の効果を説明するための概念図である。FIG. 3 is a conceptual diagram for explaining the effects of the present invention. 実施例1で得られた鋼材接合体の外観写真である。1 is a photograph of the appearance of a steel joined body obtained in Example 1. 接合率の確認を行う際の観察位置及び接合率の算出方法を説明する図である。It is a figure explaining the observation position and the calculation method of a joining rate when confirming a joining rate. 実施例1及び実施例2で得られた鋼材接合体について金属組織の確認を行う箇所を説明する図及びこの箇所の金属組織写真である。1 is a diagram illustrating a location where the metallographic structure of the steel joined bodies obtained in Example 1 and Example 2 is confirmed, and a photograph of the metallographic structure of this location. 実施例3から実施例5で得られた鋼材接合体について金属組織の確認を行う箇所を説明する図及びこの箇所の金属組織写真である。FIG. 2 is a diagram illustrating a location where the metallographic structure of the steel joined bodies obtained in Example 3 to Example 5 is confirmed, and a photograph of the metallographic structure of this location. FIG.

以下、本発明の実施形態について図面を参照して説明する。
図1は、本発明の実施形態に係る鋼材接合体の製造方法を説明するための工程フロー図である。
本実施形態に係る鋼材接合体の製造方法は、図1に示すように、複数の鋼材同士が接合された鋼材接合体の製造方法であって、接合する鋼材同士の少なくともどちらか一方の接合面に炭素質物質を配置する配置工程(図1に示すステップS100)と、この炭素質物質を介して上述した接合する鋼材の接合面同士を押し当てるのみで自重により又は押し当て荷重をかけながら重ね合わせる重ね合わせ工程(図1に示すステップS110)と、この接合面同士を重ね合わせた鋼材を押し当てるのみで自重により又は押し当て荷重をかけながら前記炭素質物質の液相が生成する最高到達温度で加熱する加熱工程(図1に示すステップS120)と、前記加熱した鋼材を冷却する冷却工程(図1に示すステップS130)と、を備える。
本発明に係る鋼材接合体の製造方法は、前記工程フローを備えることで、鋼材同士の接合強度を簡便にかつ有効に向上させることができる。
以下に、これら各工程について詳細に説明する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a process flow diagram for explaining a method for manufacturing a steel joined body according to an embodiment of the present invention.
As shown in FIG. 1, the method for manufacturing a joined steel material according to the present embodiment is a method for manufacturing a joined steel material in which a plurality of steel materials are joined together, and includes at least one joint surface of the joined steel materials. A placement step (step S100 shown in FIG. 1) in which a carbonaceous material is placed on the carbonaceous material, and the above-mentioned joining surfaces of the steel materials to be joined are pressed against each other through this carbonaceous material, and the stacking process is performed by using their own weight or while applying a pressing load. The overlapping step (step S110 shown in FIG. 1) and the maximum temperature at which the liquid phase of the carbonaceous material is generated by simply pressing the joined surfaces of the steel materials together under their own weight or while applying a pressing load. and a cooling step (step S130 shown in FIG. 1) to cool the heated steel material.
The method for manufacturing a steel joined body according to the present invention includes the process flow described above, thereby making it possible to simply and effectively improve the bonding strength between steel materials.
Each of these steps will be explained in detail below.

図2は、本発明の具体的な第1の実施形態に係る鋼材接合体の製造方法を説明するための概念図である。図3は、本発明の具体的な第2の実施形態に係る鋼材接合体の製造方法を説明するための概念図である。図2に示す第1の実施形態と図3に示す第2の実施形態とでは、鋼材の接合面に配置する炭素質物質の形態のみが相違する。 FIG. 2 is a conceptual diagram for explaining a method for manufacturing a steel joined body according to a first specific embodiment of the present invention. FIG. 3 is a conceptual diagram for explaining a method for manufacturing a steel joined body according to a second specific embodiment of the present invention. The first embodiment shown in FIG. 2 and the second embodiment shown in FIG. 3 differ only in the form of the carbonaceous material disposed on the joint surface of the steel material.

<配置工程(ステップS100)について>
第1及び第2の実施形態に係る鋼材接合体1の製造方法は、配置工程(ステップS100)において、図2(a)及び図3(a)に示すように、接合する鋼材(10,20)同士の少なくともどちらか一方の接合面(10a及び/又は20a:図2(a)及び図3(a)では一方の接合面)に炭素質物質(30又は40)を配置する。
この際、前記炭素質物質は、後述する加熱工程(ステップS120)での加熱時の最高到達温度で前記接合面(10a及び20a)に液相L(図4参照:後述)が生成するように配置することが好ましい。このように配置することで鋼材同士の接合強度をより有効に向上させることができる。
<About the placement process (step S100)>
In the manufacturing method of the steel joined body 1 according to the first and second embodiments, in the arrangement step (step S100), as shown in FIGS. 2(a) and 3(a), the steel materials (10, 20 ) A carbonaceous material (30 or 40) is placed on at least one of the bonding surfaces (10a and/or 20a: one bonding surface in FIGS. 2(a) and 3(a)).
At this time, the carbonaceous material is heated in such a way that a liquid phase L (see FIG. 4; described later) is generated on the joint surfaces (10a and 20a) at the highest temperature reached during heating in the heating step (step S120), which will be described later. It is preferable to arrange. By arranging them in this way, the bonding strength between steel materials can be more effectively improved.

ここで、接合する鋼材(10,20)の材質は、任意の鋼材であって、互いに、一体化することが可能な金属であれば特に限定されない。例えば、低炭素鋼、中炭素鋼、高炭素鋼等を用いることができる。
なお、本発明でいう中炭素鋼とは、炭素濃度が0.30mass%以上0.50mass%以下の鋼材を言う。ちなみに、低炭素鋼とは、炭素濃度が0.30mass%未満の鋼材を言い、高炭素鋼とは、炭素濃度が0.50mass%を超える鋼材を言う。また、低炭素鋼、中炭素鋼及び高炭素鋼を用いる場合、前記炭素以外の合金元素は、特に限定されないが、例えば、JIS G 4051に規定されているような、概ね、Si:1.5mass%以下、Mn:1.0mass%以下を含み、残部Fe及び不可避的不純物からなる組成とすることができる。
Here, the material of the steel materials (10, 20) to be joined is not particularly limited as long as it is any steel material that can be integrated with each other. For example, low carbon steel, medium carbon steel, high carbon steel, etc. can be used.
Note that the term "medium carbon steel" as used in the present invention refers to a steel material having a carbon concentration of 0.30 mass% or more and 0.50 mass% or less. Incidentally, low carbon steel refers to steel with a carbon concentration of less than 0.30 mass%, and high carbon steel refers to steel with a carbon concentration of more than 0.50 mass%. Further, when using low carbon steel, medium carbon steel, and high carbon steel, the alloying element other than carbon is not particularly limited, but for example, Si: 1.5 mass as specified in JIS G 4051. % or less, Mn: 1.0 mass% or less, and the balance may be composed of Fe and unavoidable impurities.

前記鋼材(10,20)の形状は、接合面(10a,20a)をそれぞれ有し、この接合面同士(10aと20a)を重ね合わせて、互いに、一体化することが可能であれば、特に限定されない。例えば、円柱形状、角柱形状、ねじ形状、凹凸形状等を用いることができる。 The shape of the steel materials (10, 20) has bonding surfaces (10a, 20a), respectively, and if it is possible to overlap these bonding surfaces (10a and 20a) and integrate them, especially Not limited. For example, a cylindrical shape, a prismatic shape, a threaded shape, an uneven shape, etc. can be used.

また、炭素質物質(30、40)は、接合する鋼材(10,20)同士の少なくともどちらか一方の接合面(10a及び/又は20a)に配置でき、この接合面同士(10aと20a)が一体化することができれば、材質、形状は、特に限定されない。例えば、図2に示す粉末状の炭素質物質(30)や図3に示すシート状の炭素質物質(40)を用いることができる。ここで、粉末状の炭素質物質(30)を用いる場合は、接合面(10a及び/又は20a)に塗布することで配置することができる。シート状の炭素質物質(40)を用いる場合には、接合面(10a及び/又は20a)に直接的に配置することができる。 Further, the carbonaceous material (30, 40) can be placed on at least one joint surface (10a and/or 20a) of the steel materials (10, 20) to be joined, and the joint surfaces (10a and 20a) are The material and shape are not particularly limited as long as they can be integrated. For example, a powdery carbonaceous material (30) shown in FIG. 2 or a sheet-like carbonaceous material (40) shown in FIG. 3 can be used. Here, when using a powdery carbonaceous material (30), it can be placed by applying it to the joint surface (10a and/or 20a). When using a sheet-like carbonaceous material (40), it can be placed directly on the joint surface (10a and/or 20a).

<重ね合わせ工程(ステップS110)について>
第1及び第2の実施形態に係る鋼材接合体1の製造方法は、重ね合わせ工程(ステップS110)において、図2(b)及び図3(b)に示すように、「配置工程(ステップS100)」で配置した炭素質物質(30又は40)を介して上述した接合する鋼材(10,20)の接合面同士(10aと20a)を押し当てるのみで重ね合わせる。
この重ね合わせ工程(ステップS110)では、鋼材(10,20)の接合面同士(10aと20a)を押し当てるのみで重ね合わせる際に、自重により接合面同士を固定することが好ましい。本実施形態の重ね合わせ工程では、このように、鋼材(10,20)の接合面同士(10aと20a)を自重により固定することで、鋼材同士(10と20)の接合力を高めることが可能である。
<About the overlapping process (step S110)>
In the manufacturing method of the steel joined body 1 according to the first and second embodiments, in the overlapping step (step S110), as shown in FIG. 2(b) and FIG. )'' The joining surfaces (10a and 20a) of the above-mentioned steel materials (10, 20) to be joined are overlapped by simply pressing against each other via the carbonaceous material (30 or 40) arranged in the structure.
In this overlapping step (step S110), when overlapping the joining surfaces (10a and 20a) of the steel materials (10, 20) by simply pressing them together, it is preferable to fix the joining surfaces together by their own weight. In the stacking process of the present embodiment, the bonding force between the steel materials (10 and 20) can be increased by fixing the joint surfaces (10a and 20a) of the steel materials (10, 20) with their own weight in this way. It is possible.

また、この重ね合わせ工程(ステップS110)では、鋼材(10,20)の接合面同士(10aと20a)を押し当てるのみで重ね合わせる際に、接合面同士を固定するために荷重(押し当て荷重)をかけることが好ましい。本実施形態の重ね合わせ工程では、このように、鋼材(10,20)の接合面同士(10aと20a)を固定するために荷重をかけることで、鋼材同士(10と20)の接合力を高めることが可能である。また、このような押し当て荷重をかける場合は、鋼材(10,20)の接合面同士(10aと20a)の重ね合わせを図2や図3に示すような上下方向によるものではなく、水平方向(不図示)によるものでも可能になるため好ましい。 In addition, in this overlapping step (step S110), when overlapping the joint surfaces (10a and 20a) of the steel materials (10, 20) by simply pressing them together, a load (pressing load) is applied to fix the joint surfaces together. ) is preferable. In the stacking process of this embodiment, the bonding force between the steel materials (10 and 20) is increased by applying a load to fix the joint surfaces (10a and 20a) of the steel materials (10, 20). It is possible to increase In addition, when applying such a pressing load, the overlapping of the joining surfaces (10a and 20a) of the steel materials (10, 20) is not done in the vertical direction as shown in FIGS. 2 and 3, but in the horizontal direction. (not shown) is also possible, which is preferable.

更に、本実施形態の重ね合わせ工程では、前記押し当てるときの前記接合する鋼材の接合面の傾きを調整することが好ましい。このように接合面の傾きを調整することで鋼材同士の接合強度をより有効に向上させることができる。 Furthermore, in the overlapping step of the present embodiment, it is preferable to adjust the inclination of the joint surfaces of the steel materials to be joined during the pressing. By adjusting the inclination of the joint surfaces in this manner, the joint strength between steel materials can be more effectively improved.

<加熱工程(ステップS120)について>
第1及び第2の実施形態に係る鋼材接合体1の製造方法は、加熱工程(ステップS120)において、図2(c)及び図3(c)に示すように、「重ね合わせ工程(ステップS110)」で接合面同士(10aと20a)を重ね合わせた鋼材(10,20)を押し当てるのみで自重により接合面同士を固定しながら加熱する。ここで、鋼材(10,20)を加熱する最高到達温度は、接合面50において液相Lが生成される範囲でおこなう(図4参照、後述)。
また、前記加熱は、接合面同士(10aと20a)を重ね合わせた鋼材(10,20)を押し当てるのみで接合面同士を固定するために荷重(押し当て荷重)をかけながら加熱することが好ましい。
このように、接合面同士(10aと20a)を重ね合わせた鋼材(10,20)を固定するために荷重をかけながら加熱することで、鋼材同士(10と20)の接合力を高めることが可能である。また、このような押し当て荷重をかける場合は、鋼材(10,20)の接合面同士(10aと20a)の加熱を図2や図3に示すような上下方向によるものではなく、水平方向(不図示)によるものでも可能になるため好ましい。
<About the heating process (step S120)>
In the manufacturing method of the steel joined body 1 according to the first and second embodiments, in the heating step (step S120), as shown in FIG. 2(c) and FIG. )", the steel materials (10, 20) with their joined surfaces (10a and 20a) overlapped are simply pressed against each other, and the joined surfaces are fixed together by their own weight and heated. Here, the maximum temperature at which the steel materials (10, 20) are heated is set within a range where the liquid phase L is generated at the joint surface 50 (see FIG. 4, described later).
In addition, the heating may be performed while applying a load (pressing load) in order to fix the joint surfaces by simply pressing the steel materials (10, 20) that overlap the joint surfaces (10a and 20a). preferable.
In this way, by heating while applying a load to fix the steel materials (10, 20) with their joining surfaces (10a and 20a) superimposed on each other, it is possible to increase the joining strength between the steel materials (10 and 20). It is possible. In addition, when applying such a pressing load, the heating of the joining surfaces (10a and 20a) of the steel materials (10, 20) is not done in the vertical direction as shown in FIGS. 2 and 3, but in the horizontal direction ( (not shown) is also possible, which is preferable.

なお、上述したように、配置工程(ステップS100)において、前記炭素質物質は、加熱工程(ステップS120)での加熱時の最高到達温度で接合面50に液相Lが生成するように当該炭素質物質の質量が調整されて配置されている。
従って、このような炭素質物質が前記接合面に配置されているため、接合面50の炭素濃度が高くなる。よって、接合面50の引張強度及び曲げ強度が高くなるため、接合面50、すなわち鋼材同士の接合強度を有効に高めることができる。
As described above, in the arrangement step (step S100), the carbonaceous material is heated such that the liquid phase L is generated on the bonding surface 50 at the highest temperature reached during heating in the heating step (step S120). The mass of the material is adjusted and arranged.
Therefore, since such a carbonaceous material is disposed on the bonding surface, the carbon concentration of the bonding surface 50 becomes high. Therefore, the tensile strength and bending strength of the joint surface 50 are increased, so that the joint strength of the joint surface 50, that is, the joint strength between the steel materials can be effectively increased.

なお、前記炭素質物質の加熱時の最高到達温度で前記接合面50に液相L(図4参照)が生成するように当該炭素質物質の質量を調整して配置するためには、例えば、製品になる鋼材接合体と形状及び炭素濃度が同じ素材である鋼材(10,20)を用いて接合面50に配置する炭素質物質の質量を変化させて、それぞれを同じ最高到達温度で加熱接合試験を行い、後述する接合率を評価することで、液相Lが生成する適切な炭素質物質の質量を決定することができる。 In addition, in order to adjust the mass of the carbonaceous material and arrange it so that the liquid phase L (see FIG. 4) is generated on the bonding surface 50 at the highest temperature reached during heating of the carbonaceous material, for example, Using steel materials (10, 20) that have the same shape and carbon concentration as the steel material joined body that will become the product, the mass of the carbonaceous material placed on the joint surface 50 is changed, and each material is heated and joined at the same maximum temperature. By conducting a test and evaluating the bonding rate, which will be described later, it is possible to determine an appropriate mass of the carbonaceous material for which the liquid phase L is generated.

前記炭素質物質は、前記最高到達温度で前記接合面全面に液相が生成するように配置することが好ましい。
炭素質物質を、前記接合面全面に液相が生成するように配置することで、接合面全面で接合することができる。従って、鋼材同士の接合強度を更に有効に向上させることができる。
Preferably, the carbonaceous material is arranged so that a liquid phase is generated over the entire joint surface at the maximum temperature.
By arranging the carbonaceous material so that a liquid phase is generated over the entire surface of the bonding surface, bonding can be achieved over the entire surface of the bonding surface. Therefore, the bonding strength between steel materials can be further effectively improved.

加熱工程(ステップS120)における加熱手段は、本発明の効果を損なわない限り特に限定されず、従来公知の加熱コイル60を用いた高周波誘導加熱(100)や、高周波誘導加熱以外の加熱炉、レーザー加熱等を用いた様々な加熱方法を採用することができる。
また、加熱工程(ステップS120)における加熱中の雰囲気は特に限定されない。
前記雰囲気は、例えば、酸化性雰囲気(酸素、大気等)や非酸化雰囲気(窒素、アルゴン等)が含まれる。
The heating means in the heating step (step S120) is not particularly limited as long as it does not impair the effects of the present invention, and may include high-frequency induction heating (100) using a conventionally known heating coil 60, a heating furnace other than high-frequency induction heating, and a laser. Various heating methods using heating etc. can be employed.
Further, the atmosphere during heating in the heating step (step S120) is not particularly limited.
The atmosphere includes, for example, an oxidizing atmosphere (oxygen, air, etc.) and a non-oxidizing atmosphere (nitrogen, argon, etc.).

本発明の加熱工程(ステップS120)は、高周波誘導加熱(100)により行うことが好ましい。高周波誘導加熱(100)は、所望の温度まで正確に急速加熱することができるため、上述した鋼材接合体(1)を製造することができる。 The heating step (step S120) of the present invention is preferably performed by high frequency induction heating (100). Since the high-frequency induction heating (100) can accurately and rapidly heat up to a desired temperature, the above-mentioned steel joined body (1) can be manufactured.

そして、本発明の加熱工程(ステップS120)において、鋼材(10,20)の接合面50で生成された液相Lが消滅した段階で、鋼材同士(10と20)が接合することになる(図2(d)及び図3(d))。 Then, in the heating step (step S120) of the present invention, the steel materials (10 and 20) are joined together at the stage when the liquid phase L generated at the joint surface 50 of the steel materials (10, 20) disappears ( 2(d) and 3(d)).

<冷却工程(ステップS130)について>
本発明の加熱工程(ステップS120)における当該加熱後の冷却工程(ステップS130)は、特に限定されず、従来公知の放冷、ガス冷却及びポリマー等の焼入冷却剤等による噴射冷却等を採用することができる。
<About the cooling process (step S130)>
The cooling step (step S130) after heating in the heating step (step S120) of the present invention is not particularly limited, and conventionally known cooling, gas cooling, injection cooling with a quenching coolant such as a polymer, etc. are employed. can do.

以上に本発明が備える各工程について説明したが、次に、これら各工程を行い鋼材の接合力が高められるメカニズムの具体例を図面を用いて説明する。
図4は、本発明の効果を説明するための鉄-セメンタイト系の状態図である。図5は、本発明の効果を説明するための概念図であり、詳しくは、接合界面で起こる反応を示す概念図である。本実施形態に係る鋼材接合体1の製造方法としては、接合する鋼材同士の少なくともどちらか一方の接合面に、加熱時の最高到達温度で液相Lが生成するように質量を調整した当該炭素粉(炭素質物質)を配置し、この炭素質物質を介して接合する鋼材の接合面同士を重ね合わせた鋼材を所定の雰囲気下(例えば、大気雰囲気下)、所定の最高到達温度で加熱する(図3(a)を参照)。
Each process included in the present invention has been described above, and next, a specific example of a mechanism for increasing the bonding strength of steel materials by performing each of these processes will be described using the drawings.
FIG. 4 is a phase diagram of the iron-cementite system for explaining the effects of the present invention. FIG. 5 is a conceptual diagram for explaining the effects of the present invention, and more specifically, it is a conceptual diagram showing reactions that occur at the bonding interface. The method for manufacturing the steel joined body 1 according to the present embodiment includes the carbon whose mass is adjusted so that a liquid phase L is generated at the highest temperature during heating on at least one joint surface of the steel materials to be joined. Powder (carbonaceous material) is placed, and the joint surfaces of the steel materials that are joined via this carbonaceous material are overlapped and heated to a predetermined maximum temperature in a predetermined atmosphere (e.g., atmospheric atmosphere). (See Figure 3(a)).

図4より、鋼材と炭素質物質との接合界面において液相Lが生成する温度は1150℃以上1500℃以下である。
具体的には、鋼材同士の接合面付近の最高到達温度が、例えば1250℃に達すると、鋼材と炭素質物質との界面において炭素濃度が3.5mass%の液相Lが生成する(図4中□で示す部分を参照)。この液相Lは、炭素質物質が無くなるまで増加する(図5(b)を参照)。
From FIG. 4, the temperature at which the liquid phase L is generated at the bonding interface between the steel material and the carbonaceous material is 1150° C. or higher and 1500° C. or lower.
Specifically, when the maximum temperature near the joint surface between steel materials reaches, for example, 1250°C, a liquid phase L with a carbon concentration of 3.5 mass% is generated at the interface between the steel material and the carbonaceous material (Figure 4 (See the part marked with a □). This liquid phase L increases until the carbonaceous material disappears (see FIG. 5(b)).

1250℃における「オーステナイト相γ」領域と「オーステナイト相γ+液相L」領域との界面(図4中〇で示す部分を参照)の炭素濃度は1.6mass%である。そのため、1250℃では、鋼材の殆どがオーステナイト相γ単相となる。ちなみに、炭素含有量が1.6mass%を超える場合に関しては、オーステナイト相γと液相Lの二相が共存したものとなる。1250℃での炭素の拡散は極めて速く、この温度に保持すると、炭素は、鋼材の接合面から内部のオーステナイト相γ内に速い速度で拡散していく。その結果、この液相Lとオーステナイト相γ界面において、オーステナイト相γ側は炭素濃度を1.6mass%に保とうとして液相L側から炭素を奪い取り、また、液相Lは炭素濃度を3.5mass%に保とうとするため液相Lが減少する(図5(c)を参照)。液相Lは、最終的に消滅して鋼材同士の接合が完了する(図5(d)を参照)。 The carbon concentration at the interface between the "austenite phase γ" region and the "austenite phase γ+liquid phase L" region (see the part marked with a circle in FIG. 4) at 1250° C. is 1.6 mass%. Therefore, at 1250°C, most of the steel material becomes an austenite phase γ single phase. Incidentally, when the carbon content exceeds 1.6 mass%, two phases, an austenite phase γ and a liquid phase L, coexist. Carbon diffusion at 1250° C. is extremely fast, and when maintained at this temperature, carbon diffuses from the joint surface of the steel material into the internal austenite phase γ at a high rate. As a result, at the interface between the liquid phase L and the austenite phase γ, the austenite phase γ side takes carbon from the liquid phase L side in an attempt to maintain the carbon concentration at 1.6 mass%, and the liquid phase L maintains the carbon concentration at 3.6 mass%. The liquid phase L decreases because it tries to maintain it at 5 mass% (see FIG. 5(c)). The liquid phase L eventually disappears and the joining of the steel materials is completed (see FIG. 5(d)).

本発明の加熱工程(ステップS120)における本発明の効果を最高到達温度1250℃で説明したが、上述した本発明の効果は、図4における鉄-セメンタイト系の状態図や後述する実施例から、「オーステナイト相γ」領域と「オーステナイト相γ+液相L」領域が形成される温度範囲(最高到達温度が1150℃以上1500℃以下)で得られると考えられる。
以上のように、前記接合面に液相Lが生成するように炭素質物質の質量を調整して当該炭素質物質を配置し、前記接合面同士を重ね合わせた鋼材を1150℃以上1500℃以下の最高到達温度で加熱することで上記接合を行うことができる。
従って、前記最高到達温度は、1150℃以上1500℃以下であることが好ましい。
これにより鋼材同士の接合強度をより有効に向上させることができる。
The effect of the present invention in the heating step (step S120) of the present invention was explained using the maximum temperature of 1250°C, but the effect of the present invention described above can be seen from the phase diagram of the iron-cementite system in FIG. 4 and the examples described later. It is thought that this is obtained in a temperature range (the maximum temperature reached is 1150° C. or higher and 1500° C. or lower) in which the “austenite phase γ” region and the “austenite phase γ+liquid phase L” region are formed.
As described above, the mass of the carbonaceous material is adjusted and the carbonaceous material is arranged so that the liquid phase L is generated on the joint surface, and the steel material with the joint surfaces overlapped is heated at a temperature of 1150°C or higher and 1500°C or lower. The above bonding can be performed by heating at the highest temperature reached.
Therefore, it is preferable that the maximum temperature reached is 1150°C or more and 1500°C or less.
Thereby, the bonding strength between steel materials can be improved more effectively.

前記最高到達温度は、1150℃以上1300℃以下であることがより好ましい。最高到達温度を1300℃以下とすることで、鋼材を加熱するための加熱部材(コイル等)の冷却を効率的に行うことができると共に、鋼材接合体自体の熱による変形等も抑制することができる。なお、加熱工程(S120)における前記最高到達温度は、接合する鋼材の接合面50から2mm以内の鋼材(素材)側の外周面に溶接した白金ロジウム熱電対により測定することができる。 It is more preferable that the maximum temperature reached is 1150°C or more and 1300°C or less. By setting the maximum temperature to 1300°C or less, it is possible to efficiently cool the heating member (coil, etc.) for heating the steel material, and it is also possible to suppress deformation of the steel material assembly itself due to heat. can. The maximum temperature in the heating step (S120) can be measured with a platinum-rhodium thermocouple welded to the outer peripheral surface of the steel material (material) within 2 mm from the joint surface 50 of the steel materials to be joined.

次に、実施例及び比較例を通じて、本発明をより詳細に説明する。なお、本発明はこれらの例により何ら限定されるものではない。 Next, the present invention will be explained in more detail through Examples and Comparative Examples. Note that the present invention is not limited to these examples in any way.

[実施例1]
実施例1では、接合面の直径φ14.7×軸方向の長さL47mmの大きさの丸棒で、S45C鋼材(中炭素鋼)を2つ用意した。そして、縦20mm×横20mm×厚さ16μmの大きさの炭素質物質(パナソニック株式会社製PGSグラファイトシート)を介してこれらS45C鋼材の接合面同士を重ね合わせて加熱接合を行った。このグラファイトシートの質量(グラム)は、下記最高到達温度(1250℃)で鋼材の接合面に液相Lが生成する炭素濃度になるように調整されている。
また、下記最高到達温度は、S45C鋼材の接合面となる位置から2mm以内の当該鋼材側の外周面に白金ロジウム熱電対を溶接して測定した。
[Example 1]
In Example 1, two S45C steel materials (medium carbon steel) were prepared as round bars with a joint surface diameter of 14.7 mm and an axial length L of 47 mm. Then, the bonding surfaces of these S45C steel materials were overlapped and heat bonded via a carbonaceous material (PGS graphite sheet manufactured by Panasonic Corporation) having a size of 20 mm long x 20 mm wide x 16 μm thick. The mass (grams) of this graphite sheet is adjusted so that the carbon concentration is such that a liquid phase L is generated on the joint surface of the steel materials at the maximum temperature (1250° C.) described below.
Further, the following maximum temperature was measured by welding a platinum-rhodium thermocouple to the outer peripheral surface of the S45C steel material within 2 mm from the position where the joint surface would be.

ようするに、図1の工程フローに示す如く、配置工程(ステップS100)、重ね合わせ工程(ステップS110)、加熱工程(ステップS120)、冷却工程(ステップS130)を順に行った。この重ね合わせ工程では、炭素質物質を介して前記接合する鋼材の接合面同士を押し当てるのみで7.0MPaの圧力で、すなわち、押し当て荷重をかけながら重ね合わせた。
この加熱工程では、大気雰囲気中で、周波数10kHzの高周波誘導加熱によりこれらS45C鋼材同士を20秒で最高到達温度1250℃まで加熱し、この温度を20秒間保持した後、室温まで空冷した。この大気雰囲気での加熱は、炭素質物質を介したS45C鋼材の接合面同士を押し当てるのみで7.2MPaの圧力(接合界面を固定するための荷重)で、すなわち、押し当て荷重をかけながら加熱接合を行った。冷却工程では加熱した鋼材の少なくとも接合面に放冷により冷却した。
実施例1では、これら工程を経て得られた鋼材接合体を試験体とした。
In other words, as shown in the process flow of FIG. 1, a placement process (step S100), an overlapping process (step S110), a heating process (step S120), and a cooling process (step S130) were performed in this order. In this overlapping process, the joining surfaces of the steel materials to be joined were simply pressed against each other via a carbonaceous material, and the steel materials were overlaid under a pressure of 7.0 MPa, that is, while applying a pressing load.
In this heating step, these S45C steel materials were heated to a maximum temperature of 1250° C. in 20 seconds by high-frequency induction heating at a frequency of 10 kHz in the air, held at this temperature for 20 seconds, and then air cooled to room temperature. Heating in this atmospheric atmosphere was performed by simply pressing the joint surfaces of S45C steel materials together via a carbonaceous material, at a pressure of 7.2 MPa (load for fixing the joint interface), that is, while applying a pressing load. Heat bonding was performed. In the cooling step, at least the joint surface of the heated steel material was cooled by air cooling.
In Example 1, the steel joined body obtained through these steps was used as a test specimen.

実施例1で得られた鋼材接合体の外観をカメラで観察した。図6には、実施例1で得られた鋼材接合体の外観写真を示す。また、実施例1では、得られた鋼材接合体について、接合率を確認した。ここで、接合率の確認は、得られた鋼材接合体の接合界面を、ノーエッチングの状態で光学顕微鏡で観察して行った。図7には、接合率の確認を行う際の観察位置及び接合率の算出方法を説明する図を示す。
図7(a)に示すように、接合率の確認を行うための観察位置は、図7(a)に示す如く鋼材接合体を中心軸αに平行なL断面で切断した状態のものであり、接合率は、図7(b)に示すように、dを鋼材接合体の直径とし、Lvをボイドの長さとした場合に、これらの値を用いて「(d-ΣLv)/d×100」で算出される値として求めた。以下に示す表1には、接合率を確認した結果を他の結果と併せて示す。
The appearance of the steel joined body obtained in Example 1 was observed with a camera. FIG. 6 shows a photograph of the appearance of the steel joined body obtained in Example 1. Further, in Example 1, the joining rate of the obtained steel joined body was confirmed. Here, the bonding rate was confirmed by observing the bonding interface of the obtained steel material bonded body under an optical microscope in a non-etched state. FIG. 7 shows a diagram illustrating the observation position and the method for calculating the bonding rate when checking the bonding rate.
As shown in FIG. 7(a), the observation position for checking the joining rate is when the steel joint is cut at an L cross section parallel to the central axis α, as shown in FIG. 7(a). As shown in Fig. 7(b), the bonding rate is calculated as "(d-ΣLv)/d×100" using these values, where d is the diameter of the steel joint and Lv is the length of the void. ” was calculated as the value. Table 1 below shows the results of checking the bonding rate together with other results.

さらに、本実施例1では、得られた鋼材接合体について、接合界面部分における金属組織を確認した。ここで、金属組織の確認は、加熱接合された鋼材接合体を図7(a)に示すようなL断面で切断した表面の接合界面における所定箇所を、ノーエッチングの状態でカメラで観察した。図8には、金属組織の確認を行う箇所を説明する図及びこの箇所の金属組織写真を示す。なお、図8(a)に示す鋼材接合体は、図7(a)に示す如く鋼材接合体を接合界面で切断した状態のものであり、この接合界面の断面上のA、B、Cそれぞれの箇所において金属組織の確認を行った。図8(b)には、これらA、B、Cそれぞれの箇所の金属組織写真を他の金属組織写真と併せて示す。 Furthermore, in Example 1, the metal structure at the joint interface portion of the obtained steel joined body was confirmed. Here, the metallographic structure was confirmed by observing with a camera a predetermined location at the joint interface on the surface of the heat-bonded steel joint body cut in an L cross section as shown in FIG. 7(a) in a non-etched state. FIG. 8 shows a diagram illustrating a location where the metallographic structure is to be confirmed and a photograph of the metallographic structure of this location. The steel joint shown in FIG. 8(a) is obtained by cutting the steel joint at the joint interface as shown in FIG. 7(a), and A, B, and C on the cross section of this joint interface are respectively The metallographic structure was confirmed at the location. FIG. 8(b) shows photos of the metal structure of each of these locations A, B, and C together with other metal structure photos.

[実施例2]
実施例2では、得られた鋼材接合体について、実施例1と同様に「接合率」及び「接合界面部分における金属組織」の確認を行った。ここで、これらの確認を行うに際して、実施例1と同じ方法を採用した。そのため、これら方法に関する説明は省略する。
[Example 2]
In Example 2, the "joining rate" and "metal structure at the joint interface part" of the obtained steel joined body were confirmed in the same manner as in Example 1. Here, when performing these checks, the same method as in Example 1 was adopted. Therefore, explanation regarding these methods will be omitted.

実施例2では、実施例1と同様に、図1の工程フローに示す如く、配置工程(ステップS100)、重ね合わせ工程(ステップS110)、加熱工程(ステップS120)を順に行った。実施例2において、実施例1と異なる条件は、この加熱工程での加熱を窒素ガス雰囲気中で行った点である。この窒素ガス雰囲気での加熱は、窒素ガスの流量を100L/minとし、炭素質物質を介したS45C鋼材の接合面同士を7.2MPaの圧力(接合界面を固定するための荷重)で加圧しながら加熱接合を行った。 In Example 2, as in Example 1, as shown in the process flow of FIG. 1, the arrangement process (step S100), the overlapping process (step S110), and the heating process (step S120) were performed in this order. The conditions in Example 2 differ from those in Example 1 in that the heating in this heating step was performed in a nitrogen gas atmosphere. In this heating in a nitrogen gas atmosphere, the flow rate of nitrogen gas was set to 100 L/min, and the joint surfaces of the S45C steel materials through the carbonaceous material were pressurized with a pressure of 7.2 MPa (load for fixing the joint interface). Heat bonding was performed while

以下に示す表1には、接合率を確認した結果を実施例1の結果と併せて示す。図8には、金属組織の確認を行う箇所を説明する図及びこの箇所の金属組織写真を実施例1の金属組織写真と併せて示す。 Table 1 below shows the results of checking the bonding rate together with the results of Example 1. FIG. 8 shows a diagram illustrating the location where the metallographic structure is to be confirmed and a photo of the metallographic structure of this location together with the photo of the metallographic structure of Example 1.

Figure 2023167628000002
Figure 2023167628000002

(結果及び評価)
図6より、実施例1で得られた鋼材接合体は、丸棒同士が接合されている様子が確認できる。また、表1より、鋼材接合体の接合率は、実施例1と実施例2とで有意な差は認められなかった。また、図8より、鋼材接合体の接合界面部分の金属組織についても、実施例1と実施例2とで有意な差がなく、共にパーライト相が形成されていることが確認された。
(Results and evaluation)
From FIG. 6, it can be seen that in the steel joined body obtained in Example 1, the round bars are joined together. Further, from Table 1, no significant difference was observed in the joining rate of the steel joined bodies between Example 1 and Example 2. Further, from FIG. 8, it was confirmed that there was no significant difference in the metal structure of the joint interface portion of the steel material joint between Example 1 and Example 2, and a pearlite phase was formed in both cases.

[実施例3から実施例5]
最高到達温度を1150℃(実施例3)、1200℃(実施例4)、1300℃(実施例5)と変化させて、その他は実施例2と同様な工程及び条件で、加熱接合を行った。これらの加熱接合で得られた鋼材接合体を各々の最高到達温度における試験体とした。得られた各々の鋼材接合体について、実施例1と同様である「接合率」及び「接合界面部分における金属組織」の確認を行った。ここで、これらの確認を行うに際して、実施例1と同じ方法を採用した。そのため、これら方法に関する説明は省略する。
[Example 3 to Example 5]
Heat bonding was performed using the same process and conditions as Example 2, except that the maximum temperature reached was changed to 1150°C (Example 3), 1200°C (Example 4), and 1300°C (Example 5). . The steel joined bodies obtained by these heating weldings were used as test specimens at the respective maximum temperatures. Regarding each of the obtained steel material joints, the "joining rate" and "metallic structure at the joint interface part" were confirmed in the same manner as in Example 1. Here, when performing these checks, the same method as in Example 1 was adopted. Therefore, explanation regarding these methods will be omitted.

以下に示す表2には、接合率を確認した実施例3から実施例5の結果を併せて示す。図9には、金属組織の確認を行う箇所を説明する図及びこの箇所の実施例3から実施例5の各々の金属組織写真と併せて示す。 Table 2 below also shows the results of Examples 3 to 5 in which the bonding rates were confirmed. FIG. 9 is a diagram illustrating the location where the metallographic structure is to be confirmed, together with photographs of the metallographic structure of this location in Examples 3 to 5.

Figure 2023167628000003
Figure 2023167628000003

(結果及び評価)
表2より、鋼材接合体の接合率に関しては、実施例3から実施例5で有意な差は認められなかった。更には、これら実施例3から実施例5と実施例1及び実施例2とで有意な差は認められなかった。また、図9より、鋼材接合体の接合界面部分の金属組織についても、実施例3から実施例5、更には、これら実施例3から実施例5と実施例1及び実施例2とで有意な差がなく、共にパーライト相が形成されていることが確認された。
(Results and evaluation)
From Table 2, no significant difference was observed between Examples 3 and 5 in terms of the joining rate of the steel joined bodies. Furthermore, no significant difference was observed between Examples 3 to 5 and Examples 1 and 2. In addition, from FIG. 9, it can be seen that there is a significant difference in the metallographic structure of the joint interface part of the steel joined body from Example 3 to Example 5, as well as from Example 3 to Example 5, Example 1, and Example 2. It was confirmed that there was no difference and a pearlite phase was formed in both cases.

[比較例1]
比較例1では、最高到達温度を1100℃として、その他は実施例2と同様な工程フロー及び条件で、加熱接合を行った。その結果、実施例1から実施例5に示すような接合は確認されず、接合率は0%であった。
[Comparative example 1]
In Comparative Example 1, heat bonding was performed using the same process flow and conditions as Example 2, except that the maximum temperature reached was 1100°C. As a result, no bonding as shown in Examples 1 to 5 was observed, and the bonding rate was 0%.

[比較例2]
実施例1のグラファイトシートを使用せず、その他は実施例2と同様な工程フロー及び条件で、加熱接合を行った。
その結果、実施例1から5に示すような接合は確認されず、接合率は0%であった。
以上の結果より、本発明に係る鋼材接合体の製造方法は、好ましくは、最高到達温度を1150℃以上1300℃以下とすることで、鋼材同士の接合強度を有効に向上させることが分かる。
[Comparative example 2]
Heat bonding was performed under the same process flow and conditions as in Example 2, except that the graphite sheet of Example 1 was not used.
As a result, no bonding as shown in Examples 1 to 5 was observed, and the bonding rate was 0%.
From the above results, it can be seen that the method for manufacturing a steel joined body according to the present invention effectively improves the bonding strength between steel materials by preferably setting the maximum temperature to 1150° C. or more and 1300° C. or less.

本発明に係る鋼材接合体の製造方法によれば、鋼材同士の接合強度を簡便にかつ有効に向上させることができる。従って、本発明に係る鋼材接合体の製造方法は、鋼材接合体を備える様々な構造物の製造に好適に採用することができる。 According to the method for manufacturing a steel joined body according to the present invention, the bonding strength between steel materials can be simply and effectively improved. Therefore, the method for manufacturing a steel joined body according to the present invention can be suitably employed in manufacturing various structures including a steel joined body.

1 鋼材接合体
10 鋼材
10a 接合面
20 鋼材
20a 接合面
30 炭素質物質
40 炭素質物質
50 接合界面
100 高周波誘導加熱
γ オーステナイト相
L 液相
S100 配置工程
S110 重ね合わせ工程
S120 加熱工程
S130 冷却工程
1 Steel joined body 10 Steel material 10a Joint surface 20 Steel material 20a Joint surface 30 Carbonaceous material 40 Carbonaceous material 50 Joint interface 100 High-frequency induction heating γ Austenite phase L Liquid phase S100 Placement step S110 Layering step S120 Heating step S130 Cooling step

Claims (4)

複数の鋼材同士が接合された鋼材接合体の製造方法であって、
接合する鋼材同士の少なくともどちらか一方の接合面に炭素質物質を配置する配置工程と、
前記炭素質物質を介して前記接合する鋼材の接合面同士を押し当てるのみで自重により又は押し当て荷重をかけながら重ね合わせる重ね合わせ工程と、
前記接合面同士を重ね合わせた鋼材を押し当てるのみで自重により又は押し当て荷重をかけながら前記炭素質物質の液相が生成する最高到達温度で加熱する加熱工程と、
前記加熱した鋼材を冷却する冷却工程と、を備える、
鋼材接合体の製造方法。
A method for manufacturing a steel joined body in which a plurality of steel materials are joined together,
a placement step of placing a carbonaceous substance on at least one joint surface of the steel materials to be joined;
an overlapping step of overlapping the joining surfaces of the steel materials to be joined together by pressing them together by their own weight or while applying a pressing load through the carbonaceous material;
a heating step of heating the steel material with the joined surfaces stacked together by its own weight or while applying a pressing load to a maximum temperature at which a liquid phase of the carbonaceous material is generated;
a cooling step of cooling the heated steel material,
A method for manufacturing a steel joint.
前記重ね合わせ工程は、前記押し当てる時の前記接合する鋼材の接合面の傾きを調整する請求項1に記載の鋼材接合体の製造方法。 2. The method for manufacturing a joined steel material assembly according to claim 1, wherein in the overlapping step, the inclination of the joining surfaces of the steel materials to be joined is adjusted during the pressing. 前記炭素質物質は、前記最高到達温度で前記接合面に液相が生成するように配置する請求項1に記載の鋼材接合体の製造方法。 2. The method of manufacturing a steel joined body according to claim 1, wherein the carbonaceous material is arranged so that a liquid phase is generated on the joint surface at the maximum temperature. 前記最高到達温度は、1150℃以上1500℃以下である請求項1乃至3いずれかに記載の鋼材接合体の製造方法。 The method for manufacturing a steel joined body according to any one of claims 1 to 3, wherein the maximum temperature reached is 1150°C or more and 1500°C or less.
JP2022078948A 2021-09-08 2022-05-12 Method for manufacturing steel material joint body Pending JP2023167628A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2022078948A JP2023167628A (en) 2022-05-12 2022-05-12 Method for manufacturing steel material joint body
KR1020220111421A KR20230036983A (en) 2021-09-08 2022-09-02 Steel joined body and method for manufacturing the same
EP22194137.0A EP4148159A1 (en) 2021-09-08 2022-09-06 Steel joined body and method for manufacturing the same
CN202211098897.7A CN115770941A (en) 2021-09-08 2022-09-06 Steel material joined body and method for producing same
US17/903,168 US12011775B2 (en) 2021-09-08 2022-09-06 Steel joined body and method for manufacturing the same
US18/220,649 US20230364702A1 (en) 2021-09-08 2023-07-11 Steel joined body and method for manufacturing the same
US18/439,323 US20240181557A1 (en) 2021-09-08 2024-02-12 Steel joined body and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022078948A JP2023167628A (en) 2022-05-12 2022-05-12 Method for manufacturing steel material joint body

Publications (1)

Publication Number Publication Date
JP2023167628A true JP2023167628A (en) 2023-11-24

Family

ID=88838598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022078948A Pending JP2023167628A (en) 2021-09-08 2022-05-12 Method for manufacturing steel material joint body

Country Status (1)

Country Link
JP (1) JP2023167628A (en)

Similar Documents

Publication Publication Date Title
JP5846868B2 (en) Manufacturing method of stainless steel diffusion bonding products
US6024276A (en) Method for bonding dual-phase stainless steel
Deng et al. Thermally assisted self-piercing riveting of AA6061-T6 to ultrahigh strength steel
JPH0966372A (en) Joining method of titanium alloy member
Bang et al. Study on the weldability and mechanical characteristics of dissimilar materials (Al5052-DP590) by TIG assisted hybrid friction stir welding
JP4456471B2 (en) Liquid phase diffusion bonding method for metal machine parts and metal machine parts
JP2023167628A (en) Method for manufacturing steel material joint body
JP5033423B2 (en) Heat treatment method in press fitting
JP2023176794A (en) Manufacturing method for joint body of steel material
Gan et al. Microstructure–fracture toughness relationship of vanadium alloy/stainless steel brazed joints
KR20230036983A (en) Steel joined body and method for manufacturing the same
Bai et al. Friction spot extrusion brazing of copper to AISI 304 stainless steel with Zn interlayer: effect of shoulder surface modification
JP2023039175A (en) Method for producing steel material conjugant
RU2450197C1 (en) Joint of pipeline from stainless steel with vessel from titanium alloy and method of its realisation
JPS60170585A (en) Joining member for sintered hard alloy and steel and its production
WO2021182444A1 (en) Solid-phase spot-welding method and solid-phase spot-welding device
JP2001025885A (en) Friction welding member and its manufacture
JP2012110920A (en) Method of manufacturing axle case
JP6606661B1 (en) Alumina dispersion strengthened copper brazing method
JPH0452181B2 (en)
JP3626593B2 (en) Liquid phase diffusion bonding method in oxidizing atmosphere
JP3245477B2 (en) Thick plate clad material
JP3456876B2 (en) Titanium-based metal clad steel and method for producing the same
Smith et al. Metallurgical bonding development of V–4Cr–4Ti alloy for the DIII-D radiative divertor program
JPH06190573A (en) Manufacture of hollow structural material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240610