JP2022507320A - Bulk acoustic wave resonator and its manufacturing method, filter, radio frequency communication system - Google Patents
Bulk acoustic wave resonator and its manufacturing method, filter, radio frequency communication system Download PDFInfo
- Publication number
- JP2022507320A JP2022507320A JP2021525820A JP2021525820A JP2022507320A JP 2022507320 A JP2022507320 A JP 2022507320A JP 2021525820 A JP2021525820 A JP 2021525820A JP 2021525820 A JP2021525820 A JP 2021525820A JP 2022507320 A JP2022507320 A JP 2022507320A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- top electrode
- resonance
- electrode
- protrusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 41
- 238000004891 communication Methods 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 claims description 81
- 230000008569 process Effects 0.000 claims description 54
- 239000000758 substrate Substances 0.000 claims description 53
- 238000005530 etching Methods 0.000 claims description 45
- 230000002093 peripheral effect Effects 0.000 claims description 39
- 239000007772 electrode material Substances 0.000 claims description 21
- 239000012528 membrane Substances 0.000 claims description 9
- 238000000059 patterning Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 4
- 230000003071 parasitic effect Effects 0.000 abstract description 18
- 238000010586 diagram Methods 0.000 abstract description 7
- 238000007667 floating Methods 0.000 abstract description 7
- 239000010410 layer Substances 0.000 description 314
- 239000000463 material Substances 0.000 description 36
- 239000010408 film Substances 0.000 description 25
- 229920002120 photoresistant polymer Polymers 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 7
- 230000000903 blocking effect Effects 0.000 description 7
- 229910052732 germanium Inorganic materials 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 239000011241 protective layer Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 239000010949 copper Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000012212 insulator Substances 0.000 description 5
- 238000001259 photo etching Methods 0.000 description 5
- 239000010948 rhodium Substances 0.000 description 5
- 229910010271 silicon carbide Inorganic materials 0.000 description 5
- 238000001947 vapour-phase growth Methods 0.000 description 5
- 229910003811 SiGeC Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000001459 lithography Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 229910052762 osmium Inorganic materials 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- UJXZVRRCKFUQKG-UHFFFAOYSA-K indium(3+);phosphate Chemical compound [In+3].[O-]P([O-])([O-])=O UJXZVRRCKFUQKG-UHFFFAOYSA-K 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 238000003698 laser cutting Methods 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000010897 surface acoustic wave method Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- DFXZOVNXZVSTLY-UHFFFAOYSA-N [Si+4].[GeH3+]=O Chemical class [Si+4].[GeH3+]=O DFXZOVNXZVSTLY-UHFFFAOYSA-N 0.000 description 1
- NCMAYWHYXSWFGB-UHFFFAOYSA-N [Si].[N+][O-] Chemical compound [Si].[N+][O-] NCMAYWHYXSWFGB-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- -1 etc.) Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 230000024241 parasitism Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- UKDIAJWKFXFVFG-UHFFFAOYSA-N potassium;oxido(dioxo)niobium Chemical compound [K+].[O-][Nb](=O)=O UKDIAJWKFXFVFG-UHFFFAOYSA-N 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
- H03H9/171—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
- H03H9/172—Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
- H03H9/174—Membranes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/46—Filters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/46—Filters
- H03H9/462—Microelectro-mechanical filters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/46—Filters
- H03H9/54—Filters comprising resonators of piezoelectric or electrostrictive material
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/46—Filters
- H03H9/54—Filters comprising resonators of piezoelectric or electrostrictive material
- H03H9/547—Notch filters, e.g. notch BAW or thin film resonator filters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H2009/155—Constructional features of resonators consisting of piezoelectric or electrostrictive material using MEMS techniques
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
バルク音響波共振器及びその製造方法並びにフィルタ、無線周波数通信システムであって、圧電共振層(1051)の外周に形成されるとともに、キャビティ(102)の上方に浮いた頂電極突出部は、圧電共振層(1051)の生じた横波をキャビティ(102)の外周に転送することを遮断し、横波を有効作動領域(102A)に反射し、さらに音響波の損失を減少させ、共振器の品質係数を向上させ、最終的にデバイスの性能を向上させることができる。さらに、底電極ブリッジ部(1040)及び頂電極ブリッジ部(1080)とキャビティ(102)とが重なる部分は、いずれも浮いており、底電極ブリッジ部(1040)と頂電極ブリッジ部(1080)とが相互にずれ、寄生パラメータを大幅に低減させ、リークや短絡などの問題を回避し、デバイスの信頼性を向上させることができる。【選択図】図1BIn the bulk acoustic wave resonator, its manufacturing method, filter, and radio frequency communication system, the top electrode protrusion formed on the outer periphery of the piezoelectric resonance layer (1051) and floating above the cavity (102) is piezoelectric. The transverse wave generated by the resonance layer (1051) is blocked from being transferred to the outer periphery of the cavity (102), the transverse wave is reflected to the effective working region (102A), the loss of the acoustic wave is further reduced, and the quality coefficient of the resonator is reduced. And finally the performance of the device can be improved. Further, the bottom electrode bridge portion (1040) and the portion where the top electrode bridge portion (1080) and the cavity (102) overlap each other are floating, and the bottom electrode bridge portion (1040) and the top electrode bridge portion (1080) are combined. Can be displaced from each other, significantly reducing parasitic parameters, avoiding problems such as leaks and short circuits, and improving device reliability. [Selection diagram] FIG. 1B
Description
本発明は無線周波数通信の技術分野に関し、特にバルク音響波共振器及びその製造方法並びにフィルタ、無線周波数通信システムに関する。 The present invention relates to the technical field of radio frequency communication, and particularly to a bulk acoustic wave resonator, a method for manufacturing the same, a filter, and a radio frequency communication system.
携帯電話で使用される通信などの無線周波数(RF)通信は、無線周波数フィルタを用いる必要があり、各無線周波数フィルタは、いずれも所要の周波数を伝達し、全ての他の周波数を制限することができる。移動通信技術の発展とともに、移動データの転送量も急速に上昇している。従って、周波数リソースが限られており、可能な限り少ない移動通信デバイスを使用する必要があるという前提で、無線基地局、マイクロ基地局又はリピータなどの無線電力送信デバイスの送信パワーを向上させることは、考慮すべき問題となり、また、移動通信装置のフロントエンド回路におけるフィルタパワーの要求も高くなることを意味する。 Radio frequency (RF) communications, such as those used in mobile phones, must use radio frequency filters, each of which transmits the required frequency and limits all other frequencies. Can be done. With the development of mobile communication technology, the amount of mobile data transferred is also increasing rapidly. Therefore, it is not possible to improve the transmission power of wireless power transfer devices such as radio base stations, micro base stations or repeaters, assuming that frequency resources are limited and it is necessary to use as few mobile communication devices as possible. This is a problem to be considered, and it also means that the demand for filter power in the front-end circuit of the mobile communication device is high.
従来、無線基地局などのデバイスでのハイパワーフィルタは主にキャビティフィルタを主とし、そのパワーが100ワットに達するが、このようなフィルタのサイズが大きすぎる。誘電体フィルタを使用するデバイスもあり、その平均パワーが5ワット以上に達することができ、このフィルタのサイズも大きい。サイズが大きいので、この2つのフィルタは無線周波数フロントエンドチップに集積できない。 Conventionally, high power filters in devices such as radio base stations mainly consist of cavity filters, the power of which reaches 100 watts, but the size of such filters is too large. Some devices use a dielectric filter, the average power of which can reach 5 watts or more, and the size of this filter is also large. Due to their large size, these two filters cannot be integrated into a radio frequency front-end chip.
MEMS技術が成熟するにつれて、バルク音響波(BAW)共振器で構成されるフィルタは、上記の2つのフィルタの存在する欠陥をうまく克服することができる。バルク音響波共振器はセラミック誘電体フィルタとは比較できない体積上の利点、弾性表面波(SAW)共振器とは比較できない作動周波数及びパワー容量上の利点を持ち、現在の無線通信システムの発展傾向になっている。 As MEMS technology matures, filters composed of bulk acoustic wave (BAW) resonators can successfully overcome the existing flaws of the two filters described above. Bulk acoustic wave resonators have volume advantages that cannot be compared with ceramic dielectric filters, and operating frequency and power capacitance advantages that cannot be compared with surface acoustic wave (SAW) resonators. It has become.
バルク音響波共振器の本体部分は、底電極-圧電薄膜-頂電極で構成される「サンドイッチ」構造であり、圧電薄膜の逆圧電効果を利用して電気エネルギーを機械的エネルギーに変換し、バルク音響波共振器で構成されるフィルタにおいて定常波を音響波の形で形成する。音響波の速度が電磁波より5桁小さいので、バルク音響波共振器で構成されるフィルタのサイズが従来の誘電体フィルタなどより小さい。 The main body of the bulk acoustic wave resonator has a "sandwich" structure consisting of a bottom electrode, a piezoelectric thin film, and a top electrode, and uses the inverse piezoelectric effect of the piezoelectric thin film to convert electrical energy into mechanical energy and bulk it. A stationary wave is formed in the form of an acoustic wave in a filter composed of an acoustic wave resonator. Since the velocity of the acoustic wave is five orders of magnitude smaller than that of the electromagnetic wave, the size of the filter configured by the bulk acoustic wave resonator is smaller than that of a conventional dielectric filter or the like.
そのうちの1種のキャビティ型バルク音響波共振器の作動原理は、音響波を利用して、底電極又は支持層と空気の交界面で反射し、音響波を圧電層に制限し、共振を実現することであり、高いQ値、低い挿入損失、集積可能であるなどの利点を持っており、広く採用されている。 The operating principle of one of these cavity-type bulk acoustic wave resonators is to use acoustic waves to reflect at the intersection of the bottom electrode or support layer and air, limiting the acoustic waves to the piezoelectric layer and achieving resonance. It has advantages such as high Q value, low insertion loss, and can be integrated, and is widely adopted.
しかし、従来製作されたキャビティ型バルク音響波共振器は、その品質係数(Q)をさらに向上させることができず、高性能の無線周波数システムの需要を満たすことができない。 However, the conventionally manufactured cavity type bulk acoustic wave resonator cannot further improve its quality coefficient (Q) and cannot meet the demand for a high-performance radio frequency system.
本発明は、品質係数を向上させ、さらにデバイスの性能を向上させることができるバルク音響波共振器及びその製造方法並びにフィルタ、無線周波数通信システムを提供することを目的とする。 It is an object of the present invention to provide a bulk acoustic wave resonator, a manufacturing method thereof, a filter, and a radio frequency communication system capable of improving the quality coefficient and further improving the performance of the device.
上記目的を実現するために、本発明によれば、
基板と、
前記基板上に設けられる底電極層であって、前記底電極層と前記基板との間にキャビティが形成され、前記底電極層の前記キャビティの上方に位置する部分が平坦に延在している底電極層と、
前記キャビティの上方の部分であって前記底電極層上に形成される圧電共振層と、
前記圧電共振層上に形成される頂電極層であって、前記頂電極層は、前記圧電共振層の外周における前記キャビティの領域に位置し、前記キャビティの底面から離れる方向に突出し、前記圧電共振層を囲んだ周辺方向に延在する頂電極突出部を有する頂電極層とを含むバルク音響波共振器が提供される。
In order to achieve the above object, according to the present invention,
With the board
A bottom electrode layer provided on the substrate, a cavity is formed between the bottom electrode layer and the substrate, and a portion of the bottom electrode layer located above the cavity extends flatly. With the bottom electrode layer,
The piezoelectric resonance layer, which is the upper part of the cavity and is formed on the bottom electrode layer,
A top electrode layer formed on the piezoelectric resonance layer, wherein the top electrode layer is located in a region of the cavity on the outer periphery of the piezoelectric resonance layer, projects in a direction away from the bottom surface of the cavity, and has the piezoelectric resonance. A bulk acoustic wave resonator is provided that includes a top electrode layer with a top electrode protrusion that surrounds the layer and extends in the peripheral direction.
本発明は、少なくとも1つの本発明に記載のバルク音響波共振器を備えるフィルタをさらに提供する。 The present invention further provides a filter comprising at least one bulk acoustic wave resonator according to the present invention.
本発明は、少なくとも1つの本発明に記載のフィルタを備える無線周波数通信システムをさらに提供する。 The present invention further provides a radio frequency communication system comprising at least one filter according to the present invention.
また、本発明によれば、
基板を提供し、頂面が平坦な第1の犠牲層を一部の前記基板上に形成するステップと、
前記第1の犠牲層の頂面上に位置する部分が平坦に延在している底電極層を一部の前記第1の犠牲層上に形成するステップと、
一部の前記第1の犠牲層及び一部の前記底電極層を露出させる圧電共振層を前記底電極層上に形成するステップと、
犠牲突出を有する第2の犠牲層を前記圧電共振層の周囲おいて露出する領域に形成するステップと、
頂電極層を前記圧電共振層及び前記圧電共振層の周囲における一部の前記第2の犠牲層上に形成し、前記犠牲突出を被覆する前記頂電極層の部分を頂電極突出部として形成するステップと、
前記犠牲突出を有する前記第2の犠牲層及び前記第1の犠牲層を除去し、前記犠牲突出を有する前記第2の犠牲層及び前記第1の犠牲層の位置にキャビティを形成するステップであって、前記頂電極突出部が前記圧電共振層の外周における前記キャビティの領域に位置するとともに、前記圧電共振層を囲んだ周辺方向に延在しているステップとを含むバルク音響波共振器の製造方法が提供される。
Further, according to the present invention,
A step of providing a substrate and forming a first sacrificial layer with a flat top surface on some of the substrates.
A step of forming a bottom electrode layer on a part of the first sacrificial layer in which a portion located on the top surface of the first sacrificial layer extends flatly.
A step of forming a piezoelectric resonance layer on the bottom electrode layer that exposes a part of the first sacrificial layer and a part of the bottom electrode layer.
A step of forming a second sacrificial layer with sacrificial protrusions in an exposed region around the piezoelectric resonant layer.
The top electrode layer is formed on the piezoelectric resonance layer and a part of the second sacrificial layer around the piezoelectric resonance layer, and the portion of the top electrode layer covering the sacrificial protrusion is formed as the top electrode protrusion. Steps and
It is a step of removing the second sacrificial layer and the first sacrificial layer having the sacrificial protrusion and forming a cavity at the position of the second sacrificial layer and the first sacrificial layer having the sacrificial protrusion. A bulk acoustic wave resonator including a step in which the protrusion of the top electrode is located in the region of the cavity on the outer periphery of the piezoelectric resonance layer and extends in the peripheral direction surrounding the piezoelectric resonance layer. The method is provided.
従来技術に比べて、本発明の技術的解決手段は、以下の有益な効果を有する。
1、電気エネルギーを底電極及び頂電極に印加するとき、圧電共振層において生じた圧電現象により、厚さ方向に伝播する望ましい縦波及び圧電共振層の平面に沿って伝播する望ましくない横波を生成し、該横波は、圧電共振層の外周に浮いたキャビティ上の頂電極突出部に遮断され、圧電共振層に対応する領域に反射され、さらに横波がキャビティの外周における膜層に伝播すること起因する損失を減少させ、これによって、音響波損失を改善し、共振器の品質係数を向上させ、最終的にデバイスの性能を向上させることができる。
Compared with the prior art, the technical solution of the present invention has the following beneficial effects.
1. When electrical energy is applied to the bottom and top electrodes, the piezoelectric phenomenon that occurs in the piezoelectric resonance layer produces desirable longitudinal waves that propagate in the thickness direction and unwanted transverse waves that propagate along the plane of the piezoelectric resonance layer. However, the transverse wave is blocked by the protruding portion of the top electrode on the cavity floating on the outer periphery of the piezoelectric resonance layer, reflected in the region corresponding to the piezoelectric resonance layer, and further propagates to the film layer on the outer periphery of the cavity. It can reduce the loss, thereby improving the acoustic wave loss, improving the quality coefficient of the resonator, and ultimately improving the performance of the device.
2、圧電共振層の周辺とキャビティの周辺とが相互に分離され、すなわち、圧電共振層がキャビティの外周における基板の上方まで連続的に延在しておらず、バルク音響波共振器の有効作動領域をキャビティ領域に完全に制限することができ、底電極ブリッジ部及び頂電極ブリッジ部がいずれもキャビティの一部の辺のみまで延在しており(すなわち、底電極層及び頂電極層がキャビティを完全に被覆することない)、これによって、キャビティの周囲の膜層による、圧電共振層において生じた縦方向振動への影響を減少させ、性能を向上させる。 2. The periphery of the piezoelectric resonance layer and the periphery of the cavity are separated from each other, that is, the piezoelectric resonance layer does not continuously extend above the substrate at the outer periphery of the cavity, and the bulk acoustic wave resonator is effectively operated. The region can be completely restricted to the cavity region, and both the bottom electrode bridge and the top electrode bridge extend to only a part of the cavity (that is, the bottom electrode layer and the top electrode layer are cavities. This does not completely cover the cavity), thereby reducing the effect of the film layer around the cavity on the longitudinal vibrations generated in the piezoelectric resonant layer and improving performance.
3、頂電極突出部と底電極層とが相互に重なる部分を有しても、重なる部分の間が隙間構造であり、これによって、寄生パラメータを大幅に低減させることができ、頂電極層及び底電極層のキャビティ領域における電気的接触などの問題を回避し、デバイスの信頼性を向上させることができる。 3. Even if the protruding portion of the top electrode and the bottom electrode layer have a portion that overlaps with each other, there is a gap structure between the overlapping portions, whereby the parasitic parameters can be significantly reduced, and the top electrode layer and the bottom electrode layer can be used. Problems such as electrical contact in the cavity region of the bottom electrode layer can be avoided and the reliability of the device can be improved.
4、底電極ブリッジ部及び頂電極ブリッジ部とキャビティとが重なる部分は、いずれも浮いており、底電極ブリッジ部及び頂電極ブリッジ部は、キャビティの領域とは、相互にずれ(すなわち、両者は、キャビティ領域において重ならない)、これによって、寄生パラメータを大幅に低減させることができ、底電極ブリッジ部と頂電極ブリッジ部とが接触することにより引き起こされるリークや短絡などの問題を回避し、デバイスの信頼性を向上させることができる。 4. The bottom electrode bridge portion and the portion where the top electrode bridge portion and the cavity overlap are both floating, and the bottom electrode bridge portion and the top electrode bridge portion are displaced from each other from the cavity region (that is, both are , Do not overlap in the cavity region), which can significantly reduce parasitic parameters, avoid problems such as leaks and short circuits caused by contact between the bottom electrode bridge and the top electrode bridge, and the device. The reliability of the can be improved.
5、前記底電極ブリッジ部は、それ自体が位置するキャビティの一部の上方において、キャビティを完全にカバーし、これによって、大面積の底電極ブリッジ部を用いて、その上方の膜層に強力な機械的支持を提供し、ことにより、キャビティの崩れのため、デバイスが失効してしまうという問題を回避する。 5. The bottom electrode bridge portion completely covers the cavity above a part of the cavity in which it is located, thereby being strong against the membrane layer above it using a large area bottom electrode bridge portion. Provides good mechanical support, thereby avoiding the problem of device expiration due to cavity collapse.
6、頂電極突出部が頂電極共振部の全周を囲み、圧電共振層の周辺から横波を全方位に遮断し、さらに好ましい品質係数を取得することができる。 6. The protruding portion of the top electrode surrounds the entire circumference of the resonance portion of the top electrode, blocking transverse waves from the periphery of the piezoelectric resonance layer in all directions, and a more preferable quality coefficient can be obtained.
7、底電極共振部及び底電極ブリッジ部は、同じ膜層で形成され、膜厚が均一であり、頂電極突出部、頂電極共振部及び頂電極ブリッジ部は、同じ膜層で形成され、膜厚が均一であり、これによって、プロセスを簡略化し、コストを削減することができ、頂電極突出部の膜厚が頂電極層の他の部分とほぼ同じであるため、頂電極突出部が切断してしまう状況が発生することなく、デバイスの信頼性を向上させることができる。 7. The bottom electrode resonance portion and the bottom electrode bridge portion are formed of the same film layer and have a uniform film thickness, and the top electrode protrusion, the top electrode resonance portion and the top electrode bridge portion are formed of the same membrane layer. The film thickness is uniform, which simplifies the process and reduces costs, and because the film thickness of the top electrode protrusion is about the same as the rest of the top electrode layer, the top electrode protrusion The reliability of the device can be improved without the situation of disconnection.
8、底電極層のキャビティ領域での部分が平坦であり、一方、有効領域での薄膜の厚さ均一性の向上に寄与することができ、他方、圧電共振層を形成するときのエッチングプロセスの難度の低減に寄与し、底電極層の頂面が平坦ではないため、圧電材料を完全にエッチングしないという問題を回避し、それにより、寄生パラメータを減少させる。 8. The portion of the bottom electrode layer in the cavity region is flat, which can contribute to the improvement of the thickness uniformity of the thin film in the effective region, and on the other hand, in the etching process when forming the piezoelectric resonance layer. It contributes to the reduction of difficulty and avoids the problem of not completely etching the piezoelectric material because the top surface of the bottom electrode layer is not flat, thereby reducing the parasitic parameters.
以下、図面及び具体的な実施例を参照しながら、本発明の技術的解決手段についてさらに詳細説明する。以下の説明に基づいて、本発明の効果及び特徴はより明確になる。なお、図面は、いずれも非常に簡略化される形式、不正確な比例を用いており、本発明の実施例を容易、明瞭かつ補助的に説明するためのものに過ぎない。同様に、本明細書に記載の方法が一連のステップを含むと、本明細書に示されるこれらのステップの順序は、これらのステップを実行できる唯一の順序ではなく、いくつかの前記ステップは、省略されてもよく、及び/又は、本明細書で説明されていないいくつかの他のステップは、該方法に追加されてもよい。さらに本明細書におけるある物とある物とが「相互にずれる」ことの意味は、両者がキャビティ領域において重ならず、すなわち、両者のキャビティの底面での投影が重ならないことである。 Hereinafter, the technical solution of the present invention will be described in more detail with reference to the drawings and specific examples. Based on the following description, the effects and features of the present invention will become clearer. It should be noted that all the drawings use a very simplified format and inaccurate proportions, and are merely for the purpose of explaining the embodiments of the present invention easily, clearly and supplementarily. Similarly, if the method described herein comprises a series of steps, the order of these steps shown herein is not the only order in which these steps can be performed, and some of the steps are described. It may be omitted and / or some other steps not described herein may be added to the method. Further, the meaning of "displacement" of an object and an object in the present specification is that they do not overlap in the cavity region, that is, the projections on the bottom surface of both cavities do not overlap.
図1A~図1Cを参照し、図1Aは、本発明の一実施例のバルク音響波共振器の上面構造模式図であり、図1Bは、図1でのXX’に沿う断面構造模式図であり、図1Cは、図1AでのYY’線に沿う断面構造模式図であり、本実施例のバルク音響波共振器は、基板と、底電極層104と、圧電共振層1051と、頂電極層108とを含む。
With reference to FIGS. 1A to 1C, FIG. 1A is a schematic top view of the bulk acoustic wave resonator according to an embodiment of the present invention, and FIG. 1B is a schematic cross-sectional structure along XX'in FIG. 1C is a schematic cross-sectional structure taken along the YY'line in FIG. 1A, and the bulk acoustic wave resonator of this embodiment includes a substrate, a
前記基板は、ベース100と、前記ベース100上に被覆されるエッチング保護層101とを含む。前記ベース100は、当業者にとって周知される任意の適宜な基材であってもよく、たとえば、シリコン(Si)、ゲルマニウム(Ge)、シリコンゲルマニウム(SiGe)、炭化ケイ素(SiC)、シリコンゲルマニウム炭化(SiGeC)、ヒ化インジウム(InAs)、ヒ化ガリウム(GaAs)、リン化インジウム(InP)、又は、他のIII/V化合物半導体、これらの半導体で構成される多層構造などのうちの少なくともの1つであってもよいし、又は、シリコン・オン・インシュレータ(SOI)、積層シリコン・オン・インシュレータ(SSOI)、積層シリコン・ゲルマニウム・オン・インシュレータ(S-SiGeOI)、積層シリコン・ゲルマニウム・オン・インシュレータ(SiGeOI)及びゲルマニウム・オン・インシュレータ(GeOI)であってもよいし、又は、両面研磨シリコンウエハー(Double Side Polished Wafers、DSP)であってもよいし、酸化アルミニウムなどのセラミックベース、セキエイ、又は、ガラスベースなどであってもよい。前記エッチング保護層101の材料は、任意の適宜な誘電体材料であってもよく、酸化ケイ素、窒化ケイ素、窒素酸化ケイ素、炭化窒化ケイ素などの材料のうちの少なくとも1つを含むがこれらに限られない。該エッチング保護層は、一方、最終的に製造されるバルク音響波共振器の構造安定性を向上させ、バルク音響波共振器とベース100との間の分離を強化させ、ベース100に対する抵抗率要求を低減させることができ、他方、バルク音響波共振器の製造過程で、基板の他の領域がエッチングされないように保護し、それにより、デバイスの性能及び信頼性を向上させる。
The substrate includes a
底電極層104と基板との間にキャビティ102が形成される。図1A~図1Cを参照し、本実施例では、前記キャビティ102は、エッチングプロセスにより、前記エッチング保護層101及びベース100の一部の厚さを順にエッチングすることで形成されてもよく、底部全体が前記基板に凹んだ溝構造となる。しかし、本発明の技術は、これに限定されず、図2Dを参照し、本発明の他の実施例では、前記キャビティ102は、エッチング保護層101の面に突設された犠牲層を後続に除去する方法を用いて除去するプロセスにより、エッチング保護層101の頂面の上方に形成されてもよく、全体が前記エッチング保護層101の面に突設されるキャビティ構造となる。また、本実施例では、キャビティ102の底面の形状は、矩形であってもよいが、本発明の他の実施例では、キャビティ102の底面形状は、さらに、円形、楕円形、又は、矩形以外の多角形(例えば、五角形、六角形)であってもよい。
A
圧電共振層1051は、圧電共振部と呼ばれてもよく、前記キャビティ102の上方領域に位置し(つまり、前記キャビティ102の領域内に位置する)、バルク音響波共振器の有効作動領域に対応し、底電極層104と頂電極層108との間に設けられる。底電極層104は、順に接続される底電極ブリッジ部1040及び底電極共振部1041を含み、底電極層104は、前記キャビティ102の上方に位置する部分が平坦に延在しており、すなわち、底電極ブリッジ部1040のキャビティの上方に位置する部分の頂面と前記底電極共振部1041の頂面とが面一にされ、底電極ブリッジ部1040のキャビティの上方に位置する部分の底面と前記底電極共振部1041の底面とが面一にされる。頂電極層108は、順に接続される頂電極ブリッジ部1080、頂電極突出部1081及び頂電極共振部1082を含み、底電極共振部1041、頂電極共振部1082がいずれも圧電共振層1051と重なり、重なる底電極共振部1041、圧電共振層1051、及び頂電極共振部1082に対応する前記キャビティ102の領域は、前記バルク音響波共振器の有効作動領域102Aを構成し、キャビティ102の有効作動領域102A以外の部分は、無効領域102Bであり、圧電共振層1051は、有効作動領域102Aに位置するとともに、キャビティ102の周囲の膜層と分離され、バルク音響波共振器の有効作動領域をキャビティ102の領域に完全に制限することができ、キャビティの周囲の膜層による、圧電共振層において生じた縦方向振動に対する影響を減少させ、無効領域102Bにおいて生じた寄生パラメータを低減させ、デバイスの性能を向上させることができる。底電極共振部1041、圧電共振層1051、頂電極共振部1082は、いずれも上下面が平面である平坦構造であり、前記頂電極突出部1081は、前記有効作動領域102Aの外周におけるキャビティ102Bの上方に位置するとともに、前記頂電極共振部1082に電気的に接続され、前記キャビティ102の底面から離れる方向に突出する。頂電極突出部1081全体は、頂電極共振部1082の頂面に対して上に突出し、前記圧電共振層1051の外周におけるキャビティ領域(すなわち、102B)内に位置する。頂電極突出部1081は、中実構造であってもよいし、中空構造であってもよく、好ましくは中空構造であり、これによって、頂電極層108の膜厚を均一にすることができ、中実の頂電極突出部1081により引き起こされる、頂電極共振部1082及びその下方の圧電共振層1051と底電極共振部1041の崩れ変形を回避し、さらに共振係数を改善する。前記底電極共振部1041及び前記頂電極共振部1082は、いずれも多角形であり(頂面及び底面がいずれも多角形である)、前記底電極共振部1041と前記頂電極共振部1082の形状は、類似してもよいし(図2A及び2Cに示す)、又は、完全に同じであってもよい(図1A及び図2Bに示す)。圧電共振層1051は、前記底電極共振部1041、前記頂電極共振部1082の形状に類似する多角形構造である。
The
図1A~図1Cを参照し、本実施例では、底電極層104、圧電共振層1051及び頂電極層108が「腕時計」状の膜層構造を構成し、底電極ブリッジ部1040が底電極共振部1041の1つの角と位置合わせされ、頂電極ブリッジ部1080が頂電極共振部1082の1つの角と位置合わせされ、底電極ブリッジ部1040及び頂電極ブリッジ部1080が「腕時計」の2つのバンドに相当し、前記頂電極突出部1081は、前記頂電極共振部1082の辺に沿って設けられるとともに、前記頂電極ブリッジ部1080と前記頂電極共振部1082とが位置合わせされる領域のみに設けられ、前記頂電極突出部1081は、「腕時計」の文字盤と1つのバンドとの間の接続構造に相当し、有効領域102Aでの底電極共振部1041、圧電共振層1051、頂電極共振部1082の積層構造が腕時計の文字盤に相当し、該文字盤は、バンド部がキャビティの周囲の基板上の膜層に接続されるほか、残りの部分がいずれもキャビティを介してキャビティの周囲の基板上の膜層と分離される。すなわち、本実施例では、前記頂電極突出部1081は、前記圧電共振層1051の周辺方向を囲んで延在しており、前記頂電極突出部1081は、圧電共振層1051の周辺方向に沿って、圧電共振層1051の一部の辺のみに囲まれ、圧電共振層1051が位置する平面を参照とし、前記頂電極突出部1081と底電極ブリッジ部1040とは、圧電共振層1051の両側に位置するとともに、完全に対向し、これによって、所定の横波遮断効果を実現するとともに、頂電極ブリッジ部1080及び底電極ブリッジ部1040で被覆されていない無効領域102Bの面積の減少に寄与し、さらにデバイスのサイズの減少に寄与し、また、頂電極ブリッジ部1080及び底電極ブリッジ部1040の面積の減少に寄与し、寄生パラメータをさらに減少させ、デバイスの電気的性能を向上させる。前記底電極ブリッジ部1040は、前記底電極共振部1041の一側に電気的に接続され、前記底電極共振部1041の上から、底電極共振部1041の外側に浮いたキャビティ(すなわち、102B)の上方を経由した後に、前記キャビティ102の外周における一部のエッチング保護層101の上方まで延在しており、前記頂電極ブリッジ部1080は、前記頂電極突出部1081の前記頂電極共振部1082と背向する側に電気的に接続され、前記頂電極突出部1081の上から、前記頂電極突出部1081の外側に浮いたキャビティ(すなわち、102B)の上方を経由した後に、前記キャビティ102の外周における一部のエッチング保護層101の上方まで延在しており、前記底電極ブリッジ部1040及び前記頂電極ブリッジ部1080が前記キャビティ102の2つの対向する辺の外側の基板の上方まで延在しており、このとき、前記底電極ブリッジ部1040と前記頂電極ブリッジ部1080とは、キャビティ102領域において相互にずれ(すなわち、両者が重ならない)、これによって、寄生パラメータを低減させ、底電極ブリッジ部と頂電極ブリッジ部とが接触することによる、リークや短絡などの問題を回避し、デバイスの性能を向上させることができる。前記底電極ブリッジ部1040は、対応する信号線を接続することにより、底電極共振部1041に対応する信号を転送するために用いられ、前記頂電極ブリッジ部1080は、対応する信号線を接続することにより、頂電極突出部1081を介して頂電極共振部1082に対応する信号を転送するために用いられ、それにより、バルク音響波共振器が正常に作動できるようにし、具体的には、底電極ブリッジ部1040、頂電極ブリッジ部1080を介してそれぞれ底電極共振部1041及び頂電極共振部1082に時変電圧を印加することにより、縦方向延在モード、又は、「ピストン」モードを励起し、圧電共振層1051は、電気エネルギー形態のエネルギーを縦波に変換し、この過程で寄生横波を生成し、頂電極突出部1081は、これらの横波がキャビティの外周における膜層に伝播することを遮断し、それをキャビティ102の領域内に制限することができ、それにより、横波によるエネルギー損失を回避し、品質係数を向上させる。
With reference to FIGS. 1A to 1C, in this embodiment, the
好ましくは、頂電極突出部1081の線幅は、それぞれ対応するプロセスに許容される最小線幅であり、頂電極突出部1081と圧電共振層1051との間の水平距離は、いずれも対応するプロセスに許容される最小距離であり、これによって、頂電極突出部1081が所定の横波遮断効果を実現できるとともに、デバイス面積の減少に寄与する。
Preferably, the line width of the
また、前記頂電極突出部1081の側壁は、前記圧電共振層の頂面に対して、傾斜した側壁であり、図1Bに示すように、前記頂電極突出部1081の図1AでのXX’線に沿う断面は、台形、又は、台形に類似する形状であり、前記頂電極突出部1081の2つの側壁と前記圧電共振層1051の頂面との間の角度α1、α2がいずれも45度以下であり、これによって、頂電極突出部1081の側壁が垂直過ぎるため、頂電極突出部1081が切断してしまい、さらに頂電極共振部1082に信号を転送する効果に影響を与えることを回避し、また、頂電極層108全体の厚さ均一性をさらに向上させることができる。
Further, the side wall of the top
本発明の1つの好適な実施例では、底電極共振部1041及び底電極ブリッジ部1040は、同じ膜層の製造プロセス(すなわち、同じ膜層製造プロセス)で形成され、頂電極共振部1082、頂電極突出部1081及び頂電極ブリッジ部1080は、同じ膜層の製造プロセス(すなわち、同じ膜層製造プロセス)で形成され、すなわち、底電極共振部1041及び底電極ブリッジ部1040は、一体に製作される膜層であり、頂電極共振部1082、頂電極突出部1081及び頂電極ブリッジ部1080は、一体に製作される膜層であり、これによって、プロセスを簡略化し、コストを削減し、底電極共振部1041及び底電極ブリッジ部1040を製作するための膜層材料と、頂電極共振部1082、頂電極突出部1081及び頂電極ブリッジ部1080を製作するための膜層材料とは、それぞれ、本分野技術において周知される任意の適宜な導電性材料又は半導体材料を用いてもよく、導電性材料は、導電性を有する金属材料であってもよく、たとえば、アルミニウム(Al)、銅(Cu)、白金(Pt)、金(Au)、モリブデン(Mo)、タングステン(W)、イリジウム(Ir)、オスミウム(Os)、レニウム(Re)、パラジウム(Pd)、ロジウム(Rh)及びルテニウム(Ru)のうちの1種又は複数種であり、前記半導体材料は、たとえば、Si、Ge、SiGe、SiC、SiGeCなどである。本発明の他の実施例では、プロセスコスト及びプロセス技術で許容される前提で、底電極共振部1041及び底電極ブリッジ部1040は、異なる膜層製造プロセスで形成されてもよく、頂電極共振部1082、頂電極突出部1081及び頂電極ブリッジ部1080は、異なる膜層製造プロセスで形成されてもよい。
In one preferred embodiment of the present invention, the bottom
図2A~図2Cを参照し、横波遮断効果をさらに向上させるために、頂電極突出部1081が頂電極共振部1082のより多くの連続辺まで延在している。たとえば、図2Aを参照し、圧電共振層1051、頂電極共振部1082及び底電極共振部1041がいずれも五角形の平面構造であり、圧電共振層1051の面積が最小であり、頂電極共振部1082がそれより大きく、底電極共振部1041の面積が最大であり、前記頂電極突出部1081は、頂電極共振部1082の複数の辺に沿って設けられるとともに、これらの辺に接続され、前記底電極共振部1041と前記底電極ブリッジ部1040との接続部分のキャビティ102の底面での投影は、頂電極突出部1081のキャビティ102の底面での投影から露出され、これによって、頂電極突出部1081と底電極ブリッジ部1040とが重ならないようにし、さらに寄生パラメータを低減させることができる。またたとえば、図2Bを参照し、圧電共振層1051、頂電極共振部1082及び底電極共振部1041がいずれも五角形の平面構造であり、圧電共振層1051の面積が最小であり、頂電極共振部1082と底電極共振部1041とは、面積、形状などが同じであるか、又は、ほぼ同じであり、頂電極突出部1081が頂電極共振部1082の全周を囲み、頂電極共振部1082と底電極共振部1041とのキャビティ102底面での投影が重なり、これによって、密閉な環状を呈する頂電極突出部1081により、圧電共振層1051の生じた横波に対して全方位遮断を行う。
With reference to FIGS. 2A to 2C, the
図2A~2Cを参照し、本発明のこれらの実施例では、前記底電極ブリッジ部1040は、前記底電極共振部1041の少なくとも1つの辺、又は、少なくとも1つの角に電気的に接続され、前記底電極共振部1041の対応する辺から、前記底電極共振部1041の外側に浮いたキャビティ(すなわち、102B)の上方を経由した後に、前記キャビティ102の外周における一部のエッチング保護層101の上方まで延在しており、前記頂電極ブリッジ部1080は、前記頂電極突出部1081の前記頂電極共振部1082と背向する少なくとも1つの辺又は少なくとも1つの角に電気的に接続され、前記頂電極突出部1081から、前記頂電極突出部1081の外側に浮いたキャビティ(すなわち、102B)の上方を経由した後に、前記キャビティ102の外周における一部のエッチング保護層101の上方まで延在しており、前記頂電極ブリッジ部1080と前記底電極ブリッジ部1040との前記キャビティ102の底面での投影は、ちょうど接続されてもよいし、相互に分離されてもよく、これによって、前記頂電極ブリッジ部1080と前記底電極ブリッジ部1040とは、キャビティ102の領域において、重ならずに相互にずれる。たとえば、図1A、図2A~2Bに示すように、底電極ブリッジ部1040は、前記キャビティ102の1本の辺のみの外周における一部の基板の上方まで延在しており、前記頂電極ブリッジ部1080は、前記キャビティ102の1本の辺のみの外周における一部の基板の上方まで延在しており、前記頂電極ブリッジ部1080と前記底電極ブリッジ部1040との前記キャビティ102の底面での投影が相互に分離され、これによって、前記頂電極ブリッジ部1080と前記底電極ブリッジ部1040とが重なるとき、寄生パラメータの導入や、引き起こす可能性があるリークや短絡などの問題を回避する。しかし、好ましくは、図2Cを参照し、前記底電極ブリッジ部1040は、前記底電極共振部1041の全ての辺に沿って設けられるとともに、前記キャビティ102の外周における基板まで連続的に延在しており、これによって、底電極ブリッジ部1040は、前記キャビティ102の外周におけるより多くの方向での一部の基板の上方まで延在していることができ、すなわち、このとき、前記底電極ブリッジ部1040は、それ自体が位置するキャビティの一部の上方においてキャビティ102を完全にカバーし、それにより、大面積の底電極ブリッジ部1040の敷設により、有効作動領域102Aの膜層に対する支持力を増加させ、キャビティ102の崩れを防止する。さらに好ましくは、前記底電極ブリッジ部1040が前記キャビティ102の外周におけるより多くの方向での一部の基板の上方まで延在しているとき、前記頂電極ブリッジ部1080は、前記キャビティ102の外周における1つの方向のみでの一部の基板の上方まで延在しており、たとえば、キャビティ102の上面形状が矩形である場合、前記頂電極ブリッジ部1080がキャビティ102の1本の辺のみの外周における基板の上方まで延在しており、底電極ブリッジ部1040が前記キャビティ102の他の3本の辺まで延在しており、このとき、前記頂電極ブリッジ部1080と前記底電極ブリッジ部1040との前記キャビティ102の底面での投影は、ちょうど接続されるか、又は、相互に分離され、すなわち、このとき、前記底電極ブリッジ部1040は、それ自体が位置するキャビティの一部の上方において、キャビティ102を完全にカバーし、前記頂電極ブリッジ部1080の幅方向に、前記頂電極ブリッジ部1080と重ならない。これによって、頂電極ブリッジ部1080を大面積設けると、底電極ブリッジ部1040などの構造と垂直方向に重なるため、多すぎる寄生パラメータが導入されることを回避し、デバイスの電気的性能及び信頼性をさらに向上させることができる。
With reference to FIGS. 2A-2C, in these embodiments of the present invention, the bottom
本発明の各実施例では、前記キャビティ102の上面形状が多角形である場合、底電極ブリッジ部1040及び頂電極ブリッジ部1080のそれぞれから、前記キャビティの少なくとも1つの辺が露出され、これによって、底電極ブリッジ部1040が接続される底電極共振部1041、及び頂電極突出部1081が接続される頂電極共振部1082は、それぞれ少なくとも一端が完全に浮いており、このように、無効領域102Bの面積の減少に寄与し、さらに無効領域102Bにおいて生じた寄生コンデンサなどの寄生パラメータを減少させ、デバイスの性能を向上させる。好ましくは、前記頂電極突出部1081は、前記キャビティ102の上方において少なくとも前記底電極ブリッジ部1040と相互にずれ(すなわち、両者がキャビティ領域において重ならない)、これによって、無効領域102Bにおいて生じた寄生コンデンサなどの寄生パラメータをさらに低減させ、デバイスの性能を向上させる。
In each embodiment of the present invention, when the upper surface shape of the
なお、最適な横波遮断効果を実現し、小さいサイズのデバイスの製作に寄与するために、頂電極突出部1081が有効作動領域102Aに近接するほど、好ましく、頂電極突出部1081の線幅が小さいほど、好ましく、好ましくは、頂電極突出部1081の線幅は、対応するプロセスに許容される最小線幅であり、頂電極突出部1081と有効作動領域102Aと(すなわち、圧電共振層1051と)の水平距離は、対応するプロセスに許容される最小距離である。
In order to realize the optimum lateral wave blocking effect and contribute to the production of a device having a small size, it is preferable that the
なお、上記各実施例では、頂電極共振部1082と底電極共振部1041とは、形状が類似し又は同じであり、面積が同じであるか、又は、底電極共振部1041の面積が頂電極共振部1082の面積より大きいが、本発明の技術的解決手段は、これに限られない。本発明の他の実施例では、頂電極共振部1082と底電極共振部1041との形状は、類似しなくてもよいが、頂電極突出部1081は、形状が圧電共振層1051の形状に一致し、圧電共振層1051の少なくとも1つの辺に沿って延在できることが好ましい。さらに、研究によれば、バルク音響波共振器の寄生横波のほとんどが有効作動領域102A上の膜層とキャビティの外周における基板との間の接続構造を介して伝達されることを発見し、従って、本発明の各実施例では、有効作動領域102Aの膜層を効果的に支持できることを確保する前提で、頂電極ブリッジ部1080の面積(つまり、線幅)を最小、底電極ブリッジ部1040の面積(つまり、線幅)を最小にできる限り制御することができる。
In each of the above embodiments, the top
本発明の一実施例は、上記の任意の本発明の実施例に記載の少なくとも1つのバルク音響波共振器を備えるフィルタをさらに提供する。 One embodiment of the present invention further provides a filter comprising at least one bulk acoustic wave resonator according to any of the above embodiments of the present invention.
本発明の一実施例は、本発明の一実施例に記載の少なくとも1つのフィルタを備える無線周波数通信システムをさらに提供する。 An embodiment of the present invention further provides a radio frequency communication system comprising at least one filter according to the embodiment of the present invention.
図3を参照し、本発明の一実施例は、本発明のバルク音響波共振器(たとえば、図1A~図2Cに示すバルク音響波共振器)の製造方法であって、
基板を提供し、頂面が平坦な第1の犠牲層を一部の前記基板上に形成するステップS1と、
前記第1の犠牲層の頂面上に位置する部分が平坦に延在している底電極層を一部の前記第1の犠牲層上に形成するステップS2と、
圧電共振層を前記底電極層上に形成し、圧電共振層から一部の前記第1の犠牲層及び一部の前記底電極層を露出させるステップS3と、
犠牲突出を有する第2の犠牲層を前記圧電共振層の周囲から露出される領域に形成するステップS4と、
頂電極層を前記圧電共振層及び圧電共振層の周囲の一部の第2の犠牲層上に形成し、前記頂電極層の前記犠牲突出に被覆される部分が頂電極突出部を形成するステップS5と、
前記犠牲突出を有する第2の犠牲層及び前記第1の犠牲層を除去し、前記犠牲突出を有する第2の犠牲層及び前記第1の犠牲層の位置にキャビティを形成するステップであって、前記頂電極突出部が前記圧電共振層の外周におけるキャビティ領域に位置するとともに、前記圧電共振層の周辺方向を囲んで延在しているステップS6とを含む、製造方法をさらに提供する。
With reference to FIG. 3, an embodiment of the present invention is a method for manufacturing a bulk acoustic wave resonator (for example, the bulk acoustic wave resonator shown in FIGS. 1A to 2C) of the present invention.
Step S1 to provide a substrate and form a first sacrificial layer with a flat top surface on some of the substrates.
In step S2, a bottom electrode layer having a portion located on the top surface of the first sacrificial layer extending flat is formed on a part of the first sacrificial layer.
Step S3, in which the piezoelectric resonance layer is formed on the bottom electrode layer and a part of the first sacrificial layer and a part of the bottom electrode layer are exposed from the piezoelectric resonance layer.
Step S4, in which a second sacrificial layer having a sacrificial protrusion is formed in a region exposed from the periphery of the piezoelectric resonance layer,
A step in which the top electrode layer is formed on the piezoelectric resonance layer and a part of the second sacrificial layer around the piezoelectric resonance layer, and the portion of the top electrode layer covered with the sacrificial protrusion forms the top electrode protrusion. With S5
A step of removing the second sacrificial layer having the sacrificial protrusion and the first sacrificial layer and forming a cavity at the position of the second sacrificial layer having the sacrificial protrusion and the first sacrificial layer. Further provided is a manufacturing method including the step S6 in which the protrusion of the top electrode is located in a cavity region on the outer periphery of the piezoelectric resonance layer and extends around the peripheral direction of the piezoelectric resonance layer.
図1A、1B及び図4A~4Bを参照し、本実施例のステップS1で、基板をエッチングして溝を形成し、溝に材料を充填するプロセスにより、第1の犠牲層を一部の基板上に形成し、具体的な実現過程は、以下を含む。 With reference to FIGS. 1A and 1B and FIGS. 4A-4B, in step S1 of this embodiment, the first sacrificial layer is partially used as a substrate by a process of etching a substrate to form a groove and filling the groove with a material. The concrete realization process formed above includes:
まず、図1A及び図4Aを参照し、基板を提供し、具体的には、ベース100を提供し、ベース100にエッチング保護層101を被覆する。前記エッチング保護層101は、熱酸化、熱窒化、熱酸窒化などの熱処理方法、又は、化学気相堆積、物理気相堆積又はアトミックレイヤデポジションなどの堆積方法など、任意の適宜なプロセス方法によって、ベース100上に形成されてもよい。さらに、保護層101のエッチング厚さは、実際のデバイスプロセスのニーズに応じて合理的に設定されてもよく、ここで具体的には限定しない。
First, with reference to FIGS. 1A and 4A, a substrate is provided, specifically, a
続いて、図1A、1B及び図4Aを参照し、ホトエッチング及びエッチングプロセスにより、基板をエッチングすることにより、少なくとも1つの溝102’を形成する。該エッチングプロセスは、湿式エッチング又は乾式エッチングプロセスであってもよく、乾式エッチングプロセスを用いることが好ましく、乾式エッチングは、反応性イオンエッチング(RIE)、イオンビームエッチング、プラズマエッチング、又は、レーザ切断を含むがこれらに限られない。溝102’の深さ及び形状は、全て、製造すべきバルク音響波共振器に必要なキャビティの深さ及び形状に決められ、溝102’の横断面形状は、矩形であり、本発明の他の実施例では、溝102’の横断面は、さらに、円形、楕円形又は矩形以外の他の多角形(五角形、六角形など)など、他の任意の適宜な形状であってもよい。 Subsequently, with reference to FIGS. 1A, 1B and 4A, at least one groove 102'is formed by etching the substrate by a photo-etching and etching process. The etching process may be a wet etching process or a dry etching process, and it is preferable to use a dry etching process. The dry etching includes reactive ion etching (RIE), ion beam etching, plasma etching, or laser cutting. Including, but not limited to these. The depth and shape of the groove 102'are all determined by the depth and shape of the cavity required for the bulk acoustic wave resonator to be manufactured, and the cross-sectional shape of the groove 102'is rectangular, and other than the present invention. In the embodiment, the cross section of the groove 102'may further have any other suitable shape, such as a polygon other than a circle, an ellipse, or a rectangle (pentagon, hexagon, etc.).
次に、図1A、1B及び図4Bを参照し、気相堆積、熱酸化、スピンコーティング又はエピタキシャル成長などのプロセスにより、第1の犠牲層103を前記溝102’に充填してもよく、前記第1の犠牲層103は、ベース100及びエッチング保護層101と異なる半導体材料、誘電体材料又はフォトレジスト材料などを選択してもよく、たとえば、ベース100がSiベースであると、第1の犠牲層103は、Geであってもよく、この場合、形成される第1の犠牲層103は、さらに、溝の外周におけるエッチング保護層101に被覆されるか、又は、頂面が溝の周囲のエッチング保護層101の頂面より高い可能性があり、次に、化学機械平坦化(CMP)プロセスにより、前記第1の犠牲層103の頂部を前記エッチング保護層101の頂面まで平坦化することにより、前記第1の犠牲層103を溝102’のみに位置させ、前記第1の犠牲層103の頂面をその周囲のエッチング保護層101の頂面と面一にするようにし、これによって、平坦面を有する底電極層104の後続形成に平坦なプロセス面を提供する。
Next, with reference to FIGS. 1A, 1B and 4B, the groove 102'may be filled with the first
図1A、1B及び4Cを参照し、ステップS2で、まず、予め形成される底電極の材料に応じて、適宜な方法を選択して、エッチング保護層101、第1の犠牲層103の面に底電極材料層(図示せず)を被覆してもよく、たとえば、マグネトロンスパッタリング、蒸着などの物理気相堆積、又は、化学気相堆積方法によって底電極材料層を形成し、次に、底電極パターンが定義されるフォトレジスト層(図示せず)をリソグラフィプロセスで底電極材料層上に形成し、フォトレジスト層をマスクとして、前記底電極材料層をエッチングすることにより、底電極層(すなわち、残りの底電極材料層)104を形成し、この後に、フォトレジスト層を除去する。底電極材料層は、本分野技術において周知される任意の適宜な導電性材料又は半導体材料を用いることができ、導電性材料は、導電性を有する金属材料であってもよく、例えば、アルミニウム(Al)、銅(Cu)、白金(Pt)、金(Au)、モリブデン(Mo)、タングステン(W)、イリジウム(Ir)、オスミウム(Os)、レニウム(Re)、パラジウム(Pd)、ロジウム(Rh)及びルテニウム(Ru)のうちの1種又は複数種であり、前記半導体材料は、たとえば、Si、Ge、SiGe、SiC、SiGeCなどである。本実施例では、底電極層(残りの底電極材料層)104は、この後に形成される有効作動領域102Aに被覆される底電極共振部1041と、底電極共振部1041の一側から第1の犠牲層103の面を経由して、溝102’の外側での一部のエッチング保護層101上まで延在している底電極ブリッジ部1040と、底電極共振部1041といずれも分離される底電極の外周部1042とを含み、該底電極の外周部1042は、該領域の形成すべきバルク音響波共振器の1つの金属接点として、底電極ブリッジ部1040の底電極共振部1041と背向する側に接続されてもよいし、隣接するバルク音響波共振器の底電極ブリッジ部の一部として、底電極ブリッジ部1040と分離されてもよく、本発明の他の実施例では、底電極の外周部1042は、省略されてもよい。底電極共振部1041の上面形状は、五角形であってもよく、本発明の他の実施例では、四角形又は六角形などであってもよく、前記底電極ブリッジ部1040は、底電極共振部1041の少なくとも1つの辺、又は、少なくとも1つの角に電気的に接続され、前記底電極共振部1041の対応する辺から、底電極共振部1041の外側の第1の犠牲層103の頂面を経由した後、前記溝102’の外周における一部のエッチング保護層101の頂面上まで延在している。また、本実施例では、第1の犠牲層103の頂面とエッチング保護層101の頂面とが面一にされるため、形成される前記底電極層104の底面を面一にし、頂面も面一にすることができ、このとき、前記底電極層104は、全範囲において平坦に延在しており、すなわち、底電極共振部1041及び底電極ブリッジ部1040は、面一にされる底面及び面一にされる頂面を有する。好ましくは、図2Cに示すように、前記底電極ブリッジ部1040は、それ自体が位置するキャビティの一部の上方において、キャビティ102を完全にカバーし、前記頂電極ブリッジ部1080の幅方向に、前記頂電極ブリッジ部1080と重ならないことで、後続の膜層に対する支持力を向上させ、前記頂電極ブリッジ部1080と重なるため、不必要な寄生パラメータを導入することをできるだけ回避する。底電極共振部1041は、無線周波数(RF)信号などの電気信号を受信又は提供する入力電極、又は、出力電極として用いられてもよい。
With reference to FIGS. 1A, 1B and 4C, in step S2, first, an appropriate method is selected according to the material of the bottom electrode formed in advance, and the surface of the
図1A、1B及び図4Cを参照し、ステップS3で、まず、化学気相堆積、物理気相堆積又はアトミックレイヤデポジションなど、当業者にとって周知される任意の適宜な方法で圧電材料層105を堆積形成してもよく、次に、圧電薄膜パターンが定義されたフォトレジスト層(図示せず)をリソグラフィプロセスで圧電材料層105上に形成し、フォトレジスト層をマスクとして、前記圧電材料層105をエッチングすることにより、圧電共振層1051を形成し、この後に、フォトレジスト層を除去する。前記圧電材料層105の材料は、窒化アルミニウム(AlN)、酸化亜鉛(ZnO)、チタン酸ジルコン酸鉛(PZT)、ニオブ酸リチウム(LiNbO3)、セキエイ(Quartz)、ニオブ酸カリウム(KNbO3)、又は、タンタル酸リチウム(LiTaO3)など、ウルツ鉱型結晶構造を有する圧電材料及びそれらの組合せを用いてもよい。圧電材料層105は、窒化アルミニウム(AlN)を含むと、さらに、希土類金属を含んでもよく、例えば、スカンジウム(Sc)、エルビウム(Er)、イットリウム(Y)及びランタン(La)のうちの少なくとも1種である。また、圧電材料層105は、窒化アルミニウム(AlN)を含むと、さらに、遷移金属(例えば、ジルコニウム(Zr)、チタン(Ti)、マンガン(Mn)及びハフニウム(Hf)のうちの少なくとも1種)を含んでもよい。パターニングした後に残りの圧電材料層105は、相互に分離される圧電共振層1051と圧電外周部1050とを含み、圧電共振層1051は、底電極共振部1041上に位置し、底電極ブリッジ部1040が露出され、底電極共振部1041に完全に被覆されてもよいし、又は、部分的に被覆されてもよい。圧電共振層1051の形状は、底電極共振部1041の形状と同じであってもよく、異なってもよく、その上面形状は、五角形であってもよく、四角形、六角形、七角形、又は、八角形などの他の多角形であってもよい。圧電外周部1050と圧電共振層1051との間に隙間を形成することにより、底電極ブリッジ部1040の上方及び前記底電極共振部1041の周囲の一部の第1の犠牲層103を露出させ、形成される隙間によって、後続の第2の犠牲層の形成領域を制限し、また、後続の犠牲突出の形成に平坦なプロセス面を提供し、圧電外周部1050は、この後に形成される頂電極の外周部と、この前に形成される底電極の外周部1042とを分離させることを実現し、また、後続の第2の犠牲層及び頂電極層の形成に平坦なプロセス面を提供することができる。
With reference to FIGS. 1A, 1B and 4C, in step S3, the
図1A、1B及び図4Dを参照し、ステップS4で、まず、コーティングプロセスや気相堆積プロセスなどの適宜なプロセスにより、圧電外周部1050、圧電共振層1051、及び圧電外周部1050と圧電共振層1051との間の隙間に第2の犠牲層106を被覆してもよく、第2の犠牲層106が圧電外周部1050と圧電共振層1051との間の隙間を満充填することができ、該第2の犠牲層106の材料は、アモルファス炭素、フォトレジスト、誘電体材料(たとえば、窒化ケイ素、酸炭化ケイ素、多孔質材料など)、又は、半導体材料(たとえば、多結晶シリコン、アモルファスシリコン、ゲルマニウム)などから選択される少なくとも1種であってもよく、次に、CMPプロセスにより第2の犠牲層106に対して頂部平坦化を行うことにより、第2の犠牲層106を圧電外周部1050と圧電共振層1051との間の隙間のみに充填し、圧電外周部1050、圧電共振層1051及び第2の犠牲層106が平坦な上面を構成する。本発明の他の実施例では、エッチングバックプロセスにより、圧電外周部1050及び圧電共振層1051の上面上の第2の犠牲層106を除去することにより、圧電外周部1050と圧電共振層1051との間の隙間のみに充填してもよい。次に、コーティングプロセス、又は、気相堆積プロセスなどの適宜なプロセスにより、圧電外周部1050、圧電共振層1051及び第2の犠牲層106に犠牲材料(図示せず)を被覆してもよく、該犠牲材料の厚さは、形成すべき犠牲突出107の突出高さに決められ、該犠牲材料は、アモルファス炭素、フォトレジスト、誘電体材料(たとえば、窒化ケイ素、酸炭化ケイ素、多孔質材料など)、又は、半導体材料(たとえば、多結晶シリコン、アモルファスシリコン、ゲルマニウム)などから選択される少なくとも1種であり、好ましくは第2の犠牲層106の材質と同じであり、コストを節約し、プロセスを簡略化し、次に、リソグラフィプロセス、又は、ホトエッチングとエッチングの組合せプロセスにより、前記犠牲材料をパターニングし、犠牲突出107を形成し、犠牲突出107の形状、大きさ及び位置などにより、この後に形成される頂電極突出部の形状、大きさ及び位置などが決められる。好ましくは、犠牲突出107の側壁は、圧電共振層1051が位置する平面(すなわち、圧電共振層1051の頂面)に対して傾斜した側壁であり、犠牲突出107の側壁と圧電共振層1051の頂面との間の角度θ1、θ2がいずれも45度以下であり、これによって、この後に頂電極凹み部1081に材料を被覆することに寄与し、切断することを回避し、厚さ均一性を向上させる。さらに好ましくは、犠牲突出107の線幅は、対応するプロセスに許容される最小線幅であり、犠牲突出107と前記圧電共振層1051との間の水平距離(犠牲突出107と前記圧電共振層1051の水平間隔距離)は、対応するプロセスに許容される最小距離であり、これによって、好ましい横波遮断効果を実現するとともに、デバイスのサイズの減少に寄与する。本発明の他の実施例では、犠牲突出107及び第2の犠牲層106は、同じプロセスにより形成されてもよく、たとえば、まず圧電外周部1050、圧電共振層1051及び圧電外周部1050と圧電共振層1051との間の隙間に、厚さが圧電共振層1051の厚さと犠牲突出107の厚さとの和以上の第2の犠牲層106を被覆し、次に、エッチングプロセスにより第2の犠牲層106をパターニングすることにより、圧電外周部1050と圧電共振層1051との間の隙間のみに充填される第2の犠牲層106を形成し、一部の第2の犠牲層106は、犠牲突出107を有し、該犠牲突出107の底面と前記圧電共振層1051の頂面とが面一とされてもよく、残りの一部の第2の犠牲層106の頂面と前記圧電共振層1051の頂面とが面一とされる。
With reference to FIGS. 1A, 1B and 4D, in step S4, first, the piezoelectric outer
図1A、図1B及び図4Eを参照し、ステップS5で、まず、予め形成された頂電極の材料に基づいて、適宜な方法を選択し、圧電外周部1050、圧電共振層1051、第2の犠牲層106及び犠牲突出107の面に頂電極材料層(図示せず)を被覆してもよく、たとえば、マグネトロンスパッタリング蒸着などの物理気相堆積、又は、化学気相堆積方法によって、頂電極材料層を形成してもよく、頂電極材料層は、各位置で厚さが均一であってもよく、次に、頂電極パターンが定義されたフォトレジスト層(図示せず)をリソグラフィプロセスで頂電極材料層上に形成し、フォトレジスト層をマスクとして、前記頂電極材料層をエッチングすることにより、頂電極層(すなわち、パターニングされた頂電極材料層、又は、残りの頂電極材料層)108を形成し、この後に、フォトレジスト層を除去する。頂電極材料層は、本分野技術において周知される任意の適宜な導電性材料又は半導体材料を用いてもよく、導電性材料は、導電性を有する金属材料であってもよく、例えば、Al、Cu、Pt、Au、Mo、W、Ir、Os、Re、Pd、Rh及びRuのうちの1種又は複数種などであり、前記半導体材料は、たとえば、Si、Ge、SiGe、SiC、SiGeCなどである。本実施例では、頂電極層108は、圧電共振層1051上に被覆される頂電極共振部1082と、犠牲突出107上に被覆される頂電極突出部1081と、頂電極突出部1081から、一部の第2の犠牲層106の頂面を経由して、頂電極突出部1081の外側の圧電外周部1050上まで延在している頂電極ブリッジ部1080と、頂電極共振部1082及び頂電極突出部1081といずれも分離される頂電極の外周部1083とを含み、該頂電極の外周部1083は、該領域の形成すべきバルク音響波共振器の1つの金属接点として、頂電極ブリッジ部1080の頂電極共振部1082と背向する一側に接続されてもよく、隣接するバルク音響波共振器の頂電極ブリッジ部の一部として、頂電極ブリッジ部1080と分離されてもよく、本発明の他の実施例では、頂電極の外周部1083は省略されてもよい。頂電極共振部1082の上面形状は、圧電共振層1051の形状と同じであってもよく、異なってもよく、その上面形状がたとえば五角形であり、圧電共振層1051を頂電極共振部1082と底電極共振部1041との間に完全に挟み込むように、頂電極共振部1082の面積が圧電共振層1051より大きいことが好ましく、それにより、デバイスのサイズの減少及び寄生パラメータの低減に寄与する。本発明の他の実施例では、頂電極共振部1082の形状は、さらに四角形、六角形、七角形、又は、八角形などの多角形であってもよい。頂電極層108は、無線周波数(RF)信号などの電気信号を受信又は提供する入力電極、又は、出力電極として用いられてもよい。たとえば、底電極層104が入力電極として用いられると、頂電極層108が出力電極として用いられてもよく、底電極層104が出力電極として用いられると、頂電極層108が入力電極として用いられてもよく、圧電共振層1051は、頂電極共振部1082又は底電極共振部1041を介して入力された電気信号をバルク音響波に変換する。たとえば、圧電共振層1051は、物理振動により電気信号をバルク音響波に変換する。頂電極突出部1081は、前記頂電極共振部1082の少なくとも1つの辺に沿って設けられるとともに、前記頂電極共振部1082の対応する辺に接続され、すなわち、前記頂電極突出部1081は、前記頂電極共振部1082の辺に沿って設けられるとともに、前記頂電極ブリッジ部1080と前記頂電極共振部1082とが位置合わせされる領域に少なくとも設けられ、たとえば、頂電極突出部1081は、前記頂電極共振部1082の全周を囲んで、閉環構造を構成し(図2B及び2Cに示す)、またたとえば、頂電極突出部1081は、前記頂電極共振部1082の複数の連続辺において延在することにより、開環構造を構成する(図2Aに示す)。前記頂電極ブリッジ部1080は、前記頂電極突出部1081の前記頂電極共振部1082と背向する側に電気的に接続され、前記頂電極突出部1081上から、一部の第2の犠牲層106の頂面を経由して、溝102’の外側の一部のエッチング保護層101の頂面まで延在しており、前記頂電極ブリッジ部1080と前記底電極ブリッジ部1040とは、相互にずれ(すなわち、両者がキャビティ102の領域において重ならない)、前記頂電極ブリッジ部1080及び前記底電極ブリッジ部1040のそれぞれから、溝102’の少なくとも1つの辺が露出される。本発明の一実施例では、図1A及び図2Aを参照し、前記溝102’の底面での投影のうち、前記頂電極突出部1081の投影から少なくとも、前記底電極共振部1041の前記底電極ブリッジ部1040より接続される境界の投影が露出される。前記頂電極ブリッジ部1080と前記底電極ブリッジ部1040との前記溝102’の底面での投影は、ちょうど接続されるか、又は、相互に分離され、前記頂電極ブリッジ部1080は、前記溝102’の1本の辺のみの外周における一部の基板の上方まで延在してもよい。
With reference to FIGS. 1A, 1B and 4E, in step S5, first, an appropriate method is selected based on the material of the apical electrode formed in advance, and the piezoelectric outer
図1A、1B及び図4Fを参照し、ステップS6で、ホトエッチングとエッチングプロセス、又は、レーザ切断との組合せプロセスにより、圧電外周部1050の溝102’に面する辺、又は、バルク音響波共振器のデバイス領域の外周に穴を開けてもよく、一部の第1の犠牲層103、一部の犠牲突出107又は犠牲突出107から露出された第2の犠牲層106のうちの少なくとも1つを露出可能な開放穴(図示せず)を形成し、次に、前記開放穴にガス及び/又は薬液を導入することにより、前記犠牲突出107、前記第2の犠牲層106、及び前記第1の犠牲層103を除去し、さらに第2の溝を改めて空にすることにより、キャビティ102を形成し、該キャビティ102は、溝102’の空間と、頂電極突出部1081で増加される空間と、頂電極突出部1081の下方において、元々第2の犠牲層106で占有された空間とを含む。キャビティ102の上方に浮くとともに、順に積層される底電極共振部1041、圧電共振層1051及び頂電極共振部1082は、独立したバルク音響薄膜を構成し、底電極共振部1041、圧電共振層1051、頂電極共振部1082及びキャビティ102が垂直方向に沿ってお互いに重なる部分は、有効領域であり、有効作動領域102Aとして定義され、該有効作動領域102Aは、無線周波数信号などの電気エネルギーを底電極共振部1041及び頂電極共振部1082に印加するとき、圧電共振層1051において生じた圧電現象のため、圧電共振層1051の厚さ方向(すなわち、縦方向)に振動及び共振が発生し、キャビティ102の他の領域は、無効領域102Bであり、該無効領域102Bは、電気エネルギーを頂電極層108及び底電極層104に印加しても、圧電現象のため共振しない領域である。有効作動領域102Aの上方に浮くとともに、順に積層される底電極共振部1041、圧電共振層1051及び頂電極共振部1082で構成されるバルク音響薄膜は、圧電共振層1051の圧電現象の振動に対応する共振周波数の無線周波数信号を出力することができる。具体的には、電気エネルギーを頂電極共振部1082と底電極共振部1041に印加するとき、圧電共振層1051において生じた圧電現象により、バルク音響波を生じる。この場合、生じたバルク音響波は、望ましい縦波のほか、寄生横波もあり、該横波が頂電極突出部1081で遮断され、有効作動領域102Aに制限され、キャビティの外周における膜層に伝播されることを防止し、これによって、横波がキャビティの外周における膜層に伝播することによる音響波損失を改善し、それにより、共振器の品質係数を向上させ、最終的にデバイスの性能を向上させることができる。
With reference to FIGS. 1A, 1B and 4F, in step S6, the side facing the groove 102'of the piezoelectric outer
なお、ステップS6は、形成すべきキャビティ102の上方の全ての膜層が製作された後に、実行されてもよく、これによって、続いて、第1の犠牲層103及び第2の犠牲層106を用いて、キャビティ102が位置する空間及びその上に形成される底電極層104~頂電極層108で積層される膜層構造を保護することができ、キャビティ102が形成された後に、続いて後続のプロセスを行うときに引き起こされるキャビティの崩れリスクを回避する。また、ステップS6で形成される開放穴は、残されてもよく、それにより、後続の2つの基板の結合などのパッケージングプロセスで開放穴を密封し、さらにキャビティ102を密閉することができる。
It should be noted that step S6 may be performed after all the membrane layers above the
なお、上記各実施例のバルク音響波共振器の製造方法のステップS1で、基板をエッチングして溝102’を形成し、溝102’を充填するプロセスにより、第1の犠牲層103を一部の基板上に形成することにより、ステップS6で形成されるキャビティ102は、底部全体が前記基板に凹んだ溝構造であるが、本発明の技術的解決手段は、これに限られない。本発明の他の実施例のステップS1で、さらに膜層堆積とホトエッチング及びエッチングとの組み合わせプロセスにより、全体が基板上に突設される第1の犠牲層103を形成することにより、ステップS6で形成されるキャビティ102は、全体が前記基板面に突設されるキャビティ構造になり、具体的には、図2D及び図5を参照し、ステップS1で、キャビティ102を製作するための溝102’を提供される基板に形成せずに、まずベース100の面のエッチング保護層101に第1の犠牲層103を被覆し、次にホトエッチングとエッチングの組合せプロセスにより、第1の犠牲層103をパターニングし、領域102上に被覆される第1の犠牲層103のみを残し、さらに第1の犠牲層103を一部の基板上に形成し、該第1の犠牲層103は、上から下に広くなる段差構造であってもよく、第1の犠牲層103の頂面が平坦であり、第1の犠牲層103の厚さにより、この後に形成されるキャビティ102の深さが決められる。該実施例では、形成される底電極の外周部1042、底電極ブリッジ部1040、圧電外周部1050、頂電極の外周部1083、頂電極ブリッジ部1080の対応する側壁は突出する第1の犠牲層103に適応するように変形し、縦断面がいずれも「Z」字状構造になる必要があるほか、後続のステップは、図4A~図4Fに示す実施例のバルク音響波共振器の製造方法での対応する部分と完全に同じであり、ここで詳しく説明しない。このとき、底電極層104のキャビティ102の上方に位置する部分が平坦に延在しており、すなわち、底電極ブリッジ部1040のキャビティの上方(第1の犠牲層103の側壁に対応する部分を含まない)に位置する頂面と底電極共振部1041の頂面とが面一にされ、底電極ブリッジ部1040のキャビティの上方(第1の犠牲層103の側壁に対応する部分を含まない)に位置する底面と底電極共振部1041の底面とが面一にされる。
In step S1 of the method for manufacturing the bulk acoustic wave resonator of each of the above embodiments, the first
本発明のバルク音響波共振器は、好ましくは、本発明のバルク音響波共振器の製作方法を用いることで、底電極ブリッジ部、頂電極突出部及び底電極共振部を同じプロセスで製作し、頂電極ブリッジ部、頂電極突出部及び頂電極共振部を同じプロセスで製作し、さらにプロセスを簡略化し、製作コストを低減させる。 The bulk acoustic wave resonator of the present invention preferably uses the method for manufacturing the bulk acoustic wave resonator of the present invention to manufacture the bottom electrode bridge portion, the top electrode protrusion portion, and the bottom electrode resonance portion by the same process. The top electrode bridge part, top electrode protrusion part and top electrode resonance part are manufactured by the same process, further simplifying the process and reducing the manufacturing cost.
当然ながら、当業者は、本発明の要旨および範囲から逸脱することなく、本発明に対して様々な変更および修正を行うことができる。このように、本発明のこれらの修正および変形が本発明の特許請求の範囲およびそれらの同等の技術の範囲に属すると、本発明はこれらの修正および変形を含むことを意図する。 Of course, one of ordinary skill in the art can make various changes and modifications to the invention without departing from the gist and scope of the invention. Thus, as these modifications and variations of the invention fall within the claims of the invention and their equivalent technology, the invention is intended to include these modifications and modifications.
100 ベース
101 エッチング保護層
102 キャビティ
102’ 溝
102A 有効作動領域
102B 無効領域
103 第1の犠牲層
104 底電極層(すなわち、残りの底電極材料層)
1040 底電極ブリッジ部
1041 底電極共振部
1042 底電極の外周部
105 圧電材料層
1050 圧電外周部
1051 圧電共振層(又は、圧電共振部と呼称される)
106 第2の犠牲層
107 犠牲突出
108 頂電極層(すなわち、残りの頂電極材料層)
1080 頂電極ブリッジ部
1081 頂電極突出部
1082 頂電極共振部
1083 頂電極の外周部
100
1040 Bottom
106 Second
1080 Top
Claims (21)
基板と、
前記基板上に設けられる底電極層であって、前記底電極層と前記基板との間にキャビティが形成され、前記底電極層の前記キャビティの上方に位置する部分が平坦に延在している底電極層と、
前記キャビティの上方の部分であって前記底電極層上に形成される圧電共振層と、
前記圧電共振層上に形成される頂電極層であって、前記頂電極層は、前記圧電共振層の外周における前記キャビティの領域に位置し、前記キャビティの底面から離れる方向に突出し、前記圧電共振層を囲んだ周辺方向に延在する頂電極突出部を有する頂電極層とを含む、ことを特徴とするバルク音響波共振器。 It is a bulk acoustic wave resonator,
With the board
A bottom electrode layer provided on the substrate, a cavity is formed between the bottom electrode layer and the substrate, and a portion of the bottom electrode layer located above the cavity extends flatly. With the bottom electrode layer,
The piezoelectric resonance layer, which is the upper part of the cavity and is formed on the bottom electrode layer,
A top electrode layer formed on the piezoelectric resonance layer, wherein the top electrode layer is located in a region of the cavity on the outer periphery of the piezoelectric resonance layer, projects in a direction away from the bottom surface of the cavity, and has the piezoelectric resonance. A bulk acoustic wave resonator comprising a top electrode layer having a top electrode protrusion extending in a peripheral direction surrounding the layer.
前記底電極共振部は、頂面が平坦であるとともに、前記圧電共振層と重なり、
前記底電極ブリッジ部は、前記底電極共振部の一側から前記キャビティの外周における一部の前記基板の上方まで平坦に延在しており、
前記頂電極層は、頂電極共振部及び頂電極ブリッジ部をさらに含み、
前記頂電極共振部は、頂面が平坦であるとともに、前記圧電共振層と重なり、
前記頂電極突出部は、前記頂電極共振部を囲んだ周辺方向に延在しているとともに、前記頂電極共振部に接続され、
前記頂電極ブリッジ部は、一端が前記頂電極突出部に接続され、他端が前記キャビティの外周における前記基板上に当接され、
前記底電極ブリッジ部と前記頂電極ブリッジ部とは、相互にずれる、ことを特徴とする請求項1に記載のバルク音響波共振器。 The bottom electrode layer includes a bottom electrode resonance portion and a bottom electrode bridge portion.
The bottom electrode resonance portion has a flat top surface and overlaps with the piezoelectric resonance layer.
The bottom electrode bridge portion extends flatly from one side of the bottom electrode resonance portion to above a part of the substrate on the outer periphery of the cavity.
The top electrode layer further includes a top electrode resonance portion and a top electrode bridge portion.
The top electrode resonance portion has a flat top surface and overlaps with the piezoelectric resonance layer.
The top electrode protrusion extends in the peripheral direction surrounding the top electrode resonance portion and is connected to the top electrode resonance portion.
One end of the top electrode bridge portion is connected to the top electrode protrusion, and the other end is abutted on the substrate on the outer periphery of the cavity.
The bulk acoustic wave resonator according to claim 1, wherein the bottom electrode bridge portion and the top electrode bridge portion are displaced from each other.
前記頂電極突出部、前記頂電極ブリッジ部及び前記頂電極共振部は、同じ膜層で形成される、ことを特徴とする請求項2に記載のバルク音響波共振器。 The bottom electrode bridge portion and the bottom electrode resonance portion are formed of the same film layer.
The bulk acoustic wave resonator according to claim 2, wherein the top electrode protruding portion, the top electrode bridge portion, and the top electrode resonance portion are formed of the same membrane layer.
前記頂電極突出部の側壁と前記圧電共振層の頂面との間の角度が45度以下である、ことを特徴とする請求項1~7のいずれか1項に記載のバルク音響波共振器。 The side wall of the protrusion of the top electrode is inclined with respect to the top surface of the piezoelectric resonance layer,
The bulk acoustic wave resonator according to any one of claims 1 to 7, wherein the angle between the side wall of the top electrode protrusion and the top surface of the piezoelectric resonance layer is 45 degrees or less. ..
基板を提供し、頂面が平坦な第1の犠牲層を一部の前記基板上に形成するステップと、
前記第1の犠牲層の頂面上に位置する部分が平坦に延在している底電極層を一部の前記第1の犠牲層上に形成するステップと、
一部の前記第1の犠牲層及び一部の前記底電極層を露出させる圧電共振層を前記底電極層上に形成するステップと、
犠牲突出を有する第2の犠牲層を前記圧電共振層の周囲おいて露出する領域に形成するステップと、
頂電極層を前記圧電共振層及び前記圧電共振層の周囲における一部の前記第2の犠牲層上に形成し、前記犠牲突出を被覆する前記頂電極層の部分を頂電極突出部として形成するステップと、
前記犠牲突出を有する前記第2の犠牲層及び前記第1の犠牲層を除去し、前記犠牲突出を有する前記第2の犠牲層及び前記第1の犠牲層の位置にキャビティを形成するステップであって、前記頂電極突出部が前記圧電共振層の外周における前記キャビティの領域に位置するとともに、前記圧電共振層を囲んだ周辺方向に延在しているステップとを含む、ことを特徴とするバルク音響波共振器の製造方法。 It is a manufacturing method of bulk acoustic wave resonators.
A step of providing a substrate and forming a first sacrificial layer with a flat top surface on some of the substrates.
A step of forming a bottom electrode layer on a part of the first sacrificial layer in which a portion located on the top surface of the first sacrificial layer extends flatly.
A step of forming a piezoelectric resonance layer on the bottom electrode layer that exposes a part of the first sacrificial layer and a part of the bottom electrode layer.
A step of forming a second sacrificial layer with sacrificial protrusions in an exposed region around the piezoelectric resonant layer.
The top electrode layer is formed on the piezoelectric resonance layer and a part of the second sacrificial layer around the piezoelectric resonance layer, and the portion of the top electrode layer covering the sacrificial protrusion is formed as the top electrode protrusion. Steps and
It is a step of removing the second sacrificial layer and the first sacrificial layer having the sacrificial protrusion and forming a cavity at the position of the second sacrificial layer and the first sacrificial layer having the sacrificial protrusion. The bulk is characterized in that the protrusion of the top electrode is located in the region of the cavity on the outer periphery of the piezoelectric resonance layer and includes a step extending in the peripheral direction surrounding the piezoelectric resonance layer. Manufacturing method of acoustic wave resonator.
前記第1の犠牲層を一部の前記基板上に形成するステップは、前記第1の犠牲層を前記基板に被覆して前記第1の犠牲層の頂面を平坦化するステップと、前記第1の犠牲層をパターニングすることにより、前記第1の犠牲層を一部の前記基板上に突設するように形成するステップとを含む、ことを特徴とする請求項14に記載のバルク音響波共振器の製造方法。 The steps of forming the first sacrificial layer having a flat top surface on a part of the substrate are the step of forming a second groove on the substrate by etching the substrate and the first sacrifice. A step of flattening the top surface of the first sacrificial layer by forming a layer and filling the second groove, or
The steps of forming the first sacrificial layer on a part of the substrate include a step of covering the substrate with the first sacrificial layer and flattening the top surface of the first sacrificial layer. 14. The bulk acoustic wave of claim 14, comprising patterning the sacrificial layer of 1 to form the first sacrificial layer so as to project onto a portion of the substrate. How to make a resonator.
頂電極層を形成した後に、少なくとも、一部の前記第1の犠牲層、一部の前記犠牲突出、又は、前記犠牲突出以外の一部の前記第2の犠牲層を露出する少なくとも1つの開放穴を形成するステップと、
前記開放穴にガス及び/又は薬液を導入することにより、前記犠牲突出を有する前記第2の犠牲層及び前記第1の犠牲層を除去するステップとを含む、ことを特徴とする請求項14に記載のバルク音響波共振器の製造方法。 The step of removing the second sacrificial layer and the first sacrificial layer having the sacrificial protrusion is
After forming the top electrode layer, at least one opening that exposes at least some of the first sacrificial layer, some of the sacrificial protrusions, or some of the second sacrificial layers other than the sacrificial protrusions. The steps to form the holes and
14. The 14th aspect is characterized by comprising a step of removing the second sacrificial layer and the first sacrificial layer having the sacrificial protrusion by introducing a gas and / or a chemical solution into the opening hole. The method for manufacturing a bulk acoustic wave resonator according to the description.
底電極材料層を前記第1の犠牲層及び前記第1の犠牲層の外周における前記基板上に被覆するように堆積するステップと、前記底電極材料層をパターニングすることにより、順に接続される底電極ブリッジ部及び底電極共振部を形成するステップであって、前記底電極共振部と前記圧電共振層とが重なり、前記底電極ブリッジ部の一端が前記キャビティの外周における前記基板に当接し、前記キャビティの領域に位置する前記底電極ブリッジ部の部分の頂面と前記底電極共振部とが面一にされるステップとを含む、ことを特徴とする請求項14に記載のバルク音響波共振器の製造方法。 The step of forming the bottom electrode layer is
A step of depositing the bottom electrode material layer so as to cover the first sacrificial layer and the outer periphery of the first sacrificial layer on the substrate, and a bottom connected in order by patterning the bottom electrode material layer. In the step of forming the electrode bridge portion and the bottom electrode resonance portion, the bottom electrode resonance portion and the piezoelectric resonance layer overlap each other, and one end of the bottom electrode bridge portion abuts on the substrate on the outer periphery of the cavity. The bulk acoustic wave resonator according to claim 14, further comprising a step in which the top surface of the portion of the bottom electrode bridge portion located in the region of the cavity and the bottom electrode resonance portion are flush with each other. Manufacturing method.
頂電極材料層を前記犠牲突出を有する前記第2の犠牲層及び前記圧電共振層上に被覆するように堆積するステップと、前記頂電極材料層をパターニングすることにより、順に接続される頂電極ブリッジ部、前記頂電極突出部及び頂電極共振部を形成するステップであって、前記頂電極共振部と前記圧電共振層とが重なり、前記頂電極突出部と背向する前記頂電極ブリッジ部の一端が前記キャビティの外周における前記基板の上方まで延在しており、前記頂電極ブリッジ部と前記底電極ブリッジ部とは、相互にずれるステップとを含む、ことを特徴とする請求項17に記載のバルク音響波共振器の製造方法。 The step of forming the top electrode layer is
The step of depositing the top electrode material layer so as to cover the second sacrificial layer having the sacrificial protrusion and the piezoelectric resonance layer, and the top electrode bridge connected in order by patterning the top electrode material layer. In the step of forming the apex electrode protrusion and the apex electrode resonance portion, one end of the apex electrode bridge portion in which the apex electrode resonance portion and the piezoelectric resonance layer overlap and faces the apex electrode protrusion portion. 17 extends to the upper part of the substrate on the outer periphery of the cavity, and the top electrode bridge portion and the bottom electrode bridge portion include a step of being displaced from each other. A method for manufacturing a bulk acoustic wave resonator.
前記頂電極突出部は、前記頂電極共振部の辺に沿って設けられるとともに、前記頂電極ブリッジ部と前記頂電極共振部とが位置合わせされる領域に少なくとも設けられる、ことを特徴とする請求項18に記載のバルク音響波共振器の製造方法。 Both the bottom electrode resonance portion and the top electrode resonance portion are polygonal.
The top electrode protrusion is provided along the side of the top electrode resonance portion, and is provided at least in a region where the top electrode bridge portion and the top electrode resonance portion are aligned. Item 18. The method for manufacturing a bulk acoustic wave resonator according to Item 18.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910272274.9A CN111786648A (en) | 2019-04-04 | 2019-04-04 | Bulk acoustic wave resonator, method of manufacturing the same, filter, and radio frequency communication system |
CN201910272274.9 | 2019-04-04 | ||
PCT/CN2019/105089 WO2020199506A1 (en) | 2019-04-04 | 2019-09-10 | Bulk acoustic wave resonator and manufacturing method therefor, filter and radio-frequency communication system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022507320A true JP2022507320A (en) | 2022-01-18 |
JP7199758B2 JP7199758B2 (en) | 2023-01-06 |
Family
ID=72664457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021525820A Active JP7199758B2 (en) | 2019-04-04 | 2019-09-10 | Bulk acoustic wave resonator, manufacturing method thereof, filter, radio frequency communication system |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7199758B2 (en) |
CN (1) | CN111786648A (en) |
WO (1) | WO2020199506A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114124022A (en) * | 2021-11-30 | 2022-03-01 | 中国科学院上海微系统与信息技术研究所 | Suspended resonator for enhancing heat dissipation and preparation method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007006501A (en) * | 2005-06-23 | 2007-01-11 | Avago Technologies Wireless Ip (Singapore) Pte Ltd | Acoustic resonator performance enhancement using alternating frame structure |
JP2007295310A (en) * | 2006-04-25 | 2007-11-08 | Matsushita Electric Works Ltd | Baw resonator |
WO2010095640A1 (en) * | 2009-02-20 | 2010-08-26 | 宇部興産株式会社 | Thin-film piezoelectric resonator and thin-film piezoelectric filter using same |
JP2013138425A (en) * | 2011-12-27 | 2013-07-11 | Avago Technologies Wireless Ip (Singapore) Pte Ltd | Solid-mount bulk acoustic wave resonator structure with bridge |
JP2016194630A (en) * | 2015-04-01 | 2016-11-17 | セイコーエプソン株式会社 | Electrooptical device, method for manufacturing the electrooptical device, and electronic apparatus |
JP2017147719A (en) * | 2016-02-17 | 2017-08-24 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Acoustic resonator and manufacturing method for the same |
US20180152168A1 (en) * | 2016-11-30 | 2018-05-31 | Samsung Electro-Mechanics Co., Ltd. | Bulk acoustic wave resonator |
US20180205360A1 (en) * | 2017-01-17 | 2018-07-19 | Samsung Electro-Mechanics Co., Ltd. | Bulk acoustic wave resonator |
JP2018537672A (en) * | 2015-11-20 | 2018-12-20 | コーボ ユーエス,インコーポレイティド | Acoustic resonator with reduced active region mechanical clamping to enhance shear mode response |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4719623B2 (en) * | 2006-05-31 | 2011-07-06 | 太陽誘電株式会社 | filter |
JP5319491B2 (en) * | 2009-10-22 | 2013-10-16 | 太陽誘電株式会社 | Piezoelectric thin film resonator |
CN102223142B (en) * | 2011-08-13 | 2019-09-10 | 张�浩 | Acoustic resonator |
KR101922878B1 (en) * | 2016-07-14 | 2018-11-29 | 삼성전기 주식회사 | Bulk-acoustic wave resonator device |
DE102017117870B3 (en) * | 2017-08-07 | 2018-12-27 | RF360 Europe GmbH | BAW resonator with reduced spurious modes and increased quality factor |
-
2019
- 2019-04-04 CN CN201910272274.9A patent/CN111786648A/en active Pending
- 2019-09-10 JP JP2021525820A patent/JP7199758B2/en active Active
- 2019-09-10 WO PCT/CN2019/105089 patent/WO2020199506A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007006501A (en) * | 2005-06-23 | 2007-01-11 | Avago Technologies Wireless Ip (Singapore) Pte Ltd | Acoustic resonator performance enhancement using alternating frame structure |
JP2007295310A (en) * | 2006-04-25 | 2007-11-08 | Matsushita Electric Works Ltd | Baw resonator |
WO2010095640A1 (en) * | 2009-02-20 | 2010-08-26 | 宇部興産株式会社 | Thin-film piezoelectric resonator and thin-film piezoelectric filter using same |
JP2013138425A (en) * | 2011-12-27 | 2013-07-11 | Avago Technologies Wireless Ip (Singapore) Pte Ltd | Solid-mount bulk acoustic wave resonator structure with bridge |
JP2016194630A (en) * | 2015-04-01 | 2016-11-17 | セイコーエプソン株式会社 | Electrooptical device, method for manufacturing the electrooptical device, and electronic apparatus |
JP2018537672A (en) * | 2015-11-20 | 2018-12-20 | コーボ ユーエス,インコーポレイティド | Acoustic resonator with reduced active region mechanical clamping to enhance shear mode response |
JP2017147719A (en) * | 2016-02-17 | 2017-08-24 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Acoustic resonator and manufacturing method for the same |
US20180152168A1 (en) * | 2016-11-30 | 2018-05-31 | Samsung Electro-Mechanics Co., Ltd. | Bulk acoustic wave resonator |
US20180205360A1 (en) * | 2017-01-17 | 2018-07-19 | Samsung Electro-Mechanics Co., Ltd. | Bulk acoustic wave resonator |
Also Published As
Publication number | Publication date |
---|---|
CN111786648A (en) | 2020-10-16 |
JP7199758B2 (en) | 2023-01-06 |
WO2020199506A1 (en) | 2020-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7138988B2 (en) | Bulk acoustic wave resonator, manufacturing method thereof, filter, radio frequency communication system | |
US11005448B2 (en) | Film bulk acoustic wave resonators and fabrication methods thereof | |
JP7194476B2 (en) | Bulk acoustic wave resonator, manufacturing method thereof, filter, radio frequency communication system | |
JP7339694B2 (en) | Bulk acoustic wave resonator, manufacturing method thereof, filter, radio frequency communication system | |
JP7130841B2 (en) | Thin-film bulk acoustic wave resonator and manufacturing method thereof | |
US20230353118A1 (en) | Film bulk acoustic resonator and fabrication method thereof | |
JP7194473B2 (en) | Bulk acoustic wave resonator, manufacturing method thereof, filter, radio frequency communication system | |
CN112311353B (en) | Firmly-arranged bulk acoustic wave resonator and manufacturing method thereof | |
JP2024533671A (en) | Bulk acoustic wave resonator structure and manufacturing method thereof, and acoustic wave device | |
JP7194475B2 (en) | Bulk acoustic wave resonator, manufacturing method thereof, filter, radio frequency communication system | |
JP7194474B2 (en) | Bulk acoustic wave resonator, manufacturing method thereof, filter, radio frequency communication system | |
JP7199758B2 (en) | Bulk acoustic wave resonator, manufacturing method thereof, filter, radio frequency communication system | |
JP7199757B2 (en) | Bulk acoustic wave resonator, manufacturing method thereof, filter, radio frequency communication system | |
US12009803B2 (en) | Bulk acoustic wave resonator, filter and radio frequency communication system | |
CN117526892A (en) | Film bulk acoustic resonator, manufacturing method thereof and electronic equipment | |
JP7251837B2 (en) | Thin-film bulk acoustic wave resonator and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210512 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220506 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220816 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7199758 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |