Nothing Special   »   [go: up one dir, main page]

JP2022173361A - Culture vessel rack and analyzer - Google Patents

Culture vessel rack and analyzer Download PDF

Info

Publication number
JP2022173361A
JP2022173361A JP2022153244A JP2022153244A JP2022173361A JP 2022173361 A JP2022173361 A JP 2022173361A JP 2022153244 A JP2022153244 A JP 2022153244A JP 2022153244 A JP2022153244 A JP 2022153244A JP 2022173361 A JP2022173361 A JP 2022173361A
Authority
JP
Japan
Prior art keywords
culture vessel
culture
container
sample
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022153244A
Other languages
Japanese (ja)
Other versions
JP7411751B2 (en
Inventor
忠雄 藪原
Tadao Yabuhara
幸恵 常盤
Yukie Tokiwa
優 日下
Yu Kusaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Priority to JP2022153244A priority Critical patent/JP7411751B2/en
Publication of JP2022173361A publication Critical patent/JP2022173361A/en
Application granted granted Critical
Publication of JP7411751B2 publication Critical patent/JP7411751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/48Holding appliances; Racks; Supports
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Environmental Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Water Supply & Treatment (AREA)
  • Mycology (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a culture vessel rack and an analyzer that inhibit dew condensation in a culture vessel.
SOLUTION: The culture vessel rack comprises a culture vessel housing to house culture vessels. The culture vessel housing comprises: a first component forming a top face of the culture vessel housing; a second component forming a bottom face of the culture vessel housing; and a third component disposed on the second component to support the culture vessels. The third component supports the culture vessels such that the distance between the first component and the culture vessels is less than or equal to the distance between the second component and the culture vessels.
SELECTED DRAWING: Figure 2D
COPYRIGHT: (C)2023,JPO&INPIT

Description

本開示は、培養容器ラック及び分析装置に関する。 The present disclosure relates to culture vessel racks and analyzers.

医療研究機関や病院などでは、検体中の細胞や細菌を培養し、顕微鏡観察や濁度測定を行う検査が実施されている。細胞培養や細菌培養においては、検体容器としてマイクロウェルプレートやシャーレが用いられ、前処理した検体及び栄養素を検体容器に導入して培養が実施される。検体容器に接種された検体は、インキュベータ内での培養と測定装置での観察が長時間にわたって繰り返され、培養状態の変化が分析される。 In medical research institutes, hospitals, and the like, tests are performed in which cells and bacteria in specimens are cultured, and microscopic observations and turbidity measurements are performed. In cell culture and bacterial culture, a microwell plate or petri dish is used as a sample container, and culture is performed by introducing a pretreated sample and nutrients into the sample container. The sample inoculated into the sample container is repeatedly cultured in the incubator and observed with the measuring device for a long period of time, and changes in the culture state are analyzed.

しかしながら、培養及び観察を長時間繰り返すと、インキュベータ内の温度勾配により、検体容器の蓋などに結露が発生してしまう。結露による水滴は、例えば透過観察において光の屈折の原因となり、コントラスト悪化や、光量の低下による濁度値への誤判定へとつながる。 However, when culture and observation are repeated for a long period of time, dew condensation occurs on the lid of the specimen container due to the temperature gradient within the incubator. Water droplets due to dew condensation cause light refraction in, for example, transmission observation, leading to deterioration of contrast and erroneous determination of turbidity values due to a decrease in the amount of light.

検体容器における結露の発生を抑制する培養観察装置として、例えば特許文献1には、「インキュベータ部12に培養容器14を搬入する際に、台部35に培養容器14が載置され、搬送ロボット15のアーム31が台部35に載置された培養容器14を搬入するまでの間に、ヒータ36が培養容器を加温する」ことが開示されている(同文献の要約参照)。 As a culture observation device that suppresses the occurrence of dew condensation in a specimen container, for example, Patent Document 1 discloses that when the culture container 14 is carried into the incubator unit 12, the culture container 14 is placed on the platform 35, and the transfer robot 15 The heater 36 heats the culture vessel 14 until the arm 31 carries in the culture vessel 14 placed on the base 35" (see the abstract of the same document).

特許文献2には、生体試料培養観察装置において、「インキュベータボックス2の筐体7には、図1及び図3に示すように、透明板5の内面5aに対して、培養環境E内が培養に適した温度になるように、所定の温度に調節された温風(気体)Hを吹き付ける温風供給ノズル(気体吹付手段)25が取り付けられている」ことが開示されている(同文献の段落[0035]参照)。 Patent Document 2 describes a biological sample culture and observation apparatus in which "in the housing 7 of the incubator box 2, as shown in Figs. A hot air supply nozzle (gas blowing means) 25 for blowing hot air (gas) H adjusted to a predetermined temperature is attached so that the temperature is suitable for the See paragraph [0035]).

特開2010-158185号公報JP 2010-158185 A 特開2007-166982号公報JP 2007-166982 A

しかしながら、特許文献1においては、装置に投入できる培養容器の数は1つずつであるため、培養容器を複数用いて測定する場合は、培養容器の追加投入時にユーザの待ち時間が発生し、装置を離れることができない。上記台部を複数台設けることにより待ち時間を短縮することができるが、台部が複数台必要となるため機械部品のコストが上がり、装置サイズも大きくなる。 However, in Patent Document 1, the number of culture vessels that can be put into the apparatus is one each. Therefore, when measuring using a plurality of culture vessels, the user has to wait when adding additional culture vessels. can't leave Although the waiting time can be shortened by providing a plurality of pedestals, the need for a plurality of pedestals increases the cost of mechanical parts and increases the size of the device.

特許文献2においては、透明板への結露発生を抑制するため、インキュベータボックスの内部の透明板の内面に温風を吹き付け、透明板を加温して加湿水の蒸発によって生じた水滴を透明板につきにくくしているが、設置できる培養容器は1つのみである。従って、複数の培養容器を観察する場合は、同じ装置が複数必要となるためコストが上がり、装置サイズも大きくなるうえ、培養ガスや加湿水などの消耗品も増えてしまう。 In Patent Document 2, in order to suppress the occurrence of dew condensation on the transparent plate, hot air is blown onto the inner surface of the transparent plate inside the incubator box to heat the transparent plate, and water droplets generated by the evaporation of the humidification water are removed from the transparent plate. Although it is difficult to stick, only one culture container can be installed. Therefore, when observing a plurality of culture vessels, a plurality of the same devices are required, which increases the cost, increases the size of the device, and increases the number of consumables such as culture gas and humidifying water.

そこで、本開示は、培養容器における結露の発生を抑制する培養容器ラック及び分析装置を提供する。 Accordingly, the present disclosure provides a culture container rack and an analyzer that suppress the occurrence of dew condensation in culture containers.

本開示の培養容器ラックは、培養容器を収納する培養容器収納部を備え、前記培養容器収納部は、前記培養容器収納部の天面を構成する第1の部材と、前記培養容器収納部の底面を構成する第2の部材と、前記第2の部材上に配置され、前記培養容器を支持する第3の部材と、前記培養容器収納部に設置される熱源と、前記培養容器収納部の内部の温度を測定する温度センサと、を備え、前記第3の部材は、前記第1の部材と前記培養容器との距離が前記第2の部材と前記培養容器との距離以下となるように、前記培養容器を支持し、前記熱源は、前記温度センサの出力に基づいて熱を供給することを特徴とする。 The culture vessel rack of the present disclosure includes a culture vessel storage section that stores a culture vessel, and the culture vessel storage section includes a first member that constitutes the top surface of the culture vessel storage section, and the culture vessel storage section. a second member that forms a bottom surface; a third member that is arranged on the second member and supports the culture vessel; a heat source installed in the culture vessel storage section; a temperature sensor for measuring internal temperature, wherein the third member is arranged such that the distance between the first member and the culture vessel is equal to or less than the distance between the second member and the culture vessel. , the culture vessel is supported, and the heat source supplies heat based on the output of the temperature sensor.

本開示に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本開示の態様は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される特許請求の範囲の様態により達成され実現される。
本明細書の記述は典型的な例示に過ぎず、本開示の特許請求の範囲又は適用例を如何なる意味に於いても限定するものではないことを理解する必要がある。
Further features related to the present disclosure will become apparent from the description of the specification and the accompanying drawings. In addition, the aspects of the present disclosure will be achieved and attained by means of the elements and combinations of various elements and aspects of the detailed description that follows and the claims that follow.
It should be understood that the description herein is merely exemplary and is not intended in any way to limit the scope or application of this disclosure.

本開示によれば、培養容器における結露の発生を抑制することができる。
上記以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。
According to the present disclosure, it is possible to suppress the occurrence of dew condensation in the culture vessel.
Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

第1の実施形態に係る分析装置の全体構成を示す概略正面図である。1 is a schematic front view showing the overall configuration of an analyzer according to a first embodiment; FIG. 第1の実施形態に係る分析装置の全体構成を示す概略平面図である。1 is a schematic plan view showing the overall configuration of an analysis device according to a first embodiment; FIG. 結露の発生箇所を示す模式図である。FIG. 4 is a schematic diagram showing locations where dew condensation occurs. 結露の発生箇所を示す模式図である。FIG. 4 is a schematic diagram showing locations where dew condensation occurs. 培養容器収納部の構成例を示す概略正面図である。FIG. 3 is a schematic front view showing a configuration example of a culture container storage section; 培養容器収納部の構成例を示す概略正面図である。FIG. 3 is a schematic front view showing a configuration example of a culture container storage section; 培養容器収納部の構成例を示す概略正面図である。FIG. 3 is a schematic front view showing a configuration example of a culture container storage section; 培養容器収納部の構成例を示す概略正面図である。FIG. 3 is a schematic front view showing a configuration example of a culture container storage section; 培養容器収納部の構成例を示す概略正面図である。FIG. 3 is a schematic front view showing a configuration example of a culture container storage section; 培養容器収納部の構成例を示す概略正面図である。FIG. 3 is a schematic front view showing a configuration example of a culture container storage section; 第2の実施形態に係る熱源及び温度センサの配置例を示す概略正面図である。FIG. 10 is a schematic front view showing an example of arrangement of heat sources and temperature sensors according to the second embodiment; 図3Aの熱源及び温度センサの制御機構を示すブロック図である。FIG. 3B is a block diagram showing a control mechanism for the heat source and temperature sensor of FIG. 3A; 第2の実施形態に係る熱源及び温度センサの配置例を示す概略正面図である。FIG. 10 is a schematic front view showing an example of arrangement of heat sources and temperature sensors according to the second embodiment; 図3Cの熱源及び温度センサの制御機構を示すブロック図である。FIG. 3D is a block diagram showing the control mechanism for the heat source and temperature sensor of FIG. 3C; 第2の実施形態に係る熱源及び温度センサの配置例を示す概略正面図である。FIG. 10 is a schematic front view showing an example of arrangement of heat sources and temperature sensors according to the second embodiment; 図3Eの熱源及び温度センサの制御機構を示すブロック図である。Figure 3D is a block diagram showing the control mechanism for the heat source and temperature sensor of Figure 3E; 第2の実施形態に係る熱源及び温度センサの配置例を示す概略正面図である。FIG. 10 is a schematic front view showing an example of arrangement of heat sources and temperature sensors according to the second embodiment; 図3Gの熱源及び温度センサの制御機構を示すブロック図である。Figure 3G is a block diagram showing the control mechanism for the heat source and temperature sensor of Figure 3G;

[第1の実施形態]
図1Aは、第1の実施形態に係る分析装置1の全体構成を示す概略正面図であり、図1Bは、その概略平面図である。図1A及び1Bに示すように、分析装置1は、培養容器ラック2、搬送部3、測定部4、温調部5及び制御部7を備える。
[First Embodiment]
FIG. 1A is a schematic front view showing the overall configuration of an analyzer 1 according to the first embodiment, and FIG. 1B is a schematic plan view thereof. As shown in FIGS. 1A and 1B, the analysis device 1 includes a culture container rack 2, a transport section 3, a measurement section 4, a temperature control section 5 and a control section .

培養容器ラック2は、高さ方向に積み重ねられた8段の培養容器収納部21を有し、各培養容器収納部21に1つの培養容器6が収納される。最下段の培養容器収納部21の下部には、この培養容器収納部21を支持する脚部22が設けられる。なお、培養容器収納部21の数は8段に限定されず、段数を増減してもよい。また、分析装置1は、培養容器ラック2を複数有していてもよい。培養容器収納部21の詳細については、後述する。 The culture vessel rack 2 has eight layers of culture vessel housing sections 21 stacked in the height direction, and one culture vessel 6 is housed in each culture vessel housing section 21 . A leg portion 22 for supporting the culture container housing portion 21 is provided below the culture container housing portion 21 on the lowest stage. In addition, the number of culture container storage units 21 is not limited to eight stages, and the number of stages may be increased or decreased. Also, the analyzer 1 may have a plurality of culture container racks 2 . The details of the culture vessel storage section 21 will be described later.

培養容器6は、検体容器61及び蓋62から構成される。検体容器61は、例えば96ウェルプレート、384ウェルプレートなどの複数のウェルを有するウェルプレートであり、各ウェルに検体63が接種される。検体63としては、例えば細胞、血液、尿、細菌、組織片などが挙げられる。なお、蓋62は、シール状のものであってもよい。 The culture container 6 is composed of a specimen container 61 and a lid 62 . The specimen container 61 is a well plate having a plurality of wells, such as a 96-well plate or a 384-well plate, and a specimen 63 is inoculated into each well. The specimen 63 includes, for example, cells, blood, urine, bacteria, tissue fragments, and the like. Note that the lid 62 may be in the form of a seal.

搬送部3は、アクチュエータ31及び32、並びに保持部33を備え、培養容器6を搬送可能に構成される。保持部33は、培養容器6を保持し、アクチュエータ31及び32により高さ方向及び水平方向に移動するよう構成される。アクチュエータ31及びアクチュエータ32は、例えばボールねじやベルト等により構成される。保持部33は、図示しない機構により、培養容器6の受取りや受渡しが可能である。 The transport unit 3 includes actuators 31 and 32 and a holding unit 33 and is configured to transport the culture vessel 6 . The holding part 33 holds the culture vessel 6 and is configured to be moved in the height direction and the horizontal direction by the actuators 31 and 32 . The actuators 31 and 32 are composed of ball screws, belts, or the like, for example. The holding unit 33 can receive and deliver the culture vessel 6 by a mechanism (not shown).

図示は省略しているが、保持部33は、測定部4において次に測定される培養容器6を保持する第1の保持部と、測定部4での測定が終了した培養容器6を保持する第2の保持部とを備えていてもよく、測定済みの培養容器6を測定部4から取り出すと共に、未測定の培養容器6を測定部4へ導入してもよい。 Although not shown, the holding unit 33 holds a first holding unit that holds the culture container 6 to be measured next in the measuring unit 4 and holds the culture container 6 for which the measurement in the measuring unit 4 has been completed. A second holding part may be provided, and the measured culture vessel 6 may be removed from the measuring part 4 and the unmeasured culture vessel 6 may be introduced into the measuring part 4 .

測定部4は、測定ユニット41及び検体測定部42を備える。検体測定部42は、測定ユニット41内にあり、培養容器6の各ウェル内の検体63の培養状態を測定する測定装置である。検体測定部42は、例えば濁度測定、吸光度測定、蛍光測定、画像解析などを行うための各種機構(図示せず)を備える。 The measurement section 4 includes a measurement unit 41 and a specimen measurement section 42 . The sample measurement unit 42 is a measurement device that is located in the measurement unit 41 and measures the culture state of the sample 63 in each well of the culture container 6 . The sample measurement unit 42 includes various mechanisms (not shown) for performing turbidity measurement, absorbance measurement, fluorescence measurement, image analysis, and the like.

温調部5は、ヒータ51、ヒートシンク52及びファン53を備え、分析装置1内の温度を調節する。ヒータ51の熱は、ヒートシンク52を介してファン53が生成する風54により分析装置1内へ供給される。ヒータ51としては、例えば電熱ヒータ、セラミックヒータ、シリコンラバーヒータ、シーズヒータ、バンドヒータ、ポリイミドヒータ、スペースヒータ、コードヒータ、カートリッジヒータ、金属埋め込み式ヒータなどのヒータを用いることができる。また、これらのヒータ以外に、ペルチェを使用してもよい。ヒートシンク52の材質としては、例えばアルミニウム、銅、鉄、ステンレスなどを用いることができる。 The temperature control section 5 includes a heater 51 , a heat sink 52 and a fan 53 and controls the temperature inside the analyzer 1 . The heat of the heater 51 is supplied into the analyzer 1 via the heat sink 52 by the air 54 generated by the fan 53 . As the heater 51, heaters such as electric heaters, ceramic heaters, silicon rubber heaters, sheathed heaters, band heaters, polyimide heaters, space heaters, cord heaters, cartridge heaters, and metal-embedded heaters can be used. In addition to these heaters, Peltier may be used. As the material of the heat sink 52, for example, aluminum, copper, iron, stainless steel, or the like can be used.

制御部7は、例えばパーソナルコンピュータ等のコンピュータであり、分析装置1全体の動作を制御する。制御部7は、有線又は無線により搬送部3、測定部4及び温調部5に接続され、これら各機構に指示を送信したり、各機構の出力を受信したりする。 The control unit 7 is a computer such as a personal computer, for example, and controls the operation of the entire analysis apparatus 1 . The control unit 7 is connected to the transport unit 3, the measurement unit 4, and the temperature control unit 5 by wire or wirelessly, and transmits instructions to these mechanisms and receives outputs from the mechanisms.

図示は省略しているが、制御部7は、検体測定部42における測定結果などを表示する表示部、測定結果に基づいて検体63の経時的な培養状態の変化量などを算出するデータ処理部、ユーザが指示を入力するための入力部、測定結果を記憶する記憶部などを備えていてもよい。なお、制御部7は測定ユニット41に内蔵されていてもよい。 Although not shown, the control unit 7 includes a display unit that displays the measurement results of the sample measurement unit 42, and a data processing unit that calculates changes in culture conditions of the sample 63 over time based on the measurement results. , an input unit for the user to input instructions, a storage unit for storing measurement results, and the like. Note that the control section 7 may be incorporated in the measurement unit 41 .

測定ユニット41は、検体測定部42の温度を測定する温度センサ(図示せず)を備えていてもよい。この場合、制御部7は、温度センサの出力値に基づいてヒータ51の熱量の出力を制御する。 The measurement unit 41 may include a temperature sensor (not shown) that measures the temperature of the specimen measurement section 42 . In this case, the controller 7 controls the output of the heat amount of the heater 51 based on the output value of the temperature sensor.

次に、分析装置1の動作について説明する。まず、ユーザは、検体63を接種した培養容器6を各培養容器収納部21へ収納する。その後、ユーザは、制御部7の入力部などにより、分析装置1の動作を開始するための指示を入力する。 Next, the operation of the analyzer 1 will be described. First, the user stores the culture vessel 6 inoculated with the sample 63 into each culture vessel storage section 21 . After that, the user inputs an instruction for starting the operation of the analysis device 1 through the input section of the control section 7 or the like.

制御部7は、動作開始の指示を受信すると、搬送部3を駆動する。搬送部3は、培養容器収納部21から培養容器6を受け取り、検体測定部42まで搬送させる。制御部7は、培養容器6の搬送が完了したら検体測定部42を駆動し、検体測定部42は、検体容器61内の検体63の培養状態を測定する(ステップS1)。ここで、制御部7は、検体測定部42から測定結果を受信して、図示しない表示部に測定結果を表示させてもよい。 The control unit 7 drives the transport unit 3 upon receiving the operation start instruction. The transport unit 3 receives the culture container 6 from the culture container storage unit 21 and transports it to the specimen measurement unit 42 . The control unit 7 drives the sample measurement unit 42 after the transportation of the culture container 6 is completed, and the sample measurement unit 42 measures the culture state of the sample 63 in the sample container 61 (step S1). Here, the control unit 7 may receive the measurement result from the sample measurement unit 42 and display the measurement result on a display unit (not shown).

検体測定部42による測定が終了したら、制御部7は搬送部3を駆動する。搬送部3は、培養容器6を検体測定部42から培養容器収納部21に移動させて収納する。培養容器6中の検体63は、培養容器収納部21において所定の時間だけ培養が行われる(ステップS2)。 After the measurement by the sample measurement unit 42 is completed, the control unit 7 drives the transport unit 3 . The transport unit 3 moves and stores the culture container 6 from the sample measurement unit 42 to the culture container storage unit 21 . The sample 63 in the culture container 6 is cultured for a predetermined time in the culture container storage section 21 (step S2).

制御部7は、1つの培養容器6について、上記ステップS1及びS2の測定サイクルを例えば20~30分の間隔で約18時間繰り返す。ある培養容器収納部21において培養容器6内の検体63の培養を行っている間に、他の培養容器収納部21に収納される培養容器6の検体63の測定が行われる。 The control unit 7 repeats the measurement cycle of steps S1 and S2 for one culture container 6, for example, at intervals of 20 to 30 minutes for about 18 hours. While the sample 63 in the culture container 6 is being cultured in a certain culture container storage unit 21, the sample 63 in the culture container 6 stored in another culture container storage unit 21 is measured.

上記のような分析装置1での検体の培養及び測定においては、通常、検体測定部42における測定時間に対し、培養容器6が培養容器収納部21に収納されている時間(培養時間)の方が長い。一般に、インキュベータ内に培養容器6を設置すると、検体容器61の下面を支持する部材の材料や、検体容器61の下面のわずかな凹凸に存在する空気などから検体容器61内の検体63へ供給される熱エネルギーが、蓋62へ供給される熱エネルギーよりも高くなる。これにより、培養容器6内部に結露が発生してしまう。 In culturing and measuring a sample in the analyzer 1 as described above, the time (incubation time) during which the culture container 6 is housed in the culture container storage unit 21 is generally longer than the measurement time in the sample measurement unit 42. is long. In general, when the culture container 6 is placed in the incubator, the material of the member supporting the lower surface of the sample container 61 and the air present in slight irregularities on the lower surface of the sample container 61 are supplied to the sample 63 in the sample container 61. The heat energy supplied to the lid 62 is higher than the heat energy supplied to the lid 62 . As a result, dew condensation occurs inside the culture vessel 6 .

図1Cは、検体容器61と蓋62との間に隙間がある場合における結露の発生箇所を示す模式図である。図1Cは、図示の簡略化のため、培養容器6の一部のみを示している。図1Cに示すように、培養容器6の検体容器61と蓋62との間に隙間がある場合、検体容器61の上面と蓋62の底面との間に結露Cが生じる。 FIG. 1C is a schematic diagram showing locations where dew condensation occurs when there is a gap between the specimen container 61 and the lid 62 . FIG. 1C shows only part of the culture vessel 6 for simplification of illustration. As shown in FIG. 1C , when there is a gap between the specimen container 61 and the lid 62 of the culture container 6 , dew condensation C occurs between the top surface of the specimen container 61 and the bottom surface of the lid 62 .

図1Dは、検体容器61と蓋62との間に隙間がない場合における結露の発生箇所を示す模式図である。図1Dは、図示の簡略化のため、培養容器6の一部のみを示している。図1Dに示すように、検体容器61と蓋62との間に隙間がない場合、検体容器61の各ウェルの開口端と蓋62との境界面に結露Cが生じる。 FIG. 1D is a schematic diagram showing locations where dew condensation occurs when there is no gap between the sample container 61 and the lid 62 . FIG. 1D shows only part of the culture vessel 6 for simplification of illustration. As shown in FIG. 1D , when there is no gap between the specimen container 61 and the lid 62 , dew condensation C occurs on the interface between the opening end of each well of the specimen container 61 and the lid 62 .

本明細書において、上記のように結露Cが発生する箇所(検体容器61の上面と蓋62の底面との間、及び検体容器61の各ウェルの開口端と蓋62との境界面)を「結露発生部」という場合がある。 In this specification, the locations where condensation C occurs as described above (between the top surface of the sample container 61 and the bottom surface of the lid 62, and the interface between the open end of each well of the sample container 61 and the lid 62) are defined as " It may be called "condensation generating part".

そこで、次の測定までの待ち時間に、結露発生部に発生する結露の抑制や除去が可能な培養容器収納部21を提案する。以下、培養容器6として、検体容器61と蓋62との間に隙間がないものを使用し、検体容器61の開口端と蓋62との境界面に発生する結露を抑制する培養容器収納部21について説明する。 Therefore, we propose a culture container storage unit 21 that can suppress or remove dew condensation that occurs in the dew condensation generating portion during the waiting time until the next measurement. Hereinafter, as the culture container 6, a container with no gap between the specimen container 61 and the lid 62 is used, and dew condensation generated on the interface between the opening end of the specimen container 61 and the lid 62 is suppressed. will be explained.

図2Aは、本実施形態に係る培養容器収納部21の構成例を示す概略正面図である。図2Aに示すように、培養容器収納部21は、金属材201(第1の部材)、断熱材202(第3の部材)、金属材203(第2の部材)、金属材204及び金属材205を備える。 FIG. 2A is a schematic front view showing a configuration example of the culture vessel storage section 21 according to this embodiment. As shown in FIG. 2A, the culture container storage part 21 includes a metal material 201 (first member), a heat insulating material 202 (third member), a metal material 203 (second member), a metal material 204, and a metal material. 205.

金属材201は、培養容器収納部21の天面を構成し、金属材203は、培養容器収納部21の底面を構成する。金属材201の下面は、蓋62の上面に対向する。断熱材202は、金属材203上に配置され、培養容器6の収納時に検体容器61の下面に接して検体容器61を支持する。換言すれば、培養容器6は、金属材201と断熱材202との間に収納される。金属材204及び205は、それぞれ培養容器収納部21の側面を構成する。このように、培養容器6は、金属材201、203、204及び205により上下左右が囲まれ、培養容器収納部21の前側及び後側から収納したり取り出したりすることができる。 The metal material 201 constitutes the top surface of the culture container housing portion 21 , and the metal material 203 constitutes the bottom surface of the culture container housing portion 21 . The bottom surface of the metal material 201 faces the top surface of the lid 62 . The heat insulating material 202 is arranged on the metal material 203 and supports the sample container 61 by coming into contact with the lower surface of the sample container 61 when the culture container 6 is housed. In other words, the culture vessel 6 is housed between the metal material 201 and the heat insulating material 202 . The metal members 204 and 205 respectively constitute the side surfaces of the culture vessel storage section 21 . In this manner, the culture vessel 6 is surrounded by the metal members 201 , 203 , 204 and 205 on the top, bottom, left, and right, and can be stored in and taken out from the front and rear sides of the culture vessel storage section 21 .

培養容器収納部21が複数段ある場合、上段に位置する培養容器収納部21の金属材203と、下段に位置する培養容器収納部21の金属材201とは、互いに接触していてもよいし、これらの間に他の部材が配置されていてもよい。なお、下段に位置する培養容器収納部21の金属材201が金属材203を兼ねていてもよい。培養容器ラック2の最下段に位置する培養容器収納部21においては、断熱材202の下面に金属材203のみが配置される。 When the culture container storage part 21 has a plurality of stages, the metal material 203 of the culture vessel storage part 21 located in the upper stage and the metal material 201 of the culture vessel storage part 21 located in the lower stage may be in contact with each other. , and other members may be arranged between them. In addition, the metal material 201 of the culture container storage part 21 located in the lower stage may also serve as the metal material 203 . In the culture container housing portion 21 located at the bottom of the culture container rack 2, only the metal material 203 is arranged on the lower surface of the heat insulating material 202. As shown in FIG.

金属材201、203、204及び205の材質としては、例えばアルミニウム、ステンレス、銅、鉄、チタンなどを用いることができる。断熱材202としては、例えばグラスウール、セルローズファイバー、インシュレーションボード、羊毛断熱材、ロックウール、硬質ウレタンフォーム、ビーズ法ポリスチレンフォーム、フェノールフォーム、真空断熱材、樹脂材料などを用いることができる。樹脂材料としては、例えばポリアミド、POM、PEEK、PPS、PTFE、PVC、PE、PP、PS、ABSなどが挙げられる。 As materials for the metal materials 201, 203, 204, and 205, for example, aluminum, stainless steel, copper, iron, titanium, or the like can be used. As the heat insulating material 202, for example, glass wool, cellulose fiber, insulation board, wool heat insulating material, rock wool, hard urethane foam, bead method polystyrene foam, phenol foam, vacuum heat insulating material, resin material, or the like can be used. Examples of resin materials include polyamide, POM, PEEK, PPS, PTFE, PVC, PE, PP, PS, and ABS.

以上のように、培養容器収納部21は、培養容器6の上下左右が囲まれる構造を有することで、培養容器6の周囲に熱の対流が起きにくくなっている。 As described above, the culture container housing part 21 has a structure that surrounds the culture container 6 on the top, bottom, left, and right, so that heat convection is less likely to occur around the culture container 6 .

一般に、分析装置1が設置される部屋の室温と、温調部5から供給される熱エネルギーとにより、培養容器収納部21はある一定の温度分布で均衡する。そこで、結露を防止するために、この均衡状態において、検体容器61の開口端と蓋62との境界面への熱エネルギーの供給量が、検体容器61内の検体63への熱エネルギーの供給量より多くなるように、蓋62の上面に接する部材(金属材201)の熱伝導率を検体容器61の下面に接する部材(断熱材202)の熱伝導率より高くする。また、断熱材202の熱伝導率を金属材203の熱伝導率より低くする。これに加えて、金属材201の熱伝導率を金属材203の熱伝導率より高くしてもよい。 In general, the room temperature of the room in which the analyzer 1 is installed and the heat energy supplied from the temperature control unit 5 balance the temperature distribution of the culture container storage unit 21 at a certain level. Therefore, in order to prevent dew condensation, the amount of thermal energy supplied to the interface between the open end of the sample container 61 and the lid 62 in this equilibrium state is equal to the amount of thermal energy supplied to the sample 63 in the sample container 61. The thermal conductivity of the member (metal material 201) in contact with the upper surface of the lid 62 is made higher than the thermal conductivity of the member (insulating material 202) in contact with the lower surface of the sample container 61 so that the amount of heat is increased. Also, the thermal conductivity of the heat insulating material 202 is made lower than the thermal conductivity of the metal material 203 . In addition, the thermal conductivity of metal material 201 may be higher than that of metal material 203 .

上記構成を有する培養容器収納部21を採用することにより、検体容器61の開口端と蓋62との境界面へ供給される熱エネルギーが、検体容器61(ウェル)の内底部と検体63との境界面へ供給される熱エネルギーよりも大きくなり、蓋62の上面の温度が検体容器61の下面の温度より高くなるため、検体容器61の開口端と蓋62との境界面における結露の発生を抑制することができる。 By adopting the culture container housing part 21 having the above configuration, the thermal energy supplied to the interface between the open end of the specimen container 61 and the lid 62 is applied to the inner bottom of the specimen container 61 (well) and the specimen 63. The temperature of the upper surface of the lid 62 becomes higher than the temperature of the lower surface of the specimen container 61 , so that dew condensation is prevented from occurring at the boundary surface between the opening end of the specimen container 61 and the lid 62 . can be suppressed.

図2Bは、培養容器収納部21の他の構成例を示す概略正面図である。図2Bの培養容器収納部21は、蓋62の上面と金属材201の下面との間に空気層206(第1の空気層)が設けられる点で、図2Aと異なっている。その他の構成については図2Aと同様であるので、説明を省略する。 FIG. 2B is a schematic front view showing another configuration example of the culture vessel storage section 21. FIG. 2B is different from FIG. 2A in that an air layer 206 (first air layer) is provided between the upper surface of the lid 62 and the lower surface of the metal member 201. The culture container housing portion 21 of FIG. Since other configurations are the same as those in FIG. 2A, description thereof is omitted.

空気層206の厚さa(第1の部材と培養容器との距離)は、金属材201の下面から、検体容器61の開口端と蓋62との境界面までの距離と定義する。空気層206の厚さaは、検体容器61の内底部と検体63との境界面へ供給される熱エネルギー(熱伝導+熱伝達+輻射)<検体容器61の開口端と蓋62との境界面へ供給される熱エネルギー(熱伝導+熱伝達+輻射)の関係式が成り立つ範囲で、金属材201や断熱材202の材質に応じて適宜設定される。 The thickness a of the air layer 206 (the distance between the first member and the culture container) is defined as the distance from the lower surface of the metal member 201 to the interface between the open end of the specimen container 61 and the lid 62 . The thickness a of the air layer 206 is the thermal energy (heat conduction + heat transfer + radiation) supplied to the interface between the inner bottom of the sample container 61 and the sample 63 < the boundary between the open end of the sample container 61 and the lid 62 It is appropriately set according to the material of the metal material 201 and the heat insulating material 202 within the range where the relational expression of the thermal energy (heat conduction + heat transfer + radiation) supplied to the surface holds.

断熱材202の上面から、検体容器61の内底部と検体63との境界面までの距離をtとする。また、断熱材202の厚さをWとする。図2Bに示されるように、W+tは、金属材203の上面から、検体容器61の内底部と検体63との境界面までの距離(第2の部材と培養容器との距離)に等しい。ここで、断熱材202の熱伝導率が空気の熱伝導率以下の場合、a<W+tを満たすようにする。これにより、金属材201が検体容器61の開口端と蓋62との境界面へ与える熱エネルギーを検体容器61の内底部と検体63との境界面への熱エネルギーよりも高くすることができ、結露を防止することができる。 Let t be the distance from the upper surface of the heat insulating material 202 to the interface between the inner bottom of the sample container 61 and the sample 63 . Also, let W be the thickness of the heat insulating material 202 . As shown in FIG. 2B, W+t is equal to the distance from the upper surface of the metal member 203 to the interface between the inner bottom of the specimen container 61 and the specimen 63 (the distance between the second member and the culture container). Here, when the thermal conductivity of the heat insulating material 202 is equal to or lower than the thermal conductivity of air, a<W+t is satisfied. As a result, the thermal energy applied to the interface between the open end of the sample container 61 and the lid 62 by the metal material 201 can be made higher than the thermal energy applied to the interface between the inner bottom of the sample container 61 and the sample 63. Condensation can be prevented.

さらに、図2Bの構成において、蓋62と対面する金属材201の下面の表面形状を凸凹とする、あるいは金属材201の下面を輻射率が高くなるような表面処理(例えばアルマイト処理)とする、あるいは金属材201の下面を輻射率の高い色としてもよい。このような構成を採用することにより、金属材201が検体容器61の開口端と蓋62との境界面へ与える輻射の熱エネルギーをさらに高くすることができ、結露を防止することができる。 Furthermore, in the configuration of FIG. 2B, the surface shape of the lower surface of the metal material 201 facing the lid 62 is uneven, or the lower surface of the metal material 201 is surface-treated (for example, alumite treatment) to increase the emissivity. Alternatively, the lower surface of the metal material 201 may be colored with a high emissivity. By adopting such a configuration, it is possible to further increase the thermal energy of the radiation given to the interface between the open end of the specimen container 61 and the lid 62 by the metal material 201, thereby preventing dew condensation.

図2Cは、培養容器収納部21の他の構成例を示す概略正面図である。図2Cの培養容器収納部21は、断熱材202が略U字状に形成され、検体容器61の検体63が収容される箇所の下方に空気層207(第2の空気層)が形成される点で、図2Bと異なっている。図2Cに示すように、断熱材202は、検体容器61の下面の左右両端部を支持する。空気層207の厚さbは、検体容器61の内底部と検体63との境界面から、断熱材202の凹部の上面までの距離と定義する。 FIG. 2C is a schematic front view showing another configuration example of the culture vessel storage section 21. FIG. 2C, the heat insulating material 202 is formed in a substantially U shape, and an air layer 207 (second air layer) is formed below the part of the sample container 61 where the sample 63 is stored. 2B in that it differs from FIG. As shown in FIG. 2C, the heat insulating material 202 supports the left and right ends of the lower surface of the specimen container 61 . The thickness b of the air layer 207 is defined as the distance from the interface between the inner bottom of the sample container 61 and the sample 63 to the upper surface of the recess of the heat insulating material 202 .

断熱材202として、例えば空気よりも熱伝導率が高い(例えば10倍程度)材質を使用した場合、図2Cのように断熱材202に空気層207を設けることで、図2Bと比較して、検体容器61の内底部と検体63との境界面へ供給される熱エネルギーを低くすることができる。 For example, when a material having a higher thermal conductivity than air (for example, about 10 times) is used as the heat insulating material 202, by providing an air layer 207 in the heat insulating material 202 as shown in FIG. 2C, compared with FIG. Thermal energy supplied to the interface between the inner bottom of the sample container 61 and the sample 63 can be reduced.

以上のように、図2Cに示す構造を採用することにより、検体容器61の開口端と蓋62との境界面へ供給される熱エネルギーよりも、検体容器61の内底部と検体63との境界面へ供給される熱エネルギーを小さくすることができ、これにより結露を防止することができる。 As described above, by adopting the structure shown in FIG. 2C, the boundary between the inner bottom of the sample container 61 and the sample 63 is more likely than the thermal energy supplied to the interface between the open end of the sample container 61 and the lid 62 . The heat energy supplied to the surface can be reduced, thereby preventing condensation.

図2Dは、培養容器収納部21の他の構成例を示す概略正面図である。図2Dの培養容器収納部21は、検体容器61の検体63が収容される箇所の下方には断熱材202が存在せず(充填されておらず)、検体容器61の下面と、金属材203の上面との間に空気層208(第2の空気層)が設けられる点で、図2Cと異なる。 FIG. 2D is a schematic front view showing another configuration example of the culture vessel storage section 21. FIG. In the culture container storage part 21 of FIG. 2D, the heat insulating material 202 does not exist (is not filled) below the portion of the sample container 61 where the sample 63 is stored. 2C in that an air layer 208 (second air layer) is provided between the upper surface of the .

図2Dに示すように、断熱材202は、検体容器61の下面の左右両端部を支持する足場として用いられ、金属材201及び203への熱エネルギーの供給を積極的に行うことができる。また、図2Dの構成において、金属材201の熱伝導率を金属材203の熱伝導率よりも高くすることで、検体容器61の開口端と蓋62との境界面へ供給される熱エネルギーを検体容器61の内底部と検体63との境界面へ供給される熱エネルギーよりも大きくすることができる。 As shown in FIG. 2D, the heat insulating material 202 is used as a scaffold supporting the left and right ends of the lower surface of the sample container 61, and can positively supply thermal energy to the metal members 201 and 203. As shown in FIG. In the configuration of FIG. 2D, by making the thermal conductivity of the metal material 201 higher than the thermal conductivity of the metal material 203, the thermal energy supplied to the interface between the opening end of the sample container 61 and the lid 62 can be reduced. It can be larger than the thermal energy supplied to the interface between the inner bottom of the sample container 61 and the sample 63 .

空気層208の厚さcは、検体容器61の内底部と検体63との境界面から、金属材203の上面までの距離と定義する。金属材201の下面と金属材203の上面の材質及び表面状態が同じである場合は、金属材201からの輻射熱を培養容器6の上面に効率よく供給するため、空気層206の厚さa<空気層208の厚さcとなるように、断熱材202の厚さWを設定する。 The thickness c of the air layer 208 is defined as the distance from the interface between the inner bottom of the sample container 61 and the sample 63 to the upper surface of the metal material 203 . When the lower surface of the metal material 201 and the upper surface of the metal material 203 have the same material and surface condition, the thickness of the air layer 206 a< The thickness W of the heat insulating material 202 is set so that the air layer 208 has the thickness c.

なお、空気層206の厚さaと空気層208の厚さcを同じにしてもよく、この場合、蓋62の上面に対面する金属材201の下面の表面形状が、検体容器61の下面に対面する金属材203の上面より粗くなるようにする。あるいは、金属材201の下面の表面処理と、金属材203の上面の表面処理とを異ならせる。例えば、金属材201及び203としてアルミニウムを用いる場合、金属材201の下面にはアルマイト処理し、金属材203の上面は脱脂処理のみを行う。これにより、検体容器61の内底部と検体63との境界面への輻射エネルギーよりも、蓋62と検体容器61との境界面への輻射エネルギーを高くすることができ、結露を防止することができる。 The thickness a of the air layer 206 and the thickness c of the air layer 208 may be the same. It should be rougher than the upper surface of the metal material 203 facing it. Alternatively, the surface treatment of the lower surface of the metal material 201 and the surface treatment of the upper surface of the metal material 203 are made different. For example, when aluminum is used as the metal materials 201 and 203, the lower surface of the metal material 201 is anodized, and the upper surface of the metal material 203 is only degreased. As a result, the radiant energy to the interface between the lid 62 and the specimen container 61 can be made higher than the radiant energy to the interface between the inner bottom of the specimen container 61 and the specimen 63, thereby preventing dew condensation. can.

また、金属材201の下面の色と金属材203の上面の色とを異ならせることにより、検体容器61の内底部と検体63との境界面へ供給される輻射エネルギーよりも、蓋62と検体容器61との境界面へ供給される輻射エネルギーが高くなるようにしてもよい。 In addition, by making the color of the lower surface of the metal material 201 and the color of the upper surface of the metal material 203 different, the color of the lid 62 and the sample can be reduced rather than the radiant energy supplied to the interface between the inner bottom of the sample container 61 and the sample 63 . The radiant energy supplied to the interface with the container 61 may be increased.

ここで、金属材201の下面の輻射率と金属材203の上面の輻射率が異なる場合は、空気層206の厚さa<空気層208の厚さc×√(金属材201の下面の輻射率/金属材203の上面の輻射率)となるように、断熱材202の厚さWを設定する。これにより、結露の発生を抑制することができる。また、検体容器61の内底部と検体63との境界面へ供給される熱エネルギー(熱伝導+熱伝達+輻射)<検体容器61の開口端と蓋62との境界面へ供給される熱エネルギー(熱伝導+熱伝達+輻射)の関係式を満たしていれば、金属材201の輻射率を金属材203の輻射率より高くし、かつ金属材201の熱伝導率を金属材203の熱伝導率より低くすることもできる。 Here, when the emissivity of the lower surface of the metal material 201 and the emissivity of the upper surface of the metal material 203 are different, the thickness a of the air layer 206<the thickness c of the air layer 208 c×√(the radiation rate of the lower surface of the metal material 201 The thickness W of the heat insulating material 202 is set so as to be the ratio/emissivity of the upper surface of the metal material 203). Thereby, the occurrence of dew condensation can be suppressed. Thermal energy supplied to the interface between the inner bottom of the sample container 61 and the sample 63 (heat conduction + heat transfer + radiation)<thermal energy supplied to the interface between the open end of the sample container 61 and the lid 62 If the relational expression (heat conduction + heat transfer + radiation) is satisfied, the emissivity of the metal material 201 is set higher than that of the metal material 203, and the heat conductivity of the metal material 201 is set to the heat conductivity of the metal material 203. It can also be lower than the rate.

以上のように、図2Dに示す培養容器収納部21においても、検体容器61の開口端と蓋62との境界面へ供給される熱エネルギーを検体容器61の内底部と検体63との境界面へ供給される熱エネルギーよりも大きくすることができ、結露発生部における結露の発生を抑制することができる。 As described above, even in the culture container storage section 21 shown in FIG. can be made larger than the heat energy supplied to the dew condensation generating portion, and the occurrence of dew condensation in the dew condensation generating portion can be suppressed.

図2Eは、培養容器収納部21の他の構成例を示す概略正面図である。図2Eの培養容器収納部21は、熱伝導率が空気よりも低い断熱材209を金属材203の上面に配置する点で、図2Dと異なっている。断熱材209の厚さは、検体容器61の下面と断熱材209の上面との間に空気層210(第2の空気層)が形成される厚さとすることができる。 FIG. 2E is a schematic front view showing another configuration example of the culture vessel storage section 21. FIG. The culture container storage part 21 in FIG. 2E is different from that in FIG. The thickness of the heat insulating material 209 can be such that an air layer 210 (second air layer) is formed between the bottom surface of the specimen container 61 and the top surface of the heat insulating material 209 .

空気層210の厚さdは、検体容器61の内底部と検体63との境界面から断熱材209の上面までの距離と定義する。図2Eの培養容器収納部21において、空気層206の厚さa<空気層210の厚さdの関係が成立するようにしてもよい。これにより、検体容器61の下面への熱エネルギーの供給量を下げることができ、結露の発生を抑制することができる。 The thickness d of the air layer 210 is defined as the distance from the interface between the inner bottom of the sample container 61 and the sample 63 to the upper surface of the heat insulating material 209 . In the culture container housing portion 21 of FIG. 2E, the relationship of thickness a of the air layer 206<thickness d of the air layer 210 may be established. As a result, the amount of thermal energy supplied to the lower surface of the specimen container 61 can be reduced, and the occurrence of dew condensation can be suppressed.

なお、断熱材209は必ずしも金属材203の上面に接している必要はなく、検体容器61の下面と金属材203の上面との間であれば、任意の位置に配置できる。例えば、断熱材209上の空気層210に加えて、断熱材209の下面と金属材203の上面との間にも空気層が形成されるようにしてもよい。また、断熱材209の熱伝導率が空気の熱伝導率以下の場合、断熱材209の上面と検体容器61の底面とが接するように断熱材209を配置してもよい。 Note that the heat insulating material 209 does not necessarily have to be in contact with the upper surface of the metal material 203 , and can be placed at any position between the lower surface of the specimen container 61 and the upper surface of the metal material 203 . For example, in addition to the air layer 210 on the heat insulating material 209 , an air layer may also be formed between the lower surface of the heat insulating material 209 and the upper surface of the metal material 203 . Moreover, when the thermal conductivity of the heat insulating material 209 is equal to or lower than that of air, the heat insulating material 209 may be arranged so that the top surface of the heat insulating material 209 and the bottom surface of the sample container 61 are in contact with each other.

図2Fは、培養容器収納部21の他の構成例を示す概略正面図である。図2Fの培養容器収納部21は、金属材203の上面全体にわたって断熱材211が配置され、断熱材211上に断熱材202が配置される点で、図2Eと異なっている。断熱材211の厚さは、検体容器61の下面と断熱材211の上面との間に空気層212(第2の空気層)が形成される厚さとすることができる。空気層212の厚さeは、検体容器61の内底部と検体63との境界面から断熱材211の上面までの距離と定義する。図2Fの培養容器収納部21において、空気層206の厚さa<空気層212の厚さeの関係が成立するようにしてもよい。 FIG. 2F is a schematic front view showing another configuration example of the culture vessel storage section 21. FIG. The culture container storage part 21 of FIG. 2F is different from that of FIG. The thickness of the heat insulating material 211 can be such that an air layer 212 (second air layer) is formed between the lower surface of the specimen container 61 and the upper surface of the heat insulating material 211 . The thickness e of the air layer 212 is defined as the distance from the interface between the inner bottom of the sample container 61 and the sample 63 to the upper surface of the heat insulating material 211 . In the culture vessel housing portion 21 of FIG. 2F, the relationship of thickness a of the air layer 206<thickness e of the air layer 212 may be established.

図2Fの構造によっても、検体容器61の下面への熱エネルギーの供給量を下げることができ、結露の発生を抑制することができる。 The structure of FIG. 2F can also reduce the amount of thermal energy supplied to the lower surface of the specimen container 61, and can suppress the occurrence of dew condensation.

上述のように、図2A~図2Eにおいては、金属材203上に断熱材202を設置しているが、断熱材202を懸架する支持部材を金属材201の下面にさらに設け、懸架された断熱材202上に培養容器6を載置する構成としてもよい。また、断熱材202は、金属材204及び金属材205に固定してもよい。 As described above, in FIGS. 2A to 2E, the heat insulating material 202 is installed on the metal material 203, but a support member for suspending the heat insulating material 202 is further provided on the lower surface of the metal material 201, and the suspended heat insulating material A configuration in which the culture vessel 6 is placed on the material 202 may be employed. Also, the heat insulating material 202 may be fixed to the metal material 204 and the metal material 205 .

なお、本実施形態の培養容器収納部21において、検体容器61の開口端と蓋62との境界面へ供給される熱エネルギーが、検体容器61の内底部と検体63との境界面へ供給される熱エネルギーよりも大きくなるように、図2A~図2Fの構成を組み合わせてもよい。例えば、図2Aと図2Dを組み合わせて、検体容器61の下方にのみ空気層208を有する構成とすることができる。 In the culture container storage unit 21 of the present embodiment, the thermal energy supplied to the interface between the open end of the sample container 61 and the lid 62 is supplied to the interface between the inner bottom of the sample container 61 and the sample 63. The configurations of FIGS. 2A-2F may be combined to provide greater than thermal energy applied. For example, by combining FIG. 2A and FIG. 2D, it is possible to have a configuration in which the air layer 208 is provided only below the specimen container 61 .

本実施形態において、図1Aに示すように、温調部5を分析装置1の上部に配置して、培養容器ラック2の上段から下段にかけて温度が低くなるような温度勾配を形成するようにするようにしてもよい。また、温調部5を培養容器ラック2の直上に配置して、培養容器ラック2の上段から下段にかけての温度勾配がより効率的に形成されるようにしてもよい。一般にインキュベータは、温度勾配が生じないように内部の温度が制御されるが、検体63の培養に影響がない程度に培養容器ラック2の上段ほど温度が高くなるようにすることで、検体容器61の開口端と蓋62との境界面へ供給される熱エネルギーよりも、検体容器61の内底部と検体63との境界面へ供給される熱エネルギーを小さくすることができ、これにより結露を防止することができる。 In this embodiment, as shown in FIG. 1A, the temperature control unit 5 is arranged in the upper part of the analyzer 1 to form a temperature gradient in which the temperature decreases from the upper stage to the lower stage of the culture container rack 2. You may do so. Alternatively, the temperature control unit 5 may be arranged directly above the culture container rack 2 so that the temperature gradient from the upper stage to the lower stage of the culture vessel rack 2 can be formed more efficiently. Generally, the temperature inside the incubator is controlled so that no temperature gradient occurs. The thermal energy supplied to the interface between the inner bottom of the specimen container 61 and the specimen 63 can be smaller than the thermal energy supplied to the interface between the open end of the specimen container 61 and the lid 62, thereby preventing dew condensation. can do.

以上のように、本実施形態の培養容器収納部21は、検体容器61の開口端と蓋62との境界面へ供給される熱エネルギーよりも、検体容器61の内底部と検体63との境界面へ供給される熱エネルギーが小さくなるように構成される。これにより、培養時間に発生する培養容器6の結露を除去したり、抑制したりするための時間が不要となるため、検体測定部42へ即座に培養容器6を供給でき、効率良く測定を行うことができる。また、上記構成を有することにより、結露を除去するための機構を設ける必要がなくなり、分析装置1のサイズやコストが増大することもない。さらに、結露が抑制されることで、測定結果の正確性が向上し、結露を除去するために蓋62を開ける必要もないため、コンタミネーションを防止することもできる。 As described above, the culture container storage unit 21 of the present embodiment is designed to reduce the thermal energy supplied to the interface between the open end of the sample container 61 and the lid 62 to the boundary between the inner bottom of the sample container 61 and the sample 63 . It is configured such that less thermal energy is supplied to the surface. This eliminates the need for time to remove or suppress dew condensation on the culture vessel 6 that occurs during the incubation period, so the culture vessel 6 can be immediately supplied to the sample measuring unit 42, and measurement can be performed efficiently. be able to. Moreover, with the above configuration, there is no need to provide a mechanism for removing dew condensation, and the size and cost of the analyzer 1 do not increase. Furthermore, by suppressing dew condensation, the accuracy of measurement results is improved, and since it is not necessary to open the lid 62 to remove dew condensation, contamination can also be prevented.

[第2の実施形態]
次に、図3A~3Hを参照して、第2の実施形態に係る分析装置について説明する。第2の実施形態に係る分析装置は、培養容器ラック2が熱源213及び温度センサ214をさらに備える点で、第1の実施形態と異なる。なお、図3A~3Hにおいては、図2Dに示す培養容器収納部21を用いる例を示すが、培養容器収納部21の他の構成例(図2A~2C、2E又は2F)を用いてもよい。
[Second embodiment]
Next, an analyzer according to a second embodiment will be described with reference to FIGS. 3A to 3H. The analyzer according to the second embodiment differs from the first embodiment in that the culture container rack 2 further includes a heat source 213 and a temperature sensor 214 . 3A to 3H show an example using the culture vessel storage section 21 shown in FIG. 2D, but other configuration examples of the culture vessel storage section 21 (FIGS. 2A to 2C, 2E or 2F) may be used. .

図3Aは、第2の実施形態に係る熱源213及び温度センサ214の配置例を示す概略正面図である。図3Aに示すように、培養容器ラック2は、熱源213a~213d及び温度センサ214a~214dをさらに備える。 FIG. 3A is a schematic front view showing an arrangement example of the heat source 213 and the temperature sensor 214 according to the second embodiment. As shown in FIG. 3A, the culture vessel rack 2 further comprises heat sources 213a-213d and temperature sensors 214a-214d.

熱源213a及び213cは、培養容器ラック2の左側面の全体を覆うように設けられ、熱源213b及び213dは、培養容器ラック2の右側面の全体を覆うように設けられる。換言すれば、熱源213a及び213cは、金属材204の外壁面に設けられ、熱源213b及び213dは、金属材205の外壁面に設けられる。 The heat sources 213 a and 213 c are provided to cover the entire left side surface of the culture container rack 2 , and the heat sources 213 b and 213 d are provided to cover the entire right side surface of the culture container rack 2 . In other words, the heat sources 213 a and 213 c are provided on the outer wall surface of the metal material 204 , and the heat sources 213 b and 213 d are provided on the outer wall surface of the metal material 205 .

熱源213a~213dとしては、例えば電熱ヒータ、セラミックヒータ、シリコンラバーヒータ、シーズヒータ、バンドヒータ、ポリイミドヒータ、スペースヒータ、コードヒータ、カートリッジヒータ、金属埋め込み式ヒータなどのヒータや、ペルチェなどが用いられる。熱源213a~213dは、図示しない両面テープ、熱伝導シート、ボンドなどにより培養容器ラック2の側面に取り付けられ、金属材201、204及び205と接触する。図示は省略しているが、熱源213a~213dの表面には、金属層あるいは樹脂層が配置される。 As the heat sources 213a to 213d, heaters such as electric heaters, ceramic heaters, silicon rubber heaters, sheathed heaters, band heaters, polyimide heaters, space heaters, cord heaters, cartridge heaters, metal-embedded heaters, and Peltiers are used. . The heat sources 213a to 213d are attached to the side surfaces of the culture vessel rack 2 by double-sided tape, heat conductive sheets, bonds, etc. (not shown), and come into contact with the metal members 201, 204 and 205. FIG. Although not shown, a metal layer or a resin layer is arranged on the surfaces of the heat sources 213a to 213d.

温度センサ214a~214dは、培養容器収納部21内部の温度を測定する。図3Aの右側の図は、温度センサ214a及び214bが設けられた培養容器収納部21の拡大図である。図3Aに示すように、培養容器ラック2の上から2段目の培養容器収納部21において、金属材204の内壁面に温度センサ214aが配置され、金属材205の内壁面に温度センサ214bが配置されている。また、上から6段目の培養容器収納部21において、金属材204の内壁面に温度センサ214cが配置され、金属材205の内壁面に温度センサ214dが配置されている。なお、熱源213a~213d及び温度センサ214a~214dの位置は、図3Aの位置に限定されない。 The temperature sensors 214a to 214d measure the temperature inside the culture vessel storage section 21. FIG. The diagram on the right side of FIG. 3A is an enlarged view of the culture vessel storage section 21 provided with temperature sensors 214a and 214b. As shown in FIG. 3A, a temperature sensor 214a is arranged on the inner wall surface of the metal member 204, and a temperature sensor 214b is arranged on the inner wall surface of the metal member 205, in the culture container storage section 21 on the second stage from the top of the culture container rack 2. are placed. In addition, in the culture vessel storage section 21 on the sixth stage from the top, a temperature sensor 214c is arranged on the inner wall surface of the metal member 204, and a temperature sensor 214d is arranged on the inner wall surface of the metal member 205. FIG. Note that the positions of the heat sources 213a-213d and the temperature sensors 214a-214d are not limited to the positions shown in FIG. 3A.

図3Bは、図3Aの熱源213a~213d及び温度センサ214a~214dの制御機構を示すブロック図である。図3Bに示すように、熱源213a~213d及び温度センサ214a~214dは、それぞれ制御部7に接続される。温度センサ214a~214dは、温度の測定値を制御部7に出力する。制御部7は、温度センサ214a~214dから温度の測定値を受信して、該測定値に基づいて、熱源213a~213dに供給する、熱量に相当する電流量、電圧量などを制御する。 FIG. 3B is a block diagram illustrating the control mechanism for heat sources 213a-213d and temperature sensors 214a-214d of FIG. 3A. As shown in FIG. 3B, the heat sources 213a-213d and the temperature sensors 214a-214d are connected to the controller 7, respectively. The temperature sensors 214a to 214d output temperature measurements to the controller . The control unit 7 receives temperature measurements from the temperature sensors 214a to 214d, and controls the amount of current, voltage, etc. corresponding to the amount of heat to be supplied to the heat sources 213a to 213d based on the measurements.

制御部7は、培養容器ラック2の上段から下段に向かって温度が低くなるような温度勾配を形成するように、熱源213a~213dに供給する熱量を制御してもよい。これにより、各段の培養容器収納部21において、より効率的に、検体容器61の開口端と蓋62との境界面へ供給される熱エネルギーよりも、検体容器61の内底部と検体63との境界面へ供給される熱エネルギーが小さくすることができる。また、熱源213a~213dは、上部から下部に向かって熱供給量が小さくなるように構成されていてもよい。この場合、熱源213a~213dとして、例えば巻数が上部から下部に向かって小さくなるように構成された電熱ヒータを用いることができる。 The controller 7 may control the amount of heat supplied to the heat sources 213a to 213d so as to form a temperature gradient in which the temperature decreases from the top to the bottom of the culture container rack 2. FIG. As a result, in the culture container housing section 21 of each stage, the heat energy supplied to the interface between the open end of the sample container 61 and the lid 62 is more efficiently applied to the inner bottom portion of the sample container 61 and the sample 63 . The thermal energy supplied to the interface of the can be reduced. Also, the heat sources 213a to 213d may be configured such that the amount of heat supplied decreases from the top to the bottom. In this case, as the heat sources 213a to 213d, for example, electric heaters configured such that the number of turns decreases from the top to the bottom can be used.

なお、図3Aにおいては、熱源213a~213dの4つの熱源と、温度センサ214a~214dの4つの温度センサを配置しているが、熱源213及び温度センサ214の数はそれぞれ一つ以上であればよい。また、熱源213の数が温度センサ214の数より少なくてもよい。 In FIG. 3A, four heat sources 213a to 213d and four temperature sensors 214a to 214d are arranged. good. Also, the number of heat sources 213 may be less than the number of temperature sensors 214 .

温度センサ214の数が熱源213よりも多い場合は、制御部7は、複数の温度センサ214の中で最も低い出力値、最も高い出力値、複数の温度センサ214の出力値の平均値、あるいは総和などの出力値などに基づいて、熱源213へ供給する、熱量に相当する電流量や電圧量などを制御する。 When the number of temperature sensors 214 is greater than the number of heat sources 213, the control unit 7 determines the lowest output value, the highest output value, the average value of the output values of the plurality of temperature sensors 214 among the plurality of temperature sensors 214, or Based on the output value such as the sum, the amount of current, the amount of voltage, etc. corresponding to the amount of heat supplied to the heat source 213 are controlled.

以上のように、図3Aに示す培養容器収納部21は、第1の実施形態と比較して熱エネルギーの供給量を増やすことができ、金属材201の温度上昇を加速させることが可能となる。これにより、より効率的に結露の発生を抑制することができる。 As described above, the culture container storage unit 21 shown in FIG. 3A can increase the amount of thermal energy supplied compared to the first embodiment, and can accelerate the temperature rise of the metal material 201. . Thereby, the occurrence of dew condensation can be suppressed more efficiently.

図3Cは、第2の実施形態に係る熱源213及び温度センサ214の他の配置例を示す概略正面図である。図3Cに示す例においては、1つの温度センサ214が培養容器ラック2の中央部(5段目の培養容器収納部21)のみに配置される点で、図3Aと異なる。 FIG. 3C is a schematic front view showing another arrangement example of the heat source 213 and the temperature sensor 214 according to the second embodiment. The example shown in FIG. 3C is different from FIG. 3A in that one temperature sensor 214 is arranged only in the central portion of the culture container rack 2 (the culture container storage section 21 on the fifth stage).

図3Cの右側の図は、温度センサ214が設けられた培養容器収納部21の拡大図である。図3Cの右側の図に示すように、温度センサ214は、例えば金属材201の下面に設置される。 The diagram on the right side of FIG. 3C is an enlarged diagram of the culture container storage section 21 provided with the temperature sensor 214 . As shown in the diagram on the right side of FIG. 3C, the temperature sensor 214 is installed on the lower surface of the metal material 201, for example.

図3Dは、図3Cの熱源213a~213d及び温度センサ214の制御機構を示すブロック図である。上記と同様に、温度センサ214の出力に基づいて、熱源213a~213dに供給する電流量、電圧量を制御する。その他の点については上記と同様であるので、説明を省略する。 FIG. 3D is a block diagram illustrating the control mechanism for heat sources 213a-213d and temperature sensor 214 of FIG. 3C. Similar to the above, based on the output of the temperature sensor 214, the amount of current and the amount of voltage supplied to the heat sources 213a to 213d are controlled. Other points are the same as above, so the description is omitted.

図3Eは、第2の実施形態に係る熱源213及び温度センサ214のさらに別の配置例を示す概略正面図である。上述の培養容器ラック2は、高さ方向に配列した8段の培養容器収納部21を1列有していたが、図3Eの培養容器ラック2は、8段の培養容器収納部21を2列有し、水平方向にも培養容器収納部21が配列している。図3Eに示すように、左側の列の培養容器収納部21の金属材205と、右側の列の培養容器収納部21の金属材204とが接触するように配置される。なお、培養容器収納部21の列の数は2列に限定されず、任意の数とすることができる。 FIG. 3E is a schematic front view showing still another arrangement example of the heat source 213 and the temperature sensor 214 according to the second embodiment. The culture vessel rack 2 described above has one row of eight stages of culture vessel storage sections 21 arranged in the height direction, but the culture vessel rack 2 of FIG. It has rows, and the culture container storage units 21 are also arranged in the horizontal direction. As shown in FIG. 3E, the metal members 205 of the left row of culture container housings 21 and the metal members 204 of the right row of culture container housings 21 are arranged to come into contact with each other. Note that the number of rows of the culture vessel storage section 21 is not limited to two, and may be any number.

熱源213a及び213cは、左側の列の培養容器収納部21の金属材204に取り付けられ、熱源213b及び213dは、右側の列の培養容器収納部21の金属材205に取り付けられる。また、最上段の培養容器収納部21の上面には、熱源213eが配置され、最下段の培養容器収納部21の下面には、熱源213fが配置される。 The heat sources 213a and 213c are attached to the metal members 204 of the left row of culture container housings 21, and the heat sources 213b and 213d are attached to the metal members 205 of the right row of culture container housings 21. FIG. In addition, a heat source 213e is arranged on the top surface of the culture container storage section 21 on the topmost stage, and a heat source 213f is arranged on the bottom surface of the culture vessel storage section 21 on the bottom stage.

温度センサ214a~214fは、それぞれ培養容器収納部21の内部において、熱源213a~213fの近傍に配置される。 The temperature sensors 214a to 214f are arranged in the vicinity of the heat sources 213a to 213f inside the culture vessel storage section 21, respectively.

このように、培養容器収納部21を高さ方向及び水平方向に配列する場合、図3Eに示すように、培養容器ラック2の上下にそれぞれ熱源213e及び213fを設けることで、培養容器ラック2の中央部への熱の供給量を確保することができる。 When arranging the culture container storage units 21 in the height direction and the horizontal direction in this way, as shown in FIG. The amount of heat supplied to the central portion can be ensured.

図3Fは、図3Eの熱源213a~213f及び温度センサ214a~214fの制御機構を示すブロック図である。図3Fに示すように、熱源213a~213fは、温度センサ214a~214fの出力に基づいて、分析装置1の制御部7により制御される。その他の点については上記と同様であるので、説明を省略する。 FIG. 3F is a block diagram illustrating the control mechanism for heat sources 213a-213f and temperature sensors 214a-214f of FIG. 3E. As shown in FIG. 3F, the heat sources 213a-213f are controlled by the controller 7 of the analyzer 1 based on the outputs of the temperature sensors 214a-214f. Other points are the same as above, so the description is omitted.

図3Gは、第2の実施形態に係る熱源213及び温度センサ214の他の配置例を示す概略正面図である。図3Gに示す例においては、1つの温度センサ214が培養容器ラック2の中央部に配置される点で、図3Eと異なっている。 FIG. 3G is a schematic front view showing another arrangement example of the heat source 213 and the temperature sensor 214 according to the second embodiment. The example shown in FIG. 3G differs from FIG. 3E in that one temperature sensor 214 is arranged in the center of the culture vessel rack 2 .

図3Hは、図3Gの熱源213a~213f及び温度センサ214の制御機構を示すブロック図である。図3Hに示すように、熱源213a~213fは、温度センサ214の出力に基づいて、分析装置1の制御部7により制御される。その他の点については上記と同様であるので、説明を省略する。 FIG. 3H is a block diagram illustrating the control mechanism for heat sources 213a-213f and temperature sensor 214 of FIG. 3G. As shown in FIG. 3H, the heat sources 213a to 213f are controlled by the controller 7 of the analyzer 1 based on the output of the temperature sensor 214. FIG. Other points are the same as above, so the description is omitted.

上述のように、本実施形態においては、熱源213を培養容器収納部21に直接取り付けることとしたが、熱源213と培養容器収納部21との間に金属板などを配置して、該金属板を介して熱源213の熱エネルギーを培養容器収納部21に供給してもよい。 As described above, in the present embodiment, the heat source 213 is directly attached to the culture container storage part 21. The heat energy of the heat source 213 may be supplied to the culture container storage section 21 via the .

以上のように、本実施形態は、培養容器ラック2が熱源213及び温度センサ214を有するため、第1の実施形態と比較して熱エネルギーの供給量を増やすことができ、金属材201の温度上昇を加速させることが可能となる。これにより、結露発生部における結露の発生を効率的に抑制することができる。また、培養容器ラック2の上段から下段にかけて温度が低くなるような温度勾配を形成するように、熱源213による熱供給量を制御することで、さらに効率的に結露の発生を抑制することができる。 As described above, in this embodiment, since the culture container rack 2 has the heat source 213 and the temperature sensor 214, the amount of thermal energy supplied can be increased compared to the first embodiment, and the temperature of the metal material 201 can be It is possible to accelerate the rise. Thereby, it is possible to efficiently suppress the occurrence of dew condensation in the dew condensation generating portion. In addition, by controlling the amount of heat supplied by the heat source 213 so as to form a temperature gradient in which the temperature decreases from the upper stage to the lower stage of the culture container rack 2, the occurrence of dew condensation can be suppressed more efficiently. .

[変形例]
本開示は、上述した実施形態に限定されるものでなく、様々な変形例を含んでいる。例えば、上述した実施形態は、本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備える必要はない。また、ある実施形態の一部を他の実施形態の構成に置き換えることができる。また、ある実施形態の構成に他の実施形態の構成を加えることもできる。また、各実施形態の構成の一部について、他の実施形態の構成の一部を追加、削除又は置換することもできる。
[Modification]
The present disclosure is not limited to the embodiments described above, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present disclosure in an easy-to-understand manner, and do not necessarily include all the configurations described. Also, part of an embodiment can be replaced with the configuration of another embodiment. Moreover, the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, a part of the configuration of each embodiment can be added, deleted or replaced with a part of the configuration of another embodiment.

1…分析装置
2…培養容器ラック
3…搬送部
4…測定部
5…温調部
6…培養容器
7…制御部
21…培養容器収納部
22…脚部
31、32…アクチュエータ
33…保持部
41…測定ユニット
42…検体測定部
51…ヒータ
52…ヒートシンク
53…ファン
54…風
61…検体容器
62…蓋
63…検体
201、203、204、205…金属材
202、209、211…断熱材
206~208、210、212…空気層
213…熱源
214…温度センサ
DESCRIPTION OF SYMBOLS 1... Analyzer 2... Culture container rack 3... Transfer part 4... Measurement part 5... Temperature control part 6... Culture container 7... Control part 21... Culture container storage part 22... Leg parts 31, 32... Actuator 33... Holding part 41 Measurement unit 42 Specimen measurement part 51 Heater 52 Heat sink 53 Fan 54 Wind 61 Specimen container 62 Lid 63 Specimen 201, 203, 204, 205 Metal material 202, 209, 211 Heat insulating material 206 ~ 208, 210, 212 air layer 213 heat source 214 temperature sensor

Claims (8)

培養容器を収納する培養容器収納部を備え、
前記培養容器収納部は、
前記培養容器収納部の天面を構成する第1の部材と、
前記培養容器収納部の底面を構成する第2の部材と、
前記第2の部材上に配置され、前記培養容器を支持する第3の部材と、
前記培養容器収納部に設置される熱源と、
前記培養容器収納部の内部の温度を測定する温度センサと、
を備え、
前記第3の部材は、前記第1の部材と前記培養容器との距離が前記第2の部材と前記培養容器との距離以下となるように、前記培養容器を支持し、
前記熱源は、前記温度センサの出力に基づいて熱を供給することを特徴とする培養容器ラック。
Equipped with a culture vessel storage unit for storing the culture vessel,
The culture container storage part is
a first member that constitutes the top surface of the culture container housing;
a second member that forms the bottom surface of the culture container housing;
a third member disposed on the second member and supporting the culture vessel;
a heat source installed in the culture container housing;
a temperature sensor that measures the internal temperature of the culture container housing;
with
The third member supports the culture vessel such that the distance between the first member and the culture vessel is equal to or less than the distance between the second member and the culture vessel,
The culture vessel rack, wherein the heat source supplies heat based on the output of the temperature sensor.
前記第3の部材の熱伝導率が、前記第1の部材の熱伝導率及び前記第2の部材の熱伝導率よりも低いことを特徴とする請求項1記載の培養容器ラック。 2. The culture vessel rack according to claim 1, wherein the thermal conductivity of said third member is lower than the thermal conductivity of said first member and the thermal conductivity of said second member. 高さ方向に積み重ねられた複数の前記培養容器収納部を有することを特徴とする請求項1記載の培養容器ラック。 2. The culture vessel rack according to claim 1, comprising a plurality of said culture vessel storage sections stacked in the height direction. 前記第3の部材は、前記培養容器の下部に第2の空気層が形成されるように構成されることを特徴とする請求項1記載の培養容器ラック。 2. The culture vessel rack according to claim 1, wherein the third member is configured to form a second air layer under the culture vessel. 前記第1の部材の材質及び前記第2の部材の材質が同じであり、
前記第1の部材と前記培養容器との距離が、前記第2の部材と前記培養容器との距離より小さいことを特徴とする請求項1記載の培養容器ラック。
The material of the first member and the material of the second member are the same,
2. The culture vessel rack according to claim 1, wherein the distance between said first member and said culture vessel is smaller than the distance between said second member and said culture vessel.
高さ方向に積み重ねられた複数の前記培養容器収納部を有し、
前記熱源は、前記複数の前記培養容器収納部の上段から下段へ向かって温度勾配が生じるように、熱量を供給することを特徴とする請求項1記載の培養容器ラック。
Having a plurality of the culture vessel storage units stacked in the height direction,
2. The culture vessel rack according to claim 1, wherein said heat source supplies heat so as to generate a temperature gradient from the upper stage to the lower stage of said plurality of said culture vessel storage sections.
請求項1に記載の培養容器ラックと、
前記培養容器を搬送する搬送部と、
前記培養容器ラックから前記培養容器が搬送され、前記培養容器中の検体の培養状態を測定する測定部と、
内部の温度を調節する温調部と、を備える分析装置。
A culture vessel rack according to claim 1;
a transport unit that transports the culture vessel;
a measuring unit for measuring the culture state of the specimen in the culture vessel, the culture vessel being transported from the culture vessel rack;
and a temperature controller that adjusts the internal temperature.
前記培養容器ラックは、高さ方向に積み重ねられた複数の前記培養容器収納部を有し、
前記温調部は、前記複数の前記培養容器収納部の上段から下段へ向かって温度勾配が生じるように熱を供給することを特徴とする請求項7記載の分析装置。
The culture vessel rack has a plurality of the culture vessel storage units stacked in the height direction,
8. The analysis apparatus according to claim 7, wherein the temperature control unit supplies heat so that a temperature gradient is generated from the upper stage to the lower stage of the plurality of culture container storage units.
JP2022153244A 2019-02-18 2022-09-27 Culture vessel rack and analysis equipment Active JP7411751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022153244A JP7411751B2 (en) 2019-02-18 2022-09-27 Culture vessel rack and analysis equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021501165A JP7150131B2 (en) 2019-02-18 2019-02-18 Culture vessel rack and analyzer
PCT/JP2019/005891 WO2020170313A1 (en) 2019-02-18 2019-02-18 Cultivation container rack and analyzing device
JP2022153244A JP7411751B2 (en) 2019-02-18 2022-09-27 Culture vessel rack and analysis equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021501165A Division JP7150131B2 (en) 2019-02-18 2019-02-18 Culture vessel rack and analyzer

Publications (2)

Publication Number Publication Date
JP2022173361A true JP2022173361A (en) 2022-11-18
JP7411751B2 JP7411751B2 (en) 2024-01-11

Family

ID=72144227

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2021501165A Active JP7150131B2 (en) 2019-02-18 2019-02-18 Culture vessel rack and analyzer
JP2022153244A Active JP7411751B2 (en) 2019-02-18 2022-09-27 Culture vessel rack and analysis equipment
JP2022153226A Active JP7411750B2 (en) 2019-02-18 2022-09-27 Culture vessel rack and analysis equipment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021501165A Active JP7150131B2 (en) 2019-02-18 2019-02-18 Culture vessel rack and analyzer

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022153226A Active JP7411750B2 (en) 2019-02-18 2022-09-27 Culture vessel rack and analysis equipment

Country Status (4)

Country Link
US (1) US20220039334A1 (en)
EP (1) EP3929273A4 (en)
JP (3) JP7150131B2 (en)
WO (1) WO2020170313A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4420785A1 (en) * 2021-12-07 2024-08-28 Hitachi High-Tech Corporation Temperature control device
WO2024057425A1 (en) * 2022-09-14 2024-03-21 株式会社日立ハイテク Specimen analysis device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137964A (en) * 1987-11-24 1989-05-30 Terumo Corp Culture vessel
JP2003093044A (en) * 2001-09-21 2003-04-02 Sumitomo Bakelite Co Ltd Method for packaging culture vessel and method for using the same
JP2006061126A (en) * 2004-08-30 2006-03-09 Nippon Ika Kikai Seisakusho:Kk Temperature-controlled device
JP2006187205A (en) * 2004-12-28 2006-07-20 Olympus Corp Culture observation device, heat insulation device for sample tray and lid
JP2010158185A (en) * 2009-01-07 2010-07-22 Nikon Corp Culture observation device
JP2011200223A (en) * 2010-03-03 2011-10-13 Yokogawa Electric Corp Incubator unit
JP2013101192A (en) * 2011-11-07 2013-05-23 Altair Giken Kk Culture apparatus for microscope
WO2014155500A1 (en) * 2013-03-25 2014-10-02 株式会社日立製作所 Cell culturing device, culturing vessel, and holding vessel
JP2015089363A (en) * 2013-11-07 2015-05-11 大日本印刷株式会社 Cell culture container, and cell culture method
WO2018179081A1 (en) * 2017-03-28 2018-10-04 株式会社日立ハイテクノロジーズ Inspection device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004512A (en) * 1995-12-08 1999-12-21 Mj Research Sample cartridge slide block
JP4631339B2 (en) * 2004-07-27 2011-02-16 株式会社ニコン Environmental control device, temperature control device, and environmental control analysis device
JP4821279B2 (en) * 2005-11-11 2011-11-24 株式会社ニコン Incubator
JP2007166982A (en) 2005-12-22 2007-07-05 Olympus Corp Biological sample-culturing and observing apparatus
JP5727187B2 (en) * 2010-09-30 2015-06-03 パナソニックヘルスケアホールディングス株式会社 incubator
WO2015053386A1 (en) * 2013-10-11 2015-04-16 パナソニック ヘルスケアホールディングス株式会社 Culture apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137964A (en) * 1987-11-24 1989-05-30 Terumo Corp Culture vessel
JP2003093044A (en) * 2001-09-21 2003-04-02 Sumitomo Bakelite Co Ltd Method for packaging culture vessel and method for using the same
JP2006061126A (en) * 2004-08-30 2006-03-09 Nippon Ika Kikai Seisakusho:Kk Temperature-controlled device
JP2006187205A (en) * 2004-12-28 2006-07-20 Olympus Corp Culture observation device, heat insulation device for sample tray and lid
JP2010158185A (en) * 2009-01-07 2010-07-22 Nikon Corp Culture observation device
JP2011200223A (en) * 2010-03-03 2011-10-13 Yokogawa Electric Corp Incubator unit
JP2013101192A (en) * 2011-11-07 2013-05-23 Altair Giken Kk Culture apparatus for microscope
WO2014155500A1 (en) * 2013-03-25 2014-10-02 株式会社日立製作所 Cell culturing device, culturing vessel, and holding vessel
JP2015089363A (en) * 2013-11-07 2015-05-11 大日本印刷株式会社 Cell culture container, and cell culture method
WO2018179081A1 (en) * 2017-03-28 2018-10-04 株式会社日立ハイテクノロジーズ Inspection device

Also Published As

Publication number Publication date
JPWO2020170313A1 (en) 2021-09-30
JP7150131B2 (en) 2022-10-07
US20220039334A1 (en) 2022-02-10
EP3929273A4 (en) 2022-10-05
EP3929273A1 (en) 2021-12-29
JP2022173354A (en) 2022-11-18
WO2020170313A1 (en) 2020-08-27
JP7411751B2 (en) 2024-01-11
JP7411750B2 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
JP7411751B2 (en) Culture vessel rack and analysis equipment
EP2690167B1 (en) Culture apparatus for microscopic viewing and method of use thereof
CA2616673C (en) System comprising a plurality of incubators
US11506675B2 (en) Inspection device
CN106536711B (en) Modular incubator system
JP5084187B2 (en) Incubator and humidifier dish for incubator
JP2010158185A (en) Culture observation device
EP2006371A9 (en) Multiwell incubation apparatus and method of analysis using the same
JP2003107364A (en) Incubator for microscope observation
EP3260529B1 (en) Incubator
WO2012098380A1 (en) Incubators
EP3287515B1 (en) Sensitivity measuring device and inspection device
JP2007174982A (en) Device for culturing biological sample
JP2019532658A (en) Bioreactor tray
JP6999916B2 (en) Cell culture observation device and cell observation unit
WO2024057425A1 (en) Specimen analysis device
SE2050382A1 (en) A cell monitoring device for use inside a humid incubator and a humid incubator system
WO2024057426A1 (en) Specimen analysis device
WO2021201742A1 (en) A cell monitoring device for use inside a humid incubator and a humid incubator system
US20240240132A1 (en) Incubator for cell cultures
JPH08191684A (en) Individual temperature controlled chamber
CN210103958U (en) Temperature control cover, temperature control system and observation system for experiments
KR102651182B1 (en) Incubator
JP2019176800A (en) Culture observation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231225

R150 Certificate of patent or registration of utility model

Ref document number: 7411751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150