Nothing Special   »   [go: up one dir, main page]

JP2022515583A - Micro water amount backwash shift upward flow type lightweight filter media filter and its method - Google Patents

Micro water amount backwash shift upward flow type lightweight filter media filter and its method Download PDF

Info

Publication number
JP2022515583A
JP2022515583A JP2021506731A JP2021506731A JP2022515583A JP 2022515583 A JP2022515583 A JP 2022515583A JP 2021506731 A JP2021506731 A JP 2021506731A JP 2021506731 A JP2021506731 A JP 2021506731A JP 2022515583 A JP2022515583 A JP 2022515583A
Authority
JP
Japan
Prior art keywords
water
backwash
valve
region
drainage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021506731A
Other languages
Japanese (ja)
Other versions
JP7145544B2 (en
Inventor
文香 夏
志慧 石
金成 李
双 宋
楚遥 越
宝秀 趙
杰 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Publication of JP2022515583A publication Critical patent/JP2022515583A/en
Application granted granted Critical
Publication of JP7145544B2 publication Critical patent/JP7145544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/02Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration
    • B01D24/10Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration the filtering material being held in a closed container
    • B01D24/16Upward filtration
    • B01D24/165Upward filtration the filtering material being supported by pervious surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/38Feed or discharge devices
    • B01D24/40Feed or discharge devices for feeding
    • B01D24/402Feed or discharge devices for feeding containing fixed liquid displacement elements or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/46Regenerating the filtering material in the filter
    • B01D24/4631Counter-current flushing, e.g. by air
    • B01D24/4636Counter-current flushing, e.g. by air with backwash shoes; with nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/46Regenerating the filtering material in the filter
    • B01D24/4668Regenerating the filtering material in the filter by moving the filtering element
    • B01D24/4673Regenerating the filtering material in the filter by moving the filtering element using rotary devices or vibration mechanisms, e.g. stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/48Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof integrally combined with devices for controlling the filtration
    • B01D24/4869Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof integrally combined with devices for controlling the filtration by level measuring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtration Of Liquid (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

一実施例によれば、微小水量逆洗変速上向流式軽量濾材フィルタ及びその方法が開示される。フィルタは、反応器、給水配水システム、ガス逆洗システム、微量水逆洗スプレーシステム、集水システム、及び排水/排泥システムを含み、変速濾過領域が逆洗剥離領域の上部に位置し、この領域の断面積が下から上へ徐々に小さくなる円錐台状であり、給水流量が一定であり、断面積が小さくなることで、この領域の濾材層が受ける上向きの濾過圧力は徐々に大きくなる。可変濾過断面の設計により、濾過速度が速くなるとともに、圧力が高くなる濾過状態が形成されることによって、濾過時に濾過層が水の力により自動的に緻密に圧縮される目的が達成されるとともに、従来の軽量濾材の濾過層その自体が緻密に圧縮することができず、孔隙が緩くて大きいという問題が解決される。According to one embodiment, a micro-water amount backwashing speed-upward flow type lightweight filter medium filter and a method thereof are disclosed. Filters include a reactor, water supply and distribution system, gas backwash system, trace water backwash spray system, water collection system, and drainage / drainage system, where the variable speed filtration area is located above the backwash peeling area. The area has a conical trapezoidal shape in which the cross-sectional area gradually decreases from bottom to top, the water supply flow rate is constant, and the cross-sectional area decreases, so that the upward filtration pressure received by the filter medium layer in this area gradually increases. .. The design of the variable filtration cross section creates a filtration state in which the filtration rate is increased and the pressure is increased, thereby achieving the purpose of automatically and finely compressing the filtration layer by the force of water during filtration. The problem that the filtration layer itself of the conventional lightweight filter medium cannot be compressed precisely and the pores are loose and large is solved.

Description

本発明は、水処理の技術分野に属し、中小型給水処理、汚水高度処理及び工業再利用水処理に適用され、上向流変速式軽量懸濁濾材フィルタに関する。特に、節水型微小水量逆洗変速上向流式軽量濾材フィルタ及びその方法に関する。 The present invention belongs to the technical field of water treatment, is applied to small and medium-sized water supply treatment, advanced sewage treatment, and industrial reused water treatment, and relates to an upward flow speed change type lightweight suspended filter medium filter. In particular, the present invention relates to a water-saving type minute water amount backwashing variable forward flow type lightweight filter medium filter and its method.

濾過層濾過技術は、水と廃水処理過程における重要なプロセスである。一般には、材質が異なる粒状濾材を用いて厚さが一定の濾過層を構築し、粒子間の隙間により濾過チャンネルを形成し、これにより、滞留水中の浮遊不純物を遮断する。現在一般的に使用されるフィルタには、主に通常の圧濾器、バルブレス濾過池、繊維濾材濾過タンクなどのフィルタがある。通常のラピッドフィルタも最も伝統的なフィルタであり、一般には石英砂を濾過濾材として使用する。濾過方式は、下向流を使用する。濾過過程で遮断される汚染物を濾過層から剥離し、濾過層の汚物遮断能力を回復するために水で繰り返して洗い流す必要があるので、逆洗は、高速水流で濾過層を逆方向で押し上げる必要がある。そうすると、大量の洗浄水が消耗される一方、エネルギー消費量が増加する。バルブレス濾過池は、水力原理を利用し、自動逆洗の特徴を有するが、バルブレス濾過池の逆洗水量が大きく、逆洗が不十分である。汚水濾過の研究において、繊維濾材フィルタも一般的に使用されているフィルタであり、通常、濾材はファイバーボール及びファイバー束を使用する。このようなフィルタは、濾過速度が速く、詰まりにくいという利点を有するが、逆洗の水消費量が大きく、濾材が硬化しやすいという問題がある。 Filtration layer Filtration technology is an important process in the water and wastewater treatment process. Generally, a filtration layer having a constant thickness is constructed by using granular filter media made of different materials, and a filtration channel is formed by a gap between particles, thereby blocking suspended impurities in the stagnant water. Filters commonly used at present mainly include filters such as ordinary pressure filters, valveless filtration ponds, and fiber filter media filtration tanks. Ordinary rapid filters are also the most traditional filters and generally use quartz sand as the filter media. The filtration method uses a downward flow. Backwashing pushes the filter layer in the opposite direction with a high-speed stream of water, as contaminants that are blocked during the filtration process must be stripped from the filter layer and washed repeatedly with water to restore the filter's ability to block dirt. There is a need. This consumes a large amount of wash water while increasing energy consumption. The valveless filtration pond utilizes the hydraulic principle and has the feature of automatic backwashing, but the backwashing amount of the valveless filtration pond is large and the backwashing is insufficient. Fiber filter media filters are also commonly used filters in sewage filtration studies, and the filter media usually use fiber balls and fiber bundles. Such a filter has the advantages of high filtration speed and less clogging, but has problems that the water consumption of backwashing is large and the filter medium is easily cured.

上記問題に対して、近年、軽量懸濁濾材が中国において徐々に注目を集めている。発泡ポリスチレン粒子(EPS)軽量懸濁濾材は、新しい濾材として機械的強度が高く、汚物除去能力が高く、化学的性質が安定で、比重が水よりも小さく、濾過方式が簡単で、使用範囲が広いなどの利点を有するとともに、従来の石英砂濾過に比べ、軽量懸濁濾材による濾過は経済的には大きな優位性を有し、即ち、給水の緩衝セグメントにより沈殿できるため、支持層の必要がなく、構造が簡単で、製造コストが削減される。Degremont社(フランス)は、軽量濾材を使用して新しい上向流懸濁濾過池を開発した。それは独特な逆洗方式を有する。しかし、この濾過池は、通常の濾過池を反転したものだけであり、面積が大きい浮上防止フィルタプレート及びフィルタヘッドを取り付ける必要があるので、構造は複雑になる。また、濾過池の逆洗節水及び濾過速度は従来の濾過速度と相当するため、現在、このような上向流濾過池はある程度使用されているが、効果的に普及されていない。 In recent years, lightweight suspension filter media have been gradually attracting attention in China to solve the above problems. Foamed Polystyrene Particle (EPS) Lightweight Suspension Filter Medium is a new filter medium with high mechanical strength, high filth removal ability, stable chemical properties, smaller specific gravity than water, simple filtration method, and wide range of use. In addition to having advantages such as wideness, filtration with a lightweight suspension filter medium has a great economic advantage over conventional quartz sand filtration, that is, it can be settled by a buffer segment of water supply, so a support layer is required. No, the structure is simple and the manufacturing cost is reduced. Degrémont (France) has developed a new upward flow suspension filtration basin using lightweight filter media. It has a unique backwash method. However, this filtration pond is only an inverted version of a normal filtration pond, and it is necessary to attach a levitation prevention filter plate and a filter head having a large area, so that the structure is complicated. Further, since the backwash water saving and the filtration rate of the filtration pond correspond to the conventional filtration rate, such an upward flow filtration pond is currently used to some extent, but has not been effectively spread.

現在、省エネと消費削減は水処理の発展の一つの方向である。従来の濾過設備は、通常大量の逆洗水を消耗する必要があるので、水量及びエネルギー消耗が増加し、逆洗廃水の処理が困難となる。逆洗過程においてガススプレーを増設することで消耗水量を減少できるが、通常の濾過池に対する単一のガススプレーは剥離した汚染物を濾過層から洗い落とすことができず、水による押し流しと組み合わせる必要があるため、エネルギーと水の消費の問題を根本的に解決することはできない。上向流式軽量濾材フィルタの開発は、上記問題にソリューションを提供することができる。 Currently, energy saving and consumption reduction are one direction of the development of water treatment. Since the conventional filtration equipment usually needs to consume a large amount of backwash water, the amount of water and energy consumption increase, and the treatment of backwash wastewater becomes difficult. Although the amount of consumable water can be reduced by adding more gas sprays during the backwash process, a single gas spray for a normal filter pond cannot wash off the delaminated contaminants from the filter layer and must be combined with water flushing. Therefore, the problem of energy and water consumption cannot be fundamentally solved. The development of an upward flow lightweight filter medium filter can provide a solution to the above problem.

本発明は、従来の上向流フィルタ技術に存在する欠点を克服するために、フィルタの形状及び組成を創造的に改良することにより、最適のフィルタ構造を実現し、濾過抵抗を低減させるとともに、変速流の圧力変化により自己圧縮機能を実現し、濾過精度を向上させる目的を達成し、逆洗過程では、遮断された汚物の重力作用を巧妙に利用し、ガス洗浄により不純物と濾材とを自然に分離し、微小水量の逆洗を実現し、逆洗の水消耗及びエネルギー消耗を大幅に減少させる。これによって、新しい微小水量逆洗変速上向流軽量懸濁濾材フィルタ及びその方法が開発される。 The present invention realizes an optimum filter structure, reduces filtration resistance, and reduces filtration resistance by creatively improving the shape and composition of the filter in order to overcome the drawbacks existing in the conventional upward flow filter technology. Achieves the purpose of improving the filtration accuracy by realizing the self-compression function by changing the pressure of the shifting flow. It separates into and realizes backwashing with a small amount of water, and greatly reduces water consumption and energy consumption of backwashing. As a result, a new micro-water amount backwash shift upward flow lightweight suspension filter medium filter and its method will be developed.

上記目的を達成するために、本発明は以下の技術的手段を採用する。 In order to achieve the above object, the present invention employs the following technical means.

微小水量逆洗変速上向流式軽量濾材フィルタであって、
反応器1、給水配水システム、ガス逆洗システム、微量水逆洗スプレーシステム、集水システム、及び排水/排泥システムを含み、
反応器1の内部には、給水/排泥領域2、逆洗剥離領域3、変速濾過領域4、圧縮濾過領域5、及び集水領域6が区画されており、圧縮濾過領域5の上部には浮上防止フィルタプレート12が取り付けられ、浮上防止フィルタプレート12上にはフィルタヘッド13が取り付けられ、浮上防止フィルタプレート12の真上には蓋板14が取り付けられ、蓋板14の周囲にはガイドプレートが設けられ、蓋板14には排気バルブ9が設けられ、
給水/排泥領域2は反応器1の底部に位置し、逆洗剥離領域3は給水領域2の上部に位置し、逆洗剥離領域3は円筒状であり、逆洗剥離領域3の容積は、変速濾過領域4と圧縮濾過領域5との容積の和と等しく、処理される水中の汚物は、最初、変速濾過領域の濾材層によって遮断され、
変速濾過領域4は逆洗剥離領域3の上部に位置し、この領域は、断面積が下から上へ徐々に小さくなる円錐台状であり、給水流量が一定であり、断面積が小さくなることで、この領域の濾材層が受ける上向きの濾過圧力は徐々に大きくなり、
圧縮濾過領域5は変速濾過領域4の上部に位置し、この領域は円筒状であり、その断面積が変速濾過領域4の上部の断面積と同じ、圧縮濾過領域5の初期水流速度は変速濾過領域4の最大水流速度であり、圧縮濾過領域5における濾材層が受ける圧力は最大であり、濾過層は最も緻密である、フィルタ。
It is a lightweight filter medium filter with a small amount of water, a reverse washing speed, and an upward flow type.
Includes reactor 1, water supply and distribution system, gas backwash system, trace water backwash spray system, water collection system, and drainage / drainage system.
A water supply / drainage region 2, a backwash peeling region 3, a variable speed filtration region 4, a compression filtration region 5, and a water collection region 6 are partitioned inside the reactor 1, and above the compression filtration region 5 The levitation prevention filter plate 12 is attached, the filter head 13 is attached on the levitation prevention filter plate 12, the lid plate 14 is attached directly above the levitation prevention filter plate 12, and the guide plate is around the lid plate 14. Is provided, and the lid plate 14 is provided with an exhaust valve 9.
The water supply / drainage region 2 is located at the bottom of the reactor 1, the backwash peeling region 3 is located at the top of the water supply region 2, the backwash peeling region 3 is cylindrical, and the volume of the backwash peeling region 3 is. , Equal to the sum of the volumes of the variable speed filtration region 4 and the compression filtration region 5, the filth in the treated water is initially blocked by the filter media layer of the variable speed filtration region.
The variable speed filtration region 4 is located in the upper part of the backwash peeling region 3, and this region has a truncated cone shape in which the cross-sectional area gradually decreases from the bottom to the top, the water supply flow rate is constant, and the cross-sectional area becomes small. Then, the upward filtration pressure received by the filter medium layer in this area gradually increases.
The compression filtration region 5 is located above the variable speed filtration region 4, and this region is cylindrical, the cross-sectional area of which is the same as the cross-sectional area of the upper part of the variable speed filtration region 4, and the initial water flow speed of the compression filtration region 5 is variable speed filtration. The filter, which is the maximum water flow velocity in the region 4, the pressure exerted by the filter medium layer in the compression filtration region 5 is the maximum, and the filtration layer is the densest.

上記フィルタにおいて、処理される原水は給水/排泥領域2を通過して反応器1の底部に入り、順に逆洗剥離領域3、変速濾過領域4及び圧縮濾過領域5の濾材層を通過して遮断されて濾過され、濾過水はフィルタヘッドを通過して蓋板14に当たり、蓋板14のガイドプレートを通過して清水槽15に流入し、さらに越流堰16を経て集水領域6に入り、最後に出水管17を介して水が清水タンク38に収集される。 In the above filter, the raw water to be treated passes through the water supply / drainage region 2 and enters the bottom of the reactor 1, and in this order passes through the filter media layers of the backwash peeling region 3, the variable speed filtration region 4 and the compression filtration region 5. It is blocked and filtered, and the filtered water passes through the filter head, hits the lid plate 14, passes through the guide plate of the lid plate 14, flows into the fresh water tank 15, and further enters the water collecting region 6 via the overflow dam 16. Finally, water is collected in the fresh water tank 38 via the drain pipe 17.

上記フィルタにおいて、反応器内に充填される濾材は、粒径0.5~1mmの発泡ポリスチレン粒子36である。 In the above filter, the filter medium filled in the reactor is expanded polystyrene particles 36 having a particle size of 0.5 to 1 mm.

上記フィルタにおいて、給水配水システムは、原水タンク37、水ポンプ18、原水給水管10、給水バルブ25及び反射板11を含み、原水給水管10には給水バルブ25が取り付けられ、反射板11は給水管口の真下に位置し、水を均等に配給するために用いられ、原水タンク37は水ポンプ18の給水口に接続され、水ポンプ18の出水口は原水給水管10の給水バルブ25に接続され、反射板11は原水給水管10の管口の真下に位置し、処理される水は、水ポンプにより加圧され、原水給水管により反応器1の底部の給水/排泥領域2に輸送され、給水は反射板11により均等に配給される。 In the above filter, the water supply distribution system includes a raw water tank 37, a water pump 18, a raw water supply pipe 10, a water supply valve 25 and a reflector 11, and a water supply valve 25 is attached to the raw water supply pipe 10, and the reflector 11 supplies water. Located directly below the pipe opening and used to distribute water evenly, the raw water tank 37 is connected to the water supply port of the water pump 18, and the water outlet of the water pump 18 is connected to the water supply valve 25 of the raw water supply pipe 10. The reflector 11 is located directly below the mouth of the raw water supply pipe 10, and the treated water is pressurized by a water pump and transported to the water supply / drainage region 2 at the bottom of the reactor 1 by the raw water supply pipe. The water supply is evenly distributed by the reflector 11.

上記フィルタにおいて、集水システムは、清水出水管17及び清水タンク38を含み、清水出水管17の一端は集水領域6に接続され、他端は清水タンク38に連通し、集水領域と清水タンク38の間には高低差があり、高低差により清水は自動的に清水タンクに流入する。 In the above filter, the water collecting system includes a fresh water discharge pipe 17 and a fresh water tank 38, one end of the fresh water discharge pipe 17 is connected to the water collecting region 6, and the other end communicates with the fresh water tank 38, so that the water collecting region and the fresh water are collected. There is a height difference between the tanks 38, and the fresh water automatically flows into the fresh water tank due to the height difference.

上記フィルタにおいて、微量水逆洗スプレーシステムは、清水ポンプ19、微量水逆洗主管23、微量水逆洗バルブ30及びバルブ31、微量水逆洗スプレー分岐管8、濾材洗浄補助ノズル24、液面センサ35及び液面検知器34を含み、清水ポンプ19は清水タンク38に接続され、清水ポンプ19は微量水逆洗主管23、微量水逆洗バルブ30、バルブ31により微量水逆洗スプレー分岐管8に接続され、微量水逆洗スプレー分岐管8は周方向に沿って圧縮濾過領域5及び変速濾過領域4の外部に設けられ、各微量水逆洗スプレー分岐管8には複数の濾材洗浄補助ノズル24が設けられ、これにより水が圧縮濾過領域5及び変速濾過領域4の内部に導入され、液面センサ35は逆洗剥離領域3の頂部に設けられ、データ線により液面検知器34に接続され、逆洗過程において液面センサ35の水位検知結果に基づいて水位を逆洗剥離領域3の頂部に制御する。 In the above filter, the trace water backwash spray system includes a fresh water pump 19, a trace water backwash main pipe 23, a trace water backwash valve 30 and a valve 31, a trace water backwash spray branch pipe 8, a filter medium cleaning auxiliary nozzle 24, and a liquid level. The fresh water pump 19 is connected to the fresh water tank 38 including the sensor 35 and the liquid level detector 34, and the fresh water pump 19 is a trace water backwash main pipe 23, a trace water backwash valve 30, and a trace water backwash spray branch pipe by a valve 31. Connected to 8, the trace water backwash spray branch pipe 8 is provided outside the compression filtration region 5 and the variable speed filtration region 4 along the circumferential direction, and each trace water backwash spray branch pipe 8 assists in cleaning a plurality of filter media. A nozzle 24 is provided, whereby water is introduced into the compression filtration region 5 and the variable speed filtration region 4, the liquid level sensor 35 is provided at the top of the backwash peeling region 3, and the liquid level detector 34 is provided with a data line. It is connected and controls the water level to the top of the backwash peeling region 3 based on the water level detection result of the liquid level sensor 35 in the backwash process.

上記フィルタにおいて、ガス逆洗システムは、空気圧縮機20、逆洗ガス管22、逆洗ガス管ノズル7、逆洗エアバルブ28及びチェックバルブ26、逆洗リリースバルブ9を含み、反応器1の排水管21には排水/排泥バルブ27が取り付けられ、反応器1内の逆洗ガス管22は、逆洗剥離領域3の底部にある管部に均等に分布する逆洗ガス管ノズル7が設けられ、逆洗ガス管22には逆洗エアバルブ28及び逆流を防止するチェックバルブ26が取り付けられ、反応器1の頂部の蓋板には排気バルブ9が設けられる。
上記フィルタにおいて、排水/排泥システムは、排水/排泥管21及び排水/排泥バルブ27を含み、排水/排泥管21は、給水/排泥領域2の底部に設けられ、排水/排泥管21には排水/排泥バルブ27が設けられる。
In the above filter, the gas backwash system includes an air compressor 20, a backwash gas pipe 22, a backwash gas pipe nozzle 7, a backwash air valve 28 and a check valve 26, and a backwash release valve 9, and drains the reactor 1. A drain / drain valve 27 is attached to the pipe 21, and the backwash gas pipe 22 in the reactor 1 is provided with a backwash gas pipe nozzle 7 evenly distributed in the pipe portion at the bottom of the backwash peeling region 3. A backwash air valve 28 and a check valve 26 for preventing backflow are attached to the backwash gas pipe 22, and an exhaust valve 9 is provided on the lid plate at the top of the reactor 1.
In the above filter, the drainage / mud drainage system includes a drainage / mud drainage pipe 21 and a drainage / mud drainage valve 27, and the drainage / mud drainage pipe 21 is provided at the bottom of the water supply / mud drainage region 2 to drain / drain. The mud pipe 21 is provided with a drainage / mud drain valve 27.

上記フィルタにおいて、微小水量逆洗変速上向流式軽量濾材フィルタの作動操作の過程は、1濾過過程、2逆洗過程、及び3軽量濾材層復位過程に分けられ、この3つの過程はサイクルで行われる。
(1)濾過過程:排水/排泥バルブ27、逆洗吸気バルブ28及び連通バルブ29を閉じ、給水バルブ25及び排気バルブ9を開き、給水ポンプ18を起動し、水ポンプ18により原水タンク37における処理される水を、給水管10を介して反応器1に送入し、処理される水が給水管10から反射板11を経て均等に配給され、濾過水流が上へ順に逆洗剥離領域3、変速濾過領域4、圧縮濾過領域5を通過し、最後に水流がフィルタヘッドを通過して清水領域に入り、上昇する水流が蓋板14に当たったときに、出水がまず排ガス管から排出され、この場合、排気バルブ9を閉じることにより、水流がガイドプレートを通過して清水槽15に流入し、さらに越流堰16を通して集水領域6に流入し、最後出水管17を経て清水タンク38に入る。
In the above filter, the process of operating the minute water amount backwash shift upward flow type lightweight filter medium filter is divided into 1 filtration process, 2 backwashing process, and 3 lightweight filter medium layer repositioning process, and these three processes are cycles. Will be done.
(1) Filtering process: The drainage / drainage valve 27, the backwash intake valve 28 and the communication valve 29 are closed, the water supply valve 25 and the exhaust valve 9 are opened, the water supply pump 18 is started, and the water pump 18 is used in the raw water tank 37. The treated water is sent to the reactor 1 via the water supply pipe 10, the treated water is evenly distributed from the water supply pipe 10 through the reflector 11, and the filtered water flow is sequentially upwardly washed away from the backwash peeling region 3. When the water flow passes through the variable speed filtration area 4 and the compression filtration area 5, and finally the water flow passes through the filter head and enters the fresh water area, and the rising water flow hits the lid plate 14, the discharge water is first discharged from the exhaust gas pipe. In this case, by closing the exhaust valve 9, the water flow passes through the guide plate and flows into the fresh water tank 15, further flows into the water collecting region 6 through the overflow weir 16, and passes through the final drain pipe 17 to the fresh water tank 38. to go into.

(2)逆洗過程:給水バルブ25を閉じ、排水/排泥バルブ27を開き、反応器1内の水位は、水の排水/排泥バルブ27からの排出に伴い徐々に下降し、濾材も下降し、このとき、連通バルブ29、微小水量給水調節バルブ30及びバルブ31を開き、微小水量スプレー水ポンプ19を起動し、濾材洗浄補助ノズル孔24のスプレー作用により圧縮濾過領域5の濾材を分散して下に移動させ、最後に液面センサ35及び液面検知器34により水位を逆洗剥離領域3の頂部に制御し、このとき、連通バルブ29、微小水量給水調節バルブ30及びバルブ31を閉じ、微小水量スプレー水ポンプ19を閉じ、逆洗吸気バルブ28、排気バルブ9を開き、ガスポンプ20を起動し、ガスが空気圧縮機20により加圧された後、ガス管20、ガス量調節バルブ28、チェックバルブ26を経て反応器に入り、さらに逆洗ガス管ノズル7により吐出され、軽量濾材を5分-10分間撹拌することで、濾材層が遮断した汚物がガスせん断作用及びそれ自体の重力作用により濾材から剥離され、そして、空気圧縮機20及びバルブ28を閉じ、沈殿作用により剥離した不純物を排水/排泥領域2に集中させ、沈殿時間が20分-30分間であり、さらに、排水/排泥バルブ27を開き、汚泥を、排泥管21を介して水流と共に排出し、逆洗過程を完成させる。 (2) Backwash process: The water supply valve 25 is closed, the drainage / mud drainage valve 27 is opened, the water level in the reactor 1 gradually drops as the water drainage / mud drainage valve 27 drains, and the filter medium also At this time, the communication valve 29, the minute water supply adjustment valve 30 and the valve 31 are opened, the minute water amount spray water pump 19 is started, and the filter medium in the compression filtration region 5 is dispersed by the spraying action of the filter medium cleaning auxiliary nozzle hole 24. Finally, the liquid level sensor 35 and the liquid level detector 34 control the water level to the top of the backwash peeling region 3, and at this time, the communication valve 29, the minute water supply adjustment valve 30 and the valve 31 are operated. Close, close the minute water spray water pump 19, open the backwash intake valve 28 and exhaust valve 9, start the gas pump 20, and after the gas is pressurized by the air compressor 20, the gas pipe 20 and the gas amount adjustment valve. 28, it enters the reactor via the check valve 26, is further discharged by the backwash gas pipe nozzle 7, and the lightweight filter medium is stirred for 5 to 10 minutes, so that the filth blocked by the filter medium layer has a gas shearing action and itself. The impurities separated from the filter medium by the action of gravity and then closed the air compressor 20 and the valve 28, the impurities separated by the action of precipitation are concentrated in the drainage / drainage region 2, and the precipitation time is 20 to 30 minutes, and further. The drain / mud drain valve 27 is opened and the sludge is drained together with the water stream through the sludge pipe 21 to complete the backwash process.

(3)軽量濾材層復位過程:逆洗が終了し、排泥した後、次の濾過過程に入る前に、軽量濾材層復位を行う必要があり、まず、排水/排泥バルブ27及び逆洗エアバルブ28を閉じ、微小水量スプレー給水バルブ30及びバルブ31を開き、連通バルブ29及び排気バルブ9を開き、微小水量スプレー水ポンプ19を起動し、微小水量スプレー水ポンプ19の洗い流し作用により、水流は濾材洗浄補助ノズル孔24から反応器1内にスプレーされ、反応器1内の水位が徐々に上昇し、発泡ポリスチレン粒子EPS濾材36は比重が水より小さいため、上昇水流の押し上げにより自動復位が実現されるとともに、微小水量スプレーが上昇過程中の軽量濾材の分布を補助的に調整し、上昇濾材が浮上防止フィルタプレートにより遮断されるとともに水流の上向きの作用力により作用されることにより、濾過層は徐々に緻密に圧縮され、このとき、微小水量スプレー給水バルブ30及びバルブ31を閉じ、引き続き微小水量スプレー水ポンプ19の動作を5分-10分間保持した後、微小水量スプレー水ポンプ19及び連通バルブ29を閉じ、濾材層の復位過程を完成させる。 (3) Lightweight filter medium layer repositioning process: After the backwash is completed and the mud is drained, it is necessary to perform the lightweight filter medium layer repositioning before starting the next filtration process. First, the drainage / mud drain valve 27 and the backwash The air valve 28 is closed, the minute water spray water supply valve 30 and the valve 31 are opened, the communication valve 29 and the exhaust valve 9 are opened, the minute water spray water pump 19 is started, and the water flow is caused by the flushing action of the minute water spray water pump 19. It is sprayed into the reactor 1 from the filter media cleaning auxiliary nozzle hole 24, the water level in the reactor 1 gradually rises, and since the specific gravity of the expanded polystyrene particle EPS filter medium 36 is smaller than that of water, automatic repositioning is realized by pushing up the rising water flow. At the same time, the minute water amount spray assists in adjusting the distribution of the lightweight filter medium during the ascending process, and the ascending filter medium is blocked by the levitation prevention filter plate and is acted by the upward acting force of the water flow, whereby the filtration layer. Is gradually and finely compressed, and at this time, the minute water amount spray water supply valve 30 and the valve 31 are closed, and the operation of the minute water amount spray water pump 19 is continuously maintained for 5 to 10 minutes, and then the minute water amount spray water pump 19 and the communication are communicated with each other. The valve 29 is closed to complete the repositioning process of the filter media layer.

本発明は、従来のフィルタに比べ、以下の利点を有する。 The present invention has the following advantages over conventional filters.

(1)可変濾過断面の設計により、濾過速度が速くなるとともに、圧力が高くなる濾過状態が形成されることによって、濾過時に濾過層が水の力により自動的に緻密に圧縮される目的が達成されるとともに、従来の軽量濾材の濾過層その自体が緻密に圧縮することができず、孔隙が緩くて大きいという問題が解決される。
(2)逆洗時に、遮断された汚泥の重力作用を利用し、ガススプレーによる撹拌によりそれと濾材を分離し、重力により沈降させることで軽量濾材と分離し、逆洗水を必要とせず、節水で省エネである。
(3)初めて軽量濾材領域に濾材洗浄補助ノズル孔を設ける。これによって、逆洗開始時に圧縮された濾材が下へ移動するのを促進するとともに、逆洗後の濾材復位時にさらに微小水量で濾材に残留した不純物を洗い流し、濾過層の洗浄効果を高めることができる。
(1) By designing the variable filtration cross section, the filtration speed is increased and the filtration state is formed, so that the purpose of automatically and finely compressing the filtration layer by the force of water during filtration is achieved. At the same time, the problem that the filtration layer itself of the conventional lightweight filter medium cannot be compressed precisely and the pores are loose and large is solved.
(2) At the time of backwashing, the gravity action of the blocked sludge is used to separate it from the filter medium by stirring with a gas spray, and by settling by gravity, it is separated from the lightweight filter medium, which does not require backwashing and saves water. It is energy saving.
(3) For the first time, a filter media cleaning auxiliary nozzle hole is provided in the lightweight filter media area. This promotes the movement of the compressed filter media downward at the start of backwashing, and at the time of repositioning the filter media after backwashing, it is possible to further wash away impurities remaining in the filter media with a small amount of water and enhance the cleaning effect of the filter layer. can.

(4)上向流が水の圧縮作用により自動的に孔隙の大きいものから小さいものへの分布が実現され、濾過過程の段階原則が満たされるので、濾過抵抗が小さく、省エネである。 (4) The upward flow is automatically distributed from the one with a large pore to the one with a small pore by the compression action of water, and the step principle of the filtration process is satisfied, so that the filtration resistance is small and energy saving is achieved.

濾過時の動作原理図である。It is an operation principle diagram at the time of filtration. 逆洗時の動作原理図である。It is an operation principle diagram at the time of backwashing.

以下、具体的な実施例により本発明を詳しく説明する。 Hereinafter, the present invention will be described in detail with reference to specific examples.

本実施例に係る微小水量逆洗変速上向流式軽量濾材フィルタは反応器1、給水配水システム、ガス逆洗システム、微量水逆洗スプレーシステム、集水システム、及び排水/排泥システムを含む。 The micro water volume backwash shifting upward flow type lightweight filter medium filter according to this embodiment includes a reactor 1, a water supply water distribution system, a gas backwash system, a trace water backwash spray system, a water collection system, and a drainage / mud drainage system. ..

反応器1は、ステンレス鋼材質を採用する。反応器1の内部には、給水/排泥領域2、逆洗剥離領域3、変速濾過領域4、圧縮濾過領域5、及び集水領域6が区画されている。変速濾過領域4及び圧縮濾過領域5に充填された濾材は発泡ポリスチレン粒子(EPS)36であり、粒径が0.5~1mmである。圧縮濾過領域5の上部に浮上防止フィルタプレート12が取り付けられ、浮上防止フィルタプレート12上にフィルタヘッド13が取り付けられ、浮上防止フィルタプレート12の真上に蓋板14が取り付けられ、蓋板14の周囲にガイドプレートが設けられ、蓋板14上に排気バルブ9が設けられる。
給水/排泥領域2は反応器1の底部に位置し、逆洗剥離領域3は給水領域2の上部に位置し、逆洗剥離領域3は円筒状であり、容積が変速濾過領域4と圧縮濾過領域5との容積の和と等しい。濾過領域に充填された濾材は発泡ポリスチレン粒子(EPS)であり、濾材の粒径は0.5~1mmである。処理される水中の汚物は最初変速濾過領域における濾材層により遮断される。
変速濾過領域4は逆洗剥離領域3の上部に位置し、この領域は、断面積が下から上へ徐々に小さくなる円錐台状であり、給水流量が一定であり、断面積が小さくなる。一般式Q=A・υから分かるように、水流速度が徐々に速くなるため、この領域の濾材層が受ける上向きの濾過圧力は徐々に大きくなる。変速濾過領域4に充填された濾材は発泡ポリスチレン粒子(EPS)であり、濾材の粒径は0.5~1mmである。
The reactor 1 uses a stainless steel material. Inside the reactor 1, a water supply / drainage region 2, a backwash peeling region 3, a variable speed filtration region 4, a compression filtration region 5, and a water collection region 6 are partitioned. The filter medium filled in the variable speed filtration region 4 and the compression filtration region 5 is expanded polystyrene particles (EPS) 36, and has a particle size of 0.5 to 1 mm. The levitation prevention filter plate 12 is attached to the upper part of the compression filtration region 5, the filter head 13 is attached to the levitation prevention filter plate 12, the lid plate 14 is attached directly above the levitation prevention filter plate 12, and the lid plate 14 is attached. A guide plate is provided around the cover plate 14, and an exhaust valve 9 is provided on the lid plate 14.
The water supply / mud drainage region 2 is located at the bottom of the reactor 1, the backwash peeling region 3 is located at the top of the water supply region 2, the backwash peeling region 3 is cylindrical, and the volume is compressed with the variable speed filtration region 4. Equal to the sum of the volumes with the filtration area 5. The filter medium filled in the filtration region is expanded polystyrene particles (EPS), and the particle size of the filter medium is 0.5 to 1 mm. The filth in the treated water is initially blocked by the filter media layer in the variable speed filtration region.
The variable speed filtration region 4 is located in the upper part of the backwash peeling region 3, and this region has a truncated cone shape in which the cross-sectional area gradually decreases from the bottom to the top, the water supply flow rate is constant, and the cross-sectional area becomes small. As can be seen from the general formula Q = A · υ, the water flow velocity gradually increases, so that the upward filtration pressure received by the filter medium layer in this region gradually increases. The filter medium filled in the variable speed filtration region 4 is expanded polystyrene particles (EPS), and the particle size of the filter medium is 0.5 to 1 mm.

圧縮濾過領域5は変速濾過領域4の上部に位置し、この領域は円筒状であり、その断面積が変速濾過領域4の上部の断面積と同じ、圧縮濾過領域5の初期水流速度は変速濾過領域4の最大水流速度であり、圧縮濾過領域5における濾材層が受ける圧力は最大であり、濾過層は最も緻密である。充填された濾材は発泡ポリスチレン粒子(EPS)であり、濾材の粒径は0.5~1mmである。 The compression filtration region 5 is located above the variable speed filtration region 4, and this region is cylindrical, the cross-sectional area of which is the same as the cross-sectional area of the upper part of the variable speed filtration region 4, and the initial water flow speed of the compression filtration region 5 is variable speed filtration. It is the maximum water flow velocity of the region 4, the pressure received by the filter medium layer in the compression filtration region 5 is the maximum, and the filtration layer is the densest. The filled filter medium is expanded polystyrene particles (EPS), and the particle size of the filter medium is 0.5 to 1 mm.

処理される原水は給水/排泥領域2を通過して反応器1の底部に入り、順に逆洗剥離領域3、変速濾過領域4及び圧縮濾過領域5の濾材層を通過して遮断されて濾過され、濾過水はフィルタヘッドを通過して蓋板14に当たり、蓋板14のガイドプレートを通過して清水槽15に流入し、さらに越流堰16を経て集水領域6に入り、最後に出水管17を介して水が清水タンク38に収集される。 The raw water to be treated passes through the water supply / drainage region 2 and enters the bottom of the reactor 1, and in this order passes through the filter media layers of the backwash peeling region 3, the variable speed filtration region 4 and the compression filtration region 5 to be blocked and filtered. Then, the filtered water passes through the filter head, hits the lid plate 14, passes through the guide plate of the lid plate 14, flows into the fresh water tank 15, further enters the water collecting region 6 through the overflow dam 16, and finally exits. Water is collected in the fresh water tank 38 via the water pipe 17.

給水配水システムは、原水タンク37、水ポンプ18、原水給水管10、給水バルブ25及び反射板11を含み、原水給水管10には給水バルブ25が取り付けられ、反射板11は給水管口の真下に位置し、水を均等に配給するために用いられ、原水タンク37は水ポンプ18の給水口に接続され、水ポンプ18の出水口は原水給水管10の給水バルブ25に接続され、反射板11は原水給水管10の管口の真下に位置し、処理される水は、水ポンプにより加圧され、原水給水管により反応器1の底部の給水/排泥領域2に輸送され、給水は反射板11により均等に配給される。 The water supply and distribution system includes a raw water tank 37, a water pump 18, a raw water supply pipe 10, a water supply valve 25 and a reflector 11, and a water supply valve 25 is attached to the raw water supply pipe 10, and the reflective plate 11 is directly below the water supply pipe port. The raw water tank 37 is connected to the water supply port of the water pump 18, and the water outlet of the water pump 18 is connected to the water supply valve 25 of the raw water supply pipe 10 and is used to distribute water evenly. Reference numeral 11 is located directly below the mouth of the raw water supply pipe 10, and the treated water is pressurized by a water pump and transported by the raw water supply pipe to the water supply / drainage region 2 at the bottom of the reactor 1 to supply water. It is evenly distributed by the reflector 11.

集水システムは、清水出水管17及び清水タンク38を含み、清水出水管17の一端は集水領域6に接続され、他端は清水タンク38に連通し、集水領域と清水タンク38の間には高低差があり、高低差により清水は自動的に清水タンクに流入する。 The water collection system includes a fresh water discharge pipe 17 and a fresh water tank 38, one end of the fresh water discharge pipe 17 is connected to the water collection area 6, and the other end communicates with the fresh water tank 38, between the water collection area and the fresh water tank 38. There is a height difference in the water, and fresh water automatically flows into the fresh water tank due to the height difference.

微量水逆洗スプレーシステムは、清水ポンプ19、微量水逆洗主管23、微量水逆洗バルブ30及びバルブ31、微量水逆洗スプレー分岐管8、濾材洗浄補助ノズル24、液面センサ35及び液面検知器34を含み、清水ポンプ19は清水タンク38に接続され、清水ポンプ19は微量水逆洗主管23、微量水逆洗バルブ30、バルブ31により微量水逆洗スプレー分岐管8に接続され、微量水逆洗スプレー分岐管8は周方向に沿って圧縮濾過領域5及び変速濾過領域4の外部に設けられ、各微量水逆洗スプレー分岐管8には複数の濾材洗浄補助ノズル24が設けられ、これにより水が圧縮濾過領域5及び変速濾過領域4の内部に導入され、液面センサ35は逆洗剥離領域3の頂部に設けられ、データ線により液面検知器34に接続され、逆洗過程において液面センサ35の水位検知結果に基づいて水位を逆洗剥離領域3の頂部に制御する。
微量水逆洗システムは2つの機能を有する。一つ目は、濾過終了後、逆洗段階に入り、逆洗スプレーの作用により緻密に圧縮された軽量濾材36を分散させ、逆洗剥離領域3に戻らせることである。二つ目は、逆洗終了後の濾材復位過程において、逆洗スプレーの作用により軽量濾材36の表面をさらに洗い流すとともに、濾材を均等に配列させる作用を奏する。
The trace water backwash spray system includes a fresh water pump 19, a trace water backwash main pipe 23, a trace water backwash valve 30 and a valve 31, a trace water backwash spray branch pipe 8, a filter medium cleaning auxiliary nozzle 24, a liquid level sensor 35 and a liquid. Including the surface detector 34, the fresh water pump 19 is connected to the fresh water tank 38, and the fresh water pump 19 is connected to the trace water backwash spray branch pipe 8 by the trace water backwash main pipe 23, the trace water backwash valve 30, and the valve 31. The trace water backwash spray branch pipe 8 is provided outside the compression filtration region 5 and the variable speed filtration region 4 along the circumferential direction, and each trace water backwash spray branch pipe 8 is provided with a plurality of filter media cleaning auxiliary nozzles 24. As a result, water is introduced into the compression filtration region 5 and the variable speed filtration region 4, the liquid level sensor 35 is provided at the top of the backwash peeling region 3, and is connected to the liquid level detector 34 by a data line. In the washing process, the water level is controlled to the top of the backwash peeling region 3 based on the water level detection result of the liquid level sensor 35.
The micro water backwash system has two functions. The first is to enter the backwash stage after the completion of filtration, disperse the lightweight filter medium 36 densely compressed by the action of the backwash spray, and return it to the backwash peeling region 3. The second is that in the process of repositioning the filter media after the backwashing is completed, the surface of the lightweight filter media 36 is further washed away by the action of the backwash spray, and the filter media are evenly arranged.

ガス逆洗システムは、空気圧縮機20、逆洗ガス管22、逆洗ガス管ノズル7、逆洗エアバルブ28及びチェックバルブ26、逆洗リリースバルブ9を含み、反応器1の排水管21には排水/排泥バルブ27が取り付けられ、反応器1内の逆洗ガス管22は、逆洗剥離領域3の底部にある管部に均等に分布する逆洗ガス管ノズル7が設けられ、逆洗ガス管22には逆洗エアバルブ28及び逆流を防止するチェックバルブ26が取り付けられ、反応器1の頂部の蓋板には排気バルブ9が設けられる。
排水/排泥システムは、排水/排泥管21及び排水/排泥バルブ27を含み、排水/排泥管21は、給水/排泥領域2の底部に設けられ、排水/排泥管21には排水/排泥バルブ27が設けられる。
The gas backwash system includes an air compressor 20, a backwash gas pipe 22, a backwash gas pipe nozzle 7, a backwash air valve 28 and a check valve 26, and a backwash release valve 9, and the drain pipe 21 of the reactor 1 has a gas backwash system. The drain / mud drain valve 27 is attached, and the backwash gas pipe 22 in the reactor 1 is provided with a backwash gas pipe nozzle 7 evenly distributed in the pipe portion at the bottom of the backwash peeling region 3, and is backwashed. A backwash air valve 28 and a check valve 26 for preventing backflow are attached to the gas pipe 22, and an exhaust valve 9 is provided on the lid plate at the top of the reactor 1.
The drainage / mud drainage system includes a drainage / mud drainage pipe 21 and a drainage / mud drainage valve 27, and the drainage / mud drainage pipe 21 is provided at the bottom of the water supply / mud drainage region 2 and is provided in the drainage / mud drainage pipe 21. Is provided with a drainage / drainage valve 27.

具体的な作動過程
微小水量逆洗変速上向流式軽量濾材フィルタの作動操作の過程は、1濾過過程、2逆洗過程、及び3軽量濾材層復位過程に分けられ、この3つの過程はサイクルで行われる。
Specific operation process The operation process of the minute water amount backwash shift upward flow type lightweight filter medium filter is divided into 1 filtration process, 2 backwash process, and 3 lightweight filter medium layer repositioning process, and these three processes are cycles. It is done in.

(1)濾過過程:排水/排泥バルブ27、逆洗吸気バルブ28及び連通バルブ29を閉じ、給水バルブ25及び排気バルブ9を開き、給水ポンプ18を起動し、水ポンプ18により原水タンク37における処理される水を、給水管10を介して反応器1に送入し、処理される水が給水管10から反射板11を経て均等に配給され、濾過水流が上へ順に逆洗剥離領域3、変速濾過領域4、圧縮濾過領域5を通過し、最後に水流がフィルタヘッドを通過して清水領域に入り、上昇する水流が蓋板14に当たったときに、出水がまず排ガス管から排出され、この場合、排気バルブ9を閉じることにより、水流がガイドプレートを通過して清水槽15に流入し、さらに越流堰16を通して集水領域6に流入し、最後出水管17を経て清水タンク38に入る。 (1) Filtering process: The drainage / drainage valve 27, the backwash intake valve 28 and the communication valve 29 are closed, the water supply valve 25 and the exhaust valve 9 are opened, the water supply pump 18 is started, and the water pump 18 is used in the raw water tank 37. The treated water is sent to the reactor 1 via the water supply pipe 10, the treated water is evenly distributed from the water supply pipe 10 through the reflector 11, and the filtered water flow is sequentially upwardly washed away from the backwash peeling region 3. When the water flow passes through the variable speed filtration area 4 and the compression filtration area 5, and finally the water flow passes through the filter head and enters the fresh water area, and the rising water flow hits the lid plate 14, the discharge water is first discharged from the exhaust gas pipe. In this case, by closing the exhaust valve 9, the water flow passes through the guide plate and flows into the fresh water tank 15, further flows into the water collecting region 6 through the overflow weir 16, and passes through the final drain pipe 17 to the fresh water tank 38. to go into.

(2)逆洗過程:給水バルブ25を閉じ、排水/排泥バルブ27を開き、反応器1内の水位は、水の排水/排泥バルブ27からの排出に伴い徐々に下降し、濾材も下降し、このとき、連通バルブ29、微小水量給水調節バルブ30及びバルブ31を開き、微小水量スプレー水ポンプ19を起動し、濾材洗浄補助ノズル孔24のスプレー作用により圧縮濾過領域5の濾材を分散して下に移動させ、最後に液面センサ35及び液面検知器34により水位を逆洗剥離領域3の頂部に制御し、このとき、連通バルブ29、微小水量給水調節バルブ30及びバルブ31を閉じ、微小水量スプレー水ポンプ19を閉じ、逆洗吸気バルブ28、排気バルブ9を開き、ガスポンプ20を起動し、ガスが空気圧縮機20により加圧された後、ガス管20、ガス量調節バルブ28、チェックバルブ26を経て反応器に入り、さらに逆洗ガス管ノズル7により吐出され、軽量濾材を5分-10分間撹拌することで、濾材層が遮断した汚物がガスせん断作用及びそれ自体の重力作用により濾材から剥離され、そして、空気圧縮機20及びバルブ28を閉じ、沈殿作用により剥離した不純物を排水/排泥領域2に集中させ、沈殿時間が20分-30分であり、さらに、排水/排泥バルブ27を開き、汚泥を、排泥管21を介して水流と共に排出し、逆洗過程を完成させる。 (2) Backwash process: The water supply valve 25 is closed, the drainage / mud drainage valve 27 is opened, the water level in the reactor 1 gradually drops as the water drainage / mud drainage valve 27 drains, and the filter medium also At this time, the communication valve 29, the minute water supply adjustment valve 30 and the valve 31 are opened, the minute water amount spray water pump 19 is started, and the filter medium in the compression filtration region 5 is dispersed by the spraying action of the filter medium cleaning auxiliary nozzle hole 24. Finally, the liquid level sensor 35 and the liquid level detector 34 control the water level to the top of the backwash peeling region 3, and at this time, the communication valve 29, the minute water supply adjustment valve 30 and the valve 31 are operated. Close, close the minute water spray water pump 19, open the backwash intake valve 28 and exhaust valve 9, start the gas pump 20, and after the gas is pressurized by the air compressor 20, the gas pipe 20 and the gas amount adjustment valve. 28, it enters the reactor via the check valve 26, is further discharged by the backwash gas pipe nozzle 7, and the lightweight filter medium is stirred for 5 to 10 minutes, so that the filth blocked by the filter medium layer has a gas shearing action and itself. The impurities separated from the filter medium by the action of gravity and then closed the air compressor 20 and the valve 28, the impurities separated by the action of precipitation are concentrated in the drainage / drainage region 2, and the precipitation time is 20 to 30 minutes, and further. The drain / mud drain valve 27 is opened and the sludge is drained together with the water stream through the sludge pipe 21 to complete the backwash process.

(3)軽量濾材層復位過程:逆洗が終了し、排泥した後、次の濾過過程に入る前に、軽量濾材層復位を行う必要があり、まず、排水/排泥バルブ27及び逆洗エアバルブ28を閉じ、微小水量スプレー給水バルブ30及びバルブ31を開き、連通バルブ29及び排気バルブ9を開き、微小水量スプレー水ポンプ19を起動し、微小水量スプレー水ポンプ19の洗い流し作用により、水流が濾材洗浄補助ノズル孔24から反応器1内にスプレーされ、反応器1内の水位が徐々に上昇し、発泡ポリスチレン粒子EPS濾材36は比重が水より小さいため、上昇水流の押し上げにより自動復位が実現されるとともに、微小水量スプレーが上昇過程中の軽量濾材の分布を補助的に調整し、上昇濾材が浮上防止フィルタプレートにより遮断されるとともに水流の上向きの作用力により作用されることにより、濾過層は徐々に緻密に圧縮され、このとき、微小水量スプレー給水バルブ30及びバルブ31を閉じ、引き続き微小水量スプレー水ポンプ19の動作を5分-10分間保持した後、微小水量スプレー水ポンプ19及び連通バルブ29を閉じ、濾材層の復位過程を完成させる。 (3) Lightweight filter medium layer repositioning process: After the backwash is completed and the mud is drained, it is necessary to perform the lightweight filter medium layer repositioning before starting the next filtration process. First, the drainage / mud drain valve 27 and the backwash The air valve 28 is closed, the minute water spray water supply valve 30 and the valve 31 are opened, the communication valve 29 and the exhaust valve 9 are opened, the minute water spray water pump 19 is started, and the water flow is caused by the flushing action of the minute water spray water pump 19. It is sprayed into the reactor 1 from the filter media cleaning auxiliary nozzle hole 24, the water level in the reactor 1 gradually rises, and since the specific gravity of the expanded polystyrene particle EPS filter medium 36 is smaller than that of water, automatic repositioning is realized by pushing up the rising water flow. At the same time, the minute water amount spray assists in adjusting the distribution of the lightweight filter medium during the ascending process, and the ascending filter medium is blocked by the levitation prevention filter plate and is acted by the upward acting force of the water flow, whereby the filtration layer. Is gradually and finely compressed, and at this time, the minute water amount spray water supply valve 30 and the valve 31 are closed, and the operation of the minute water amount spray water pump 19 is continuously maintained for 5 to 10 minutes, and then the minute water amount spray water pump 19 and the communication are communicated with each other. The valve 29 is closed to complete the repositioning process of the filter media layer.

(4)反応器のメンテナンス:反応器が約1年間作動した後、濾材を交換又は補充する必要がある。濾材を交換又は補充する際に、排水/排泥バルブ27、逆洗補助バルブ30及びバルブ31を開き、バルブ25、逆洗エアバルブ28及び連通バルブ29を閉じる必要がある。濾材が水位に伴って下に移動し、液面検知器34に水位が濾材交換口の下縁以下の位置に下降したことが表示されるときに、排水/排泥バルブ27を閉じ、逆洗水ポンプ19の動作を停止させ、濾材交換口33を開き、濾材を補充又は交換する。濾材を加えた後、濾材交換口33を閉じ、濾過過程に従って濾過を開始する。 (4) Reactor maintenance: After the reactor has been in operation for about 1 year, the filter media needs to be replaced or replenished. When replacing or replenishing the filter medium, it is necessary to open the drainage / mud drain valve 27, the backwash auxiliary valve 30 and the valve 31, and close the valve 25, the backwash air valve 28 and the communication valve 29. When the filter medium moves downward with the water level and the liquid level detector 34 indicates that the water level has dropped to a position below the lower edge of the filter medium exchange port, the drainage / mud drain valve 27 is closed and the backwash is performed. The operation of the water pump 19 is stopped, the filter medium exchange port 33 is opened, and the filter medium is replenished or replaced. After adding the filter medium, the filter medium exchange port 33 is closed and filtration is started according to the filtration process.

本実施例において、上記濾過反応器を用いてある汚水処理場の二次沈殿池で処理された後の排水に対して高度処理を行う。表1から分かるように、反応器は水中濁度に対して良好な除去効果を有する。反応器への給水濁度は7.134~36.270NTUであるが、反応器からの排水濁度は1NTU以下に達することができ、濁度除去率は94.5%~97.7%である。 In this embodiment, the wastewater after being treated in the secondary settling basin of a sewage treatment plant using the above filtration reactor is subjected to advanced treatment. As can be seen from Table 1, the reactor has a good removing effect on water turbidity. The turbidity of water supplied to the reactor is 7.134 to 36.270 NTU, but the turbidity of wastewater from the reactor can reach 1 NTU or less, and the turbidity removal rate is 94.5% to 97.7%. be.

<表1>
表1:異なる給水濁度の水質処理効果

Figure 2022515583000002
<Table 1>
Table 1: Water quality treatment effect with different water turbidity
Figure 2022515583000002

理解され得るように、当業者は、以上の説明に基づいて改良又は変更することができ、これらの改良及び変更はいずれも本発明の保護範囲に含まれるべきである。 As will be appreciated, those skilled in the art may make improvements or modifications based on the above description, and any of these improvements or modifications should be included in the scope of protection of the present invention.

Claims (9)

微小水量逆洗変速上向流式軽量濾材フィルタであって、
反応器(1)、給水配水システム、ガス逆洗システム、微量水逆洗スプレーシステム、集水システム、及び排水/排泥システムを含み、
反応器(1)の内部には、給水/排泥領域(2)、逆洗剥離領域(3)、変速濾過領域(4)、圧縮濾過領域(5)、及び集水領域(6)が区画されており、圧縮濾過領域(5)の上部には浮上防止フィルタプレート(12)が取り付けられ、浮上防止フィルタプレート(12)上にはフィルタヘッド(13)が取り付けられ、浮上防止フィルタプレート(12)の真上には蓋板(14)が取り付けられ、蓋板(14)の周囲にはガイドプレートが設けられ、蓋板(14)には排気バルブ(9)が設けられ、
給水/排泥領域(2)は反応器(1)の底部に位置し、逆洗剥離領域(3)は給水領域(2)の上部に位置し、逆洗剥離領域(3)は円筒状であり、逆洗剥離領域(3)の容積は、変速濾過領域(4)と圧縮濾過領域(5)との容積の和と等しく、処理される水中の汚物は、最初、変速濾過領域の濾材層によって遮断され、
変速濾過領域(4)は逆洗剥離領域(3)の上部に位置し、この領域は、断面積が下から上へ徐々に小さくなる円錐台状であり、給水流量が一定であり、断面積が小さくなることで、この領域の濾材層が受ける上向きの濾過圧力は徐々に大きくなり、
圧縮濾過領域(5)は変速濾過領域(4)の上部に位置し、この領域は円筒状であり、その断面積が変速濾過領域(4)の上部の断面積と同じ、圧縮濾過領域(5)の初期水流速度は変速濾過領域(4)の最大水流速度であり、圧縮濾過領域(5)における濾材層が受ける圧力は最大であり、濾過層は最も緻密であることを特徴とする、フィルタ。
It is a lightweight filter medium filter with a small amount of water, a reverse washing speed, and an upward flow type.
Includes reactor (1), water supply and distribution system, gas backwash system, trace water backwash spray system, water collection system, and drainage / drainage system.
Inside the reactor (1), a water supply / drainage region (2), a backwash peeling region (3), a variable speed filtration region (4), a compression filtration region (5), and a water collection region (6) are partitioned. A levitation prevention filter plate (12) is attached to the upper part of the compression filtration region (5), a filter head (13) is attached to the levitation prevention filter plate (12), and a levitation prevention filter plate (12) is attached. ), A lid plate (14) is attached, a guide plate is provided around the lid plate (14), and an exhaust valve (9) is provided on the lid plate (14).
The water supply / drainage region (2) is located at the bottom of the reactor (1), the backwash peeling region (3) is located above the water supply region (2), and the backwash peeling region (3) is cylindrical. Yes, the volume of the backwash peeling region (3) is equal to the sum of the volumes of the variable speed filtration region (4) and the compression filtration region (5), and the filth in the treated water is initially the filter medium layer of the variable speed filtration region. Blocked by
The variable speed filtration region (4) is located in the upper part of the backwash peeling region (3), and this region has a truncated cone shape in which the cross-sectional area gradually decreases from the bottom to the top, the water supply flow rate is constant, and the cross-sectional area. As the value becomes smaller, the upward filtration pressure received by the filter medium layer in this area gradually increases.
The compression filtration region (5) is located above the variable speed filtration region (4), and this region is cylindrical and has the same cross-sectional area as the upper cross-sectional area of the variable speed filtration region (4), the compression filtration region (5). ) Is the maximum water flow velocity in the variable speed filtration region (4), the pressure received by the filter medium layer in the compression filtration region (5) is the maximum, and the filtration layer is the densest. ..
処理される原水は給水/排泥領域(2)を通過して反応器(1)の底部に入り、順に逆洗剥離領域(3)、変速濾過領域(4)及び圧縮濾過領域(5)の濾材層を通過して遮断されて濾過され、濾過水はフィルタヘッドを通過して蓋板(14)に当たり、蓋板(14)のガイドプレートを通過して清水槽(15)に流入し、さらに越流堰(16)を経て集水領域(6)に入り、最後に出水管(17)を介して水が清水タンク(38)に収集されることを特徴とする、請求項1に記載のフィルタ。 The raw water to be treated passes through the water supply / drainage region (2) and enters the bottom of the reactor (1), and in this order, the backwash peeling region (3), the variable speed filtration region (4) and the compression filtration region (5). It passes through the filter medium layer, is blocked and filtered, and the filtered water passes through the filter head, hits the lid plate (14), passes through the guide plate of the lid plate (14), flows into the fresh water tank (15), and further. The first aspect of claim 1, wherein the water enters the catchment region (6) via the overflow dam (16) and finally the water is collected in the fresh water tank (38) via the drain pipe (17). filter. 反応器内に充填される濾材は、粒径0.5~1mmの発泡ポリスチレン粒子(36)であることを特徴とする、請求項1に記載のフィルタ。 The filter according to claim 1, wherein the filter medium filled in the reactor is expanded polystyrene particles (36) having a particle size of 0.5 to 1 mm. 給水配水システムは、原水タンク(37)、水ポンプ(18)、原水給水管(10)、給水バルブ(25)及び反射板(11)を含み、
原水給水管(10)には給水バルブ(25)が取り付けられ、反射板(11)は給水管口の真下に位置し、水を均等に配給するために用いられ、
原水タンク(37)は水ポンプ(18)の給水口に接続され、水ポンプ(18)の出水口は原水給水管(10)の給水バルブ(25)に接続され、反射板(11)は原水給水管(10)の管口の真下に位置し、
処理される水は、水ポンプにより加圧され、原水給水管により反応器(1)の底部の給水/排泥領域(2)に輸送され、給水は反射板(11)により均等に配給されることを特徴とする、請求項1に記載のフィルタ。
The water supply system includes a raw water tank (37), a water pump (18), a raw water supply pipe (10), a water supply valve (25) and a reflector (11).
A water supply valve (25) is attached to the raw water supply pipe (10), and the reflector (11) is located directly under the water supply pipe port and is used for even distribution of water.
The raw water tank (37) is connected to the water supply port of the water pump (18), the water outlet of the water pump (18) is connected to the water supply valve (25) of the raw water supply pipe (10), and the reflector (11) is the raw water. Located just below the mouth of the water supply pipe (10),
The treated water is pressurized by a water pump, transported by a raw water supply pipe to a water supply / drainage region (2) at the bottom of the reactor (1), and the water supply is evenly distributed by a reflector (11). The filter according to claim 1, wherein the filter is characterized in that.
集水システムは、清水出水管(17)及び清水タンク(38)を含み、清水出水管(17)の一端は集水領域(6)に接続され、他端は清水タンク(38)に連通し、集水領域と清水タンク(38)の間には高低差があり、高低差により清水は自動的に清水タンクに流入することを特徴とする、請求項1に記載のフィルタ。 The water collection system includes a fresh water discharge pipe (17) and a fresh water tank (38), one end of the fresh water discharge pipe (17) is connected to the water collection area (6), and the other end is communicated with the fresh water tank (38). The filter according to claim 1, wherein there is a height difference between the water collecting area and the fresh water tank (38), and the fresh water automatically flows into the fresh water tank due to the height difference. 微量水逆洗スプレーシステムは、清水ポンプ(19)、微量水逆洗主管(23)、微量水逆洗バルブ(30)及びバルブ(31)、微量水逆洗スプレー分岐管(8)、濾材洗浄補助ノズル(24)、液面センサ(35)及び液面検知器(34)を含み、
清水ポンプ(19)は清水タンク(38)に接続され、清水ポンプ(19)は微量水逆洗主管(23)、微量水逆洗バルブ(30)、バルブ(31)により微量水逆洗スプレー分岐管(8)に接続され、微量水逆洗スプレー分岐管(8)は周方向に沿って圧縮濾過領域(5)及び変速濾過領域(4)の外部に設けられ、各微量水逆洗スプレー分岐管(8)には複数の濾材洗浄補助ノズル(24)が設けられ、これにより水が圧縮濾過領域(5)及び変速濾過領域(4)の内部に導入され、
液面センサ(35)は逆洗剥離領域(3)の頂部に設けられ、データ線により液面検知器(34)に接続され、逆洗過程において液面センサ(35)の水位検知結果に基づいて水位を逆洗剥離領域(3)の頂部に制御することを特徴とする、請求項1に記載のフィルタ。
The trace water backwash spray system includes a fresh water pump (19), a trace water backwash main pipe (23), a trace water backwash valve (30) and a valve (31), a trace water backwash spray branch pipe (8), and a filter medium cleaning. Includes auxiliary nozzle (24), liquid level sensor (35) and liquid level detector (34).
The fresh water pump (19) is connected to the fresh water tank (38), and the fresh water pump (19) is branched by the trace water backwash main pipe (23), the trace water backwash valve (30), and the valve (31). Connected to the tube (8), the trace water backwash spray branch pipe (8) is provided outside the compression filtration region (5) and the variable speed filtration region (4) along the circumferential direction, and each trace water backwash spray branch is provided. The tube (8) is provided with a plurality of filter media cleaning auxiliary nozzles (24), whereby water is introduced into the compression filtration region (5) and the variable speed filtration region (4).
The liquid level sensor (35) is provided at the top of the backwash peeling region (3), is connected to the liquid level detector (34) by a data line, and is based on the water level detection result of the liquid level sensor (35) in the backwash process. The filter according to claim 1, wherein the water level is controlled to the top of the backwash peeling region (3).
ガス逆洗システムは、空気圧縮機(20)、逆洗ガス管(22)、逆洗ガス管ノズル(7)、逆洗エアバルブ(28)及びチェックバルブ(26)、逆洗リリースバルブ(9)を含み、
反応器(1)の排水管(21)には排水/排泥バルブ(27)が取り付けられ、
反応器(1)内の逆洗ガス管(22)は、逆洗剥離領域(3)の底部にある管部に均等に分布する逆洗ガス管ノズル(7)が設けられ、逆洗ガス管(22)には逆洗エアバルブ(28)及び逆流を防止するチェックバルブ(26)が取り付けられ、
反応器(1)の頂部の蓋板には排気バルブ(9)が設けられることを特徴とする、請求項1に記載のフィルタ。
The gas backwash system includes an air compressor (20), a backwash gas pipe (22), a backwash gas pipe nozzle (7), a backwash air valve (28) and a check valve (26), and a backwash release valve (9). Including
A drainage / mud drain valve (27) is attached to the drain pipe (21) of the reactor (1).
The back-wash gas pipe (22) in the reactor (1) is provided with a back-wash gas pipe nozzle (7) that is evenly distributed in the pipe portion at the bottom of the back-wash peeling region (3), and is provided with a back-wash gas pipe. A backwash air valve (28) and a check valve (26) for preventing backflow are attached to (22).
The filter according to claim 1, wherein an exhaust valve (9) is provided on a lid plate at the top of the reactor (1).
排水/排泥システムは、排水/排泥管(21)及び排水/排泥バルブ(27)を含み、
排水/排泥管(21)は、給水/排泥領域(2)の底部に設けられ、排水/排泥管(21)には排水/排泥バルブ(27)が設けられることを特徴とする、請求項1に記載のフィルタ。
The drainage / mud drainage system includes a drainage / mud drainage pipe (21) and a drainage / mud drainage valve (27).
The drainage / mud drainage pipe (21) is provided at the bottom of the water supply / mud drainage region (2), and the drainage / mud drainage pipe (21) is provided with a drainage / mud drainage valve (27). , The filter according to claim 1.
請求項1に記載のフィルタの作動操作方法であって、
微小水量逆洗変速上向流式軽量濾材フィルタの作動操作の過程は、(1)濾過過程、(2)逆洗過程、及び(3)軽量濾材層復位過程に分けられ、この3つの過程はサイクルで行われ、
(1)濾過過程:排水/排泥バルブ(27)、逆洗吸気バルブ(28)及び連通バルブ(29)を閉じ、給水バルブ(25)及び排気バルブ(9)を開き、給水ポンプ(18)を起動し、水ポンプ(18)により原水タンク(37)における処理される水を、給水管(10)を介して反応器(1)に送入し、処理される水が給水管(10)から反射板(11)を経て均等に配給され、濾過水流が上へ順に逆洗剥離領域(3)、変速濾過領域(4)、圧縮濾過領域(5)を通過し、最後に水流がフィルタヘッドを通過して清水領域に入り、上昇する水流が蓋板(14)に当たったときに、出水がまず排ガス管から排出され、この場合、排気バルブ(9)を閉じることにより、水流がガイドプレートを通過して清水槽(15)に流入し、さらに越流堰(16)を通して集水領域(6)に流入し、最後出水管(17)を経て清水タンク(38)に入り、
(2)逆洗過程:給水バルブ(25)を閉じ、排水/排泥バルブ(27)を開き、反応器(1)内の水位は、水の排水/排泥バルブ(27)からの排出に伴い徐々に下降し、濾材も下降し、このとき、連通バルブ(29)、微小水量給水調節バルブ(30)及びバルブ(31)を開き、微小水量スプレー水ポンプ(19)を起動し、濾材洗浄補助ノズル孔(24)のスプレー作用により圧縮濾過領域(5)の濾材を分散して下に移動させ、最後に液面センサ(35)及び液面検知器(34)により水位を逆洗剥離領域(3)の頂部に制御し、このとき、連通バルブ(29)、微小水量給水調節バルブ(30)及びバルブ(31)を閉じ、微小水量スプレー水ポンプ(19)を閉じ、逆洗吸気バルブ(28)、排気バルブ(9)を開き、ガスポンプ(20)を起動し、ガスが空気圧縮機(20)により加圧された後、ガス管(20)、ガス量調節バルブ(28)、チェックバルブ(26)を経て反応器に入り、さらに逆洗ガス管ノズル(7)により吐出され、軽量濾材を5分-10分間撹拌することで、濾材層が遮断した汚物がガスせん断作用及びそれ自体の重力作用により濾材から剥離され、そして、空気圧縮機(20)及びバルブ(28)を閉じ、沈殿作用により剥離した不純物を排水/排泥領域(2)に集中させ、沈殿時間が20分-30分間であり、さらに、排水/排泥バルブ(27)を開き、汚泥を、排泥管(21)を介して水流と共に排出し、逆洗過程を完成させ、
(3)軽量濾材層復位過程:逆洗が終了し、排泥した後、次の濾過過程に入る前に、軽量濾材層復位を行う必要があり、まず、排水/排泥バルブ(27)及び逆洗エアバルブ(28)を閉じ、微小水量スプレー給水バルブ(30)及びバルブ(31)を開き、連通バルブ(29)及び排気バルブ(9)を開き、微小水量スプレー水ポンプ(19)を起動し、微小水量スプレー水ポンプ(19)の洗い流し作用により、水流は濾材洗浄補助ノズル孔(24)から反応器(1)内にスプレーされ、反応器(1)内の水位が徐々に上昇し、発泡ポリスチレン粒子(EPS)濾材(36)は比重が水より小さいため、上昇水流の押し上げにより自動復位が実現されるとともに、微小水量スプレーが上昇過程中の軽量濾材の分布を補助的に調整し、上昇濾材が浮上防止フィルタプレートにより遮断されるとともに水流の上向きの作用力により作用されることにより、濾過層は徐々に緻密に圧縮され、このとき、微小水量スプレー給水バルブ(30)及びバルブ(31)を閉じ、引き続き微小水量スプレー水ポンプ(19)の動作を5分-10分間保持した後、微小水量スプレー水ポンプ(19)及び連通バルブ(29)を閉じ、濾材層の復位過程を完成させることを特徴とする、方法。
The method for operating the filter according to claim 1.
The process of operating the micro-water amount backwashing variable forward flow type lightweight filter medium filter is divided into (1) filtration process, (2) backwashing process, and (3) lightweight filter medium layer repositioning process. Made in a cycle,
(1) Filtering process: Close the drain / drain valve (27), backwash intake valve (28) and communication valve (29), open the water supply valve (25) and exhaust valve (9), and open the water supply pump (18). Is started, the water treated in the raw water tank (37) by the water pump (18) is sent to the reactor (1) via the water supply pipe (10), and the treated water is supplied to the water supply pipe (10). It is evenly distributed from the water flow through the reflector (11), the filtered water flow passes upward in order through the backwash peeling region (3), the variable speed filtration region (4), and the compression filtration region (5), and finally the water flow passes through the filter head. When the rising water flow hits the lid plate (14), the water flow is first discharged from the exhaust pipe, and in this case, by closing the exhaust valve (9), the water flow is guided to the guide plate. It flows into the fresh water tank (15) through the water tank (15), further flows into the water collecting area (6) through the overflow dam (16), and enters the fresh water tank (38) through the last water discharge pipe (17).
(2) Backwash process: The water supply valve (25) is closed, the drain / mud drain valve (27) is opened, and the water level in the reactor (1) is discharged from the water drain / mud drain valve (27). Along with this, the filter medium gradually descends, and at this time, the communication valve (29), the minute water supply adjustment valve (30) and the valve (31) are opened, the minute water amount spray water pump (19) is started, and the filter medium is washed. The filter medium in the compression filtration region (5) is dispersed and moved downward by the spraying action of the auxiliary nozzle hole (24), and finally the water level is backwashed and peeled off by the liquid level sensor (35) and the liquid level detector (34). Controlled to the top of (3), at this time, the communication valve (29), the minute water supply adjustment valve (30) and the valve (31) were closed, the minute water amount spray water pump (19) was closed, and the backwash intake valve (backwash intake valve) ( 28), the exhaust valve (9) is opened, the gas pump (20) is started, the gas is pressurized by the air compressor (20), and then the gas pipe (20), the gas amount adjusting valve (28), and the check valve. By entering the reactor via (26) and further discharging by the backwash gas tube nozzle (7) and stirring the lightweight filter medium for 5 to 10 minutes, the filth blocked by the filter medium layer has a gas shearing action and itself. The impurities separated from the filter medium by the action of gravity and then closed the air compressor (20) and the valve (28), and the impurities separated by the action of precipitation are concentrated in the drainage / drainage region (2), and the precipitation time is 20 minutes-30 minutes. Minutes, then the drain / drain valve (27) is opened and the sludge is drained with the water stream through the drain pipe (21) to complete the backwash process.
(3) Lightweight filter medium layer repositioning process: After the backwash is completed and the mud is drained, it is necessary to perform the lightweight filter medium layer repositioning before starting the next filtration process. First, the drainage / mud drain valve (27) and The backwash air valve (28) is closed, the minute water spray water supply valve (30) and the valve (31) are opened, the communication valve (29) and the exhaust valve (9) are opened, and the minute water spray water pump (19) is started. By the flushing action of the minute water amount spray water pump (19), the water stream is sprayed into the reactor (1) from the filter media cleaning auxiliary nozzle hole (24), the water level in the reactor (1) gradually rises, and foaming occurs. Since the specific gravity of the polystyrene particle (EPS) filter medium (36) is smaller than that of water, automatic repositioning is realized by pushing up the rising water flow, and the minute water spray assists the distribution of the lightweight filter medium during the rising process and rises. The filter medium is blocked by the levitation prevention filter plate and is acted on by the upward acting force of the water flow, so that the filtration layer is gradually and densely compressed, and at this time, the minute water amount spray water supply valve (30) and the valve (31). Is closed, and the operation of the micro water spray water pump (19) is continuously maintained for 5 to 10 minutes, and then the micro water spray water pump (19) and the communication valve (29) are closed to complete the restoration process of the filter medium layer. The method, which is characterized by.
JP2021506731A 2019-12-05 2020-01-17 Backwash variable speed upward flow type lightweight filter medium filter with minute water volume and its method Active JP7145544B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201911231163.X 2019-12-05
CN201911231163.XA CN110917679B (en) 2019-12-05 2019-12-05 Micro-water-quantity back-flushing variable-speed upward-flow light filter material filter and method thereof
PCT/CN2020/072602 WO2021109329A1 (en) 2019-12-05 2020-01-17 Micro-water quantity backwashing variable-speed upward-flow lightweight-filtering-material filter, and method thereof

Publications (2)

Publication Number Publication Date
JP2022515583A true JP2022515583A (en) 2022-02-21
JP7145544B2 JP7145544B2 (en) 2022-10-03

Family

ID=69856971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021506731A Active JP7145544B2 (en) 2019-12-05 2020-01-17 Backwash variable speed upward flow type lightweight filter medium filter with minute water volume and its method

Country Status (3)

Country Link
JP (1) JP7145544B2 (en)
CN (1) CN110917679B (en)
WO (1) WO2021109329A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112973273B (en) * 2021-02-07 2022-03-01 宁波财经学院 Automatic back flush filter equipment
CN113230724A (en) * 2021-06-22 2021-08-10 中联西北工程设计研究院有限公司 Filtration system for water supply and drainage
CN113663516B (en) * 2021-09-30 2024-10-22 中化泉州能源科技有限责任公司 Membrane separation device and method for purifying inferior oil
CN114470892A (en) * 2022-01-12 2022-05-13 武汉理工大学 Hydraulic spiral-flow type backwashing filter device and method
CN114813312B (en) * 2022-04-22 2023-06-02 河北理工工程管理咨询有限公司 Water supply pipeline pressure testing device for engineering supervision
CN115350527B (en) * 2022-09-14 2024-08-30 江苏永冠给排水设备有限公司 Novel suspension light filter material filter tank
CN116510519B (en) * 2023-07-04 2023-08-25 烟台高泽环保技术有限公司 STRO membrane element pre-rinsing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490767U (en) * 1977-12-10 1979-06-27
JP2004290773A (en) * 2003-03-26 2004-10-21 Ngk Insulators Ltd Filtration apparatus
WO2007004245A1 (en) * 2005-07-01 2007-01-11 Shott International S.R.L. Floating filtering particle filter for fluids with cleaning device and anti-reflux diffuser
CN203425572U (en) * 2013-08-20 2014-02-12 上海奥迪菲环境工程有限公司 Upflow double-type deep-bed rapid filtering tank
JP2017042739A (en) * 2015-08-28 2017-03-02 フジクリーン工業株式会社 Water treatment apparatus and water treatment method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3717251A (en) * 1970-09-03 1973-02-20 Q Hampton Method and apparatus for filtering solids
US5292436A (en) * 1992-05-13 1994-03-08 Kansas State University Research Foundation Tapered bed filtration apparatus
CN101791498B (en) * 2010-03-23 2013-08-14 卢正华 Valve control filter
JP6049005B2 (en) * 2012-05-31 2016-12-21 鎌田バイオ・エンジニアリング株式会社 Filtration device, filtration method thereof and backwashing method of filter medium
CN203196408U (en) * 2013-01-09 2013-09-18 中冶东方工程技术有限公司 Upward flowing type filtering equipment
CN203392952U (en) * 2013-07-09 2014-01-15 煤炭科学研究总院杭州环保研究院 Mine water treatment device for underground coal mines
CN203436875U (en) * 2013-08-06 2014-02-19 陈凤珠 Filter pond with variable flow rates
CN103657173A (en) * 2013-12-12 2014-03-26 王强 Upward flow filtering device using homogeneous heavy thick filter material
CN104817167B (en) * 2015-04-13 2016-09-21 安徽华骐环保科技股份有限公司 A kind of precipitation position back-flushing method for UBAF technique
CN105688497B (en) * 2016-03-03 2017-09-26 中国市政工程西北设计研究院有限公司天津分院 The anti-floating filter plate preparation method and anti-floating filter plate of upward current suspended filter material filter pool
CN206198789U (en) * 2016-09-26 2017-05-31 徐州工程学院 A kind of upward flow floating media filter
CN109293025B (en) * 2018-09-28 2022-02-11 河海大学 Water saving fixtures of small-size artifical carwash retrieval and utilization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490767U (en) * 1977-12-10 1979-06-27
JP2004290773A (en) * 2003-03-26 2004-10-21 Ngk Insulators Ltd Filtration apparatus
WO2007004245A1 (en) * 2005-07-01 2007-01-11 Shott International S.R.L. Floating filtering particle filter for fluids with cleaning device and anti-reflux diffuser
CN203425572U (en) * 2013-08-20 2014-02-12 上海奥迪菲环境工程有限公司 Upflow double-type deep-bed rapid filtering tank
JP2017042739A (en) * 2015-08-28 2017-03-02 フジクリーン工業株式会社 Water treatment apparatus and water treatment method

Also Published As

Publication number Publication date
CN110917679A (en) 2020-03-27
WO2021109329A1 (en) 2021-06-10
CN110917679B (en) 2020-11-03
JP7145544B2 (en) 2022-10-03

Similar Documents

Publication Publication Date Title
JP7145544B2 (en) Backwash variable speed upward flow type lightweight filter medium filter with minute water volume and its method
CN204170467U (en) A kind of conventional rapid filter adopting combined water and air backwash
CN108379885B (en) Sewage sedimentation tank and composite flow self-cleaning method thereof
CN101492209A (en) Adsorption-deposition-membrane assembly separation integrated reactor
CN207137521U (en) A kind of sewage disposal device of precipitation and filtering integral
CN102847352A (en) Water treatment method and device for synchronously realizing filtering and back washing
CN104338350A (en) Automatic and continuous cleaning and filtering apparatus of quicksand
RU2440170C2 (en) Sand filter
CN112657241B (en) Upward flow filter pool with heterogeneous filter material
RO201400001U1 (en) Device and method for biological treatment and post-treatment of waste water
CN211486826U (en) Water purification and filtration system capable of reducing backwashing water consumption
CN201890787U (en) Double-layered pressure type integrated deoiler
CN208561732U (en) System is cut down in the overflow of combined system pipe network and water pollution integration
CN105727605A (en) Improved intermittent dynamic quicksand filtering device and system
CN217661690U (en) Prevent filtration purifier that hardens
CN216986709U (en) Unpowered sponge filler advanced treatment filter equipment
CN109293025B (en) Water saving fixtures of small-size artifical carwash retrieval and utilization
CN201988252U (en) Filtering basin with low water consumption in washing
CN211863987U (en) Industrial pure water preparation system with filtering and purifying functions
CN203411417U (en) Backflow continuous type filtering purifier
CN203494236U (en) Novel high-efficiency active sand filtering system
JP4277589B2 (en) Upflow filter
CN217119608U (en) A high-efficient sand blocking device for active sand filtering pond sand washing water
CN201737782U (en) Multiple fine filtration water treatment machine
CN221588190U (en) L-shaped upward flow filter tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R150 Certificate of patent or registration of utility model

Ref document number: 7145544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150