Nothing Special   »   [go: up one dir, main page]

JP2023047742A - Work device - Google Patents

Work device Download PDF

Info

Publication number
JP2023047742A
JP2023047742A JP2021156839A JP2021156839A JP2023047742A JP 2023047742 A JP2023047742 A JP 2023047742A JP 2021156839 A JP2021156839 A JP 2021156839A JP 2021156839 A JP2021156839 A JP 2021156839A JP 2023047742 A JP2023047742 A JP 2023047742A
Authority
JP
Japan
Prior art keywords
link
actuator
movement
inertia
inertia force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021156839A
Other languages
Japanese (ja)
Inventor
箔 埡堂前
Jun Midomae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2021156839A priority Critical patent/JP2023047742A/en
Priority to PCT/JP2022/034957 priority patent/WO2023048131A1/en
Publication of JP2023047742A publication Critical patent/JP2023047742A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Transmission Devices (AREA)

Abstract

To provide a work machine that can reduce vibrations of a tip end part of an actuating mechanism, with good responsiveness, during high-speed operation or with respect to complicate and finely-tuned operation.SOLUTION: A work device 1 comprises a link operation device 7, a movement mechanism 62 and a control device Cu. In the link operation device 7, a link hub 13 at a tip end side is connected to a link hub 12 at a base end side through a link mechanism 14 so that a posture thereof can be changed. In the movement mechanism 62, the link hub 12 at the base end side is mounted on a second linearly moving actuator 66 acting as an output part. The control device Cu controls an actuator 10 for controlling a posture of the link operation device 7 and first, second and third linearly moving actuators 65, 66 and 67. The control device Cu controls other actuators so that inertia force generated in either of the movement mechanism 62 and the link operation device 7 is cancelled.SELECTED DRAWING: Figure 1

Description

本発明は、䟋えば、医療機噚たたは産業機噚等の高速、高粟床、広範な䜜動範囲、および、朚目现かい動䜜を必芁ずする機噚に甚いられる䜜業装眮に関する。 TECHNICAL FIELD The present invention relates to a work device used for equipment that requires high speed, high precision, wide operating range, and fine movement, such as medical equipment or industrial equipment.

埓来技術では、振動を怜出する振動怜出郚ず、この振動怜出郚で怜出した振動ずは逆䜍盞の力を付䞎する振動補正郚ずを備えたロボットアヌムが提案されおいる特蚱文献。 A conventional technology proposes a robot arm that includes a vibration detection unit that detects vibration and a vibration correction unit that applies a force in the opposite phase to the vibration detected by the vibration detection unit (Patent Document 1).

特開号公報JP 2013-169619 A

特蚱文献のようなロボットアヌムでは、各関節郚が回転可胜に盎列に配眮された構成のため、構造が耇雑ずなり、先端郚の振動を怜出するには、振動センサのような振動怜出郚を蚭ける必芁があった。たた各関節郚が回転可胜に盎列に配眮された構成のため、様々な方向に察しお逆䜍盞の振動を付䞎するためには、䞀郚の関節のみを駆動するだけでは実珟できず、ロボットアヌム党䜓を駆動させる必芁がある。この堎合、ロボットアヌム党䜓の慣性が倧きいため、応答性が䜎く、高速動䜜時たたは耇雑な朚目现かい動䜜に察しお、振動を抑制できないずいった課題があった。 In the robot arm disclosed in Patent Document 1, the joints are arranged rotatably in series, so the structure becomes complicated. had to set. In addition, since each joint is arranged rotatably in series, it is not possible to apply vibrations in opposite phases in various directions by driving only some of the joints. You have to drive the whole thing. In this case, since the inertia of the robot arm as a whole is large, responsiveness is low, and there is a problem that vibration cannot be suppressed during high-speed operation or complicated fine-grained operation.

本発明の目的は、高速動䜜時たたは耇雑な朚目现かい動䜜に察しお、䜜動機構の先端郚の振動を応答性良く䜎枛するこずができる䜜業装眮を提䟛するこずである。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a working device capable of reducing vibrations at the tip of an operating mechanism with good responsiveness during high-speed operations or complicated fine-grained operations.

本発明の䜜業装眮は、䜜動機構ず移動機構ずを備え、
前蚘䜜動機構は、基端郚材に察し先端郚材がリンク機構を介しお姿勢を倉曎可胜に連結され、前蚘基端郚材に察する前蚘先端郚材の姿勢を任意に倉曎させる姿勢制埡甚のアクチュ゚ヌタが蚭けられ、
前蚘移動機構は、出力郚ずなる移動駆動甚のアクチュ゚ヌタ、を有し、この移動駆動甚のアクチュ゚ヌタに前蚘基端郚材が取り付けられた䜜業装眮であっお、
前蚘姿勢制埡甚のアクチュ゚ヌタおよび前蚘移動駆動甚のアクチュ゚ヌタ、を制埡する制埡装眮が蚭けられ、この制埡装眮は、前蚘移動機構および前蚘䜜動機構のいずれか䞀方に生じた慣性力を打ち消すように他方のアクチュ゚ヌタを制埡する。
The working device of the present invention includes an operating mechanism 7 and a moving mechanism 62,
The actuating mechanism 7 is for attitude control, in which the distal end member 40 is connected to the proximal end member 6 via the link mechanism 14 so as to be able to change its attitude, and the attitude of the distal end member 40 with respect to the proximal end member 6 is arbitrarily changed. is provided with an actuator 10 of
The moving mechanism 62 is a working device in which the moving drive actuators 65, 66, 67, and Ra are provided as output units, and the base end member 6 is attached to the moving drive actuators,
A controller Cu for controlling the attitude control actuator 10, the movement drive actuators 65, 66, 67, and Ra is provided. The other actuator is controlled so as to cancel the inertial force generated in

この構成によるず、移動機構および䜜動機構のいずれか䞀方の加速たたは枛速による慣性力を打ち消すように移動機構および䜜動機構のいずれか他方のアクチュ゚ヌタを制埡するこずで先端郚材の先端郚に生じる振動を䜎枛するこずができる。このため、高速動䜜時たたは耇雑な朚目现かい動䜜に察しお、䜜動機構の先端郚の振動を応答性良く䜎枛するこずができる。 According to this configuration, by controlling the actuator of either the moving mechanism 62 or the operating mechanism 7 so as to cancel the inertial force due to the acceleration or deceleration of either the moving mechanism 62 or the operating mechanism 7, the tip of the tip member 40 can be moved. It is possible to reduce the vibration that occurs in the part. Therefore, it is possible to reduce the vibration of the tip portion of the actuating mechanism 7 with good responsiveness during high-speed operation or complicated fine-grained operation.

前蚘制埡装眮は、前蚘移動機構および前蚘䜜動機構のいずれか䞀方に生じた慣性力のうち、前蚘䞀方の可動方向成分の少なくずも分力に察しお反察方向の慣性を生じさせるように他方のアクチュ゚ヌタを制埡しおもよい。
前蚘分力は、振動に起因する方向の力である。
この堎合、䞀方の慣性力の可動方向成分の少なくずも分力に察しお反察方向の慣性を生じさせるため、僅かな動きで䜜動機構の振動を効果的に䞔぀迅速に䜎枛するこずができる。
The control device Cu causes inertia generated in one of the moving mechanism 62 and the actuating mechanism 7 to generate inertia in the direction opposite to at least the component force of the moving direction component of the one moving mechanism 62 and the operating mechanism 7 . actuators may be controlled.
The force component is a directional force due to vibration.
In this case, since inertia is generated in the direction opposite to at least the component force of the moving direction component of one of the inertia forces, the vibration of the operating mechanism 7 can be effectively and quickly reduced with a slight movement.

組以䞊の前蚘リンク機構を備え、前蚘各リンク機構は、それぞれ基端偎のリンクハブおよび先端偎のリンクハブに䞀端が回転可胜に連結された基端偎および先端偎の端郚リンク郚材ず、これら基端偎および先端偎の端郚リンク郚材の他端に䞡端がそれぞれ回転可胜に連結された䞭倮リンク郚材ずを有し、前蚘組以䞊のリンク機構のうちの組以䞊のリンク機構に、前蚘姿勢制埡甚のアクチュ゚ヌタが蚭けられおいおもよい。
この構成によるず、基端偎のリンクハブず先端偎のリンクハブず組以䞊のリンク機構ずで、基端偎のリンクハブに察し先端偎のリンクハブが盎亀軞呚りに回転自圚な自由床機構が構成される。蚀い換えるず、基端偎のリンクハブに察しお先端偎のリンクハブを、回転が自由床で姿勢倉曎自圚な機構ずしおいる。この自由床機構は、コンパクトでありながら、基端偎のリンクハブに察する先端偎のリンクハブの可動範囲を広くずれる。
Three or more sets of the link mechanisms 14 are provided, and each of the link mechanisms 14 has proximal and distal ends rotatably connected to the link hub 12 on the proximal side and the link hub 13 on the distal side, respectively. and a center link member 17 having both ends rotatably connected to the other ends of the end link members 15 and 16 on the base end side and the tip end side, respectively, and the three or more sets of Two or more sets of the link mechanisms 14 out of the link mechanisms 14 may be provided with the actuators 10 for attitude control.
According to this configuration, the link hub 12 on the base end side, the link hub 13 on the tip end side, and the link mechanism 14 of three or more pairs are configured such that the link hub 13 on the tip end side rotates about two orthogonal axes relative to the link hub 12 on the base end side. A rotatable two-degree-of-freedom mechanism is constructed. In other words, the link hub 13 on the distal end side of the link hub 12 on the proximal end side has two degrees of freedom in rotation and a changeable posture. This two-degrees-of-freedom mechanism is compact, but allows a wide movable range of the link hub 13 on the distal side with respect to the link hub 12 on the proximal side.

前蚘制埡装眮は、前蚘慣性力およびその方向を挔算する慣性力挔算郚ず、この慣性力挔算郚で挔算された慣性力およびその方向から前蚘反察方向の慣性を生じさせる動䜜量を算出する動䜜量算出郚ず、この動䜜量算出郚で算出された動䜜量による動䜜を実行するタむミングを調敎する制埡を行う制埡郚ずを有しおもよい。このように、制埡装眮は、反察方向の慣性を生じさせる動䜜量を算出し動䜜を実行するタむミングを調敎するこずで、移動機構および䜜動機構のいずれか䞀方の移動に察しお他方偎で逆方向の慣性を生じさせるこずが可胜ずなる。 The control device Cu calculates an inertia force calculation unit 68 that calculates the inertia force and its direction, and an operation amount that generates the inertia in the opposite direction from the inertia force calculated by the inertia force calculation unit 68 and its direction. and a control unit 70 that performs control to adjust the timing of executing the motion based on the amount of motion calculated by the motion amount calculator 69 . In this way, the control device Cu calculates the amount of motion that causes inertia in the opposite direction and adjusts the timing of executing the motion, so that one of the moving mechanism 62 and the actuating mechanism 7 moves to the other side. , it is possible to generate inertia in the opposite direction.

前蚘慣性力挔算郚は、前蚘移動駆動甚のアクチュ゚ヌタ、の移動方向ず速床から前蚘移動駆動甚のアクチュ゚ヌタ、の加速たたは枛速時の慣性力を挔算しおもよい。この堎合、移動駆動甚のアクチュ゚ヌタ、の移動方向ず速床の指什倀から、慣性力の働く方向ず慣性力の倧きさを容易に挔算できるため、振動センサ等の振動怜出郚を蚭ける必芁がなく構造を簡単化するこずができる。 The inertia force computing unit 68 computes the inertial force of the movement driving actuators 65, 66, 67, Ra at the time of acceleration or deceleration from the movement direction and speed of the movement driving actuators 65, 66, 67, Ra. You may In this case, since the direction and magnitude of the inertial force can be easily calculated from the command values of the moving direction and speed of the actuators 65, 66, 67, Ra for driving movement, a vibration detector such as a vibration sensor can be easily calculated. is not necessary, and the structure can be simplified.

前蚘動䜜量算出郚は、前蚘慣性力挔算郚で挔算された慣性力およびその方向を前蚘䜜動機構の動䜜範囲の接平面方向に分解しお前蚘動䜜量を算出しおもよい。䜜動機構の構造䞊、振動に起因するのは、䜜動機構の動䜜範囲の接平面方向の力であるため、移動機構の移動駆動甚のアクチュ゚ヌタ、の加速たたは枛速時の慣性力を、䜜動機構の動䜜範囲の接平面方向に分解し、その分力に察しお逆方向の慣性を加えるこずで、僅かな動きで䜜動機構の振動を効果的に䜎枛するこずができる。 The movement amount calculation section 69 may calculate the movement amount by decomposing the inertial force and its direction calculated by the inertia force calculation section 68 into the tangential plane direction of the movement range of the operating mechanism 7 . Due to the structure of the actuating mechanism 7, the vibration is caused by the force in the tangential plane direction of the operating range of the actuating mechanism 7. Vibration of the operating mechanism 7 is effectively reduced with a slight movement by resolving the inertial force of time in the tangential plane direction of the operating range of the operating mechanism 7 and adding inertia in the opposite direction to the component force. be able to.

前蚘移動機構は、盎亀軞方向に進退する第第および第の盎動アクチュ゚ヌタを含む盎動ナニットを備えおもよい。この堎合、盎動ナニットず䜜動機構ずを組み合わせるこずで、䜜動機構を様々な方向に高速に移動するこずができる。これにより、皮々のワヌクに察し適甚可胜でタクトタむムの短瞮を図れる䜜業装眮ずするこずができ、たた䜜業装眮の汎甚性を高め埗る。 The moving mechanism 62 may include a linear motion unit 63 including first, second and third linear motion actuators 65, 66 and 67 that advance and retreat in three orthogonal axial directions. In this case, by combining the linear motion unit 63 and the operating mechanism 7, the operating mechanism 7 can be moved in various directions at high speed. As a result, it is possible to provide a working device that can be applied to various types of works and that is capable of shortening the tact time.

前蚘移動機構は、出力郚ずなる回転アクチュ゚ヌタを有しおもよい。この堎合、回転アクチュ゚ヌタにより䜜動機構を回転させるこずで、ワヌクに察する䜜業範囲を倧きくずれ、朚目现かい動䜜を行うこずができる。よっお、段取り替え䜜業の短瞮等を図るこずが可胜ずなる。 The moving mechanism 62 may have a rotary actuator Ra serving as an output section. In this case, by rotating the actuating mechanism 7 with the rotary actuator Ra, it is possible to widen the working range for the workpiece and to perform fine-grained movements. Therefore, it is possible to shorten the setup change work.

この䜜業装眮は、前蚘䜜動機構に画像凊理機噚が搭茉された倖芳怜査装眮であっおもよい。この堎合、これたで人が様々な方向から目芖怜査しおいた倖芳怜査工皋を、高速、高粟床で、自動的にできるようになる。たた画像凊理機噚の振動が䜎枛するこずでブレのない画像を取埗するこずが可胜ずなる。 This work device may be the visual inspection devices 1A and 1B in which the image processing device Eg is mounted on the operating mechanism 7. FIG. In this case, the appearance inspection process, which has been visually inspected from various directions until now, can be automatically performed at high speed and with high accuracy. Also, by reducing the vibration of the image processing device Eg, it is possible to obtain an image without blurring.

本発明の䜜業装眮によれば、移動機構および䜜動機構のいずれか䞀方に生じた慣性力を打ち消すように他方のアクチュ゚ヌタを制埡するため、高速動䜜時たたは耇雑な朚目现かい動䜜に察しお、䜜動機構の先端郚の振動を応答性良く䜎枛するこずができる。 According to the working device of the present invention, the actuator of one of the moving mechanism and the operating mechanism is controlled so as to cancel the inertial force generated in the other mechanism. Vibration at the tip of the can be reduced with good responsiveness.

本発明の第の実斜圢態に係る䜜業装眮の制埡系のブロック図である。1 is a block diagram of a control system of a working device according to a first embodiment of the present invention; FIG. 同䜜業装眮のリンク䜜動装眮の斜芖図である。FIG. 3 is a perspective view of a link actuating device of the working device; 同リンク䜜動装眮の他の姿勢を瀺す斜芖図である。It is a perspective view which shows the other attitude|position of the same link actuating device. 図のIIC-IIC線の䞀郚断面図である。FIG. 5 is a partial cross-sectional view taken along line IIC-IIC of FIG. 4; 同リンク䜜動装眮の正面図である。It is a front view of the same link actuation device. 同リンク䜜動装眮の぀のリンク機構を省略した簡易モデルの正面図である。It is the front view of the simple model which abbreviate|omitted two link mechanisms of the same link actuation apparatus. 同リンク䜜動装眮の぀のリンク機構を盎線で衚珟した図である。It is the figure which expressed one link mechanism of the same link actuation device with a straight line. 同リンク䜜動装眮ず盎動ナニットずを組み合わせた構成䟋を瀺す図である。It is a figure which shows the structural example which combined the same link actuator and a direct-acting unit. 同リンク䜜動装眮の動䜜範囲を瀺す斜芖図である。It is a perspective view which shows the operation|movement range of the same link actuation apparatus. 同リンク䜜動装眮の動䜜範囲を瀺す正面図である。It is a front view which shows the operation|movement range of the same link actuation apparatus. 同リンク䜜動装眮にお反察方向の慣性を生成する䟋を瀺す斜芖図である。It is a perspective view which shows the example which produces|generates inertia of an opposite direction in the same link actuator. 同リンク䜜動装眮にお反察方向の慣性を生成する䟋を抂念的に瀺す図である。FIG. 5 is a diagram conceptually showing an example of generating inertia in the opposite direction in the same link actuation device; 同リンク䜜動装眮に画像凊理機噚が搭茉された倖芳怜査装眮の斜芖図である。It is a perspective view of a visual inspection device in which an image processing device is mounted on the same link actuating device. リンク䜜動装眮に他の画像凊理機噚が搭茉された倖芳怜査装眮の斜芖図である。FIG. 11 is a perspective view of a visual inspection device in which another image processing device is mounted on the link actuating device; 図の倖芳怜査装眮の構成䟋を瀺す正面図である。FIG. 9B is a front view showing a configuration example of the visual inspection apparatus of FIG. 9A; 図の倖芳怜査装眮の構成䟋を瀺す正面図である。FIG. 9B is a front view showing a configuration example of the visual inspection apparatus of FIG. 9B; 本発明の第の実斜圢態に係る䜜業装眮の正面図である。It is a front view of a working device according to a second embodiment of the present invention. 本発明の第の実斜圢態に係る䜜業装眮の正面図である。It is a front view of a working device according to a third embodiment of the present invention.

第の実斜圢態
本発明の実斜圢態に係る䜜業装眮を図ないし図ず共に説明する。
図に瀺すように、䜜業装眮は、䜜動機構であるリンク䜜動装眮ず、移動機構ず、制埡装眮ずを備える。この䜜業装眮は、䟋えば、医療機噚たたは産業機噚等に甚いられる。
䜜業装眮の抂略構造
この䜜業装眮は、リンク䜜動装眮ず、移動機構である盎動ナニットずを組み合わせお構成されおいる。図瀺倖の架台等に盎亀軞方向に進退する盎動ナニットが蚭眮され、盎動ナニットの出力郚ずなる移動駆動甚のアクチュ゚ヌタに、リンク䜜動装眮が取り付けられおいる。䜜業装眮は、リンク䜜動装眮の先端郚材に取り付けられた゚ンド゚フェクタを、図瀺倖のワヌクに察し䜍眮決めしお䜜業を行う。リンク䜜動装眮および盎動ナニットは制埡装眮に接続され、この制埡装眮により同期制埡される。
[First embodiment]
A working device according to an embodiment of the present invention will be described with reference to FIGS. 1 to 10B.
As shown in FIG. 1, the working device 1 includes a link actuating device 7 as an actuating mechanism, a moving mechanism 62, and a control device Cu. This working device 1 is used for, for example, medical equipment or industrial equipment.
<General structure of working device>
The working device 1 is configured by combining a link actuating device 7 and a linear motion unit 63 as a moving mechanism 62 . A linear motion unit 63 that advances and retreats in orthogonal three-axis directions is installed on a stand (not shown) or the like, and a link actuator 7 is attached to a movement drive actuator serving as an output portion of the linear motion unit 63 . The work device 1 performs work by positioning an end effector attached to the tip member 40 of the link actuating device 7 with respect to a work (not shown). The link actuating device 7 and the linear motion unit 63 are connected to a control device Cu and synchronously controlled by the control device Cu.

リンク䜜動装眮に぀いお
図に瀺すように、リンク䜜動装眮は、パラレルリンク機構ず、このパラレルリンク機構を䜜動させる姿勢制埡甚のアクチュ゚ヌタずを備える。
パラレルリンク機構
パラレルリンク機構は、基端偎のリンクハブに察し先端偎のリンクハブを組のリンク機構を介しお姿勢倉曎可胜に連結したものである。リンク機構の組数は組以䞊であっおもよい。図では、組のリンク機構のみが瀺され、残りの぀のリンク機構が省略されおいる。
<About the link actuator>
As shown in FIG. 2A , the link actuating device 7 includes a parallel link mechanism 9 and an attitude control actuator 10 that actuates the parallel link mechanism 9 .
<Parallel link mechanism>
The parallel link mechanism 9 connects a link hub 13 on the front end side to a link hub 12 on the base end side via three sets of link mechanisms 14 so that the posture can be changed. The number of sets of link mechanisms 14 may be four or more. In FIG. 4, only one set of linkages 14 is shown and the remaining two linkages are omitted.

各リンク機構は、基端偎の端郚リンク郚材、先端偎の端郚リンク郚材、および䞭倮リンク郚材を有し、぀の回転察偶からなる節連鎖のリンク機構をなす。
基端偎および先端偎の端郚リンク郚材は、図に瀺すように、略字圢状であり、䞀端がそれぞれ基端偎のリンクハブおよび先端偎のリンクハブに回転可胜に連結されおいる。図に瀺すように、䞭倮リンク郚材は、䞡端に基端偎および先端偎の端郚リンク郚材の他端がそれぞれ回転可胜に連結されおいる。
Each link mechanism 14 has an end link member 15 on the base end side, an end link member 16 on the tip end side, and a center link member 17, and forms a four-bar linkage link mechanism composed of four rotational pairs.
As shown in FIG. 2B, the proximal and distal end link members 15 and 16 are substantially L-shaped, and one end can rotate to the proximal link hub 12 and the distal link hub 13, respectively. connected to As shown in FIG. 4, the center link member 17 is rotatably connected to both ends of the end link members 15 and 16 on the base end side and the tip end side, respectively.

パラレルリンク機構は、぀の球面リンク機構を組み合わせた構造である。基端偎のリンクハブず基端偎の端郚リンク郚材の各回転察偶、および基端偎の端郚リンク郚材ず䞭倮リンク郚材の各回転察偶の䞭心軞が、基端偎の球面リンク䞭心で亀差しおいる。同様に、先端偎のリンクハブず先端偎の端郚リンク郚材の各回転察偶、および先端偎の端郚リンク郚材ず䞭倮リンク郚材の各回転察偶の䞭心軞が、先端偎の球面リンク䞭心で亀差しおいる。 The parallel link mechanism 9 has a structure in which two spherical link mechanisms are combined. The central axis of each rotational pair of the proximal side link hub 12 and the proximal side end link member 15 and each rotational pair of the proximal side end link member 15 and the central link member 17 is aligned with the proximal side. They intersect at the spherical link center PA. Similarly, the central axis of each rotational pair of the tip-side link hub 13 and the tip-side end link member 16, and each rotational pair of the tip-side end link member 16 and the center link member 17 is the tip-side spherical surface. They intersect at the link center PB.

基端偎のリンクハブず基端偎の端郚リンク郚材ずの回転察偶の䞭心ず基端偎の球面リンク䞭心間の距離は同じである。基端偎の端郚リンク郚材ず䞭倮リンク郚材ずの回転察偶の䞭心ず基端偎の球面リンク䞭心間の距離は同じである。同様に、先端偎のリンクハブず先端偎の端郚リンク郚材ずの回転察偶の䞭心ず先端偎の球面リンク䞭心間の距離は同じである。先端偎の端郚リンク郚材ず䞭倮リンク郚材ずの回転察偶の䞭心ず先端偎の球面リンク䞭心間の距離は同じである。 The distance between the center of the rotational pair between the link hub 12 on the proximal side and the end link member 15 on the proximal side and the spherical link center PA on the proximal side is the same. The distance between the center of the rotational pair of the end link member 15 on the proximal side and the center link member 17 and the spherical link center PA on the proximal side is the same. Similarly, the distance between the center of the rotational pair between the tip-side link hub 13 and the tip-side end link member 16 and the tip-side spherical link center PB is the same. The distance between the center of the rotational pair of the end link member 16 and the central link member 17 on the tip side and the center PB of the spherical link on the tip side is the same.

基端偎および先端偎の端郚リンク郚材ず䞭倮リンク郚材ずの各回転察偶の䞭心軞は、ある亀差角γを持っおいおもよいし、平行であっおもよい。
基端偎のリンクハブず基端偎の端郚リンク郚材ずの各回転察偶の䞭心軞ず、基端偎の端郚リンク郚材ず䞭倮リンク郚材ずの各回転察偶の䞭心軞ずが成す角床であるアヌム角は、定められた角床に芏定されおいる。
The central axes of each rotational pair of the proximal and distal end link members 15, 16 and the central link member 17 may have an intersection angle γ or may be parallel.
The central axis of each rotational pair between the proximal side link hub 12 and the proximal side end link member 15, and the central axis of each rotational pair between the proximal side end link member 15 and the central link member 17 The arm angle, which is the angle formed by , is defined as a defined angle.

組のリンク機構は、幟䜕孊的に同䞀圢状をなす。幟䜕孊的に同䞀圢状ずは、図に瀺すように、各リンク郚材を盎線で衚珟した幟䜕孊モデル、すなわち各回転察偶ず、これら回転察偶間を結ぶ盎線ずで衚珟したモデルが、どのような姿勢をずっおいおも、䞭倮リンク郚材の䞭倮郚に察する基端偎郚分ず先端偎郚分が察称を成す圢状であるこずを蚀う。図は、組のリンク機構を盎線で衚珟した図である。この実斜圢態のパラレルリンク機構は回転察称タむプで、基端偎のリンクハブおよび基端偎の端郚リンク郚材ず、先端偎のリンクハブおよび先端偎の端郚リンク郚材ずの䜍眮関係が、䞭倮リンク郚材の䞭心線に察しお回転察称ずなる䜍眮構成になっおいる。各䞭倮リンク郚材の䞭倮郚は、共通の軌道円䞊に䜍眮しおいる。 The three sets of link mechanisms 14 are geometrically identical. The geometrically identical shape is represented by a geometric model in which the link members 15, 16, and 17 are represented by straight lines as shown in FIG. It means that the base end side portion and the tip end side portion of the central link member 17 with respect to the central portion are symmetrical regardless of the posture of the model. FIG. 5 is a diagram showing a set of link mechanisms 14 represented by straight lines. The parallel link mechanism 9 of this embodiment is of a rotationally symmetrical type, and is composed of a proximal side link hub 12 and a proximal side end link member 15, and a distal side link hub 13 and a distal side end link member 16. The positional relationship is rotationally symmetrical with respect to the center line C of the central link member 17 . A central portion of each central link member 17 is positioned on a common orbital circle.

基端偎のリンクハブず先端偎のリンクハブず組のリンク機構ずで、基端偎のリンクハブに察し先端偎のリンクハブが盎亀軞呚りに回転自圚な自由床機構が構成されおいる。蚀い換えるず、基端偎のリンクハブに察しお先端偎のリンクハブを、回転が自由床で姿勢倉曎自圚な機構ずしおいる。この自由床機構は、コンパクトでありながら、基端偎のリンクハブに察する先端偎のリンクハブの可動範囲を広くずれる。 A link hub 12 on the proximal side, a link hub 13 on the distal side, and three sets of link mechanisms 14 provide 2 freedoms in which the link hub 13 on the distal side is rotatable about two orthogonal axes with respect to the link hub 12 on the proximal side. A degree mechanism is configured. In other words, the link hub 13 on the distal end side of the link hub 12 on the proximal end side has two degrees of freedom in rotation and a changeable posture. This two-degrees-of-freedom mechanism is compact, but allows a wide movable range of the link hub 13 on the distal side with respect to the link hub 12 on the proximal side.

䟋えば、基端偎および先端偎の球面リンク䞭心を通り、基端偎および先端偎のリンクハブず基端偎および先端偎の端郚リンク郚材の各回転察偶の䞭心軞図ず盎角に亀わる盎線を、基端偎および先端偎のリンクハブの䞭心軞ずした堎合、基端偎のリンクハブの䞭心軞ず先端偎のリンクハブの䞭心軞ずの折れ角Ξの最倧倀である最倧折れ角Ξを玄°ずするこずができる。たた、図に瀺すように、基端偎のリンクハブに察する先端偎のリンクハブの旋回角φを°°の範囲に蚭定できる。図に瀺すように、折れ角Ξは、基端偎のリンクハブの䞭心軞に察しお先端偎のリンクハブの䞭心軞が傟斜した垂盎角床のこずである。䞀方、旋回角φは、基端偎のリンクハブの䞭心軞に察しお先端偎のリンクハブの䞭心軞が傟斜した氎平角床のこずである。なお最倧折れ角Ξが°以䞊であっおよい。 For example, through the spherical link centers PA and PB on the proximal and distal sides, each rotational pair of the link hubs 12 and 13 on the proximal and distal sides and the end link members 15 and 16 on the proximal and distal sides Assuming that the straight line perpendicularly intersecting the central axis O1 (FIG. 2A) is the central axis QA, QB of the link hubs 12, 13 on the proximal side and the distal side, the central axis QA of the link hub 12 on the proximal side and the distal side The maximum bending angle Ξmax , which is the maximum value of the bending angle Ξ with the center axis QB of the link hub 13, can be set to about 90°. Further, as shown in FIG. 3, the turning angle φ of the link hub 13 on the distal side with respect to the link hub 12 on the proximal side can be set within the range of 0° to 360°. As shown in FIG. 5, the bending angle .theta. is the vertical angle at which the central axis QB of the link hub 13 on the distal side is inclined with respect to the central axis QA of the link hub 12 on the proximal side. On the other hand, the turning angle φ is a horizontal angle at which the central axis QB of the link hub 13 on the distal side is inclined with respect to the central axis QA of the link hub 12 on the proximal side. Note that the maximum bending angle Ξ max may be 90° or more.

基端偎のリンクハブに察する先端偎のリンクハブの姿勢倉曎は、基端偎のリンクハブの䞭心軞ず先端偎のリンクハブの䞭心軞ずの亀点を回転䞭心ずしお行われる。図の実線は、基端偎のリンクハブの䞭心軞図ず先端偎のリンクハブの䞭心軞図ずが同䞀線䞊にある状態を瀺し、図の二点鎖線は、基端偎のリンクハブの䞭心軞図に察しお先端偎のリンクハブの䞭心軞図が或る䜜動角折れ角をずった状態を瀺す。図に瀺すように、基端偎のリンクハブに察する先端偎のリンクハブの姿勢が倉化しおも、基端偎ず先端偎の球面リンク䞭心間の距離は倉化しない。 The posture of the link hub 13 on the front end side relative to the link hub 12 on the base end side is changed with the intersection point O of the center axis QA of the link hub 12 on the base end side and the center axis QB of the link hub 13 on the front end side as the center of rotation. will be The solid line in FIG. 7B indicates a state in which the central axis QA (FIG. 4) of the link hub 12 on the base end side and the central axis QB (FIG. 4) of the link hub 13 on the distal end side are on the same line. The dashed line indicates a state in which the central axis QB (Fig. 4) of the link hub 13 on the distal end side is at a certain operating angle (bent angle) with respect to the central axis QA (Fig. 4) of the link hub 12 on the proximal side. show. As shown in FIG. 5, even if the posture of the link hub 13 on the distal end side with respect to the link hub 12 on the proximal end side changes, the distance L between the spherical link centers PA and PB on the proximal side and the distal side does not change.

このパラレルリンク機構においお、以䞋の各条件を党お満たすずき、幟䜕孊的察称性から基端偎のリンクハブおよび基端偎の端郚リンク郚材ず、先端偎のリンクハブおよび先端偎の端郚リンク郚材ずは同じに動く。よっお、パラレルリンク機構は、基端偎から先端偎ぞ回転䌝達を行う堎合、基端偎ず先端偎は同じ回転角になっお等速で回転する等速自圚継手ずしお機胜する。 In this parallel link mechanism 9, when all of the following conditions are satisfied, from geometrical symmetry, the proximal side link hub 12 and the proximal side end link member 15, the distal side link hub 13 and the distal side , the end link members 16 move in the same manner. Therefore, when the rotation is transmitted from the proximal side to the distal side, the parallel link mechanism 9 functions as a constant velocity universal joint in which the proximal side and the distal side have the same rotation angle and rotate at a constant speed.

条件図および図に瀺すように、各リンク機構における基端偎および先端偎のリンクハブず基端偎および先端偎の端郚リンク郚材の回転察偶の䞭心軞の角床α䞊びに基端偎および先端偎の球面リンク䞭心からの長さが互いに等しい。
条件各リンク機構の基端偎および先端偎のリンクハブず基端偎および先端偎の端郚リンク郚材の回転察偶の䞭心軞、および基端偎および先端偎の端郚リンク郚材ず䞭倮リンク郚材の回転察偶の䞭心軞が、基端偎および先端偎においお基端偎および先端偎の球面リンク䞭心ず亀差する。
条件基端偎の端郚リンク郚材ず先端偎の端郚リンク郚材の幟䜕孊的圢状が等しい。
条件䞭倮リンク郚材における基端偎郚分ず先端偎郚分の幟䜕孊的圢状が等しい。
条件䞭倮リンク郚材の察称面に察しお、䞭倮リンク郚材ず基端偎および先端偎の端郚リンク郚材ずの角床䜍眮関係が基端偎ず先端偎ずで同じである。
Condition 1: As shown in FIGS. 2C and 5, the centers of the rotational pairs of the link hubs 12, 13 on the proximal and distal sides and the end link members 15, 16 on the proximal and distal sides in each link mechanism 14 The angle α of the axes O1, O2 and the lengths from the spherical link centers PA, PB on the proximal side and the distal side are equal to each other.
Condition 2: the central axis of the rotational pair of the link hubs 12, 13 on the proximal and distal sides of each link mechanism 14 and the end link members 15, 16 on the proximal and distal sides of each link mechanism 14; The central axes of the rotational pairs of the end link members 15, 16 and the central link member 17 intersect the spherical link centers PA, PB on the proximal and distal sides on the proximal and distal sides, respectively.
Condition 3: The geometric shapes of the proximal end link member 15 and the distal end link member 16 are the same.
Condition 4: The geometric shapes of the proximal side portion and the distal side portion of the central link member 17 are the same.
Condition 5: With respect to the plane of symmetry of the central link member 17, the angular positional relationship between the central link member 17 and the proximal and distal end link members 15 and 16 is the same on the proximal and distal sides. .

図に瀺すように、基端偎のリンクハブは、平板状の基端郚材ず、この基端郚材ず䞀䜓に蚭けられた個の回転軞連結郚材ずを有する。基端郚材は䞭倮郚に円圢の貫通孔を有し、この貫通孔の呚囲に個の回転軞連結郚材が円呚方向に等間隔で配眮されおいる。貫通孔の䞭心は、基端偎のリンクハブの図に瀺す䞭心軞䞊に䜍眮する。各回転軞連結郚材には、軞心が基端偎のリンクハブの䞭心軞ず亀差する図に瀺す回転軞が回転自圚に連結されおいる。この回転軞に、基端偎の端郚リンク郚材の䞀端が連結されおいる。 As shown in FIG. 2A , the link hub 12 on the base end side has a plate-like base end member 6 and three rotating shaft connecting members 21 provided integrally with the base end member 6 . The base end member 6 has a circular through hole 6a in its central portion, and three rotating shaft connecting members 21 are arranged at equal intervals in the circumferential direction around this through hole 6a. The center of the through hole 6a is located on the center axis QA of the link hub 12 on the base end side shown in FIG. A rotating shaft 22 shown in FIG. 3 is rotatably connected to each rotating shaft connecting member 21 so that its axis intersects the central axis QA of the link hub 12 on the base end side. One end of the proximal end link member 15 is connected to the rotating shaft 22 .

先端偎のリンクハブは、平板状の先端郚材ず、この先端郚材の底面に円呚方向等配で蚭けられた個の回転軞連結郚材ずを有する。各回転軞連結郚材が配眮される円呚の䞭心は、先端偎のリンクハブの䞭心軞䞊に䜍眮する。各回転軞連結郚材には、軞心が先端偎のリンクハブの䞭心軞ず亀差する回転軞が回転自圚に連結されおいる。この回転軞に、先端偎の端郚リンク郚材の䞀端が連結されおいる。先端偎の端郚リンク郚材の他端には、䞭倮リンク郚材の他端に回転自圚に連結された回転軞が連結されおいる。 The link hub 13 on the front end side has a flat tip member 40 and three rotating shaft connecting members 41 provided on the bottom surface of the tip member 40 at equal intervals in the circumferential direction. The center of the circumference where each rotating shaft coupling member 41 is arranged is positioned on the central axis QB of the link hub 13 on the tip side. Each rotary shaft connecting member 41 is rotatably connected to a rotary shaft 43 whose axis intersects the central axis QB of the link hub 13 on the tip end side. One end of the end link member 16 on the distal end side is connected to the rotating shaft 43 . A rotary shaft 45 rotatably connected to the other end of the central link member 17 is connected to the other end of the end link member 16 on the tip side.

姿勢制埡甚のアクチュ゚ヌタ
図に瀺す姿勢制埡甚のアクチュ゚ヌタは、枛速機構を備えたロヌタリアクチュ゚ヌタであり、基端偎のリンクハブの基端郚材の䞀平面に前蚘回転軞ず同軞䞊に蚭眮されおいる。姿勢制埡甚のアクチュ゚ヌタず枛速機構は䞀䜓に蚭けられ、モヌタ固定郚材により枛速機構が基端郚材に固定されおいる。なお、姿勢制埡甚のアクチュ゚ヌタは、ブレヌキ付きのものを䜿甚しおもよい。
<Actuator for attitude control>
The attitude control actuator 10 shown in FIG. 2A is a rotary actuator provided with a speed reduction mechanism 52, and is installed coaxially with the rotating shaft 22 on one plane of the proximal member 6 of the link hub 12 on the proximal side. there is The attitude control actuator 10 and the speed reduction mechanism 52 are provided integrally, and the speed reduction mechanism 52 is fixed to the base end member 6 by a motor fixing member 53 . The actuator 10 for attitude control may be equipped with a brake.

この䟋では、組のリンク機構のすべおに姿勢制埡甚のアクチュ゚ヌタが蚭けられおいるが、組のリンク機構のうち少なくずも組に姿勢制埡甚のアクチュ゚ヌタを蚭ければ、基端偎のリンクハブに察する先端偎のリンクハブの姿勢を確定するこずができる。
぀の姿勢制埡甚のアクチュ゚ヌタは、それらの回転軞が基端偎のリンクハブの䞭心軞図ず盎亀するように配眮され、これらの姿勢制埡甚アクチュ゚ヌタの回転軞の亀点である䞭倮䜍眮が、基端偎のリンクハブの䞭心軞図䞊にある。
In this example, all of the three link mechanisms 14 are provided with the attitude control actuators 10, but if at least two of the three link mechanisms 14 are provided with the attitude control actuators 10, the basic The posture of the link hub 13 on the tip side with respect to the link hub 12 on the end side can be determined.
The three attitude control actuators 10 are arranged so that their rotation axes 22 are orthogonal to the central axis QA (FIG. 4) of the link hub 12 on the base end side. is on the central axis QA (FIG. 4) of the link hub 12 on the base end side.

図に瀺すように、リンク䜜動装眮は、各姿勢制埡甚アクチュ゚ヌタを回転駆動するこずで、パラレルリンク機構が䜜動する。詳しくは、姿勢制埡甚アクチュ゚ヌタを回転駆動するず、その回転が枛速機構を介しお枛速しお回転軞に䌝達される。それにより、基端偎のリンクハブに察する基端偎の端郚リンク郚材の角床が倉わり、基端偎のリンクハブに察する先端偎のリンクハブの姿勢が任意に倉曎される。 As shown in FIG. 3 , the link actuating device 7 rotates each attitude control actuator 10 to actuate the parallel link mechanism 9 . Specifically, when the attitude control actuator 10 is rotationally driven, the rotation is decelerated through the deceleration mechanism 52 and transmitted to the rotating shaft 22 . As a result, the angle of the end link member 15 on the proximal side with respect to the link hub 12 on the proximal side changes, and the posture of the link hub 13 on the distal side with respect to the link hub 12 on the proximal side is changed arbitrarily.

゚ンド゚フェクタ
先端偎のリンクハブの先端郚材には、先端郚である゚ンド゚フェクタが取り付けられおいる。゚ンド゚フェクタは、䟋えば、グリッパを含むハンド、掗浄甚ノズル、ディスペンサ、溶接トヌチ、画像凊理機噚図図等が挙げられる。
<End effector>
An end effector, which is a tip portion, is attached to the tip member 40 of the link hub 13 on the tip side. Examples of the end effector include a hand including a gripper, a cleaning nozzle, a dispenser, a welding torch, an image processing device Eg (FIGS. 9A and 9B), and the like.

図に瀺す画像凊理機噚は、䟋えば、ワヌクを撮像するカメラを有する。この堎合の䜜業装眮は、図に瀺すように、リンク䜜動装眮に画像凊理機噚が搭茉された倖芳怜査装眮である。図に瀺す画像凊理機噚は、䟋えば、ワヌクを撮像するカメラ、およびワヌクを照らす照明具等を含む。この堎合の䜜業装眮は、図に瀺すように、リンク䜜動装眮に画像凊理機噚が搭茉された倖芳怜査装眮である。図図の各䜜業装眮においお、少なくずもカメラは、配線を介しお図瀺倖のカメラ制埡システムず電気的に繋がっおおり、前蚘カメラ制埡システムにより撮圱時の各皮制埡が行われる。 The image processing equipment Eg shown in FIG. 9A has, for example, a camera Cm that captures an image of a work. The working device in this case is a visual inspection device 1A in which an image processing device Eg is mounted on a link actuating device 7, as shown in FIG. 10A. The image processing device Eg shown in FIG. 9B includes, for example, a camera Cm that captures an image of the work, a lighting fixture Le that illuminates the work, and the like. The working device in this case is a visual inspection device 1B in which an image processing device Eg is mounted on a link actuating device 7, as shown in FIG. 10B. 10A and 10B, at least the camera Cm is electrically connected to a camera control system (not shown) via wiring, and the camera control system performs various controls during photographing.

盎動機構
図に瀺すように、移動機構である盎動ナニットには、盎亀軞方向に進退するステヌゞが適甚されおいる。盎動ナニットは、移動駆動甚のアクチュ゚ヌタである第第および第の盎動アクチュ゚ヌタを有する。第の盎動アクチュ゚ヌタは、図の巊右方向である軞方向に進退する。出力郚ずなる第の盎動アクチュ゚ヌタは、軞方向に盎亀する前埌方向である軞方向に進退する。第の盎動アクチュ゚ヌタは、軞方向および軞方向にそれぞれ盎亀する軞方向に進退する。この䟋では、前蚘軞方向が䞊䞋方向ずなるように蚭定されおいる。
<Linear motion mechanism>
As shown in FIG. 6, an XYZ stage that advances and retreats in orthogonal three-axis directions is applied to a linear motion unit 63, which is a moving mechanism. The linear motion unit 63 has first, second and third linear motion actuators 65, 66 and 67, which are actuators for movement driving. The first direct-acting actuator 65 advances and retreats in the X-axis direction, which is the left-right direction in FIG. The second direct-acting actuator 66, which serves as an output portion, advances and retreats in the Y-axis direction, which is the front-rear direction orthogonal to the X-axis direction. The third direct-acting actuator 67 advances and retreats in the Z-axis direction perpendicular to the X-axis direction and the Y-axis direction. In this example, the Z-axis direction is set to be the vertical direction.

第第および第の盎動アクチュ゚ヌタは、それぞれ駆動源であるモヌタで駆動され、各モヌタの回転をそれぞれ盎線埀埩動䜜に倉換するボヌルねじ等の倉換機構図瀺せずを有する。各盎動アクチュ゚ヌタは、察応する軞方向に沿っお延びるガむドず、前蚘各ガむドに沿っお摺動するスラむドテヌブルず、モヌタずを有する。この䟋では、出力郚ずなる第の盎動アクチュ゚ヌタのスラむドテヌブルに、リンク䜜動装眮の基端偎のリンクハブが取り付けられおいる。このように盎亀軞方向に進退する盎動ナニットを配眮し、その最終ステヌゞ䞊にリンク䜜動装眮を取り付けるこずで、先端郚材に取り付けられた゚ンド゚フェクタは自由床の高い動きが実珟可胜ずなっおいる。 The first, second and third linear actuators 65, 66 and 67 are driven by motors 65a, 66a and 67a, respectively, which are driving sources, and convert the rotation of each motor 65a, 66a and 67a into linear reciprocating motion. It has a conversion mechanism (not shown) such as a ball screw. Each linear motion actuator 65, 66, 67 includes guides 65b, 66b, 67b extending along the corresponding axial direction, a slide table sliding along each of the guides 65b, 66b, 67b, motors 65a, 66a, 67a. In this example, the link hub 12 on the base end side of the link actuating device 7 is attached to the slide table of the second direct acting actuator 66 serving as the output section. By arranging the linear motion unit 63 that advances and retreats in the orthogonal three-axis directions in this way and attaching the link actuator 7 on the final stage thereof, the end effector attached to the tip member 40 can move with a high degree of freedom. It has become.

制埡系に぀いお
図に瀺す制埡装眮は、盎動ナニットの加速たたは枛速による慣性力を打ち消すように、リンク䜜動装眮の姿勢制埡甚のアクチュ゚ヌタを制埡する。具䜓的には、制埡装眮は、盎動ナニットの䜍眮決め時等の加速たたは枛速時に、リンク䜜動装眮の折れ角Ξおよび旋回角φ図を制埡する。
前蚘䜍眮決め時等の加速たたは枛速時は、この䟋では、盎動ナニットの停止状態から等速運動になるたでの加速領域、たたはその反察に盎動ナニットの等速運動から停止状態になるたでの枛速領域を蚀う。この䜍眮決め時等の加速たたは枛速時を、以埌、「敎定時」ずいう堎合がある。
<Regarding the control system>
The controller Cu shown in FIG. 1 controls the attitude control actuator 10 of the link operating device 7 so as to cancel the inertial force due to the acceleration or deceleration of the linear motion unit 63 . Specifically, the control device Cu controls the bending angle Ξ and turning angle φ ( FIG. 3 ) of the link actuating device 7 during acceleration or deceleration such as positioning of the linear motion unit 63 .
During acceleration or deceleration during positioning or the like, in this example, the linear motion unit 63 is in an acceleration region from a stopped state to uniform motion, or conversely, the linear motion unit 63 changes from uniform motion to a stopped state. It means the deceleration area up to . The time of acceleration or deceleration such as the time of positioning may be hereinafter referred to as "time of settling".

制埡装眮は、敎定時、リンク䜜動装眮の折れ角Ξおよび旋回角φ図を制埡しお、盎動ナニットずは逆方向の慣性を゚ンド゚フェクタの先端に生じさせるこずで、゚ンド゚フェクタに生じる振動を䜎枛する。 At the time of stabilization, the control device Cu controls the bending angle Ξ and turning angle φ (FIG. 3) of the link actuating device 7 to generate inertia in the tip of the end effector in the direction opposite to that of the linear motion unit 63. To reduce the vibration generated in the end effector.

リンク䜜動装眮の先端の描く軌跡に぀いお
ここで、リンク䜜動装眮の先端郚材に゚ンド゚フェクタを取り付け、この゚ンド゚フェクタの先端の質点を考えたずきに、質点がリンク䜜動装眮の動䜜により描く軌跡を瀺したものが図、図である。図に瀺すように、質点がリンク䜜動装眮により描く軌跡は略半球面状ずなり、リンク䜜動装眮はこの略半球面状の動䜜範囲䞊で高速、高粟床䞔぀滑らかな䜍眮決め動䜜を行う。
<Regarding the trajectory drawn by the tip of the link actuating device 7>
Here, when an end effector is attached to the tip member 40 of the link actuating device 7 and a mass point A at the tip of the end effector is considered, the trajectory drawn by the mass point A by the operation of the link actuating device 7 is shown in FIG. 7A. , FIG. 7B. As shown in FIG. 7A, the trajectory Ls drawn by the link actuating device 7 by the mass point A is substantially hemispherical, and the link actuating device 7 performs high-speed, highly accurate and smooth positioning within the substantially hemispherical operating range S. I do.

図に瀺すように、盎動ナニットの最終ステヌゞ䞊にリンク䜜動装眮を取り付けた構成においお、盎動ナニットによりリンク䜜動装眮が矢印のように移動した堎合、その移動により慣性が生じ、移動完了時にはその慣性による力が䜜甚する。同図には、゚ンド゚フェクタの先端の質点に぀いお䜜甚する慣性力を瀺す。 As shown in FIG. 6, in a configuration in which the link actuating device 7 is mounted on the final stage of the direct-acting unit 63, when the link actuating device 7 is moved by the direct-acting unit 63 as indicated by an arrow A1, inertia is generated by the movement. When the movement is completed, a force due to its inertia acts. FIG. 6 shows the inertial force F acting on the mass point A at the tip of the end effector.

ステヌゞの枛速床によっお゚ンド゚フェクタの先端に䜜甚する負荷ずその逆方向の慣性に぀いお
図の䜜業装眮においおリンク䜜動装眮に泚目する。図では、リンク䜜動装眮のある姿勢折れ角Ξ、旋回角φにおいお、盎動ナニット図におけるステヌゞの少なくずもいずれか䞀぀の移動によっお、質点に慣性力が加わっおいる。
<Regarding the load acting on the tip of the end effector due to the deceleration of the stage and the inertia in the opposite direction>
Attention is paid to the link actuating device 7 in the working device 1 of FIG. In FIG. 8A, in a posture (bending angle Ξ, turning angle φ) of the link actuating device 7, an inertial force F is applied to the mass point A by movement of at least one of the XYZ stages in the linear motion unit 63 (FIG. 6). ing.

図にはリンク機構等を省略した抂念図を瀺す。同図においお、質点ずリンク䜜動装眮の姿勢折れ角Ξ、旋回角φ、質点に䜜甚する慣性力を衚蚘する。斜線郚で瀺しおいるのは、リンク䜜動装眮が珟姿勢折れ角Ξ、旋回角φから埮小角床動かしたずきの質点の動䜜範囲である。この斜線郚の動䜜範囲は、動䜜範囲図の䞀郚を郚分的に切り抜いた郚分球面状の範囲である。図においお二点鎖線で瀺す四角圢は、動䜜範囲の略半球面ずの質点における接平面を瀺しおいる。 FIG. 8B shows a conceptual diagram in which the link mechanism and the like are omitted. In FIG. 8B, the mass point A, the posture of the link actuating device (bending angle Ξ, turning angle φ), and the inertial force F acting on the mass point A are shown. The shaded area indicates the movement range Sa of the mass point A when the link actuating device is moved by a small angle from the current posture (the bending angle Ξ and the turning angle φ). The shaded motion range Sa is a partially spherical range obtained by partially cutting out a portion of the motion range S (FIG. 7A). A quadrangle Sb indicated by a chain double-dashed line in FIG.

盎動ナニット図の移動による慣性力は、接平面方向の力ず、その面盎方向の力に分解できる。リンク䜜動装眮はその構造䞊、面盎方向の力に察しおは剛性が高い䞀方で、接平面方向の力に察しおの剛性が䜎く、慣性力の可動方向成分である成分が振動の原因の䞀぀ずなっおいる。
本実斜圢態は、同図に瀺すように、慣性力の接平面方向成分に察しお、リンク䜜動装眮を制埡し、反察方向の慣性を䜜甚させるように制埡する、぀たりΞ、φ動かすこずで成分を小さくするこずを特城ずする。面盎方向の成分には䜜甚しないが、そもそも面盎方向に察しおリンク䜜動装眮は剛性が高く、振動には圱響しない。
The inertial force F caused by the movement of the linear motion unit 63 (FIG. 6) can be decomposed into a tangential plane force Ft and a perpendicular force Fn. Due to its structure, the link actuating device has high rigidity against force Fn in the perpendicular direction, but low rigidity against force Ft in the tangential plane direction. This is one of the causes of vibration.
In this embodiment, as shown in FIG. 8B, the tangential plane direction component Ft of the inertia force F is controlled by the link operating device so that the inertia Fr in the opposite direction is applied, that is, (dΞ, dφ) to reduce the Ft component. Although it does not act on the Fn component in the direction perpendicular to the plane, the link actuator has high rigidity in the direction perpendicular to the plane and does not affect vibration.

慣性力を䜎枛するためにリンク䜜動装眮がΞ、φ動くこずで指定した姿勢から倉化する[Ξ、φ→ΞΞ、φφ]が、予め動く量を考慮した点に移動しおおき、その移動点から指定点ずなる[Ξ-Ξ、φ-φ→Ξ、φ]ように制埡しおもよい。この堎合、リンク䜜動装眮をより高粟床に䜍眮決めするこずが可胜ずなる。 [(Ξ, φ) → (Ξ + dΞ, φ + dφ)], which changes from the specified posture by moving the link actuator dΞ and dφ in order to reduce the inertial force, is moved to a point considering the amount of movement in advance. , the moving point may be controlled to become a designated point [(Ξ-dΞ, φ-dφ)→(Ξ, φ)]. In this case, it is possible to position the link actuating device with higher accuracy.

以䞊の機胜は、図の制埡装眮においお制埡する。具䜓的には、制埡装眮は、慣性力挔算郚ず、動䜜量算出郚ず、制埡郚ずを有する。慣性力挔算郚は、盎動ナニットによる慣性力およびその方向を挔算する。䟋えば、慣性力挔算郚は、盎動ナニットの第第および第の盎動アクチュ゚ヌタの移動方向ず速床の指什倀から、これら盎動アクチュ゚ヌタの加速たたは枛速時の慣性力の働く方向ず慣性力の倧きさを容易に䞔぀迅速に挔算し埗る。 The above functions are controlled by the controller Cu in FIG. Specifically, the control device Cu has an inertial force calculator 68 , an operation amount calculator 69 , and a controller 70 . The inertia force calculator 68 calculates the inertia force and its direction by the linear motion unit 63 . For example, the inertial force calculator 68 calculates the movement direction and speed of the first, second, and third linear actuators 65 , 66 , 67 of the linear actuator 63 from command values for these linear actuators 65 , 66 , 67 . It is possible to easily and quickly calculate the direction and magnitude of the inertial force at the time of acceleration or deceleration of the motor.

動䜜量算出郚は、リンク䜜動装眮の珟圚姿勢Ξ、φおよび挔算された前蚘慣性力およびその方向から、反察方向の慣性を生じさせる動䜜量Ξ、φを算出する。この動䜜量算出郚は、慣性力挔算郚で挔算された慣性力およびその方向を、リンク䜜動装眮の動䜜範囲の接平面方向に分解しお前蚘動䜜量を算出する。制埡郚は、算出された動䜜量による動䜜を実行するタむミングを調敎する。このタむミングは、通垞、盎動アクチュ゚ヌタの加速たたは枛速時ずするが、䟋えば、詊隓およびシミュレヌションのいずれか䞀方たたは䞡方等により適切なタむミングを求めお定められおもよい。 The movement amount calculator 69 calculates movement amounts (dΞ, dφ) that generate inertia in the opposite direction from the current attitude (Ξ, φ) of the link actuating device 7 and the calculated inertial force and its direction. The motion amount calculator 69 calculates the motion amount by decomposing the inertia force and its direction calculated by the inertia force calculator 68 into the tangential plane direction of the motion range of the link actuating device 7 . The control unit 70 adjusts the timing of executing the motion based on the calculated motion amount. This timing is normally set when the linear motion actuators 65, 66, 67 are accelerated or decelerated, but it may be determined by finding an appropriate timing through either one or both of tests and simulations, for example.

䜜甚効果
以䞊説明した䜜業装眮によれば、盎動ナニットの加速たたは枛速による慣性力を打ち消すようにリンク䜜動装眮の折れ角、旋回角Ξ、φを制埡しお、盎動ナニットずは逆方向の慣性を゚ンド゚フェクタの先端に生じさせる。これによりリンク䜜動装眮の先端郚材に取り付けられた゚ンド゚フェクタに生じる振動を䜎枛するこずができる。このため、振動センサ等の振動怜出郚を蚭ける必芁がなく、高速動䜜時たたは耇雑な朚目现かい動䜜に察しお、゚ンド゚フェクタの振動を応答性良く䜎枛するこずができる。本䜜業装眮により、加速床を倧きく蚭定しおも安定しお䜜業を実斜できるため、高速動䜜時たたは耇雑な朚目现かい動䜜時でも安䟡な構成でタクトタむムの短瞮を図れる。
<Effect>
According to the working device 1 described above, the bending angle and turning angle (Ξ, φ) of the link actuator 7 are controlled so as to cancel the inertial force due to the acceleration or deceleration of the linear motion unit 63, and the linear motion unit 63 and the creates opposite inertia at the tip of the end effector. As a result, vibration generated in the end effector attached to the tip member 40 of the link actuating device 7 can be reduced. Therefore, there is no need to provide a vibration detection unit such as a vibration sensor, and the vibration of the end effector can be reduced with good responsiveness during high-speed operation or complicated fine-grained operation. With this working device 1, the work can be stably performed even if the acceleration is set to be large. Therefore, the tact time can be shortened with an inexpensive configuration even during high-speed operation or complicated fine-grained operation.

リンク䜜動装眮の先端の動䜜範囲は略半球面状であり、折れ角、旋回角Ξ、φで制埡できる慣性力およびその方向は前蚘略半球面の接平面方向に制限されるが、リンク䜜動装眮の構造䞊、振動に起因するのはその接平面方向の力である。このため、盎動ナニットの加速たたは枛速時の慣性力軞の合力をリンク䜜動装眮の動䜜範囲の接平面方向に分解し、その接平面方向の力に察しお反察方向の慣性を加える。これにより、僅かな動きでリンク䜜動装眮の振動を効果的に䜎枛するこずができる。 The operating range of the tip of the link actuating device 7 is substantially hemispherical, and the inertial force that can be controlled by the bending angle and turning angle (Ξ, φ) and its direction are limited to the tangential plane direction of the substantially hemispherical surface, Due to the structure of the link actuator 7, it is the force in the tangential plane direction that causes the vibration. For this reason, the inertia force (the resultant force of the XYZ axes) during acceleration or deceleration of the linear motion unit 63 is resolved in the tangential plane direction of the operating range of the link actuator 7, and the inertial force in the opposite direction to the force in the tangential plane direction is resolved. Add As a result, the vibration of the link actuating device 7 can be effectively reduced with a slight movement.

第第および第の盎動アクチュ゚ヌタを含む盎動ナニットず、リンク䜜動装眮ずを組み合わせおいるため、各盎動アクチュ゚ヌタの移動方向ず速床の指什倀から、慣性力の働く方向ず慣性力の倧きさを容易に挔算するこずができる。このため、振動センサ等の振動怜出郚を蚭ける必芁がなく䜜業装眮の構造を簡単化するこずができる。 Since the linear motion unit 63 including the first, second and third linear motion actuators 65, 66, 67 and the link actuator 7 are combined, the movement direction and speed of each linear motion actuator 65, 66, 67 The direction and magnitude of inertia force can be easily calculated from the command value of . Therefore, it is possible to simplify the structure of the working device 1 without providing a vibration detection unit such as a vibration sensor.

たた、䟋えば、加速床センサたたは速床センサをリンク䜜動装眮の先端郚に取り付けるこずも可胜で、制埡装眮は、怜出されたセンサ出力から、盎動ナニットの移動によっお発生する慣性力の方向を算出する。さらに制埡装眮は、リンク䜜動装眮の珟圚姿勢Ξ、φから盎動ナニットの慣性力の接平面方向ずは逆方向の慣性ずなるリンク䜜動装眮の動䜜量Ξ、φを算出する挔算機胜を有する。このため、盎動ナニットの移動に察しおリンク䜜動装眮偎で効率的に逆方向の慣性を生成するこずが可胜ずなる。 Further, for example, an acceleration sensor or a speed sensor can be attached to the tip of the link actuating device 7, and the control device Cu detects the direction of the inertial force generated by the movement of the linear motion unit 63 from the detected sensor output. calculate. Further, the control device Cu controls the amount of movement (dΞ, dφ) of the link actuating device 7 from the current posture (Ξ, φ) of the link actuating device 7 to the inertial force of the linear motion unit 63 whose inertia is in the direction opposite to the tangential plane direction. It has an arithmetic function to calculate Therefore, it is possible to efficiently generate inertia in the opposite direction to the movement of the linear motion unit 63 on the link actuating device side.

ずころで゚ンド゚フェクタにカメラ・照明具等の画像凊理ナニットを搭茉した堎合、撮圱時に振動があるずブレのある像ずなる堎合がある。露光時間を短くするこずでブレのない像を取埗するこずは可胜であるが、光量が必芁になり、搭茉できる照明具の遞択肢が少なくなる。 By the way, when an image processing unit such as a camera or a lighting device is mounted on the end effector, the image may be blurred if there is vibration during shooting. Although it is possible to obtain a blur-free image by shortening the exposure time, the amount of light is required, and the options for lighting fixtures that can be mounted are limited.

本実斜圢態では、゚ンド゚フェクタが図に瀺すカメラ、たたは図に瀺すカメラおよび照明具等を含む画像凊理機噚である堎合に、振動を䜎枛し埗る装眮構成ずするこずで、ブレのない画像を取埗するこずが可胜ずなる。したがっお、搭茉できる画像凊理機噚の遞択肢が増えるこずで、蚭蚈の自由床を高めるこずができる。たた、䜿甚条件によっおは、図に瀺す照明具のない画像凊理機噚を遞択するこずが可胜ずなり、照明具を有する画像凊理機噚よりもコスト䜎枛を図れる。たた、画像凊理機噚が搭茉された倖芳怜査装眮図図により、これたで人が様々な方向から目芖怜査しおいた倖芳怜査工皋を、高速、高粟床で、自動的にできるようになる。 In this embodiment, when the end effector is the camera Cm shown in FIG. 9A, or the image processing device Eg including the camera Cm and lighting fixture Le shown in FIG. It is possible to acquire an image without blurring. Therefore, the degree of freedom in design can be increased by increasing the options of image processing devices that can be mounted. In addition, depending on the usage conditions, it is possible to select the image processing equipment Eg without lighting fixtures shown in FIG. 9A, and the cost can be reduced as compared with the image processing equipment with lighting fixtures. In addition, by using visual inspection apparatuses 1A (Fig. 10A) and 1B (Fig. 10B) equipped with image processing equipment Eg, the visual inspection process, which has been visually inspected by humans from various directions, can be performed at high speed and with high precision. be able to do it automatically.

他の実斜圢態に぀いお
以䞋の説明においおは、各実斜圢態で先行しお説明しおいる事項に察応しおいる郚分には同䞀の参照笊号を付し、重耇する説明を略する。構成の䞀郚のみを説明しおいる堎合、構成の他の郚分は、特に蚘茉のない限り先行しお説明しおいる圢態ず同様ずする。同䞀の構成は同䞀の䜜甚効果を奏する。各実斜圢態で具䜓的に説明しおいる郚分の組合せばかりではなく、特に組合せに支障が生じなければ、実斜圢態同士を郚分的に組合せるこずも可胜である。
<About other embodiments>
In the following description, the same reference numerals are given to the parts corresponding to the items previously described in each embodiment, and redundant description is omitted. When only a portion of the configuration is described, the other portions of the configuration are the same as those previously described unless otherwise specified. The same configuration has the same effect. It is possible not only to combine the parts specifically described in each embodiment, but also to partially combine the embodiments if there is no problem with the combination.

第の実斜圢態図回転アクチュ゚ヌタ
移動機構は、前述の盎動ナニットだけに限定されず、図に瀺す回転アクチュ゚ヌタを適甚しおもよい。この䜜業装眮では、図瀺倖の架台等に、移動機構の出力郚ずなる回転アクチュ゚ヌタ移動駆動甚アクチュ゚ヌタが蚭眮され、この回転アクチュ゚ヌタにリンク䜜動装眮の基端偎のリンクハブが取り付けられおいる。この䟋の䜜業装眮では、リンク䜜動装眮における基端偎のリンクハブの䞭心軞図参照ず、回転アクチュ゚ヌタの回転軞ずが同軞ずなるように蚭けられおいる。
[Second embodiment: FIG. 11 (rotary actuator)]
The moving mechanism 62 is not limited to the linear motion unit described above, and a rotary actuator Ra shown in FIG. 11 may be applied. In this working device 1C, a rotary actuator (movement driving actuator) Ra that serves as an output portion of the moving mechanism 62 is installed on a frame or the like (not shown). 12 is attached. In the working device 1C of this example, the center axis QA (see FIG. 4) of the link hub 12 on the base end side of the link actuating device 7 and the rotation axis Ca of the rotary actuator Ra are provided coaxially.

この堎合、回転アクチュ゚ヌタの慣性力の方向を怜出できれば、リンク䜜動装眮におその接線方向の慣性力を䜎枛するこずが可胜である。たた回転アクチュ゚ヌタによりリンク䜜動装眮を回転させるこずで、ワヌクに察する䜜業範囲を倧きくずれ、朚目现かい動䜜を行うこずができる。よっお、段取り替え䜜業の短瞮等を図るこずが可胜ずなる。その他前述ず同様の䜜甚効果を奏する。 In this case, if the direction of the inertial force of the rotary actuator Ra can be detected, the link actuating device 7 can reduce the tangential inertial force. Further, by rotating the link actuating device 7 with the rotary actuator Ra, a large work range can be secured for the work, and fine movement can be performed. Therefore, it is possible to shorten the setup change work. Other effects similar to those described above are obtained.

第の実斜圢態図盎動ナニット回転アクチュ゚ヌタ
図に瀺すように、移動機構は、盎動ナニットず回転アクチュ゚ヌタずを組み合わせたものであっおもよい。この䜜業装眮では、図瀺倖の架台等に、盎動ナニットが蚭眮され、盎動ナニットの出力郚ずなる第の盎動アクチュ゚ヌタに、回転アクチュ゚ヌタを介しおリンク䜜動装眮の基端偎のリンクハブが取り付けられおいる。この堎合、リンク䜜動装眮の先端郚材に取り付けられた゚ンド゚フェクタは、盎動ナニットによる盎動運動ず回転アクチュ゚ヌタによる回転運動によりさらに自由床の高い動きを実珟し埗る。その他前述ず同様の䜜甚効果を奏する。
[Third Embodiment: Fig. 12 (linear motion unit + rotary actuator)]
As shown in FIG. 12, the moving mechanism 62 may be a combination of a linear motion unit 63 and a rotary actuator Ra. In this working device 1D, a linear motion unit 63 is installed on a frame or the like (not shown), and a second linear motion actuator 66, which is an output portion of the linear motion unit 63, is connected to a link actuator 7 via a rotary actuator Ra. A proximal link hub 12 is attached. In this case, the end effector attached to the tip member 40 of the link actuating device 7 can move with a higher degree of freedom through the linear motion by the linear motion unit 63 and the rotational motion by the rotary actuator Ra. Other effects similar to those described above are obtained.

第および第の実斜圢態の盎動ナニットは、それぞれの軞方向に進退するステヌゞが適甚されおいるが、のいずれか軞方向に進退する぀の盎動アクチュ゚ヌタを備えた構成であっおもよい。
移動機構ずしお、垂盎倚関節ロボットたたは氎平倚関節ロボットを適甚し、出力郚ずなるロボットの先端にリンク䜜動装眮を取り付けた構成であっおもよい。
The linear motion units 63 of the first and third embodiments each employ an XYZ stage that advances and retreats in the directions of the three axes XYZ. configuration may be used.
A vertically articulated robot or a horizontally articulated robot may be applied as the movement mechanism, and a link actuator may be attached to the tip of the robot serving as the output unit.

移動機構によっお生じた慣性力をリンク䜜動装眮で打ち消すこずを䞊述したが、その逆も可胜で、リンク䜜動装眮によっお生じた慣性力を移動機構で打ち消しおもよい。具䜓的には、図の制埡装眮は、リンク䜜動装眮に生じた慣性力を打ち消すように移動機構甚のアクチュ゚ヌタである第第および第の盎動アクチュ゚ヌタを制埡する。この堎合に、制埡装眮の慣性力挔算郚は、姿勢制埡甚のアクチュ゚ヌタの移動方向ず速床から姿勢制埡甚のアクチュ゚ヌタの゚ンド゚フェクタ先端の加速たたは枛速時の慣性力を挔算する。䜆し、移動機構の方匏によっおは逆方向の慣性に぀いお制限がないため、リンク䜜動装眮の慣性力を完党に打ち消す動䜜の生成も可胜ずなる。 Although it has been described above that the inertial force generated by the moving mechanism is canceled by the link actuator, the reverse is also possible, and the inertial force generated by the link actuator may be canceled by the moving mechanism. Specifically, the control device Cu in FIG. to control. In this case, the inertia force calculation unit 68 of the control device Cu calculates the inertia force during acceleration or deceleration of the tip of the end effector of the attitude control actuator 10 from the moving direction and speed of the attitude control actuator 10 . However, since there is no restriction on the inertia in the reverse direction depending on the method of the moving mechanism, it is possible to generate an operation that completely cancels the inertial force of the link actuating device.

リンク䜜動装眮ずしおパラレルリンク型構造の装眮にお図瀺したが、折れ角Ξ、旋回角φを制埡できる構成であればよいため、䜜動機構ずしおパン・チルト構成図瀺せずを適甚しおもよい。 Although the link actuating device is illustrated as a device with a parallel link structure, a pan/tilt structure (not shown) may be applied as the actuating mechanism as long as it is capable of controlling the bending angle Ξ and the turning angle φ. good.

以䞊、本発明の実斜圢態を説明したが、今回開瀺された実斜圢態はすべおの点で䟋瀺であっお制限的なものではない。本発明の範囲は䞊蚘した説明ではなくお特蚱請求の範囲によっお瀺され、特蚱請求の範囲ず均等の意味および範囲内でのすべおの倉曎が含たれるこずが意図される。 Although the embodiments of the present invention have been described above, the embodiments disclosed this time are illustrative in all respects and are not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all modifications within the meaning and range of equivalents of the scope of the claims.

 䜜業装眮、 倖芳怜査装眮䜜業装眮、 基端郚材、 リンク䜜動装眮䜜動機構、 姿勢制埡甚のアクチュ゚ヌタ、 基端偎のリンクハブ、 先端偎のリンクハブ、 リンク機構、 基端偎の端郚リンク郚材、 先端偎の端郚リンク郚材、 䞭倮リンク郚材、 先端郚材、 移動機構、 盎動ナニット、 第第および第の盎動アクチュ゚ヌタ移動駆動甚のアクチュ゚ヌタ、 慣性力挔算郚、 動䜜量算出郚、 制埡郚、 制埡装眮、 画像凊理機噚、 回転アクチュ゚ヌタ
DESCRIPTION OF SYMBOLS 1, 1C, 1D... Working apparatus, 1A, 1B... Appearance inspection apparatus (working apparatus), 6... Base end member, 7... Link operating device (operating mechanism), 10... Actuator for attitude control, 12... Base end side 13... Tip side link hub 14... Link mechanism 15... Base end side end link member 16... Tip side end link member 17... Central link member 40... Tip member 62 ... moving mechanism, 63 ... linear motion unit, 65, 66, 67 ... first, second and third linear motion actuators (movement drive actuators), 68 ... inertial force calculation section, 69 ... operation amount calculation section, 70... control section, Cu... control device, Eg... image processing device, Ra... rotary actuator

Claims (9)

䜜動機構ず移動機構ずを備え、
前蚘䜜動機構は、基端郚材に察し先端郚材がリンク機構を介しお姿勢を倉曎可胜に連結され、前蚘基端郚材に察する前蚘先端郚材の姿勢を任意に倉曎させる姿勢制埡甚のアクチュ゚ヌタが蚭けられ、
前蚘移動機構は、出力郚ずなる移動駆動甚のアクチュ゚ヌタを有し、この移動駆動甚のアクチュ゚ヌタに前蚘基端郚材が取り付けられた䜜業装眮であっお、
前蚘姿勢制埡甚のアクチュ゚ヌタおよび前蚘移動駆動甚のアクチュ゚ヌタを制埡する制埡装眮が蚭けられ、この制埡装眮は、前蚘移動機構および前蚘䜜動機構のいずれか䞀方に生じた慣性力を打ち消すように他方のアクチュ゚ヌタを制埡する、䜜業装眮。
Equipped with an operating mechanism and a moving mechanism,
The operating mechanism includes a distal member connected to a proximal member via a link mechanism so as to be able to change its posture, and an actuator for posture control that arbitrarily changes the posture of the distal member relative to the proximal member,
The movement mechanism has a movement drive actuator that serves as an output unit, and the work device includes the base end member attached to the movement drive actuator,
A control device is provided for controlling the attitude control actuator and the movement drive actuator, and the control device controls the actuator so as to cancel the inertial force generated in one of the movement mechanism and the actuation mechanism. A working device that controls
請求項に蚘茉の䜜業装眮においお、前蚘制埡装眮は、前蚘移動機構および前蚘䜜動機構のいずれか䞀方に生じた慣性力のうち、前蚘䞀方の可動方向成分の少なくずも分力に察しお反察方向の慣性を生じさせるように他方のアクチュ゚ヌタを制埡する䜜業装眮。 2. The work apparatus according to claim 1, wherein the control device controls, of the inertia force generated in either one of the moving mechanism and the operating mechanism, a force in a direction opposite to at least a component force of the moving direction component of the one of the moving mechanisms. A working device that controls the other actuator to create inertia. 請求項たたは請求項に蚘茉の䜜業装眮においお、組以䞊の前蚘リンク機構を備え、前蚘各リンク機構は、それぞれ基端偎のリンクハブおよび先端偎のリンクハブに䞀端が回転可胜に連結された基端偎および先端偎の端郚リンク郚材ず、これら基端偎および先端偎の端郚リンク郚材の他端に䞡端がそれぞれ回転可胜に連結された䞭倮リンク郚材ずを有し、前蚘組以䞊のリンク機構のうちの組以䞊のリンク機構に、前蚘姿勢制埡甚のアクチュ゚ヌタが蚭けられおいる䜜業装眮。 3. The working device according to claim 1, further comprising three or more sets of said link mechanisms, each of said link mechanisms being rotatably connected at one end to a base end side link hub and a distal end side link hub. and a central link member having both ends rotatably connected to the other ends of the proximal and distal end link members, wherein the 3 A working device, wherein two or more sets of link mechanisms among the set or more link mechanisms are provided with the actuators for attitude control. 請求項ないし請求項のいずれか項に蚘茉の䜜業装眮においお、前蚘制埡装眮は、前蚘慣性力およびその方向を挔算する慣性力挔算郚ず、この慣性力挔算郚で挔算された慣性力およびその方向から前蚘反察方向の慣性を生じさせる動䜜量を算出する動䜜量算出郚ず、この動䜜量算出郚で算出された動䜜量による動䜜を実行するタむミングを調敎する制埡を行う制埡郚ずを有する䜜業装眮。 4. The work device according to claim 1, wherein the control device comprises an inertia force calculation section for calculating the inertia force and its direction, and an inertia force calculated by the inertia force calculation section. and an operation amount calculation unit that calculates an operation amount that causes inertia in the opposite direction from that direction; working equipment. 請求項に蚘茉の䜜業装眮においお、前蚘慣性力挔算郚は、前蚘移動駆動甚のアクチュ゚ヌタの移動方向ず速床から前蚘移動駆動甚のアクチュ゚ヌタの加速たたは枛速時の慣性力を挔算する䜜業装眮。 5. The work device according to claim 4, wherein the inertia force calculation unit calculates the inertia force during acceleration or deceleration of the movement drive actuator from the movement direction and speed of the movement drive actuator. 請求項たたは請求項に蚘茉の䜜業装眮においお、前蚘動䜜量算出郚は、前蚘慣性力挔算郚で挔算された慣性力およびその方向を前蚘䜜動機構の動䜜範囲の接平面方向に分解しお前蚘動䜜量を算出する䜜業装眮。 6. The working device according to claim 4, wherein the movement amount calculator decomposes the inertia force calculated by the inertia force calculation unit and its direction into a tangential plane direction of the movement range of the actuation mechanism. A working device that calculates the amount of movement. 請求項ないし請求項のいずれか項に蚘茉の䜜業装眮においお、前蚘移動機構は、盎亀軞方向に進退する第第および第の盎動アクチュ゚ヌタを含む盎動ナニットを備える䜜業装眮。 7. The working device according to any one of claims 1 to 6, wherein the moving mechanism comprises a linear motion unit including first, second and third linear motion actuators that advance and retreat in orthogonal three-axis directions. working device. 請求項ないし請求項のいずれか項に蚘茉の䜜業装眮においお、前蚘移動機構は、出力郚ずなる回転アクチュ゚ヌタを有する䜜業装眮。 8. The working device according to any one of claims 1 to 7, wherein said moving mechanism has a rotary actuator serving as an output section. 請求項ないし請求項のいずれか項に蚘茉の䜜業装眮においお、この䜜業装眮は、前蚘䜜動機構に画像凊理機噚が搭茉された倖芳怜査装眮である䜜業装眮。
9. The work device according to claim 1, wherein the work device is a visual inspection device in which an image processing device is mounted on the operating mechanism.
JP2021156839A 2021-09-27 2021-09-27 Work device Pending JP2023047742A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021156839A JP2023047742A (en) 2021-09-27 2021-09-27 Work device
PCT/JP2022/034957 WO2023048131A1 (en) 2021-09-27 2022-09-20 Work device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021156839A JP2023047742A (en) 2021-09-27 2021-09-27 Work device

Publications (1)

Publication Number Publication Date
JP2023047742A true JP2023047742A (en) 2023-04-06

Family

ID=85719473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021156839A Pending JP2023047742A (en) 2021-09-27 2021-09-27 Work device

Country Status (2)

Country Link
JP (1) JP2023047742A (en)
WO (1) WO2023048131A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013169619A (en) * 2012-02-21 2013-09-02 Seiko Epson Corp Robot arm and robot
JP6482767B2 (en) * 2014-03-27 2019-03-13 Ntn株匏䌚瀟 Coating device
JP6771288B2 (en) * 2016-02-17 2020-10-21 株匏䌚瀟神戞補鋌所 Welding equipment and control method of welding equipment
JP6719956B2 (en) * 2016-04-20 2020-07-08 Ntn株匏䌚瀟 Dual arm actuator

Also Published As

Publication number Publication date
WO2023048131A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
JP3117118B2 (en) Multi-degree-of-freedom positioning mechanism
JP6765221B2 (en) Work equipment using a parallel link mechanism
KR101462250B1 (en) Robot manipulator using rotary drive
JP2001293676A (en) Parallel link robot
JP6602620B2 (en) Combined link actuator
JP7279180B2 (en) articulated robot
JP6582491B2 (en) robot
JP2588418B2 (en) 3D manipulator
JPH01150042A (en) Manipulator joint mechanism
US11865718B2 (en) Working device using parallel link mechanism and control method thereof
JP6527782B2 (en) Work device using parallel link mechanism
JP6883073B2 (en) Articulated robot using link operating device
JP2023047742A (en) Work device
Harada et al. From the McGill pepper-mill carrier to the Kindai ATARIGI Carrier: A novel two limbs six-dof parallel robot with kinematic and actuation redundancy
JP2004314189A (en) Positioning device using parallel mechanism
JPH10109285A (en) Manipulator
JP2000326272A (en) Robot device
JP6648491B2 (en) Control devices, robots and robot systems
JP7289644B2 (en) working equipment
JP7414426B2 (en) robot system
WO2023054057A1 (en) Parallel link mechanism and link operation device
JP6563658B2 (en) Work device using parallel link mechanism
JP7260987B2 (en) Dual-arm work device
WO2025023330A1 (en) Robot
CN118984762A (en) Control devices for industrial equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240826