JP2022105794A - Method for preparing lithium ion battery thickener - Google Patents
Method for preparing lithium ion battery thickener Download PDFInfo
- Publication number
- JP2022105794A JP2022105794A JP2021000338A JP2021000338A JP2022105794A JP 2022105794 A JP2022105794 A JP 2022105794A JP 2021000338 A JP2021000338 A JP 2021000338A JP 2021000338 A JP2021000338 A JP 2021000338A JP 2022105794 A JP2022105794 A JP 2022105794A
- Authority
- JP
- Japan
- Prior art keywords
- solution
- lithium ion
- ion battery
- minutes
- preparing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002562 thickening agent Substances 0.000 title claims abstract description 37
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 23
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000012153 distilled water Substances 0.000 claims abstract description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229920002101 Chitin Polymers 0.000 claims abstract description 14
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 13
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 claims abstract description 7
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 claims abstract description 7
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims abstract description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 26
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 20
- 229910052708 sodium Inorganic materials 0.000 claims description 20
- 239000011734 sodium Substances 0.000 claims description 20
- 238000003756 stirring Methods 0.000 claims description 20
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 19
- VJHCJDRQFCCTHL-UHFFFAOYSA-N acetic acid 2,3,4,5,6-pentahydroxyhexanal Chemical compound CC(O)=O.OCC(O)C(O)C(O)C(O)C=O VJHCJDRQFCCTHL-UHFFFAOYSA-N 0.000 claims description 19
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 19
- 229950008138 carmellose Drugs 0.000 claims description 19
- 239000001341 hydroxy propyl starch Substances 0.000 claims description 15
- 235000013828 hydroxypropyl starch Nutrition 0.000 claims description 15
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 13
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 13
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 13
- 229910019142 PO4 Inorganic materials 0.000 claims description 9
- 239000010452 phosphate Substances 0.000 claims description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 abstract description 7
- 239000010439 graphite Substances 0.000 abstract description 7
- 238000013019 agitation Methods 0.000 abstract 1
- 238000004108 freeze drying Methods 0.000 abstract 1
- 238000005498 polishing Methods 0.000 abstract 1
- 238000001291 vacuum drying Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 238000000527 sonication Methods 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- -1 iron ions Chemical class 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明はリチウムイオン電池増ちょう剤調製方法技術分野に属し、具体的にはリチウムイオン電池増ちょう剤の調製方法に関する。 The present invention belongs to the technical field of a method for preparing a lithium ion battery thickener, and specifically relates to a method for preparing a lithium ion battery thickener.
近年、リチウムイオン電池の工業化規模の継続的な拡大と関連技術の継続的な開発により、リチウムイオン電池は主流の電子製品のエネルギー貯蔵装置となり、リチウムイオン電池の用途は大幅に拡大した。リチウムイオン電池は高いエネルギー密度、長いサイクル寿命及び広い動作温度範囲を有し、且つグリーンで環境保護のメリットがあるため、携帯電子機器の主要なエネルギー源となっている。しかし、近年の携帯電子機器、特にスマートフォン(軽量・薄型)の急速な発展により、リチウムイオン電池のエネルギー密度に対する要求も高まっている。リチウムイオン電池のエネルギー密度とサイクル寿命などの性能に対する要求が高まっていくと同時に、携帯電子機器の軽量性に対する要求も高まっていく。
電池における電極の特性は、磁極片における活性物質と集電体の特性に関わるだけでなく、活性物質コーティングと集電体との間、および磁極片における活性物質コーティング内部の粒子の間に使用され、分散性と接着性を有する沈降防止用の高分子ポリマーバインダーにも関係する。
グラファイトと導電性カーボンブラックの分散に、一般的にカルメロースナトリウムやポリアクリレートなどの増ちょう剤が使用される。これらの増ちょう剤は、疎水性部分がグラファイトと導電性カーボンブラックに吸着され、親水性部分が水に溶解でき且つ負電荷を帯びる。同種の電荷の反発し合いにより分散と沈降防止の効果を果たす。しかし、これらの増ちょう剤は、グラファイトなどの活性物質との相溶性が悪く、配合が難しいという問題があり、塗布が異常になる上に、リチウム電池の性能に悪影響を及ぼす。
In recent years, due to the continuous expansion of the industrial scale of lithium-ion batteries and the continuous development of related technologies, lithium-ion batteries have become energy storage devices for mainstream electronic products, and the applications of lithium-ion batteries have expanded significantly. Lithium-ion batteries are a major energy source for portable electronic devices due to their high energy density, long cycle life, wide operating temperature range, green and environmental protection benefits. However, with the rapid development of portable electronic devices, especially smartphones (lightweight and thin) in recent years, the demand for energy density of lithium-ion batteries is increasing. At the same time as the demand for performance such as energy density and cycle life of lithium-ion batteries increases, the demand for light weight of portable electronic devices also increases.
The properties of the electrodes in the battery are not only related to the properties of the active material and the current collector in the magnetic pole piece, but also used between the active material coating and the current collector and between the particles inside the active material coating in the magnetic pole piece. It is also related to high molecular weight polymer binders for sedimentation prevention, which have dispersibility and adhesiveness.
A thickener such as sodium carmellose or polyacrylate is generally used to disperse graphite and conductive carbon black. In these thickeners, the hydrophobic portion is adsorbed on graphite and conductive carbon black, and the hydrophilic portion can be dissolved in water and becomes negatively charged. By repelling the same kind of electric charge, it has the effect of dispersion and prevention of sedimentation. However, these thickeners have a problem that they have poor compatibility with active substances such as graphite and are difficult to formulate, resulting in abnormal coating and adversely affecting the performance of lithium batteries.
従来の増ちょう剤は、グラファイトなどの活性物質との相溶性が悪く、配合が難しいという問題があり、塗布が異常になる上に、リチウム電池の性能に悪影響を及ぼす。これに対して、リチウムイオン電池増ちょう剤の調製方法を提供する。 Conventional thickeners have a problem of poor compatibility with active substances such as graphite and difficult to formulate, resulting in abnormal coating and adversely affecting the performance of lithium batteries. On the other hand, a method for preparing a lithium ion battery thickener is provided.
リチウムイオン電池増ちょう剤の調製方法であって、具体的にはステップ1とステップ2とステップ3とを含み、
前記ステップ1:カルメロースナトリウムを蒸留水に加え、完全に溶解するまで攪拌することでカルメロースナトリウム溶液を得、そして酸化グラフェンを加え、2.5~6時間超音波攪拌して分散させ、次にキチンを加え、3~10分間超音波処理し、
前記ステップ2:過硫酸カリウムとテトラメチルエチレンジアミンを(0.022~0.036)g:(0.01~0.03)の質量体積比で前記ステップ1の溶液に加え、20~30分間攪拌した後、1~3時間静置し、凍結乾燥して、ゲルを得、
前記ステップ3:ヒドロキシプロピルデンプンリン酸NAを蒸留水に加え、完全に溶解するまで攪拌し、次に塩化第二鉄を加え、30~45分間超音波攪拌した後、グリコール溶液を加え、10~15分間攪拌した後、前記ステップ2の前記ゲルを細かく切り、本ステップの溶液に12~20時間浸した後、取り出して真空乾燥し、研磨し、800メッシュスクリーンに通して増ちょう剤を得る。
A method for preparing a lithium ion battery thickener, specifically including step 1, step 2, and step 3.
Step 1: Add sodium carmellose to distilled water and stir until completely dissolved to obtain a sodium carmellose solution, then add graphene oxide and sonicate for 2.5-6 hours to disperse and then disperse. Add chitin to the water and sonicate for 3-10 minutes.
Step 2: Potassium persulfate and tetramethylethylenediamine are added to the solution of Step 1 at a mass volume ratio of (0.022 to 0.036) g: (0.01 to 0.03), and the mixture is stirred for 20 to 30 minutes. After that, let stand for 1 to 3 hours and freeze-dry to obtain a gel.
Step 3: Add NA hydroxypropyl starch phosphate to distilled water and stir until completely dissolved, then add ferric chloride, stir ultrasonically for 30-45 minutes, then add glycol solution and 10- After stirring for 15 minutes, the gel of step 2 is cut into small pieces, soaked in the solution of this step for 12 to 20 hours, taken out, vacuum dried, polished, and passed through an 800 mesh screen to obtain a thickener.
好ましくは、前記カルメロースナトリウムの構造式は
である。R=H、R1=CH2COONa、55≦n≦100とする。
Preferably, the structural formula of the sodium carmellose is
Is. R = H, R1 = CH2COONa, 55 ≦ n ≦ 100.
好ましくは、前記ステップ1において、前記カルメロースナトリウム、前記蒸留水、前記酸化グラフェンおよび前記キチンの質量比は、(0.69~1.14)g:(20~40)mL:(0.12~0.25)g:(0.46~0.66)gである。 Preferably, in step 1, the mass ratio of the sodium carmellose, the distilled water, the graphene oxide and the chitin is (0.69 to 1.14) g: (20 to 40) mL: (0.12). ~ 0.25) g: (0.46 to 0.66) g.
好ましくは、前記ステップ3において、前記ヒドロキシプロピルデンプンリン酸NA、前記蒸留水、前記塩化第二鉄および前記グリコールの質量体積比は、(0.54~0.96)g:(22~30)mL:(0.023~0.042)g:(5~8)mLである。 Preferably, in step 3, the mass-volume ratio of the hydroxypropylstar phosphate NA, the distilled water, the ferric chloride and the glycol is (0.54 to 0.96) g: (22 to 30). mL: (0.023 to 0.042) g: (5 to 8) mL.
本発明は、ゲルを増ちょう剤として使用することで、電池電極材料の高温作業環境における脱水および低温環境における凍結を効果的に防止し、また、グリコールを導入することでゲルを改質することは、水分子結晶領域の形成を抑えると同時に、カルメロースナトリウムおよびキチンの結晶化を誘発し、その結果、増粘剤の力学的性質が向上する。本発明は、塩化第二鉄に含まれる鉄イオンを介してゲルを改質することによってイオン漏れの問題を解決し、物理的錯体化ネットワークはより多くのエネルギーを消費することで、ゲルの力学的性質を向上させることができ、さらに、ヒドロキシプロピルデンプンリン酸NAは、増ちょう剤の、過度の水分損失による塗布困難の問題を効果的に改善するほか、カルメロースナトリウムに含まれるハイドロキシなどの原子団とともに、三次元ネットワークを形成し、保水性を効果的に向上させた。 The present invention effectively prevents dehydration of the battery electrode material in a high temperature working environment and freezing in a low temperature environment by using the gel as a thickener, and reforms the gel by introducing glycol. Suppresses the formation of water molecular crystal regions and at the same time induces crystallization of sodium carmellose and chitin, resulting in improved mechanical properties of thickeners. The present invention solves the problem of ion leakage by reforming the gel via iron ions contained in ferric chloride, and the physical complexation network consumes more energy, thereby dynamics the gel. In addition to being able to improve physical properties, NA hydroxypropyl starch phosphate effectively relieves the problem of thickeners that are difficult to apply due to excessive water loss, as well as hydroxys contained in carmellose sodium. Together with the atomic group, it formed a three-dimensional network and effectively improved water retention.
以下、本発明の実施例について具体的に説明するが、本実施例は、本発明の技術的解決手段を前提として実施されるものであり、詳細な実施形態や具体的な操作手順を示したものであり、当業者であれば、本発明の原理から逸脱しない限り、いくつかの改良や修飾をすることが可能であり、これらの改良や修飾も本発明の技術的範囲と見なされるべきである。 Hereinafter, examples of the present invention will be specifically described, but the present embodiment is carried out on the premise of the technical solution means of the present invention, and detailed embodiments and specific operating procedures are shown. It is possible for those skilled in the art to make some improvements and modifications as long as they do not deviate from the principles of the invention, and these improvements and modifications should also be considered as the technical scope of the invention. be.
実施例1
リチウムイオン電池増ちょう剤の調製方法であって、具体的にはステップ1とステップ2とステップ3とを含む。
前記ステップ1:カルメロースナトリウムを蒸留水に加え、完全に溶解するまで攪拌することでカルメロースナトリウム溶液を得、そして酸化グラフェンを加え、2.5時間超音波攪拌して分散させ、次にキチンを加え、3分間超音波処理し、前記カルメロースナトリウム、前記蒸留水、前記酸化グラフェンおよび前記キチンの質量比は、0.69g:20mL:0.12g:0.46gである。
前記ステップ2:過硫酸カリウムとテトラメチルエチレンジアミンを0.022g:0.01mLの質量体積比で前記ステップ1の溶液に加え、20分間攪拌した後、1時間静置し、凍結乾燥して、ゲルを得る。
前記ステップ3:ヒドロキシプロピルデンプンリン酸NAを蒸留水に加え、完全に溶解するまで攪拌し、次に塩化第二鉄を加え、30分間超音波攪拌した後、グリコール溶液を加え、前記ヒドロキシプロピルデンプンリン酸NAと前記蒸留水と前記塩化第二鉄と前記グリコールとの質量体積比は0.54g:22mL:0.023g:5mLであり、10分間攪拌した後、前記ステップ2の前記ゲルを細かく切り、本ステップの溶液に12時間浸した後、取り出して真空乾燥し、研磨し、800メッシュスクリーンに通して増ちょう剤を得る。
Example 1
It is a method for preparing a lithium ion battery thickener, and specifically includes step 1, step 2, and step 3.
Step 1: Add sodium carmellose to distilled water and stir until completely dissolved to obtain a sodium carmellose solution, then add graphene oxide, sonicate for 2.5 hours to disperse, then chitin. And ultrasonically treated for 3 minutes, the mass ratio of the carmellose sodium, the distilled water, the graphene oxide and the chitin is 0.69 g: 20 mL: 0.12 g: 0.46 g.
Step 2: Potassium persulfate and tetramethylethylenediamine were added to the solution of Step 1 at a mass volume ratio of 0.022 g: 0.01 mL, stirred for 20 minutes, allowed to stand for 1 hour, freeze-dried, and gelled. To get.
Step 3: Hydroxypropyl starch NA hydroxypropyl starch is added to distilled water and stirred until completely dissolved, then ferric chloride is added, and after ultrasonic stirring for 30 minutes, a glycol solution is added and the hydroxypropyl starch is added. The mass-volume ratio of NA phosphate, the distilled water, the ferric chloride, and the glycol is 0.54 g: 22 mL: 0.023 g: 5 mL, and after stirring for 10 minutes, the gel in step 2 is finely divided. After cutting and soaking in the solution of this step for 12 hours, it is taken out, vacuum dried, polished and passed through an 800 mesh screen to obtain a thickener.
実施例2
リチウムイオン電池増ちょう剤の調製方法であって、具体的にはステップ1とステップ2とステップ3とを含む。
前記ステップ1:カルメロースナトリウムを蒸留水に加え、完全に溶解するまで攪拌することでカルメロースナトリウム溶液を得、そして酸化グラフェンを加え、6時間超音波攪拌して分散させ、次にキチンを加え、10分間超音波処理し、前記カルメロースナトリウム、前記蒸留水、前記酸化グラフェンおよび前記キチンの質量比は、1.14g:40mL:0.25g:0.66gである。
前記ステップ2:過硫酸カリウムとテトラメチルエチレンジアミンを0.036g:0.03mLの質量体積比で前記ステップ1の溶液に加え、30分間攪拌した後、3時間静置し、凍結乾燥して、ゲルを得る。
前記ステップ3:ヒドロキシプロピルデンプンリン酸NAを蒸留水に加え、完全に溶解するまで攪拌し、次に塩化第二鉄を加え、45分間超音波攪拌した後、グリコール溶液を加え、前記ヒドロキシプロピルデンプンリン酸NAと前記蒸留水と前記塩化第二鉄と前記グリコールとの質量体積比は0.96g:30mL:0.042g:8mLであり、15分間攪拌した後、前記ステップ2の前記ゲルを細かく切り、本ステップの溶液に20時間浸した後、取り出して真空乾燥し、研磨し、800メッシュスクリーンに通して増ちょう剤を得る。
Example 2
It is a method for preparing a lithium ion battery thickener, and specifically includes step 1, step 2, and step 3.
Step 1: Add sodium carmellose to distilled water and stir until completely dissolved to obtain a sodium carmellose solution, then add graphene oxide, sonicate for 6 hours to disperse, then add chitin. After sonication for 10 minutes, the mass ratio of the sodium carmellose, the distilled water, the graphene oxide and the chitin is 1.14 g: 40 mL: 0.25 g: 0.66 g.
Step 2: Potassium persulfate and tetramethylethylenediamine were added to the solution of Step 1 at a mass volume ratio of 0.036 g: 0.03 mL, stirred for 30 minutes, allowed to stand for 3 hours, freeze-dried, and gelled. To get.
Step 3: Hydroxypropyl starch NA hydroxypropyl starch is added to distilled water and stirred until completely dissolved, then ferric chloride is added, and after ultrasonic stirring for 45 minutes, a glycol solution is added and the hydroxypropyl starch is added. The mass-volume ratio of NA phosphate, the distilled water, the ferric chloride, and the glycol is 0.96 g: 30 mL: 0.042 g: 8 mL, and after stirring for 15 minutes, the gel in step 2 is finely divided. After cutting and soaking in the solution of this step for 20 hours, it is taken out, vacuum dried, polished and passed through an 800 mesh screen to obtain a thickener.
実施例3
リチウムイオン電池増ちょう剤の調製方法であって、具体的にはステップ1とステップ2とステップ3とを含む。
前記ステップ1:カルメロースナトリウムを蒸留水に加え、完全に溶解するまで攪拌することでカルメロースナトリウム溶液を得、そして酸化グラフェンを加え、4時間超音波攪拌して分散させ、次にキチンを加え、5分間超音波処理し、前記カルメロースナトリウム、前記蒸留水、前記酸化グラフェンおよび前記キチンの質量比は、0.96g:30mL:0.18g:0.54gである。
前記ステップ2:過硫酸カリウムとテトラメチルエチレンジアミンを0.028g:0.02mLの質量体積比で前記ステップ1の溶液に加え、25分間攪拌した後、2時間静置し、凍結乾燥して、ゲルを得る。
前記ステップ3:ヒドロキシプロピルデンプンリン酸NAを蒸留水に加え、完全に溶解するまで攪拌し、次に塩化第二鉄を加え、35分間超音波攪拌した後、グリコール溶液を加え、前記ヒドロキシプロピルデンプンリン酸NAと前記蒸留水と前記塩化第二鉄と前記グリコールとの質量体積比は0.69g:25mL:0.029g:6mLであり、12分間攪拌した後、前記ステップ2の前記ゲルを細かく切り、本ステップの溶液に15時間浸した後、取り出して真空乾燥し、研磨し、800メッシュスクリーンに通して増ちょう剤を得る。
Example 3
It is a method for preparing a lithium ion battery thickener, and specifically includes step 1, step 2, and step 3.
Step 1: Add sodium carmellose to distilled water and stir until completely dissolved to obtain a sodium carmellose solution, then add graphene oxide and sonicate for 4 hours to disperse, then add chitin. After sonication for 5 minutes, the mass ratio of the sodium carmellose, the distilled water, the graphene oxide and the chitin is 0.96 g: 30 mL: 0.18 g: 0.54 g.
Step 2: Potassium persulfate and tetramethylethylenediamine were added to the solution of Step 1 at a mass volume ratio of 0.028 g: 0.02 mL, stirred for 25 minutes, allowed to stand for 2 hours, freeze-dried, and gelled. To get.
Step 3: Hydroxypropyl starch NA hydroxypropyl starch is added to distilled water and stirred until completely dissolved, then ferric chloride is added, and after ultrasonic stirring for 35 minutes, a glycol solution is added and the hydroxypropyl starch is added. The mass-volume ratio of NA phosphate, the distilled water, the ferric chloride, and the glycol is 0.69 g: 25 mL: 0.029 g: 6 mL, and after stirring for 12 minutes, the gel in step 2 is finely divided. After cutting and soaking in the solution of this step for 15 hours, it is taken out, vacuum dried, polished and passed through an 800 mesh screen to obtain a thickener.
実施例4
リチウムイオン電池増ちょう剤の調製方法であって、具体的にはステップ1とステップ2とステップ3とを含む。
前記ステップ1:カルメロースナトリウムを蒸留水に加え、完全に溶解するまで攪拌することでカルメロースナトリウム溶液を得、そして酸化グラフェンを加え、5時間超音波攪拌して分散させ、次にキチンを加え、8分間超音波処理し、前記カルメロースナトリウム、前記蒸留水、前記酸化グラフェンおよび前記キチンの質量比は、1.02g:35mL:0.22g:0.62である。
前記ステップ2:過硫酸カリウムとテトラメチルエチレンジアミンを0.034g:0.02mLの質量体積比で前記ステップ1の溶液に加え、28分間攪拌した後、2時間静置し、凍結乾燥して、ゲルを得る。
前記ステップ3:ヒドロキシプロピルデンプンリン酸NAを蒸留水に加え、完全に溶解するまで攪拌し、次に塩化第二鉄を加え、40分間超音波攪拌した後、グリコール溶液を加え、前記ヒドロキシプロピルデンプンリン酸NAと前記蒸留水と前記塩化第二鉄と前記グリコールとの質量体積比は0.92g:28mL:0.039g:7mLであり、13分間攪拌した後、前記ステップ2の前記ゲルを細かく切り、本ステップの溶液に18時間浸した後、取り出して真空乾燥し、研磨し、800メッシュスクリーンに通して乾燥させて増ちょう剤を得る。
Example 4
It is a method for preparing a lithium ion battery thickener, and specifically includes step 1, step 2, and step 3.
Step 1: Add sodium carmellose to distilled water and stir until completely dissolved to obtain a sodium carmellose solution, then add graphene oxide and sonicate for 5 hours to disperse, then add chitin. , The mass ratio of the sodium carmellose, the distilled water, the graphene oxide and the chitin is 1.02 g: 35 mL: 0.22 g: 0.62 after sonication for 8 minutes.
Step 2: Potassium persulfate and tetramethylethylenediamine were added to the solution of Step 1 at a mass volume ratio of 0.034 g: 0.02 mL, stirred for 28 minutes, allowed to stand for 2 hours, freeze-dried, and gelled. To get.
Step 3: Hydroxypropyl starch NA hydroxypropyl starch is added to distilled water and stirred until completely dissolved, then ferric chloride is added, and after ultrasonic stirring for 40 minutes, a glycol solution is added and the hydroxypropyl starch is added. The mass-volume ratio of NA phosphate, the distilled water, the ferric chloride and the glycol is 0.92 g: 28 mL: 0.039 g: 7 mL, and after stirring for 13 minutes, the gel of the step 2 is finely divided. After cutting and immersing in the solution of this step for 18 hours, it is taken out, vacuum dried, polished and dried through an 800 mesh screen to obtain a thickener.
比較例1
市販のカルメロースナトリウム。
Comparative Example 1
Commercially available carmelose sodium.
比較例2
市販のポリアクリレート。
Comparative Example 2
Commercially available polyacrylate.
実験例:実施例1~4および比較例1~2の増ちょう剤に対して次の性能試験を実施する。
性能試験:実施例1~4および比較例1~2の増ちょう剤をそれぞれ、グラファイト材料、バインダーPVDF、および水と混合し、上海尼潤智能科技有限公司の型番NDJ‐5Sの回転式粘度計を採用して粘度試験を行い、結果を表1に示す。
表1からわかるように、本発明の実施例1~4で調製された増ちょう剤は、良好な粘度を有し、それらの粘度はいずれも約3510mPa.sであり、塗布速度が25m/sの時にいずれも異常現象がなく、対して比較例1~2の増ちょう剤はテーリング現象がある。
前記実施例1~4および比較例1~2の増ちょう剤、グラファイト、バインダーPVDF、および水を混合攪拌して集電体に塗布し、リチウムイオン電池の負極を得、そしてリン酸鉄リチウムを正極として使用し、1mol/LのLiPF6/EMC+DMC+EC(体積比1:1:1)を電解液とし、Celgard2400をセパレータとし、CR2025ボタン型電池に組み立て、電圧を0.01~1.5Vに設定し、25℃で充放電容量とサイクル安定性を検査し、電池に対して定電流充放電試験を行い、結果を表2に示す。
表2からわかるように、実施例1~4の増粘剤によって製造されたグラファイト電極は、0.1℃の電流密度で277mAh/gの放電比容量を有し、100サイクル後に放電比容量は約258mAh/gに達し、また、1C電流密度での放電比容量は336mAh/gであり、100サイクル後に放電比容量は約308mAh/gに達する。比較例1~2の増粘剤で作製したリチウム電極に比べ、より優れた性能を有する。
Experimental Examples: The following performance tests are carried out on the thickeners of Examples 1 to 4 and Comparative Examples 1 and 2.
Performance test: The thickeners of Examples 1 to 4 and Comparative Examples 1 and 2 are mixed with a graphite material, a binder PVDF, and water, respectively, and a rotary viscometer of model number NDJ-5S of Shanghai Nunjun Intelligence Technology Co., Ltd. The viscosity test was performed by adopting the above, and the results are shown in Table 1.
As can be seen from Table 1, the thickeners prepared in Examples 1 to 4 of the present invention have good viscosities, and all of them have a viscosity of about 3510 mPa. When the coating speed is 25 m / s, there is no abnormal phenomenon, whereas the thickeners of Comparative Examples 1 and 2 have a tailing phenomenon.
The thickeners, graphite, binder PVDF, and water of Examples 1 to 4 and Comparative Examples 1 and 2 are mixed and stirred and applied to a current collector to obtain a negative electrode of a lithium ion battery, and lithium iron phosphate is applied. Used as a positive electrode, 1 mol / L LiPF6 / EMC + DMC + EC (volume ratio 1: 1: 1) as an electrolytic solution, Celgard 2400 as a separator, assembled into a CR2025 button type battery, and the voltage is set to 0.01 to 1.5 V. , The charge / discharge capacity and cycle stability were inspected at 25 ° C., a constant current charge / discharge test was performed on the battery, and the results are shown in Table 2.
As can be seen from Table 2, the graphite electrodes produced by the thickeners of Examples 1 to 4 have a discharge specific capacity of 277 mAh / g at a current density of 0.1 ° C., and after 100 cycles, the discharge specific capacity is It reaches about 258 mAh / g, and the discharge specific capacity at 1 C current density is 336 mAh / g, and after 100 cycles the discharge specific capacity reaches about 308 mAh / g. It has better performance than the lithium electrodes prepared with the thickeners of Comparative Examples 1 and 2.
Claims (4)
前記ステップ1:カルメロースナトリウムを蒸留水に加え、完全に溶解するまで攪拌することでカルメロースナトリウム溶液を得、そして酸化グラフェンを加え、2.5~6時間超音波攪拌して分散させ、次にキチンを加え、3~10分間超音波処理し、
前記ステップ2:過硫酸カリウムとテトラメチルエチレンジアミンを(0.022~0.036)g:(0.01~0.03)の質量体積比で前記ステップ1の溶液に加え、20~30分間攪拌した後、1~3時間静置し、凍結乾燥して、ゲルを得、
前記ステップ3:ヒドロキシプロピルデンプンリン酸NAを蒸留水に加え、完全に溶解するまで攪拌し、次に塩化第二鉄を加え、30~45分間超音波攪拌した後、グリコール溶液を加え、10~15分間攪拌した後、前記ステップ2の前記ゲルを細かく切り、本ステップの溶液に12~20時間浸した後、取り出して真空乾燥し、研磨し、800メッシュスクリーンに通して増ちょう剤を得る、
ことを特徴とするリチウムイオン電池増ちょう剤の調製方法。 A method for preparing a lithium ion battery thickener, specifically including step 1, step 2, and step 3.
Step 1: Add sodium carmellose to distilled water and stir until completely dissolved to obtain a sodium carmellose solution, then add graphene oxide and sonicate for 2.5-6 hours to disperse and then disperse. Add chitin to the water and sonicate for 3-10 minutes.
Step 2: Potassium persulfate and tetramethylethylenediamine are added to the solution of Step 1 at a mass volume ratio of (0.022 to 0.036) g: (0.01 to 0.03), and the mixture is stirred for 20 to 30 minutes. After that, let stand for 1 to 3 hours and freeze-dry to obtain a gel.
Step 3: Add NA hydroxypropyl starch phosphate to distilled water and stir until completely dissolved, then add ferric chloride, stir ultrasonically for 30-45 minutes, then add glycol solution and 10- After stirring for 15 minutes, the gel of step 2 is cut into small pieces, soaked in the solution of this step for 12 to 20 hours, then taken out, vacuum dried, polished, and passed through an 800 mesh screen to obtain a thickener.
A method for preparing a lithium ion battery thickener, which is characterized by the above.
であり、R=H、R1=CH2COONa、55≦n≦100とする、
ことを特徴とする請求項1に記載のリチウムイオン電池増ちょう剤の調製方法。 The structural formula of the carmellose sodium is
R = H, R1 = CH2COONa, 55 ≦ n ≦ 100.
The method for preparing a lithium ion battery thickener according to claim 1.
ことを特徴とする請求項1に記載のリチウムイオン電池増ちょう剤の調製方法。 In step 1, the mass ratios of the carmellose sodium, the distilled water, the graphene oxide and the chitin were (0.69 to 1.14) g: (20 to 40) mL: (0.12 to 0. 25) g: (0.46 to 0.66) g,
The method for preparing a lithium ion battery thickener according to claim 1.
ことを特徴とする請求項1に記載のリチウムイオン電池増ちょう剤の調製方法。 In step 3, the mass-volume ratio of the hydroxypropylstar phosphate NA, the distilled water, the ferric chloride and the glycol was (0.54 to 0.96) g: (22 to 30) mL :( 0.023 to 0.042) g: (5 to 8) mL,
The method for preparing a lithium ion battery thickener according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021000338A JP2022105794A (en) | 2021-01-05 | 2021-01-05 | Method for preparing lithium ion battery thickener |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021000338A JP2022105794A (en) | 2021-01-05 | 2021-01-05 | Method for preparing lithium ion battery thickener |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022105794A true JP2022105794A (en) | 2022-07-15 |
Family
ID=82365520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021000338A Pending JP2022105794A (en) | 2021-01-05 | 2021-01-05 | Method for preparing lithium ion battery thickener |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022105794A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015029949A1 (en) * | 2013-08-27 | 2015-03-05 | 日産化学工業株式会社 | Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material |
JP2015220046A (en) * | 2014-05-16 | 2015-12-07 | 横浜ゴム株式会社 | Electrode for lead acid battery and lead acid battery using the same |
WO2016010056A1 (en) * | 2014-07-15 | 2016-01-21 | 川上総一郎 | Negative electrode material for power storage device, electrode structure, power storage device, and production method for each |
WO2016080145A1 (en) * | 2014-11-21 | 2016-05-26 | 日本ゼオン株式会社 | Composite particles for electrochemical element electrodes |
US20160181618A1 (en) * | 2014-12-22 | 2016-06-23 | Samsung Sdi Co., Ltd. | Electrode winding element for non-aqueous electrolyte rechareable battery, non-aqueous electrolyte rechargeable lithium battery including same, method of preparing same |
CN109997264A (en) * | 2016-12-02 | 2019-07-09 | 日产化学株式会社 | Film containing carbon nanotube |
-
2021
- 2021-01-05 JP JP2021000338A patent/JP2022105794A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015029949A1 (en) * | 2013-08-27 | 2015-03-05 | 日産化学工業株式会社 | Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material |
JP2015220046A (en) * | 2014-05-16 | 2015-12-07 | 横浜ゴム株式会社 | Electrode for lead acid battery and lead acid battery using the same |
WO2016010056A1 (en) * | 2014-07-15 | 2016-01-21 | 川上総一郎 | Negative electrode material for power storage device, electrode structure, power storage device, and production method for each |
WO2016080145A1 (en) * | 2014-11-21 | 2016-05-26 | 日本ゼオン株式会社 | Composite particles for electrochemical element electrodes |
US20160181618A1 (en) * | 2014-12-22 | 2016-06-23 | Samsung Sdi Co., Ltd. | Electrode winding element for non-aqueous electrolyte rechareable battery, non-aqueous electrolyte rechargeable lithium battery including same, method of preparing same |
CN109997264A (en) * | 2016-12-02 | 2019-07-09 | 日产化学株式会社 | Film containing carbon nanotube |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7030119B2 (en) | Microcapsule type silicon-carbon composite negative electrode material, its manufacturing method and its use | |
CN109119592B (en) | Lithium titanate negative electrode piece, preparation method and lithium titanate battery | |
CN103700820B (en) | A kind of lithium ion selenium battery with long service life | |
US10665893B2 (en) | Anode material including graphite phase carbon material and functionalized graphene, method thereof, and lithium ion battery | |
CN110556530B (en) | Preparation method of molybdenum sulfide/three-dimensional macroporous graphene and lithium ion battery cathode material | |
CN105552359B (en) | The preparation method of lithium battery anode slurry | |
CN110190284B (en) | Water-based binder for lithium-sulfur battery positive electrode and preparation method and application thereof | |
CN108807896B (en) | Preparation method of nitrogen-doped carbon-coated silicon-carbon composite material | |
WO2017032166A1 (en) | Preparation method for lithium battery negative-electrode slurry doped with tin powder | |
CN113903981A (en) | Lithium ion battery and preparation method and application thereof | |
CN112349909B (en) | Zinc-ion battery positive electrode composite material and preparation method and application thereof | |
CN108682862A (en) | A kind of preparation method of lithium ion battery silicon substrate negative plate | |
CN112110448A (en) | Nitrogen-doped carbon and nano-silicon composite anode material and preparation method thereof | |
CN112670509A (en) | Thickener special for lithium ion battery | |
CN112447971B (en) | Positive electrode material additive, active material, positive electrode material, preparation of positive electrode material and application of positive electrode material in lithium ion battery | |
CN1815779A (en) | Method for making lithium ion cell positive electrode sheet, positive-electrode sheet and lithium ion cell | |
CN106602050A (en) | Preparation method of slurry for lithium titanate battery | |
CN116613315A (en) | Water system lithium ion battery | |
CN110459738A (en) | Lithium ion battery anode glue size and preparation method thereof, positive plate, lithium ion battery | |
JP2022105794A (en) | Method for preparing lithium ion battery thickener | |
CN114843473A (en) | Composite slurry applied to lithium iron battery and preparation method thereof | |
CN113980290B (en) | Preparation method of thickener for battery electrode material field | |
CN113658743A (en) | Carbon dot composite conductive agent and preparation method and application thereof | |
CN106159211A (en) | A kind of preparation method of carbon/cobalt/Graphene composite nano fiber negative material | |
CN111063874A (en) | Preparation method and application of hard carbon nano material for ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210222 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20210222 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20210324 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210622 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211124 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220830 |