Nothing Special   »   [go: up one dir, main page]

JP2022157526A - Composite materials for battery electrodes, electrodes for lithium ion batteries and lithium ion batteries - Google Patents

Composite materials for battery electrodes, electrodes for lithium ion batteries and lithium ion batteries Download PDF

Info

Publication number
JP2022157526A
JP2022157526A JP2021061805A JP2021061805A JP2022157526A JP 2022157526 A JP2022157526 A JP 2022157526A JP 2021061805 A JP2021061805 A JP 2021061805A JP 2021061805 A JP2021061805 A JP 2021061805A JP 2022157526 A JP2022157526 A JP 2022157526A
Authority
JP
Japan
Prior art keywords
atoms
lithium ion
solid electrolyte
composite
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021061805A
Other languages
Japanese (ja)
Inventor
厚範 松田
Atsunori Matsuda
浩行 武藤
Hiroyuki Muto
フ フイ フク グエン
Huu Huy Phuc Nguyen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Original Assignee
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC filed Critical Toyohashi University of Technology NUC
Priority to JP2021061805A priority Critical patent/JP2022157526A/en
Publication of JP2022157526A publication Critical patent/JP2022157526A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a lithium ion battery superior in charge/discharge characteristic, a composite material for a battery electrode which can offer such a lithium ion battery, and an electrode for a lithium ion battery.SOLUTION: A composite material for a battery electrode according to the present invention comprises: a matrix phase which contains a solid electrolyte containing Li, P and S atoms, and a compound containing Li and F atoms; and dispersal phases dispersed and included in the matrix phase, and containing a composite oxide including at least one kind of atoms selected from a group consisting of Li atoms, Co atoms, Ni atoms and Mn atoms, and O atoms.SELECTED DRAWING: None

Description

本発明は、リチウムイオン電池を構成する正極等の電極の形成材料として好適な電池電極用複合材料及びそれを含むリチウムイオン電池用電極並びにリチウムイオン電池に関する。 TECHNICAL FIELD The present invention relates to a composite material for a battery electrode suitable as a material for forming an electrode such as a positive electrode that constitutes a lithium ion battery, a lithium ion battery electrode containing the composite material, and a lithium ion battery.

リチウムイオン電池は、充電時には正極からリチウムがイオンとして脱離して負極へ移動して吸蔵され、放電時には負極から正極へリチウムイオンが挿入されて戻る構造の二次電池である。このリチウムイオン電池は、エネルギー密度が大きく、長寿命である等の特徴を有しているため、ノート型のパーソナルコンピューター、カメラ等の家電製品や、携帯電話機等の携帯型電子機器又は通信機器、パワーツール等の電動工具等の電源として広く用いられており、最近では、電気自動車(EV)、ハイブリッド電気自動車(HEV)等に搭載される大型電池にも利用されている。このようなリチウムイオン電池において、可燃性の有機溶剤を含む電解液に代えて固体電解質を用いると、安全装置の簡素化が図られるだけでなく、製造コスト、生産性等にも優れることから、各種材料の研究が盛んに進められている。なかでも、硫化物を含む固体電解質は、導電率(リチウムイオン伝導度)が高く、電池の高出力化を図るうえで有用であるといわれている。 A lithium-ion battery is a secondary battery having a structure in which lithium ions are desorbed from the positive electrode as ions during charging, moved to the negative electrode and absorbed, and lithium ions are inserted back into the positive electrode from the negative electrode during discharging. This lithium-ion battery has features such as high energy density and long life, so it is used in notebook personal computers, home appliances such as cameras, portable electronic devices such as mobile phones, communication devices, It is widely used as a power source for electric tools such as power tools, and recently, it is also used for large batteries mounted on electric vehicles (EV), hybrid electric vehicles (HEV), and the like. In such a lithium-ion battery, if a solid electrolyte is used instead of an electrolyte solution containing a combustible organic solvent, not only can the safety device be simplified, but also the manufacturing cost and productivity can be improved. Research on various materials is actively progressing. Among them, solid electrolytes containing sulfides have high electrical conductivity (lithium ion conductivity) and are said to be useful for increasing the output of batteries.

硫化物固体電解質は、従来、電解液のように高電位で分解する有機溶剤を含まないため、電位窓が広い、即ち、電位的に安定であり、酸化分解しないと考えられてきた。しかしながら、近年、特許文献1に記載のように、硫化物固体電解質は、特に高電位に対して不安定であり、高電位にさらされる活物質と接する界面で電気分解し、電気分解した硫化物固体電解質のイオン伝導性が極めて低いため、電池の充放電特性の低下をもたらすことが分かってきた。近年、高電位領域において、わずかながら、酸化分解することが分かってきた。
上記特許文献1には、硫化物材料を含む硫化物層と、硫化物材料が酸化されてなる酸化物を含む酸化物層とを備え、酸化物層は、硫化物層の表面に位置し、XPS(X-ray Photoelectron Spectroscopy、X線光電子分光)深さ方向分析により測定される酸化物層の最表面の酸素/硫黄元素比率をxとし、XPS深さ方向分析により測定される、SiO換算スパッタレートで酸化物層の最表面より32nm位置の酸素/硫黄元素比率をyとすると、1.28≦x≦4.06、かつ、x/y≧2.60を満たす硫化物固体電解質材料及びそれを含む電池が開示されている。
Conventionally, sulfide solid electrolytes do not contain organic solvents that decompose at high potentials, unlike electrolytic solutions, so it has been thought that they have a wide potential window, that is, they are electrically stable and do not undergo oxidative decomposition. However, in recent years, as described in Patent Document 1, sulfide solid electrolytes are particularly unstable at high potentials, and are electrolyzed at interfaces in contact with active materials exposed to high potentials, resulting in electrolyzed sulfides It has been found that the ionic conductivity of the solid electrolyte is extremely low, resulting in deterioration of the charge/discharge characteristics of the battery. In recent years, it has been found that oxidative decomposition occurs to a small extent in the high potential region.
The above Patent Document 1 includes a sulfide layer containing a sulfide material and an oxide layer containing an oxide obtained by oxidizing the sulfide material, the oxide layer being located on the surface of the sulfide layer, XPS (X-ray Photoelectron Spectroscopy, X-ray photoelectron spectroscopy) x is the oxygen / sulfur element ratio of the outermost surface of the oxide layer measured by XPS depth profile analysis, measured by XPS depth profile analysis, converted to SiO A sulfide solid electrolyte material satisfying 1.28 ≤ x ≤ 4.06 and x/y ≥ 2.60, where y is the oxygen/sulfur element ratio at a position 32 nm from the outermost surface of the oxide layer at the sputtering rate; A battery including it is disclosed.

また、リチウムイオン電池の充放電特性は、電極の構成にも少なからず依存するといわれており、例えば、特許文献2には、正極活物質と固体電解質との界面をリチウムイオンが移動する際の抵抗(界面抵抗)を低減させるために、ニオブ酸リチウムを含有する被覆層が表面の少なくとも一部に形成されているコバルト酸リチウムを含む正極活物質と、固体の硫化物を含む固体電解質と、を有し、XPS分析による電子状態分析で検出されるメインピークよりも低エネルギー側に、該メインピークとは異なるピークが検出されるニオブが被覆層に含有される電極体を備えるリチウムイオン電池が開示されている。また、特許文献3には、コバルト元素、ニッケル元素、及びマンガン元素のうち少なくともいずれか1つを含み且つリチウム元素及び酸素元素をさらに含む活物質粒子、並びに当該活物質粒子表面の全部又は一部を被覆する酸化物系固体電解質を含有する複合粒子と、該複合粒子表面の76.0%以上をさらに被覆する硫化物系固体電解質とを備えることを特徴とする、複合活物質が開示されている。 In addition, it is said that the charge-discharge characteristics of a lithium-ion battery depend not a little on the configuration of the electrodes. In order to reduce (interfacial resistance), a positive electrode active material containing lithium cobalt oxide and a coating layer containing lithium niobate is formed on at least a part of the surface, and a solid electrolyte containing solid sulfide. and a peak different from the main peak detected in the electronic state analysis by XPS analysis is detected on the lower energy side than the main peak. It is In addition, Patent Document 3 discloses an active material particle containing at least one of cobalt element, nickel element, and manganese element and further containing lithium element and oxygen element, and all or part of the surface of the active material particle and a sulfide-based solid electrolyte further covering 76.0% or more of the surface of the composite particles. there is

特開2018-26321号公報JP 2018-26321 A 特開2010-73539号公報JP 2010-73539 A 特開2014-154407号公報JP 2014-154407 A

本発明の目的は、充放電のサイクル特性に優れたリチウムイオン電池、並びに、このようなリチウムイオン電池を与える電池電極用複合材料及びリチウムイオン電池用電極を提供することである。 An object of the present invention is to provide a lithium ion battery having excellent charge/discharge cycle characteristics, and a composite material for battery electrodes and a lithium ion battery electrode that provide such a lithium ion battery.

本発明は、以下に示される。
[1]Li原子、P原子及びS原子を含む固体電解質と、Li原子及びF原子を含む化合物とを含有するマトリックス相、並びに、該マトリックス相の中に分散されつつ含まれ、且つ、Li原子と、Co原子、Ni原子及びMn原子から選ばれた少なくとも1種と、O原子とを含む複合酸化物を含有する分散相を備えることを特徴とする電池電極用複合材料。
[2]Li原子及びF原子を含む上記化合物が、LiBF、LiPF、LiAsF、LiSbF、LiN(SOF)、LiN(SOCF、LiN(SO、LiC(SOCF、LiSOCF及びLiSOから選ばれた少なくとも1つである上記[1]に記載の電池電極用複合材料。
[3]上記分散相は、上記複合酸化物からなるコア部と、該コア部の表面の少なくとも一部がリチウムイオン伝導性酸化物により被覆された被覆部とを備える複合体からなる上記[1]又は[2]に記載の電池電極用複合材料。
[4]上記リチウムイオン伝導性酸化物が、Li原子と、他の金属原子と、O原子とを含む複合酸化物である上記[3]に記載の電池電極用複合材料。
[5]上記リチウムイオン伝導性酸化物がLiNbOである上記[3]又は[4]に記載の電池電極用複合材料。
[6]上記固体電解質が、LiPS及びLiPS(XはCl原子、Br原子又はI原子)から選ばれた少なくとも1つを含む上記[1]乃至[5]のいずれか一項に記載の電池電極用複合材料。
[7]上記マトリックス相が、更に、LiX(XはCl原子、Br原子又はI原子)を含有する上記[1]乃至[6]のいずれか一項に記載の電池電極用複合材料。
[8]上記[1]乃至[7]のいずれか一項に記載の電池電極用複合材料を含むことを特徴とするリチウムイオン電池用電極。
[9]上記[8]に記載のリチウムイオン電池用電極を備えることを特徴とするリチウムイオン電池。
The present invention is shown below.
[1] a matrix phase containing a solid electrolyte containing Li atoms, P atoms and S atoms, and a compound containing Li atoms and F atoms; and at least one selected from Co atoms, Ni atoms and Mn atoms, and a dispersed phase containing a composite oxide containing O atoms.
[2] The compound containing Li atoms and F atoms is LiBF 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiN(SO 2 F) 2 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) The composite material for a battery electrode according to the above [ 1 ], which is at least one selected from 2 , LiC ( SO2CF3 ) 3 , LiSO3CF3 and LiSO3C4F9 .
[3] The dispersed phase is a composite comprising a core portion made of the composite oxide and a coating portion in which at least a part of the surface of the core portion is coated with a lithium ion conductive oxide [1] ] or the composite material for battery electrodes according to [2].
[4] The composite material for a battery electrode according to [3] above, wherein the lithium ion conductive oxide is a composite oxide containing Li atoms, other metal atoms, and O atoms.
[5] The composite material for a battery electrode according to [3] or [4] above, wherein the lithium ion conductive oxide is LiNbO 3 .
[6] The above [1] to [5], wherein the solid electrolyte contains at least one selected from Li 3 PS 4 and Li 6 PS 5 X 1 (X 1 is a Cl atom, a Br atom or an I atom). The composite material for battery electrodes according to any one of claims 1 to 3.
[7] The composite material for a battery electrode according to any one of [1] to [6] above, wherein the matrix phase further contains LiX 2 (X 2 is Cl atom, Br atom or I atom).
[8] A lithium ion battery electrode comprising the composite material for a battery electrode according to any one of [1] to [7] above.
[9] A lithium ion battery comprising the lithium ion battery electrode according to [8] above.

本発明の電池電極用複合材料及びリチウムイオン電池用電極によれば、充放電のサイクル特性に優れたリチウムイオン電池を与えることができる。 According to the composite material for a battery electrode and the electrode for a lithium ion battery of the present invention, a lithium ion battery having excellent charge/discharge cycle characteristics can be provided.

本発明のリチウムイオン電池の要部を示す概略断面図である。1 is a schematic cross-sectional view showing a main part of a lithium ion battery of the present invention; FIG. 実験例1-1~1-3で得られた固体電解質組成物又は固体電解質の導電率の温度依存性を示すグラフである。4 is a graph showing the temperature dependence of the electrical conductivity of solid electrolyte compositions or solid electrolytes obtained in Experimental Examples 1-1 to 1-3. 実験例1-1~1-3で得られた固体電解質組成物又は固体電解質の電位-電流曲線である。1 is a potential-current curve of solid electrolyte compositions or solid electrolytes obtained in Experimental Examples 1-1 to 1-3. 実験例1-4~1-6で得られた固体電解質組成物又は固体電解質の導電率の温度依存性を示すグラフである。4 is a graph showing the temperature dependence of the electrical conductivity of solid electrolyte compositions or solid electrolytes obtained in Experimental Examples 1-4 to 1-6. 実験例1-4~1-6で得られた固体電解質組成物又は固体電解質の電位-電流曲線である。1 is a potential-current curve of solid electrolyte compositions or solid electrolytes obtained in Experimental Examples 1-4 to 1-6. 〔実施例〕で作製した全固体形リチウムイオン電池を含む充電試験用測定セルを示す概略断面図である。Fig. 2 is a schematic cross-sectional view showing a charging test measurement cell containing an all-solid-state lithium-ion battery fabricated in [Example]. 実験例1~2及び比較例1で得られたリチウムイオン電池の充放電特性を示すグラフである。1 is a graph showing charge/discharge characteristics of lithium ion batteries obtained in Experimental Examples 1 and 2 and Comparative Example 1. FIG. 実験例1~2及び比較例1で得られたリチウムイオン電池の充放電サイクル試験結果を示すグラフである。4 is a graph showing the results of a charge-discharge cycle test of lithium ion batteries obtained in Experimental Examples 1 and 2 and Comparative Example 1. FIG.

本発明の電池電極用複合材料は、Li原子、P原子及びS原子を含む固体電解質(以下、「硫黄系固体電解質(A1)」という)と、Li原子及びF原子を含む化合物(以下、「含フッ素化合物」という)とを含有するマトリックス相、並びに、該マトリックス相の中に分散されつつ含まれ、且つ、Li原子と、Co原子、Ni原子及びMn原子から選ばれた少なくとも1種と、O原子とを含む複合酸化物を含む分散相を備える。 The composite material for battery electrodes of the present invention includes a solid electrolyte containing Li atoms, P atoms and S atoms (hereinafter referred to as "sulfur-based solid electrolyte (A1)") and a compound containing Li atoms and F atoms (hereinafter referred to as " and at least one selected from Li atoms, Co atoms, Ni atoms and Mn atoms dispersed in the matrix phase, and and a dispersed phase containing a composite oxide containing O atoms.

本発明の電池電極用複合材料の形態は、上記構成を有する限りにおいて、特に限定されず、粉体、造粒体、ペースト状、スラリー状等とすることができる。 The form of the composite material for battery electrodes of the present invention is not particularly limited as long as it has the above structure, and may be powder, granule, paste, slurry, or the like.

上記マトリックス相は、硫黄系固体電解質(A1)及び含フッ素化合物を含有する相であり、好ましくは、これらの混合物からなる相である。 The matrix phase is a phase containing a sulfur-based solid electrolyte (A1) and a fluorine-containing compound, preferably a phase comprising a mixture thereof.

上記硫黄系固体電解質(A1)は、Li原子、P原子及びS原子を含む化合物であれば、特に限定されず、他の原子を更に含む化合物であってもよい。
上記硫黄系固体電解質(A1)としては、LiS-P系固体電解質及びLiS-P-LiX系固体電解質(XはCl原子、Br原子又はI原子)が挙げられる。具体的な化合物として、LiPS、Li11、Li6、Li(XはCl原子、Br原子又はI原子)、LiPS(XはCl原子、Br原子又はI原子)等が挙げられる。これらのうち、LiPS及びLiPS(XはCl原子、Br原子又はI原子)が好ましい。上記マトリックス相に含まれる硫黄系固体電解質(A1)は、1種又は2種以上とすることができる。
The sulfur-based solid electrolyte (A1) is not particularly limited as long as it is a compound containing Li atoms, P atoms and S atoms, and may be a compound further containing other atoms.
The sulfur-based solid electrolyte (A1) includes a Li 2 SP 2 S 5 -based solid electrolyte and a Li 2 SP 2 S 5 -LiX 1 -based solid electrolyte (where X 1 is a Cl atom, a Br atom, or an I atom). is mentioned. Specific compounds include Li 3 PS 4 , Li 7 P 3 S 11 , Li 2 P 2 S 6 , Li 7 P 2 S 8 X 1 (X 1 is Cl atom, Br atom or I atom), Li 6 PS 5 X 1 (X 1 is Cl atom, Br atom or I atom) and the like. Among these, Li 3 PS 4 and Li 6 PS 5 X 1 (X 1 is Cl atom, Br atom or I atom) are preferred. The sulfur-based solid electrolyte (A1) contained in the matrix phase can be one type or two or more types.

上記含フッ素化合物は、Li原子及びF原子を含む化合物であれば、特に限定されず、他の原子を更に含む化合物であってもよい。
上記含フッ素化合物としては、LiBF、LiPF、LiAsF、LiSbF、LiN(SOF)、LiN(SOCF、LiN(SO、LiC(SOCF、LiSOCF、LiSO等が挙げられる。上記マトリックス相に含まれる含フッ素化合物は、1種又は2種以上とすることができる。
The fluorine-containing compound is not particularly limited as long as it is a compound containing Li atoms and F atoms, and may be compounds further containing other atoms.
Examples of the fluorine-containing compounds include LiBF 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiN(SO 2 F) 2 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC(SO 2 CF 3 ) 3 , LiSO 3 CF 3 , LiSO 3 C 4 F 9 and the like. The fluorine-containing compound contained in the matrix phase can be one type or two or more types.

上記マトリックス相における硫黄系固体電解質(A1)及び含フッ素化合物の含有割合は、本発明の効果が十分に得られることから、両者の合計を100mol%とした場合に、それぞれ、好ましくは50~99mol%及び1~50mol%、より好ましくは60~95mol%及び5~40mol%、更に好ましくは70~90mol%及び10~30mol%である。 Since the effects of the present invention can be sufficiently obtained, the content of the sulfur-based solid electrolyte (A1) and the fluorine-containing compound in the matrix phase is preferably 50 to 99 mol, respectively, when the total of both is 100 mol%. % and 1 to 50 mol %, more preferably 60 to 95 mol % and 5 to 40 mol %, still more preferably 70 to 90 mol % and 10 to 30 mol %.

更に、上記マトリックス相は、必要に応じて、固体電解質及び含フッ素化合物以外の他の成分を含有することができる。他の成分としては、LiX(XはCl原子、Br原子又はI原子)等が挙げられる。
上記マトリックス相が他の成分を含有する場合、その含有割合は、硫黄系固体電解質(A1)及び含フッ素化合物の合計量を100質量部とした場合に、好ましくは5~60質量部、より好ましくは10~40質量部である。
Furthermore, the matrix phase can contain components other than the solid electrolyte and the fluorine-containing compound, if necessary. Other components include LiX 2 (X 2 is Cl atom, Br atom or I atom) and the like.
When the matrix phase contains other components, the content is preferably 5 to 60 parts by mass, more preferably 5 to 60 parts by mass when the total amount of the sulfur-based solid electrolyte (A1) and the fluorine-containing compound is 100 parts by mass. is 10 to 40 parts by mass.

次に、上記分散相は、Li原子と、Co原子、Ni原子及びMn原子から選ばれた少なくとも1種と、O原子とを含む複合酸化物(以下、「複合酸化物(C)」という)を含有する相であり、リチウムイオンを吸蔵又は放出する活物質として作用する成分である。本発明において、上記分散相は、この複合酸化物(C)のみからなる単相型分散相であってよいし、複合酸化物(C)からなるコア部の表面の少なくとも一部がリチウムイオン伝導性酸化物(以下、「リチウムイオン伝導性酸化物(D)」という)により被覆された構造を有する複合体からなる複合型分散相、即ち、コア部と、コア部の表面の少なくとも一部がリチウムイオン伝導性酸化物(D)により被覆された被覆部とを備える複合体からなる複合型分散相であってもよい。 Next, the dispersed phase is a composite oxide containing Li atoms, at least one selected from Co atoms, Ni atoms and Mn atoms, and O atoms (hereinafter referred to as "composite oxide (C)"). and is a component that acts as an active material that absorbs or releases lithium ions. In the present invention, the dispersed phase may be a single-phase dispersed phase consisting only of the composite oxide (C), and at least a portion of the surface of the core consisting of the composite oxide (C) is lithium ion conductive. A composite dispersed phase composed of a composite having a structure coated with a conductive oxide (hereinafter referred to as "lithium ion conductive oxide (D)"), that is, a core and at least a part of the surface of the core It may be a composite dispersed phase composed of a composite including a covering portion covered with a lithium ion conductive oxide (D).

上記複合酸化物(C)としては、Li原子と、Co原子、Ni原子及びMn原子から選ばれた少なくとも1種と、O原子とからなる化合物(以下、「複合酸化物(C1)」という);これらの原子に加えて、更に、他の金属原子(Cu、V、Nb、Mo、Ti、Cr、Zr、Zn、Na、K、Ca、Mg、Pt、Au、Ag、Ru、W等)又はハロゲン原子を含む化合物等が挙げられる。これらのうち、複合酸化物(C1)が好ましい。尚、本発明において、上記分散相を構成する複合酸化物(C)は、1種又は2種以上とすることができる。 The composite oxide (C) is a compound composed of Li atoms, at least one selected from Co atoms, Ni atoms and Mn atoms, and O atoms (hereinafter referred to as "composite oxide (C1)"). in addition to these atoms, also other metal atoms (Cu, V, Nb, Mo, Ti, Cr, Zr, Zn, Na, K, Ca, Mg, Pt, Au, Ag, Ru, W, etc.); or a compound containing a halogen atom. Among these, the composite oxide (C1) is preferred. In the present invention, the composite oxide (C) that constitutes the dispersed phase can be of one type or two or more types.

上記複合酸化物(C1)は、好ましくは、下記一般式(1)で表される化合物である。
LiNiCoMn (1)
(式中、mは、0<m≦2を満たす数であり、nは、0<n/m≦4を満たす数であり、x、y、zは、0≦x≦2、0≦y≦2、0≦z≦2、を満たし、0<(x+y+z)/m≦2を満たす数である)
The composite oxide (C1) is preferably a compound represented by the following general formula (1).
LimNixCoyMnzOn ( 1 ) _
(Wherein, m is a number that satisfies 0 < m ≤ 2, n is a number that satisfies 0 < n / m ≤ 4, x, y, z are 0 ≤ x ≤ 2, 0 ≤ y ≤ 2, 0 ≤ z ≤ 2, and 0 < (x + y + z) / m ≤ 2)

上記一般式(1)で表される化合物としては、LiCoO、LiNiO、LiMn、LiCoMnO、LiNiMn、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3等が挙げられる。 Examples of compounds represented by the general formula (1) include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCoMnO 4 , Li 2 NiMn 3 O 8 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 and the like.

上記分散相が複合型分散相である場合、複合酸化物(C)からなるコア部の表面の少なくとも一部を被覆するリチウムイオン伝導性酸化物(D)は、リチウムイオン伝導性を有し、上記複合酸化物(C)と異なるものであれば、特に限定されない。 When the dispersed phase is a composite dispersed phase, the lithium ion conductive oxide (D) covering at least part of the surface of the core portion made of the composite oxide (C) has lithium ion conductivity, It is not particularly limited as long as it is different from the composite oxide (C).

上記リチウムイオン伝導性酸化物(D)としては、硫黄系固体電解質(A1)と、複合酸化物(C)との間の界面抵抗の増加が抑制されることから、高い表面酸性度を有する、酸化ジルコニウム(ZrO)、酸化タングステン(WO)、酸化チタン(TiO)、酸化ホウ素(B)、酸化アルミニウム(Al)、酸化ガリウム(Ga)等の酸化物、並びに、リチウムイオンを有する、Li原子と、他の金属原子と、O原子とを含む化合物(複合酸化物)が好ましい。
後者の複合酸化物における他の金属原子としては、Nb原子、Al原子、Mo原子、Si原子、Fe原子、Zr原子、W原子、V原子、Ti原子、Ta原子等が挙げられる。これらのうち、Nb原子が好ましい。後者の複合酸化物としては、LiNbO、LiNbO、LiAlO、LiMoO、LiSiO、LiFeO、LiZrO、Li、LiVO、LiTi12、LiTaO等が挙げられる。これらのうち、LiNbO、LiTi12及びLiTaOが好ましく、LiNbOが特に好ましい。
The lithium ion conductive oxide (D) has high surface acidity because it suppresses an increase in interfacial resistance between the sulfur-based solid electrolyte (A1) and the composite oxide (C). Oxidation of zirconium oxide (ZrO 2 ), tungsten oxide (WO 3 ), titanium oxide (TiO 2 ), boron oxide (B 2 O 3 ), aluminum oxide (Al 2 O 3 ), gallium oxide (Ga 2 O 3 ), etc. and compounds containing Li atoms, other metal atoms, and O atoms (composite oxides) having lithium ions.
Other metal atoms in the latter composite oxide include Nb atoms, Al atoms, Mo atoms, Si atoms, Fe atoms, Zr atoms, W atoms, V atoms, Ti atoms, Ta atoms and the like. Among these, Nb atoms are preferred. The latter composite oxides include LiNbO3 , LiNbO2 , LiAlO2 , Li2MoO4 , Li4SiO4 , Li4FeO4 , Li4ZrO4 , Li2W2O7 , Li3VO4 , Li 4 Ti 5 O 12 , LiTaO 3 and the like. Among these, LiNbO 3 , Li 4 Ti 5 O 12 and LiTaO 3 are preferred, and LiNbO 3 is particularly preferred.

上記複合型分散相を構成する複合体において、リチウムイオン伝導性酸化物(D)からなる被覆部は、複合酸化物(C)からなるコア部の全表面に存在することが好ましい。尚、被覆部の厚さは、特に限定されないが、平均値は、好ましくは1~20nm、より好ましくは2~10nmである。 In the composite constituting the composite dispersed phase, it is preferable that the covering portion made of the lithium ion conductive oxide (D) is present on the entire surface of the core portion made of the composite oxide (C). The thickness of the covering portion is not particularly limited, but the average value is preferably 1 to 20 nm, more preferably 2 to 10 nm.

上記マトリックス相の中に含まれる分散相の形状及びサイズは、特に限定されない。分散相の形状は、球体、楕円球体、多面体、不定形状等とすることができる。また、分散相のサイズ(粒子径)は、1~50μmとすることができる。 The shape and size of the dispersed phase contained in the matrix phase are not particularly limited. The shape of the dispersed phase can be a sphere, an ellipsoid, a polyhedron, an irregular shape, or the like. Further, the size (particle diameter) of the dispersed phase can be 1 to 50 μm.

本発明の電池電極用複合材料において、マトリックス相及び分散相の質量比は、特に限定されないが、電池容量の観点から、両者の合計を100質量%とした場合に、それぞれ、好ましくは5~70質量%及び30~95質量%、より好ましくは10~40質量%及び60~90質量%である。 In the composite material for a battery electrode of the present invention, the mass ratio of the matrix phase and the dispersed phase is not particularly limited, but from the viewpoint of the battery capacity, when the total of both is 100% by mass, each is preferably 5 to 70. % by mass and 30 to 95% by mass, more preferably 10 to 40% by mass and 60 to 90% by mass.

本発明の電池電極用複合材料を構成するマトリックス相の中には、上記分散相以外に、炭素材料、金属粉末、金属化合物等からなる導電助剤が含まれていてもよい。これらのうち、炭素材料が好ましく、例えば、グラフェン等の板状導電性物質;カーボンナノチューブ、炭素繊維等の線状導電性物質;ケッチェンブラック、アセチレンブラック、デンカブラック(商品名)、サーマルブラック、チャンネルブラック等のカーボンブラック、黒鉛等の粒状導電性物質等を用いることができる。 The matrix phase constituting the composite material for a battery electrode of the present invention may contain, in addition to the dispersed phase, a conductive aid made of a carbon material, a metal powder, a metal compound, or the like. Among these, carbon materials are preferable, for example, plate-shaped conductive substances such as graphene; linear conductive substances such as carbon nanotubes and carbon fibers; Carbon black such as channel black, granular conductive material such as graphite, and the like can be used.

本発明の電池電極用複合材料の製造方法は、その形態により、適宜、選択されたものとすることができるが、造粒体とする場合には、以下の成分を原料(好ましくは粉体)として用い、これらを混合した後、得られた粉体混合物を成形する方法により製造することができる。
(1)原料として、硫黄系固体電解質(A1)と、含フッ素化合物と、複合酸化物(C)と、必要に応じて、導電助剤とを用いる方法
(2)原料として、硫黄系固体電解質(A1)、含フッ素化合物、複合酸化物(C)からなるコア部と、該コア部の表面の少なくとも一部がリチウムイオン伝導性酸化物(D)により被覆された被覆部とを有する複合体、及び、必要に応じて、導電助剤を用いる方法
(3)原料として、硫黄系固体電解質(A1)、含フッ素化合物、複合酸化物(C)、複合酸化物(C)からなるコア部と、該コア部の表面の少なくとも一部がリチウムイオン伝導性酸化物(D)により被覆された被覆部とを有する複合体、及び、必要に応じて、導電助剤を用いる方法
The method for producing the composite material for battery electrodes of the present invention can be appropriately selected depending on the form thereof. It can be manufactured by a method of using as, mixing these, and molding the obtained powder mixture.
(1) A method using a sulfur-based solid electrolyte (A1), a fluorine-containing compound, a composite oxide (C), and, if necessary, a conductive aid as raw materials (2) A sulfur-based solid electrolyte as a raw material (A1), a composite having a core composed of a fluorine-containing compound and a composite oxide (C), and a coating having at least a portion of the surface of the core coated with a lithium ion conductive oxide (D) , and, if necessary, a method (3) using a conductive agent as a raw material, a sulfur-based solid electrolyte (A1), a fluorine-containing compound, a composite oxide (C), and a core portion composed of a composite oxide (C) , a composite having a coating portion in which at least part of the surface of the core portion is coated with a lithium ion conductive oxide (D), and, if necessary, a method using a conductive aid

上記方法(2)及び(3)で用いる複合体は、例えば、転動流動層コーティング装置を用いる方法により得られたものとすることができる。この装置は、複合酸化物(C)からなる粉末を導入ガスにより流動層とした状態で、リチウムイオン伝導性酸化物(D)の分散体、又は、リチウムイオン伝導性酸化物(D)の前駆体の溶液又は分散液を噴霧し、その後、必要により加熱処理を行って、複合酸化物(C)からなる粉末の表面に膜を形成するものである。形成される膜の量又は厚さは、液の噴霧量、噴霧速度等で制御することができる。 The composite used in the above methods (2) and (3) can be obtained, for example, by a method using a tumbling fluidized bed coating apparatus. In this apparatus, a dispersion of the lithium ion conductive oxide (D) or a precursor of the lithium ion conductive oxide (D) is prepared in a state in which the powder composed of the composite oxide (C) is made into a fluidized bed by an introduced gas. After spraying the solution or dispersion liquid of the solid, if necessary, heat treatment is performed to form a film on the surface of the powder composed of the composite oxide (C). The amount or thickness of the film to be formed can be controlled by the liquid spray amount, spray speed, or the like.

これらの方法(1)~(3)において、上記の原料を混合する方法は特に限定されず、従来、公知のセラミック粉末の混合物を調製するための、乾式混合法が好ましく適用され、例えば、乳鉢、ビーズミル、ボールミル(遊星型ボールミル等)、振動ミル、ターボミル、メカノフュージョン、ディスクミル等を用いる方法とすることができる。 In these methods (1) to (3), the method of mixing the raw materials is not particularly limited, and a conventionally known dry mixing method for preparing a mixture of ceramic powders is preferably applied. , a bead mill, a ball mill (planetary ball mill, etc.), a vibration mill, a turbo mill, a mechanofusion, a disk mill, or the like.

また、粉体混合物を成形する方法は、特に限定されず、従来、公知のプレス成形法等が好ましく適用される。成形の際には、原料の変質、原料どうしの反応等が発生しない限りにおいて、加熱を行ってもよい。 Moreover, the method for molding the powder mixture is not particularly limited, and a conventionally known press molding method or the like is preferably applied. During molding, heating may be performed as long as the raw materials do not change in quality or react with each other.

本発明の電池電極用複合材料は、リチウムイオン電池用電極、好ましくは正極の形成材料として好適である。 The composite material for a battery electrode of the present invention is suitable as a material for forming a lithium ion battery electrode, preferably a positive electrode.

本発明のリチウムイオン電池用電極は、上記本発明の電池電極用複合材料を含む物品であり、通常、薄肉体等の定形構造体である。
本発明のリチウムイオン電池用電極は、上記のマトリックス相及び分散相からなる本発明の電池電極用複合材料のみにより得られたものであってよいし、上記のマトリックス相及び分散相からなる本発明の電池電極用複合材料と、導電助剤、バインダー、他の固体電解質等の他の成分とを用いて得られたものであってもよい。
The lithium ion battery electrode of the present invention is an article containing the composite material for a battery electrode of the present invention, and is usually a regular structure such as a thin body.
The lithium ion battery electrode of the present invention may be obtained only from the composite material for battery electrode of the present invention comprising the above matrix phase and dispersed phase, or the composite material for battery electrode of the present invention comprising the above matrix phase and dispersed phase. and other components such as conductive aids, binders and other solid electrolytes.

上記バインダーとしては、ポリテトラフルオロエチレン(PTFE)、ポリヘキサフルオロプロピレン(PHFP)、ポリフッ化ビニリデン(PVdF)、フッ化ビニリデン・ヘキサフルオロプロピレン共重合体等の含フッ素樹脂;ポリプロピレン、ポリエチレン等のポリオレフィン系樹脂;エチレン・プロピレン・非共役ジエン系ゴム(EPDM等)、スルホン化EPDM、天然ブチルゴム(NBR)等が挙げられる。 Examples of the binder include polytetrafluoroethylene (PTFE), polyhexafluoropropylene (PHFP), polyvinylidene fluoride (PVdF), fluorine-containing resins such as vinylidene fluoride-hexafluoropropylene copolymer; polyolefins such as polypropylene and polyethylene. system resin; ethylene/propylene/non-conjugated diene rubber (EPDM etc.), sulfonated EPDM, natural butyl rubber (NBR) and the like.

本発明のリチウムイオン電池は、上記本発明のリチウムイオン電池用電極を備える物品であり、図1に示す構造を有する。図1のリチウムイオン電池10は、リチウムイオン電池用電極である正極11及び負極13、並びに、これらの正極11と負極13との間に配され、両者の間でリチウムイオンを交換する電解質層15を備える。本発明のリチウムイオン電池は、更に、正極11の集電を行う正極集電体と、負極15の集電を行う負極集電体とを、正極11及び負極13のそれぞれ、外表面側に備えることができる(図示せず)。上記のように、リチウムイオン電池10の正極11は、上記本発明の電池電極用複合材料を含むことが好ましい。 The lithium ion battery of the present invention is an article provided with the lithium ion battery electrode of the present invention, and has the structure shown in FIG. The lithium ion battery 10 of FIG. 1 includes a positive electrode 11 and a negative electrode 13, which are electrodes for a lithium ion battery, and an electrolyte layer 15 disposed between the positive electrode 11 and the negative electrode 13 to exchange lithium ions therebetween. Prepare. The lithium ion battery of the present invention further includes a positive electrode current collector that collects current from the positive electrode 11 and a negative electrode current collector that collects current from the negative electrode 15 on the outer surface side of each of the positive electrode 11 and the negative electrode 13. (not shown). As described above, the positive electrode 11 of the lithium ion battery 10 preferably contains the composite material for a battery electrode of the present invention.

負極13は、通常、負極活物質を含み、更に、バインダー、導電助剤等を含むことができる。負極活物質としては、炭素材料;リチウム、インジウム、アルミニウム、ケイ素等の金属又はこれらを含む合金が挙げられる。 The negative electrode 13 usually contains a negative electrode active material, and may further contain a binder, a conductive aid, and the like. Examples of negative electrode active materials include carbon materials; metals such as lithium, indium, aluminum and silicon, and alloys containing these.

電解質層15は、固体電解質を含むものであれば、特に限定されない。固体電解質としては、酸化物系固体電解質、硫化物系固体電解質、ポリマー電解質、LiBHとその関連水素化物等を用いることができる。
上記電解質層15は、実質的に固体電解質からなるものであることが好ましい。
The electrolyte layer 15 is not particularly limited as long as it contains a solid electrolyte. As solid electrolytes, oxide-based solid electrolytes, sulfide-based solid electrolytes, polymer electrolytes, LiBH4 and related hydrides, etc. can be used.
Preferably, the electrolyte layer 15 is substantially made of a solid electrolyte.

正極集電体17又は負極集電体19は、例えば、ステンレス鋼、金、白金、銅、亜鉛、ニッケル、スズ、アルミニウム又はこれらの合金等からなるものとすることができ、板状体、箔状体、網目状体等を有することができる。 The positive electrode current collector 17 or the negative electrode current collector 19 can be made of, for example, stainless steel, gold, platinum, copper, zinc, nickel, tin, aluminum, or alloys thereof. It can have a shape, a mesh, and the like.

本発明のリチウムイオン電池は、上記本発明の電池電極用複合材料からなる電極、即ち、硫黄系固体電解質(A1)及び含フッ素化合物を含有するマトリックス相と分散相とを備えるため、従来、高電位に対して不安定な性質となる傾向にある硫化物固体電解質が活物質と接する界面で電気分解し、電気分解した硫化物固体電解質のイオン伝導性が低くなって、電池の充放電特性の低下をもたらす不具合を抑制することができる。この効果は、特に、分散相が、上記複合型分散相であるときに顕著である。 The lithium ion battery of the present invention includes an electrode made of the composite material for a battery electrode of the present invention, that is, a matrix phase and a dispersed phase containing a sulfur-based solid electrolyte (A1) and a fluorine-containing compound. The sulfide solid electrolyte, which tends to be unstable with respect to potential, electrolyzes at the interface where it contacts the active material, and the ion conductivity of the electrolyzed sulfide solid electrolyte decreases, resulting in deterioration of the charge-discharge characteristics of the battery. It is possible to suppress defects that cause deterioration. This effect is particularly remarkable when the dispersed phase is the composite dispersed phase.

1.製造原料
固体電解質の製造に用いた原料は、以下の通りである。
1-1.五硫化二リン(P)粉体
Aldrich社製「P」(商品名)を用いた。純度は99%、粒子径は100μmである。
1-2.硫化リチウム(LiS)粉体
三津和化学薬品社製「LiS」(商品名)を用いた。純度は99.9%、粒子径は約50μmである。
1-3.塩化リチウム(LiCl)粉体
富士フイルム和光純薬社製「LiCl」(商品名)を用いた。純度は99.9%、粒子径は数十μmである。
1-4.四フッ化ホウ素酸リチウム(LiBF)粉体
富士フイルム和光純薬社製「LiBF」(商品名)を用いた。純度は99.9%、粒子径は数μmである。
1-5.リチウムビス(フルオロスルホニル)イミド(LiFSI)粉体
日本触媒社製の「LiN(SOF)」(商品名)を用いた。純度は99%、粒子径は数μmである。
1. Production raw materials The raw materials used for production of the solid electrolyte are as follows.
1-1. Phosphorus pentasulfide (P 2 S 5 ) powder “P 2 S 5 ” (trade name) manufactured by Aldrich was used. The purity is 99% and the particle size is 100 μm.
1-2. Lithium sulfide (Li 2 S) powder “Li 2 S” (trade name) manufactured by Mitsuwa Chemicals Co., Ltd. was used. The purity is 99.9% and the particle size is about 50 μm.
1-3. Lithium chloride (LiCl) powder “LiCl” (trade name) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. was used. The purity is 99.9% and the particle size is several tens of μm.
1-4. Lithium tetrafluoroborate (LiBF 4 ) powder “LiBF 4 ” (trade name) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. was used. The purity is 99.9% and the particle size is several μm.
1-5. Lithium bis(fluorosulfonyl)imide (LiFSI) powder "LiN( SO2F)2 " (trade name) manufactured by Nippon Shokubai Co., Ltd. was used. The purity is 99% and the particle size is several μm.

2.固体電解質組成物又は固体電解質の製造及び評価
上記の原料を用いて固体電解質組成物又は固体電解質を製造し、導電率の温度依存性を評価した。
2. Manufacture and Evaluation of Solid Electrolyte Composition or Solid Electrolyte A solid electrolyte composition or solid electrolyte was manufactured using the raw materials described above, and the temperature dependence of conductivity was evaluated.

実験例1-1(固体電解質組成物S1の製造)
硫化リチウム(LiS)粉体と、五硫化二リン(P)粉体と、塩化リチウム(LiCl)粉体と、四フッ化ホウ素酸リチウム(LiBF)粉体とを、LiS、P、LiCl及びLiBFのモル比が、5:1:2:0.5となるように秤量し、これらを混合した。次いで、混合粉末を直径10mmのジルコニアボールとともにFrisch社製遊星型ボールミル機(容器:ジルコニア製)に入れ、メカニカルミリング(回転数600rpm、20時間)を行い、LiPSCl及びLiBFをモル比80:20で含む固体電解質組成物S1を得た。
Experimental Example 1-1 (Production of Solid Electrolyte Composition S1)
Lithium sulfide (Li 2 S) powder, diphosphorus pentasulfide (P 2 S 5 ) powder, lithium chloride (LiCl) powder, and lithium tetrafluoroborate (LiBF 4 ) powder were combined with Li 2 S, P 2 S 5 , LiCl and LiBF 4 were weighed and mixed so that the molar ratio was 5:1:2:0.5. Next, the mixed powder is placed in a planetary ball mill manufactured by Frisch ( container: made of zirconia) together with zirconia balls having a diameter of 10 mm, and subjected to mechanical milling ( rotation speed: 600 rpm, 20 hours). A solid electrolyte composition S1 comprising a ratio of 80:20 was obtained.

その後、以下の方法で、固体電解質組成物の導電率の温度依存性を評価した。具体的には、得られた固体電解質組成物を、一軸油圧プレス機を用いて、円板形状の試験片(サイズ:半径5mm×高さ0.6mm)とし、アルゴンガス雰囲気下、測定用ユニット(ガラス容器)に入れた状態で、調温器に接続したリボンヒーター及び断熱材を測定用ユニット(ガラス容器)の周りに巻き付け、SOLATRON社製IMPEDANCE ANALYZER「S1260」(型式名)を用いて、室温から徐々に加熱し、25℃、50℃、70℃、90℃又は110℃で導電率を測定した。尚、導電率は、試験片を各温度に保持し始めてから1時間静置した後、測定した。また、導電率は、低温側から、各温度で、順次、測定したが、段階的に昇温して測定を行うのではなく、例えば、50℃で測定した後、一旦、25℃に戻し、その後、昇温して70℃で測定するという方法を採用した。
導電率の温度依存性を示すグラフを図2に示す。
After that, the temperature dependence of the electrical conductivity of the solid electrolyte composition was evaluated by the following method. Specifically, the obtained solid electrolyte composition was made into a disc-shaped test piece (size: 5 mm in radius × 0.6 mm in height) using a uniaxial hydraulic press, and placed in a measurement unit under an argon gas atmosphere. (Glass container), wrap the ribbon heater and heat insulating material connected to the temperature controller around the measurement unit (glass container), and use SOLATRON's IMPEDANCE ANALYZER "S1260" (model name) to It was gradually heated from room temperature and the conductivity was measured at 25°C, 50°C, 70°C, 90°C or 110°C. The electrical conductivity was measured after the test piece was allowed to stand still for 1 hour after starting to be held at each temperature. In addition, the conductivity was measured at each temperature from the low temperature side in sequence, but the temperature was not measured by increasing the temperature step by step. After that, a method of raising the temperature and measuring at 70° C. was adopted.
A graph showing the temperature dependence of conductivity is shown in FIG.

次に、固体電解質組成物の容量を、電位掃引(サイクリックボルタンメトリー)法で評価した。具体的には、SUS/Li-In合金箔/固体電解質組成物/SUS の構成のセルを作製し、電圧範囲3.0-6.5V vs. Li/LiでCV測定を行い、電圧掃引速度を0.1mV/Sで変化させたときの酸化還元電流を調べた。
電位-電流曲線を図3に示す。
Next, the capacity of the solid electrolyte composition was evaluated by a potential sweep (cyclic voltammetry) method. Specifically, a cell having a configuration of SUS/Li—In alloy foil/solid electrolyte composition/SUS was produced, and the voltage range was 3.0-6.5 V vs. CV measurement was performed with Li/Li + to examine the oxidation-reduction current when the voltage sweep rate was changed at 0.1 mV/s.
A potential-current curve is shown in FIG.

実験例1-2(固体電解質組成物S2の製造)
四フッ化ホウ素酸リチウム(LiBF)粉体に代えて、リチウムビス(フルオロスルホニル)イミド(LiFSI)粉体を用いた以外は、実験例1-1と同じ操作を行い、LiPSCl及びLiFSIをモル比80:20で含む固体電解質組成物S2を得た。
その後、実験例1-1と同様の操作を行って、固体電解質組成物の導電率の温度依存性を示すグラフ、及び、電位-電流曲線を作製した(図2及び図3参照)。
Experimental Example 1-2 (Production of Solid Electrolyte Composition S2)
The same operation as in Experimental Example 1-1 was performed except that lithium bis(fluorosulfonyl)imide (LiFSI) powder was used instead of lithium tetrafluoroborate (LiBF 4 ) powder, and Li 6 PS 5 Cl and LiFSI at a molar ratio of 80:20 to obtain a solid electrolyte composition S2.
Thereafter, the same operation as in Experimental Example 1-1 was performed to prepare a graph showing the temperature dependence of the electrical conductivity of the solid electrolyte composition and a potential-current curve (see FIGS. 2 and 3).

実験例1-3(固体電解質S3の製造)
硫化リチウム(LiS)粉体と、五硫化二リン(P)粉体と、塩化リチウム(LiCl)粉体とを、LiS、P及びLiClのモル比が、5:1:2となるように秤量し、これらを混合した。次いで、混合粉末を直径10mmのジルコニアボールとともにFrisch社製遊星型ボールミル機(容器:ジルコニア製)に入れ、メカニカルミリング(回転数600rpm、20時間)を行い、LiPSClからなる固体電解質S3を得た。
その後、実験例1-1と同様の操作を行って、固体電解質の導電率の温度依存性を示すグラフ、及び、電位-電流曲線を作製した(図2及び図3参照)。
Experimental Example 1-3 (Production of Solid Electrolyte S3)
Lithium sulfide (Li 2 S) powder, diphosphorus pentasulfide (P 2 S 5 ) powder, and lithium chloride (LiCl) powder are mixed so that the molar ratio of Li 2 S, P 2 S 5 and LiCl is They were weighed to be 5:1:2 and mixed. Next, the mixed powder was placed in a planetary ball mill manufactured by Frisch (container: made of zirconia) together with zirconia balls having a diameter of 10 mm, and subjected to mechanical milling (600 rpm for 20 hours) to obtain a solid electrolyte S3 composed of Li 6 PS 5 Cl. got
Thereafter, the same operation as in Experimental Example 1-1 was performed to prepare a graph showing the temperature dependence of the electrical conductivity of the solid electrolyte and a potential-current curve (see FIGS. 2 and 3).

図2より、50℃を超える温度において、固体電解質組成物S1及びS2のリチウムイオン導電性は、固体電解質S3より優れることが分かる。
また、図3より、固体電解質組成物S1及び固体電解質組成物S2の場合は、電位が約4.0Vまでであれば、電流値の上昇が確認されず、固体電解質の酸化劣化が発生せず、電位窓が広い、即ち、電位的に安定な電極形成が可能であることが分かる。従って、固体電解質組成物S1及び固体電解質組成物S2は、リチウムイオン電池の正極電極の構成材料として好適である。一方、固体電解質S3の場合は、電位が約3.3Vを超えると電流が流れてしまい、電位窓が狭いことが明らかである。
From FIG. 2, it can be seen that the lithium ion conductivity of the solid electrolyte compositions S1 and S2 is superior to that of the solid electrolyte S3 at temperatures above 50.degree.
Further, from FIG. 3, in the case of the solid electrolyte composition S1 and the solid electrolyte composition S2, if the potential is up to about 4.0 V, no increase in the current value is confirmed, and the oxidation deterioration of the solid electrolyte does not occur. , the potential window is wide, that is, it is possible to form an electrode that is electrically stable. Therefore, the solid electrolyte composition S1 and the solid electrolyte composition S2 are suitable as constituent materials for positive electrodes of lithium ion batteries. On the other hand, in the case of the solid electrolyte S3, when the potential exceeds about 3.3 V, current flows, and it is clear that the potential window is narrow.

実験例1-4(固体電解質組成物S4の製造)
硫化リチウム(LiS)粉体と、五硫化二リン(P)粉体と、四フッ化ホウ素酸リチウム(LiBF)粉体とを、LiS、P及びLiBFのモル比が、3:1:0.5となるように秤量し、これらを混合した。次いで、混合粉末を直径10mmのジルコニアボールとともにFrisch社製遊星型ボールミル機(容器:ジルコニア製)に入れ、メカニカルミリング(回転数600rpm、20時間)を行い、LiPS及びLiBFをモル比80:20で含む固体電解質組成物S4を得た。
その後、実験例1-1と同様の操作を行って、固体電解質組成物の導電率の温度依存性を示すグラフ、及び、電位-電流曲線を作製した(図4及び図5参照)。尚、固体電解質組成物の導電率の測定温度は、25℃、50℃、70℃、90℃、110℃、130℃、150℃とした。
Experimental Example 1-4 (Production of Solid Electrolyte Composition S4)
Lithium sulfide (Li 2 S) powder, diphosphorus pentasulfide (P 2 S 5 ) powder, and lithium tetrafluoroborate (LiBF 4 ) powder were combined with Li 2 S, P 2 S 5 and LiBF. 4 were weighed so that the molar ratio of 4 was 3:1:0.5, and these were mixed. Next, the mixed powder is placed in a planetary ball mill manufactured by Frisch ( container: made of zirconia) together with zirconia balls having a diameter of 10 mm, and mechanical milling is performed ( 600 rpm for 20 hours). A solid electrolyte composition S4 containing 80:20 was obtained.
Thereafter, the same operation as in Experimental Example 1-1 was performed to prepare a graph showing the temperature dependence of the electrical conductivity of the solid electrolyte composition and a potential-current curve (see FIGS. 4 and 5). The temperatures for measuring the electrical conductivity of the solid electrolyte composition were 25°C, 50°C, 70°C, 90°C, 110°C, 130°C and 150°C.

実験例1-5(固体電解質組成物S5の製造)
硫化リチウム(LiS)粉体と、五硫化二リン(P)粉体と、四フッ化ホウ素酸リチウム(LiBF)粉体と、塩化リチウム(LiCl)粉体とを、LiS、P、LiBF及びLiClのモル比が、15:5:6:4となるように秤量し、これらを混合した。次いで、混合粉末を直径10mmのジルコニアボールとともにFrisch社製遊星型ボールミル機(容器:ジルコニア製)に入れ、メカニカルミリング(回転数600rpm、20時間)を行い、LiPS、LiBF及びLiClをモル比50:30:20で含む固体電解質組成物S5を得た。
その後、実験例1-4と同様の操作を行って、固体電解質組成物の導電率の温度依存性を示すグラフ、及び、電位-電流曲線を作製した(図4及び図5参照)。
Experimental Example 1-5 (Production of Solid Electrolyte Composition S5)
Lithium sulfide (Li 2 S) powder, diphosphorus pentasulfide (P 2 S 5 ) powder, lithium tetrafluoroborate (LiBF 4 ) powder, and lithium chloride (LiCl) powder were combined with Li 2 S, P 2 S 5 , LiBF 4 and LiCl were weighed and mixed in a molar ratio of 15:5:6:4. Next, the mixed powder was placed in a Frisch planetary ball mill (container: made of zirconia) together with zirconia balls having a diameter of 10 mm, and subjected to mechanical milling (600 rpm for 20 hours) to remove Li 3 PS 4 , LiBF 4 and LiCl. A solid electrolyte composition S5 containing at a molar ratio of 50:30:20 was obtained.
After that, the same operation as in Experimental Example 1-4 was performed to prepare a graph showing the temperature dependence of the electrical conductivity of the solid electrolyte composition and a potential-current curve (see FIGS. 4 and 5).

実験例1-6(固体電解質S6の製造)
硫化リチウム(LiS)粉体と、五硫化二リン(P)粉体とを、LiS及びPのモル比が、3:1となるように秤量し、これらを混合した。次いで、混合粉末を直径10mmのジルコニアボールとともにFrisch社製遊星型ボールミル機(容器:ジルコニア製)に入れ、メカニカルミリング(回転数600rpm、20時間)を行い、LiPSからなる固体電解質S6を得た。
その後、実験例1-4と同様の操作を行って、固体電解質の導電率の温度依存性を示すグラフ、及び、電位-電流曲線を作製した(図4及び図5参照)。
Experimental Example 1-6 (Production of Solid Electrolyte S6)
Lithium sulfide (Li 2 S) powder and diphosphorus pentasulfide (P 2 S 5 ) powder were weighed so that the molar ratio of Li 2 S and P 2 S 5 was 3:1. were mixed. Next, the mixed powder is placed in a planetary ball mill manufactured by Frisch (container: made of zirconia) together with zirconia balls having a diameter of 10 mm, and subjected to mechanical milling ( 600 rpm for 20 hours) to form a solid electrolyte S6 composed of Li3PS4 . Obtained.
Thereafter, the same operation as in Experimental Example 1-4 was performed to prepare a graph showing the temperature dependence of the electrical conductivity of the solid electrolyte and a potential-current curve (see FIGS. 4 and 5).

図4より、固体電解質組成物S5のリチウムイオン導電性は、固体電解質組成物S4及び固体電解質S6より優れることが分かる。
また、図5より、固体電解質組成物S4及び固体電解質組成物S5の場合は、電位が約4.7Vまでであれば、電流値の上昇が確認されず、固体電解質の酸化劣化が発生せず、電位窓が広いことが分かる。一方、固体電解質S6の場合は、電位が約3.5Vを超えると電流が流れてしまい、電位窓が狭いことが明らかである。
From FIG. 4, it can be seen that the lithium ion conductivity of the solid electrolyte composition S5 is superior to that of the solid electrolyte composition S4 and the solid electrolyte S6.
Further, from FIG. 5, in the case of the solid electrolyte composition S4 and the solid electrolyte composition S5, if the potential is up to about 4.7 V, no increase in the current value is confirmed, and the oxidation deterioration of the solid electrolyte does not occur. , the potential window is wide. On the other hand, in the case of the solid electrolyte S6, when the potential exceeds about 3.5 V, current flows, and it is clear that the potential window is narrow.

3.電池電極用複合材料、正極電極及びリチウムイオン電池の製造並びに評価
上記で得られた固体電解質組成物S1、S2又は固体電解質S3と、下記に示す活物質及び炭素繊維とを用いて、電池電極用複合材料を製造した。その後、この電池電極用複合材料を正極電極の形成に用い、固体電解質S3(電解質層用)及びLi-In合金箔(負極電極用)と併用して、図1の構造を有する全固体形のリチウムイオン電池を作製した。
(1)活物質
転動流動層コーティング装置を用いて、ニッケルマンガンコバルト酸リチウム(LiNi0.5Mn0.3Co0.2)粒子表面にLiNbOを被覆させて得られた、LiNbO被覆粒子(粒子径:3~10μm、被覆部の厚さ:5nm)である。
(2)炭素繊維
昭和電工社製気相法炭素繊維「VGCF」(商品名)を用いた。
3. Composite material for battery electrode, production and evaluation of positive electrode and lithium ion battery A composite material was produced. Thereafter, this battery electrode composite material is used to form a positive electrode, and is used in combination with a solid electrolyte S3 (for electrolyte layer) and a Li—In alloy foil (for negative electrode) to form an all-solid-type battery having the structure shown in FIG. A lithium-ion battery was produced.
(1) Active material LiNbO obtained by coating the surface of lithium nickel manganese cobaltate (LiNi 0.5 Mn 0.3 Co 0.2 O 2 ) particles with LiNbO 3 using a tumbling fluidized bed coating apparatus. 3 coated particles (particle diameter: 3 to 10 μm, coating thickness: 5 nm).
(2) Carbon fiber Vapor-grown carbon fiber “VGCF” (trade name) manufactured by Showa Denko KK was used.

実施例1
固体電解質組成物S1と、活物質と、炭素繊維とを、質量比50:50:3で秤量し、これらを、乳鉢及び乳棒を用いて混合し、電池電極用複合材料を得た。
一方、固体電解質S3の粉末を、一軸油圧プレス機を用いて加圧成形し、電解質層用の予備成形体(円板形状、半径:5mm、厚さ:0.5mm)とした。
その後、この電解質層用予備成形体を、ポリエーテルエーテルケトン(PEEK)製の筒状体17の内部に収容した状態で、その一方の表面側の全体に、上記で得られた電池電極用複合材料約25mgを充填し、一軸油圧プレス機を用いて加圧成形を行い、板状の正極電極とした。更に、電解質層用予備成形体の他方の面に、負極電極用のLi-In合金箔(厚さ0.1mm、直径5mm)を張り付け、正極電極11、電解質層15及び負極電極13を、順次、備える、全固体形のリチウムイオン電池10を得た(図1及び図6参照)。
次に、このリチウムイオン電池10を収納した筒状体17の両側から、それぞれ、ステンレス-ニッケルの導通部を挿入し、治具で固定して、測定セルを得た(図6参照)。そして、この測定セルをガラス容器(図示せず)に封入し、ガラス容器内の気体をアルゴンガスに置換して、充放電試験を行った。充放電試験は、測定セルを含むガラス容器を、30℃に設定した電気炉に入れ、NAGANO社製充放電装置「BTS-2004H」(型式名)を用い、(0.1-3.0V vs Li-In、Cレート:0.1C)の条件で行った。その結果を図7に示す。
また、この充放電試験を、サイクル数を60回として行ったところ、図8のグラフを得た。
Example 1
Solid electrolyte composition S1, active material, and carbon fiber were weighed at a mass ratio of 50:50:3, and mixed using a mortar and pestle to obtain a composite material for a battery electrode.
On the other hand, powder of the solid electrolyte S3 was pressure-molded using a uniaxial hydraulic press to obtain a preform (disc shape, radius: 5 mm, thickness: 0.5 mm) for the electrolyte layer.
After that, while the electrolyte layer preform is housed inside a cylindrical body 17 made of polyetheretherketone (PEEK), the battery electrode composite obtained above is coated on the entire one surface side thereof. About 25 mg of the material was filled, and pressure molding was performed using a uniaxial hydraulic press to obtain a plate-like positive electrode. Furthermore, a Li—In alloy foil (thickness: 0.1 mm, diameter: 5 mm) for the negative electrode is attached to the other surface of the electrolyte layer preform, and the positive electrode 11, the electrolyte layer 15, and the negative electrode 13 are sequentially attached. , an all-solid-state lithium-ion battery 10 was obtained (see FIGS. 1 and 6).
Next, from both sides of the cylindrical body 17 containing the lithium ion battery 10, stainless steel-nickel conductive parts were inserted and fixed with a jig to obtain a measurement cell (see FIG. 6). Then, this measurement cell was enclosed in a glass container (not shown), and the gas in the glass container was replaced with argon gas to conduct a charge/discharge test. In the charge-discharge test, the glass container containing the measurement cell is placed in an electric furnace set at 30 ° C., using a charge-discharge device "BTS-2004H" (model name) manufactured by NAGANO, (0.1-3.0 V vs. Li--In, C rate: 0.1C). The results are shown in FIG.
Moreover, when this charge/discharge test was performed with 60 cycles, the graph of FIG. 8 was obtained.

実施例2
固体電解質組成物S1に代えて、固体電解質組成物S2を用いた以外は、実施例1と同様にして電池電極用複合材料を得た。そして、リチウムイオン電池を製造し、充放電試験を行った。その結果を図7及び図8に示す。
Example 2
A composite material for a battery electrode was obtained in the same manner as in Example 1, except that the solid electrolyte composition S2 was used instead of the solid electrolyte composition S1. Then, a lithium ion battery was manufactured and a charge/discharge test was performed. The results are shown in FIGS. 7 and 8. FIG.

比較例1
固体電解質組成物S1に代えて、固体電解質S3を用いた以外は、実施例1と同様にして電池電極用複合材料を得た。そして、リチウムイオン電池を製造し、充放電試験を行った。その結果を図7及び図8に示す。
Comparative example 1
A composite material for a battery electrode was obtained in the same manner as in Example 1, except that the solid electrolyte composition S1 was replaced with the solid electrolyte S3. Then, a lithium ion battery was manufactured and a charge/discharge test was performed. The results are shown in FIGS. 7 and 8. FIG.

図7及び図8から明らかなように、Li原子及びF原子を含む化合物を含有する固体電解質組成物S1及びS2を用いて得られた正極電極を備える実施例1及び2のリチウムイオン電池は、比較例1のリチウムイオン電池に比べて、放電容量、サイクル特性ともに優れていることが分かる。これは、本発明の電池電極用複合材料を用いて形成した電極を備えるリチウムイオン電池において、充放電を繰り返すと電極に含まれる固体電解質の早期の酸化劣化が抑制されることを意味する。 As is clear from FIGS. 7 and 8, the lithium ion batteries of Examples 1 and 2 provided with positive electrodes obtained using solid electrolyte compositions S1 and S2 containing compounds containing Li atoms and F atoms, It can be seen that both the discharge capacity and the cycle characteristics are superior to the lithium ion battery of Comparative Example 1. This means that in a lithium-ion battery comprising an electrode formed using the composite material for a battery electrode of the present invention, the solid electrolyte contained in the electrode is prevented from oxidizing and deteriorating at an early stage when charging and discharging are repeated.

本発明の電池電極用複合材料は、パソコン、カメラ等の家電製品や、電力貯蔵装置、携帯電話機等の携帯型電子機器又は通信機器、パワーツール等の電動工具等の電源、更には、電気自動車(EV)、ハイブリッド電気自動車(HEV)等に搭載される大型電池を構成するリチウムイオン電池の電極の構成材料として好適である。 The composite material for battery electrodes of the present invention can be used for home appliances such as personal computers and cameras, power storage devices, portable electronic devices such as mobile phones or communication devices, power sources such as power tools such as power tools, and electric vehicles. (EV), hybrid electric vehicle (HEV), etc., and is suitable as a constituent material for electrodes of lithium ion batteries constituting large batteries.

10:リチウムイオン電池
11:正極電極
13:負極電極
15:電解質層
17:PEEK製筒状体
21:押さえ板
23:押さえピン
25:締め付けネジ
27:カプトン(登録商標)テープ
10: Lithium ion battery 11: Positive electrode 13: Negative electrode 15: Electrolyte layer 17: PEEK tubular body 21: Pressing plate 23: Pressing pin 25: Tightening screw 27: Kapton (registered trademark) tape

Claims (9)

Li原子、P原子及びS原子を含む固体電解質と、Li原子及びF原子を含む化合物とを含有するマトリックス相、並びに、該マトリックス相の中に分散されつつ含まれ、且つ、Li原子と、Co原子、Ni原子及びMn原子から選ばれた少なくとも1種と、O原子とを含む複合酸化物を含有する分散相を備えることを特徴とする電池電極用複合材料。 a matrix phase containing a solid electrolyte containing Li atoms, P atoms and S atoms; and a compound containing Li atoms and F atoms; A composite material for a battery electrode, comprising a dispersed phase containing a composite oxide containing at least one selected from atoms, Ni atoms and Mn atoms, and O atoms. Li原子及びF原子を含む前記化合物が、LiBF、LiPF、LiAsF、LiSbF、LiN(SOF)、LiN(SOCF、LiN(SO、LiC(SOCF、LiSOCF及びLiSOから選ばれた少なくとも1つである請求項1に記載の電池電極用複合材料。 The compound containing Li atoms and F atoms is LiBF 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiN(SO 2 F) 2 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC ( SO2CF3 ) 3 , LiSO3CF3 and LiSO3C4F9 . 前記分散相は、前記複合酸化物からなるコア部と、該コア部の表面の少なくとも一部がリチウムイオン伝導性酸化物により被覆された被覆部とを備える複合体からなる請求項1又は2に記載の電池電極用複合材料。 3. According to claim 1 or 2, wherein the dispersed phase comprises a composite comprising a core made of the composite oxide and a covering portion in which at least a part of the surface of the core is covered with a lithium ion conductive oxide. A composite material for a battery electrode as described. 前記リチウムイオン伝導性酸化物が、Li原子と、他の金属原子と、O原子とを含む複合酸化物である請求項3に記載の電池電極用複合材料。 4. The composite material for a battery electrode according to claim 3, wherein said lithium ion conductive oxide is a composite oxide containing Li atoms, other metal atoms and O atoms. 前記リチウムイオン伝導性酸化物がLiNbOである請求項3又は4に記載の電池電極用複合材料。 5. The composite material for battery electrodes according to claim 3 or 4, wherein said lithium ion conductive oxide is LiNbO3. 前記固体電解質が、LiPS及びLiPS(XはCl原子、Br原子又はI原子)から選ばれた少なくとも1つを含む請求項1乃至5のいずれか一項に記載の電池電極用複合材料。 6. The solid electrolyte according to any one of claims 1 to 5 , wherein the solid electrolyte contains at least one selected from Li3PS4 and Li6PS5X1 ( X1 is a Cl atom, a Br atom or an I atom). of composite materials for battery electrodes. 前記マトリックス相が、更に、LiX(XはCl原子、Br原子又はI原子)を含有する請求項1乃至6のいずれか一項に記載の電池電極用複合材料。 The composite material for a battery electrode according to any one of claims 1 to 6, wherein the matrix phase further contains LiX2 ( X2 is a Cl atom, a Br atom or an I atom). 請求項1乃至7のいずれか一項に記載の電池電極用複合材料を含むことを特徴とするリチウムイオン電池用電極。 A lithium ion battery electrode comprising the battery electrode composite material according to claim 1 . 請求項8に記載のリチウムイオン電池用電極を備えることを特徴とするリチウムイオン電池。 A lithium ion battery comprising the lithium ion battery electrode according to claim 8 .
JP2021061805A 2021-03-31 2021-03-31 Composite materials for battery electrodes, electrodes for lithium ion batteries and lithium ion batteries Pending JP2022157526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021061805A JP2022157526A (en) 2021-03-31 2021-03-31 Composite materials for battery electrodes, electrodes for lithium ion batteries and lithium ion batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021061805A JP2022157526A (en) 2021-03-31 2021-03-31 Composite materials for battery electrodes, electrodes for lithium ion batteries and lithium ion batteries

Publications (1)

Publication Number Publication Date
JP2022157526A true JP2022157526A (en) 2022-10-14

Family

ID=83558846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021061805A Pending JP2022157526A (en) 2021-03-31 2021-03-31 Composite materials for battery electrodes, electrodes for lithium ion batteries and lithium ion batteries

Country Status (1)

Country Link
JP (1) JP2022157526A (en)

Similar Documents

Publication Publication Date Title
CN110498611B (en) Sulfide-based solid electrolyte, method for producing the same, and method for producing all-solid-state battery
US8968939B2 (en) Solid electrolyte material, electrode element that includes solid electrolyte material, all-solid battery that includes solid electrolyte material, and manufacturing method for solid electrolyte material
KR101987608B1 (en) A pre-solid lithium-sulfur battery and its manufacturing method
JP5552974B2 (en) Sulfide solid electrolyte material, method for producing sulfide solid electrolyte material, and lithium solid state battery
CN108701860A (en) Solid Electrolyte Materials and Batteries
US9397365B2 (en) Solid electrolyte material and all solid-state lithium secondary battery
Tang et al. Enhanced cyclability and safety performance of LiNi0. 6Co0. 2Mn0. 2O2 at elevated temperature by AlPO4 modification
JP7042426B2 (en) Solid electrolytes and batteries
EP4102594A1 (en) Positive electrode material and battery
JP6295966B2 (en) All solid battery
CN109155435B (en) Solid electrolyte, all-solid-state battery
KR20230070683A (en) Cathode active material for sulfide all-solid-state battery, method of preparing the same, cathode complex icncluding the same and method of fabricating cathode complex
JP2020115425A (en) Sulfide solid electrolyte particle and all-solid battery
JP2022550831A (en) Use of transition metal sulfide compounds in positive electrodes of solid-state batteries
WO2023281910A1 (en) Battery and method for producing same
KR101044577B1 (en) High voltage lithium secondary battery
CN116093280A (en) Positive electrode active material with nano coating layer, preparation method thereof and lithium ion battery comprising positive electrode active material
JP2022157526A (en) Composite materials for battery electrodes, electrodes for lithium ion batteries and lithium ion batteries
JP7366396B2 (en) Active materials, electrodes for lithium-sulfur batteries, and lithium-sulfur batteries
KR20230114345A (en) Positive electrode for all solid state battery comprising conductive material composite and manufacturing method thereof
JP2020194739A (en) Method for manufacturing lithium ion secondary battery and lithium ion secondary battery
JP7536391B2 (en) All-solid-state lithium secondary battery and method for producing same
JP2019129096A (en) All-solid battery and method for manufacturing the same
CN113614948B (en) Positive electrode material and battery
KR101947324B1 (en) Surface-modified cathode active materials for aqueous lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240206