JP2022146056A - Manufacturing method of fiber sheet - Google Patents
Manufacturing method of fiber sheet Download PDFInfo
- Publication number
- JP2022146056A JP2022146056A JP2021046842A JP2021046842A JP2022146056A JP 2022146056 A JP2022146056 A JP 2022146056A JP 2021046842 A JP2021046842 A JP 2021046842A JP 2021046842 A JP2021046842 A JP 2021046842A JP 2022146056 A JP2022146056 A JP 2022146056A
- Authority
- JP
- Japan
- Prior art keywords
- stirring
- fiber sheet
- fiber
- dispersion
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Mixers Of The Rotary Stirring Type (AREA)
- Paper (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、燃料電池車などの電源として使用される固体高分子型燃料電池の電極として使用される燃料電池用電極基材向け繊維シートの製造方法に関するものである。 TECHNICAL FIELD The present invention relates to a method for producing a fiber sheet for a fuel cell electrode substrate, which is used as an electrode of a polymer electrolyte fuel cell used as a power source for a fuel cell vehicle or the like.
燃料電池は水素と酸素を反応させて水が生成する際に生起するエネルギーを電気的に取り出す装置であり、エネルギー効率が高く排出物が水しかないことからクリーンエネルギーとして期待されている。 A fuel cell is a device that electrically extracts the energy generated when water is produced by reacting hydrogen and oxygen.It is expected to be a clean energy source because it is highly energy efficient and emits only water.
固体高分子型燃料電池に使用される電極は、高分子電解質膜の両面において、高分子電解質膜の表面に形成される触媒層と、この触媒層の外側に形成されるガス拡散層とからなる構造を有する。電極でのガス拡散層を形成するための個別の部材として、ガス拡散電極が流通している。このガス拡散電極は、導電性多孔質基材に微多孔層(Micro Porous Layer:MPL)と呼ばれる緻密な層を形成したものが一般的に用いられる。ガス拡散電極の導電性多孔質基材としては、化学的な安定性から、炭素繊維を含む基材が一般的に用いられている。 Electrodes used in polymer electrolyte fuel cells consist of a catalyst layer formed on the surface of the polymer electrolyte membrane and a gas diffusion layer formed outside the catalyst layer on both sides of the polymer electrolyte membrane. have a structure. Gas diffusion electrodes are in circulation as separate members for forming gas diffusion layers in the electrodes. As the gas diffusion electrode, a dense layer called a microporous layer (MPL) is generally used on a conductive porous substrate. As the conductive porous substrate of the gas diffusion electrode, a substrate containing carbon fibers is generally used because of its chemical stability.
炭素繊維にはPAN(ポリアクリロニトリル)系炭素繊維とピッチ系炭素繊維があり、世界における炭素繊維使用量の90%以上をPAN系炭素繊維が占める。PAN系炭素繊維は繊維束(トウ)を構成する単繊維の本数によりレギュラートウタイプ(1,000~24,000本の単繊維からなる繊維束)とラージトウタイプ(40,000本以上の単繊維からなる繊維束)に分類される。 Carbon fibers include PAN (polyacrylonitrile)-based carbon fibers and pitch-based carbon fibers, and PAN-based carbon fibers account for 90% or more of the amount of carbon fibers used in the world. PAN-based carbon fibers are divided into regular tow type (fiber bundle consisting of 1,000 to 24,000 single fibers) and large tow type (40,000 or more single fibers) depending on the number of single fibers that make up the fiber bundle (tow). fiber bundle) consisting of fibers.
導電性多孔質基材には炭素繊維をシート化したものが一般的に用いられるが、炭素繊維の繊維束を溶液中で単繊維1本ずつに解し(解繊し)、その状態を長時間保つことは難しく、繊維同士が凝集すると、均一な目付のシートが得られない。また凝集物(以下、結束と表記)が存在すると、燃料電池の信頼性評価の一つである短絡測定において、結束部分の繊維が圧縮時に折れて、高分子電解質膜を突き破り、短絡が発生してしまうケースがある。この結束発生を抑制するため、特許文献1などに示されるように、繊維を含むスラリーの製造方法として、撹拌槽に循環ラインを設け、繊維同士の絡み合いを防止する技術が知られている。 A carbon fiber sheet is generally used for the conductive porous substrate. It is difficult to keep the time, and if the fibers agglomerate, a sheet with a uniform basis weight cannot be obtained. In addition, if aggregates (hereafter referred to as "bundles") are present, in short-circuit measurement, which is one of the reliability evaluations of fuel cells, the fibers in the bundles break during compression and break through the polymer electrolyte membrane, resulting in short circuits. There are cases where In order to suppress the occurrence of this bundling, as shown in Patent Document 1 and the like, as a method for producing a slurry containing fibers, a technique is known in which a circulation line is provided in a stirring tank to prevent the fibers from entangling with each other.
特許文献1に記載の技術は、繊維の均一分散を実現する上で一定の効果を有するものではあるが、分散しにくい炭素繊維への適用においては、炭素繊維を凝集させずに長時間安定に保つには効果が十分ではない。また燃料電池用電極基材には機械強度を保持するため比較的繊維長の長い長繊維を使用する必要があり、その場合は特に、繊維同士が絡み合って結束になりやすく、これを抑制する有効な手段は未だ提供されていない。 The technique described in Patent Document 1 has a certain effect in realizing uniform dispersion of fibers, but when applied to carbon fibers that are difficult to disperse, it can be stably maintained for a long time without aggregating carbon fibers. Not effective enough to keep. In addition, it is necessary to use long fibers with a relatively long fiber length in order to maintain the mechanical strength of the electrode base material for fuel cells. means have not yet been provided.
本発明の課題は、結束が少なく、繊維が均一分散された繊維シートの製造方法を提供することに関する。 SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a fibrous sheet in which the fibers are uniformly dispersed with less bundling.
本発明者らが種々検討した結果、繊維束を解す「解繊工程」と、解繊した単繊維を凝集させずに保つ「分散安定工程」で撹拌方式を分けることが繊維の分散性に有効であるとの知見を得た。 As a result of various investigations by the present inventors, it is effective for the dispersibility of fibers to divide the agitation method into a "fibrillation process" in which the fiber bundle is loosened and a "dispersion stabilization process" in which the fibrillated single fibers are kept without aggregating. I got the knowledge that it is.
本発明は、少なくとも撹拌翼と撹拌軸を含む撹拌機ならびに撹拌槽から構成される撹拌装置を用いて、少なくとも繊維束と分散液を含むスラリー中の繊維束を解繊する解繊工程、当該解繊工程後のスラリーを当該撹拌装置を用いて撹拌する分散安定工程、当該分散安定工程後のスラリーから繊維シートを抄造する抄紙工程を有し、当該解繊工程では撹拌機の偏心率を5%以上30%以下として撹拌し、当該分散安定工程では撹拌機の偏心率を0%以上5%未満として撹拌することを特徴とする、繊維シートの製造方法である。 The present invention provides a defibration step of fibrillating fiber bundles in a slurry containing at least fiber bundles and a dispersion using a stirring device comprising a stirrer including at least a stirring blade and a stirring shaft and a stirring tank, and the defibrating step. It has a dispersion stabilization step of stirring the slurry after the fiberization step using the stirring device, and a papermaking step of making a fiber sheet from the slurry after the dispersion stabilization step, and in the defibration step, the eccentricity of the stirrer is 5%. A method for producing a fiber sheet, characterized by stirring at a rate of 30% or more, and stirring at an eccentricity of the stirrer at 0% or more and less than 5% in the dispersion stabilizing step.
本発明によれば、繊維同士の結束が少なく、繊維が均一分散された繊維シートが提供される。 According to the present invention, there is provided a fiber sheet in which the fibers are less bound together and the fibers are uniformly dispersed.
本発明における繊維シートとしては、燃料電池用電極基材に必要なガス拡散性から、抄紙体が好適に用いられる。 As the fiber sheet in the present invention, a paper sheet is preferably used because of the gas diffusibility required for the fuel cell electrode base material.
抄紙体としては、繊維を分散液中で分散して抄紙した湿体を結着剤(バインダ樹脂)で固着して乾燥、シート化(湿式抄紙)したものが一般的に用いられる。繊維を分散させる分散液としては、消泡剤、界面活性剤、増粘剤を含むことが好ましい。消泡剤は撹拌時の発泡を抑制するもので、特に限定されないが、ウレタン系、ポリオキシアルキレン系、シリコーン系が好ましい。界面活性剤は繊維束を解繊させるのに有効であり、特に限定されないが、ポリエチレングリコール系やポリエチレンオキシド系が好ましい。増粘剤は溶液を増粘させ、繊維の物理的な接触を抑制するのに有効であり、特に限定されないが、ポリエチレンオキシド系やポリアクリル酸系が好ましい。 As a papermaking body, a wet body obtained by dispersing fibers in a dispersion liquid and making paper is fixed with a binder (binder resin) and dried to form a sheet (wet papermaking), which is generally used. The dispersion in which the fibers are dispersed preferably contains an antifoaming agent, a surfactant, and a thickener. The antifoaming agent suppresses foaming during stirring and is not particularly limited, but urethane-based, polyoxyalkylene-based, and silicone-based antifoaming agents are preferred. Surfactants are effective in defibrating fiber bundles and are not particularly limited, but polyethylene glycol-based and polyethylene oxide-based surfactants are preferred. The thickener thickens the solution and is effective in suppressing physical contact between the fibers, and is not particularly limited, but is preferably polyethylene oxide or polyacrylic acid.
本発明の繊維シートの製造方法は、撹拌機の偏心率を5%以上30%以下としてスラリーを撹拌する解繊工程と、その後、解繊工程後のスラリーを撹拌機の偏心率を0%以上5%未満として撹拌する分散安定工程を有する。ここで、スラリーとは分散液中に繊維束が投入されたものを指し、解繊工程後のスラリーの状態とは、分散液に投入した繊維束100質量部のうち、80質量部以上が解れて単繊維になった状態を指す。撹拌槽20は各工程で別々の撹拌槽を用いても良いし、1つの撹拌槽で撹拌機の位置を変えて行っても良い。重要なのは、繊維束が解繊したら撹拌機の偏心率を0%以上5%未満として撹拌することである。解繊時は偏心させないと旋回流が支配的となり撹拌効果が小さく、結束が生じやすくなる。偏心させずに撹拌槽20の内壁に上下流を発生させるようにバッフル板を設けることもできるが、その場合バッフル板近傍で滞留が生じやすく、流速も遅くなるため、やはり結束が生じやすくなる。そのため、解繊時は偏心させて撹拌することが好ましい。
The method for producing a fiber sheet of the present invention includes a defibration step of agitating slurry with an agitator having an eccentricity of 5% or more and 30% or less; It has a dispersion stabilization step of stirring as less than 5%. Here, the slurry refers to the fiber bundles thrown into the dispersion liquid, and the state of the slurry after the defibration step means that 80 parts by mass or more of the 100 parts by weight of the fiber bundles put into the dispersion liquid are unraveled. It refers to the state where it becomes a single fiber. As for the stirring
一方、解繊後にそのまま偏心撹拌を継続すると、上下流により繊維同士の接触確率が増え、経時で結束が増加するため、解繊後は偏心率を0%以上5%未満として撹拌する。これにより繊維同士の接触が抑えられ、分散状態を安定に保つことができる。 On the other hand, if eccentric stirring is continued after defibration, the probability of contact between fibers increases upstream and downstream, and binding increases over time. As a result, the contact between the fibers is suppressed, and the dispersed state can be stably maintained.
撹拌時の流動状態としては、解繊工程と分散安定工程のどちらにおいても、撹拌翼1段あたりの見掛循環回数が2.0回/分以上15.0回/分以下が好ましい。さらに好ましくは、4.0回/分以上8.0回/分以下である。見掛循環回数とは以下式で算出されるもので、撹拌槽内の液の流動性を表す指標である。吐出係数とは撹拌翼の形状より算出される数値である。
見掛循環回数(回/分) =(吐出係数×回転数(rpm)×(撹拌翼の直径(m))3)÷液量(m3)。
As for the flow state during stirring, the apparent number of circulations per stage of the stirring blade is preferably 2.0 times/minute or more and 15.0 times/minute or less in both the fibrillation process and the dispersion stabilization process. More preferably, it is 4.0 times/minute or more and 8.0 times/minute or less. The apparent number of circulations is calculated by the following formula, and is an index representing the fluidity of the liquid in the stirring vessel. The discharge coefficient is a numerical value calculated from the shape of the stirring blade.
Apparent number of circulations (times/min) = (discharge coefficient x number of revolutions (rpm) x (diameter of stirring blade (m)) 3 )/liquid volume (m 3 ).
見掛循環回数が2.0回/分以上であれば流動性が向上し、繊維同士の凝集をより抑制できる。15.0回/分以下であれば、分散液の発泡を抑え、凝集をより抑制できる。 If the apparent number of circulations is 2.0 times/minute or more, fluidity is improved, and aggregation of fibers can be further suppressed. If it is 15.0 times/min or less, foaming of the dispersion can be suppressed, and aggregation can be further suppressed.
撹拌翼の種類としては、解繊工程、分散安定工程のいずれにおいても、翼のせん断能力と吐出能力のバランスから、プロペラ翼かパドル翼を用いるのが好ましい。タービン翼はせん断能力に優れるが、吐出能力に劣るため、滞留の発生や解繊性が悪くなることがある。 As for the type of stirring impeller, it is preferable to use a propeller impeller or a paddle impeller in both the fibrillation step and the dispersion stabilization step, from the balance between the shearing ability and the discharge ability of the impeller. Turbine blades are excellent in shearing capacity, but inferior in discharge capacity, which may result in retention and poor defibration properties.
撹拌翼のサイズとしては、解繊工程、分散安定工程のいずれにおいても、撹拌翼の直径/撹拌槽の内径(d/D)が0.20以上0.50以下が好ましい。ここで、撹拌翼の直径は、翼の液面に平行な面が円形の場合はその直径であり、円形でない場合は、回転時に翼が描く軌跡の外接円の直径である。0.20未満では翼が小さく吐出能力に劣ることがあり、0.50を超えるとモーター動力を上げる必要がある、また発泡を抑えるべく低い回転数とするため翼近傍のせん断能力に劣ることがある。 As for the size of the stirring blades, the diameter of the stirring blades/the inner diameter of the stirring tank (d/D) is preferably 0.20 or more and 0.50 or less in both the fibrillation step and the dispersion stabilization step. Here, the diameter of the impeller is the diameter when the surface of the impeller parallel to the liquid surface is circular, and the diameter of the circumscribed circle of the trajectory drawn by the impeller during rotation when it is not circular. If it is less than 0.20, the blade may be small and the discharge capacity may be inferior. If it exceeds 0.50, the motor power needs to be increased. be.
撹拌翼の段数は、解繊工程、分散安定工程のいずれにおいても、2段以上が好ましい。1段では撹拌槽内の上部と下部を均一に混ぜることができず、滞留が生じることがある。 The number of stages of stirring blades is preferably two or more in both the fibrillation process and the dispersion stabilization process. In one stage, the top and bottom parts in the stirring tank cannot be uniformly mixed, and retention may occur.
撹拌翼1段目33の高さ(撹拌槽底部から撹拌翼1段目最下部までの高さ35)は、解繊工程、分散安定工程のいずれにおいても、撹拌槽の高さ25(撹拌槽底部から上蓋21までの高さ)の30%以下が好ましい。30%を超えると撹拌槽20の底部分の流動性が悪くなり結束の原因となることがある。
The height of the
解繊工程における撹拌機30の偏心率は5%以上30%以下であり、15%以上25%以下がより好ましい。偏心率とは撹拌機30の撹拌軸31が撹拌槽20の中心軸からどれくらい離れているかを表すもので、以下式で算出される。
撹拌機の偏心率 =(撹拌槽中心軸から撹拌軸までの距離R÷撹拌槽の内径D)×100。
The eccentricity of the
Eccentricity of the stirrer = (distance R from the central axis of the stirring tank to the stirring axis/inner diameter D of the stirring tank) x 100.
偏心率が5%未満では偏心が不十分で上下流が発生しにくく、30%を超えると撹拌機30から遠い部分の流動性が悪くなり滞留や結束の原因となる。 If the eccentricity is less than 5%, the eccentricity is insufficient and upstream and downstream are difficult to occur.
分散安定工程における撹拌機30の偏心率は0%以上5%未満である。5%未満とすることで上下流の発生を抑え、繊維同士の凝集を抑制することができる。
The eccentricity of the
分散液の粘度としては、繊維の分散性、抄紙時の脱水性(ろ過性)を考慮すると、5mPa・s以上50mPa・s以下が好ましく、8mPa・s以上20mPa・s以下がさらに好ましい。 The viscosity of the dispersion liquid is preferably 5 mPa·s or more and 50 mPa·s or less, more preferably 8 mPa·s or more and 20 mPa·s or less, in consideration of fiber dispersibility and dehydration (filterability) during papermaking.
撹拌時のスラリーの平均流速は、解繊工程および/または分散安定工程において、1m/s以上であることが好ましい。平均流速を1m/s以上とすることで、繊維束が解繊しやすく、また凝集を抑制することができる。平均流速は、数値流体解析ソフトSTAR-CCM+(SIEMENS社製)等を用いて、体積平均流速を算出することで求めることができる。算出方法としては、分散液の密度および粘度を入力し流体解析が定常状態になるまで実行し、定常状態になった解析結果より流体領域の体積平均速度を算出する等の方法がある。 The average flow velocity of the slurry during stirring is preferably 1 m/s or more in the fibrillation step and/or the dispersion stabilization step. By setting the average flow velocity to 1 m/s or more, the fiber bundle can be easily fibrillated and aggregation can be suppressed. The average flow velocity can be obtained by calculating the volume average flow velocity using numerical fluid analysis software STAR-CCM+ (manufactured by SIEMENS) or the like. As a calculation method, there is a method of inputting the density and viscosity of the dispersion liquid, executing the fluid analysis until a steady state is reached, and calculating the volume average velocity in the fluid region from the steady state analysis result.
撹拌時のスラリーの平均せん断速度は、解繊工程および/または分散安定工程において、6/s以上であることが好ましい。平均せん断速度を6/s以上とすることで、繊維束が解繊しやすく、また凝集を抑制することができる。平均せん断速度は、数値流体解析ソフトSTAR-CCM+(SIEMENS社製)等を用いて、体積平均せん断速度を算出することで求めることができる。算出方法としては、分散液の密度および粘度を入力し流体解析が定常状態になるまで実行し、定常状態になった解析結果より流体領域の体積平均せん断速度を算出する等の方法がある。 The average shear rate of the slurry during stirring is preferably 6/s or more in the fibrillation step and/or the dispersion stabilization step. By setting the average shear rate to 6/s or higher, the fiber bundle can be easily defibrated and aggregation can be suppressed. The average shear rate can be obtained by calculating the volume average shear rate using numerical fluid analysis software STAR-CCM+ (manufactured by SIEMENS) or the like. As a calculation method, there is a method in which the density and viscosity of the dispersion are input, the fluid analysis is performed until a steady state is reached, and the volume average shear rate in the fluid region is calculated from the steady state analysis results.
本発明で用いる繊維の種類は特に限定されず、炭素繊維を用いた場合でも均一に分散することができる。炭素繊維は無機繊維であり、表面に官能基をほぼ有しないため、界面活性剤などの成分と化学的に結合しにくく分散安定化しにくい。炭素繊維の表面にサイジング剤(集束剤)を付与した繊維もあるが、この場合、界面活性剤との反応性が高く解繊性が良くなるものの、単繊維同士の相互作用も良くなるため、凝集しやすくなる。本発明の製造方法を用いることで、上記のような課題を有する炭素繊維を用いた場合においても、解繊性とその後の分散安定性を両立することができる。 The type of fibers used in the present invention is not particularly limited, and uniform dispersion can be achieved even when carbon fibers are used. Since carbon fibers are inorganic fibers and have almost no functional groups on their surfaces, they are difficult to chemically bond with components such as surfactants and are difficult to be dispersed and stabilized. There are also fibers with a sizing agent (bundle) added to the surface of the carbon fiber. It becomes easy to aggregate. By using the production method of the present invention, it is possible to achieve both defibration properties and subsequent dispersion stability even when carbon fibers having the above problems are used.
本発明で用いる繊維は、単繊維の平均長さが3~20mmの範囲内にあることが好ましく、より好ましくは5~15mmの範囲内である。単繊維の平均長さが3mm以上であると、繊維シートが機械強度に優れたものとなる。一方、単繊維の平均長さが20mm以下であると、繊維の分散性に優れ、均質な繊維シートが得られる。単繊維の平均長さが長いほど繊維同士の接触面積が増え、結束しやすくなるため、分散性の観点からは繊維が短いほど好ましい。 The fibers used in the present invention preferably have an average single fiber length in the range of 3 to 20 mm, more preferably in the range of 5 to 15 mm. When the average length of the single fibers is 3 mm or more, the fiber sheet has excellent mechanical strength. On the other hand, when the average length of the single fibers is 20 mm or less, the fibers are excellent in dispersibility and a homogeneous fiber sheet can be obtained. The longer the average length of the single fibers, the greater the contact area between the fibers and the easier it is to bind them together.
本発明で用いる撹拌槽20の形状は特に限定されないが、スラリーの流動性から円筒形状が好ましく、底壁部23はスラリーの排出性から水平ではなく排出口24に向かって傾斜していることが好ましい。
The shape of the stirring
本発明の繊維シートの製造方法としては、上述の分散安定工程後のスラリーを抄紙して湿体を得、結着剤(バインダ樹脂)を塗布して乾燥し、ロール上に巻き取る方法が一般的に用いられる。なお、結束抑制の観点から、分散安定工程後に同条件で撹拌をしながら抄紙機に当該スラリーを送液して抄紙することは特に好ましい。湿体を得る方法としては、長網式抄紙機、円網式抄紙機、傾斜式抄紙機でスラリー中の繊維と分散液を分離して、繊維をシート化する湿式抄紙法が用いられるが、スラリー中の繊維濃度を薄くすることが可能な傾斜式抄紙機が好ましい。 As a method for producing the fiber sheet of the present invention, the slurry after the above dispersion stabilization step is generally paper-made to obtain a wet body, a binder (binder resin) is applied, dried, and wound on a roll. used for purposes. From the viewpoint of suppressing bundling, it is particularly preferable to send the slurry to a paper machine while stirring under the same conditions after the dispersion stabilization step to make paper. As a method for obtaining a wet body, a wet papermaking method is used in which the fibers and the dispersion liquid in the slurry are separated by a fourdrinier paper machine, a cylinder paper machine, or an inclined paper machine, and the fibers are formed into a sheet. A tilted paper machine is preferred because it allows for a thin fiber concentration in the slurry.
湿体に塗布するバインダ樹脂としては特に限定されないが、繊維との接着性の観点からポリビニルアルコールの水溶液が好ましい。バインダ樹脂の塗布は、市販されている各種塗布装置を用いることができる。塗布方式としては、スプレーコーター、カーテンコーター、ダイコーターなどの方式を使用することができる。 Although the binder resin to be applied to a wet body is not particularly limited, an aqueous solution of polyvinyl alcohol is preferable from the viewpoint of adhesion to fibers. Various commercially available applicators can be used to apply the binder resin. As a coating method, a method such as a spray coater, a curtain coater, or a die coater can be used.
湿体へのバインダ樹脂の塗布後、100~180℃の温度でバインダ樹脂を塗布した湿体を乾燥させることが好ましい。乾燥方式としては、一般的に用いられる多筒ドライヤー、ヤンキードライヤー、熱風乾燥などの乾燥方式を使用することができるが、耐熱ベルト、耐熱メッシュ、耐熱フェルトなどで支持しながら搬送して熱風乾燥させることが好ましい。 After coating the wet body with the binder resin, it is preferable to dry the wet body coated with the binder resin at a temperature of 100 to 180°C. As a drying method, commonly used drying methods such as multi-cylinder dryer, Yankee dryer, and hot air drying can be used. is preferred.
導電性やガス拡散性の観点から導電性多孔質基材として好適に用いられるカーボンペーパーを製造する場合には、上記の繊維として炭素繊維を用いて炭素繊維シートを製造し、それを樹脂炭化物で結着すると良い。炭素繊維シートからカーボンペーパーを製造する方法としては特に限定されないが、炭素繊維シートに結着材となる樹脂組成物を含浸し、その後加熱加圧することで目的の厚み、密度に調整し、最後に樹脂組成物を炭化するために、不活性雰囲気下で焼成する方法が好適に用いられる。 When producing carbon paper that is suitably used as a conductive porous substrate from the viewpoint of conductivity and gas diffusion, carbon fibers are used as the above fibers to produce a carbon fiber sheet, which is then coated with a resin carbide. It's good to tie up. The method for producing carbon paper from a carbon fiber sheet is not particularly limited, but the carbon fiber sheet is impregnated with a resin composition that serves as a binder, and then heated and pressed to adjust to the desired thickness and density. A method of firing under an inert atmosphere is preferably used to carbonize the resin composition.
以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載に制限されるものではない。 EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to the following descriptions.
[分散液の粘度測定]
分散液を110mlスクリュー管に95ml入れ、B型粘度計(東機産業(株)製)でローターNo.20(M1)、60rpmで3回測定し、その平均値を分散液の粘度(mPa・s)とした。
[Measurement of viscosity of dispersion liquid]
95 ml of the dispersion liquid was placed in a 110 ml screw tube, and the rotor No. The viscosity was measured three times at 20 (M1) and 60 rpm, and the average value was taken as the viscosity (mPa·s) of the dispersion.
[解繊状態の確認方法]
スラリー1Lを炭素繊維0.05質量部の濃度まで分散液で希釈し、単繊維でない繊維(解繊していない繊維および凝集した繊維)および単繊維をそれぞれ140℃の温度で1時間乾燥させた。その後、それぞれの重量を測定し、乾燥させた繊維100質量部に対し単繊維が80質量部以上となる状態を解繊工程の完了とした。
[Method for checking defibration state]
1 L of the slurry was diluted with the dispersion liquid to a concentration of 0.05 part by mass of carbon fibers, and non-single fibers (non-fibrillated fibers and aggregated fibers) and single fibers were each dried at a temperature of 140° C. for 1 hour. . After that, each weight was measured, and the defibration process was completed when the amount of single fibers reached 80 parts by mass or more with respect to 100 parts by mass of dried fibers.
[繊維シートの結束数測定]
繊維シートを長手方向に1m切り出したサンプルを10枚用意し、それぞれ結束(幅1mm以上または長さ30mm以上の繊維凝集物)の個数をカウントし、繊維シートの面積で割った。10枚のサンプルに対して上記の計算を行い、その平均値を結束数(個/m2)とした。
[Measurement of number of bundles of fiber sheets]
Ten samples were prepared by cutting the fiber sheet in the longitudinal direction by 1 m, and the number of bundles (fiber aggregates with a width of 1 mm or more or a length of 30 mm or more) was counted and divided by the area of the fiber sheet. The above calculation was performed for 10 samples, and the average value was taken as the number of bundles (pieces/m 2 ).
(実施例1)
液量6.5m3のイオン交換水100質量部に対し、消泡剤0.01質量部(KM-73;信越化学工業(株)製)、増粘剤0.01質量部(“ノプテックス(登録商標)”E-R060;サンノプコ(株)製)、界面活性剤0.01質量部(“アルコックス(登録商標)”CP-B1;明成化学工業(株)製)を添加し、図1の撹拌装置10にて、10分撹拌した。図1の撹拌装置10は撹拌翼として直径が0.77mで吐出係数が0.415であるプロペラ翼を2段用い、撹拌翼の直径/撹拌槽の内径(d/D)は0.35、撹拌翼1段目33の高さは撹拌槽高さ25の20%で、撹拌槽中心軸から撹拌軸までの距離Rは0.50m、偏心率は23%であった。また、撹拌時の撹拌翼の回転数は140rpmで、撹拌翼1段あたりの見掛循環回数は4.1回/分であった。
(Example 1)
To 100 parts by mass of ion-exchanged water with a liquid volume of 6.5 m 3 , add 0.01 parts by mass of an antifoaming agent (KM-73; manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.01 parts by mass of a thickening agent ("Noptex ( Registered trademark) "E-R060; manufactured by San Nopco Co., Ltd.), 0.01 parts by mass of a surfactant ("Alcox (registered trademark)"CP-B1; manufactured by Meisei Chemical Industry Co., Ltd.) was added, and was stirred for 10 minutes with the stirring
次に、6mmの長さにカットした東レ(株)製PAN系炭素繊維“トレカ(登録商標)“T300(平均単繊維径:7μm)0.15質量部を図1の撹拌装置10に投入し、上記の撹拌条件で、5分撹拌し、繊維束を解繊させた(解繊工程)。解繊状態は、上記[解繊状態の確認方法]に記載の方法に従って事前に確認しておき、解繊工程の撹拌時間を決定した。その後、図2の撹拌装置10に送液した。図2の撹拌装置10は偏心率が0%であることを除けば図1の撹拌装置10と同様のものであった。上記解繊工程と同様の回転数で撹拌を開始した(分散安定工程)。上記の撹拌をしながら抄紙機に送液して抄造し、バインダ溶液(ポリビニルアルコールの10質量%水溶液)を塗布し、乾燥してロール状に巻き取り、目付が40g/m2の、炭素繊維からなる長尺の繊維シート(炭素繊維抄紙体)を得た。バインダ溶液の塗布量は、炭素繊維抄紙体100質量部に対してポリビニルアルコールが15質量部になるよう調整された。分散安定工程の条件における撹拌は送液(抄紙)完了まで計40分間続けた。なお、各工程における撹拌時のスラリーの平均流速および平均せん断速度は、数値流体解析ソフトSTAR-CCM+(SIEMENS社製)を用いて、それぞれ体積平均流速、体積平均せん断速度を算出することで求めた。得られた繊維シートについて、上記[繊維シートの結束数測定]に記載の方法に従って測定した結束数は0個/m2であった。
Next, 0.15 part by mass of Toray Industries, Inc.'s PAN-based carbon fiber "Torayca (registered trademark)" T300 (average single fiber diameter: 7 μm) cut to a length of 6 mm was put into the stirring
(実施例2~5)
分散液中の増粘剤配合量を変化させ、分散液の粘度を3~60mPa・sとした以外は実施例1と同様にして、繊維シートを製造した。
(Examples 2-5)
A fiber sheet was produced in the same manner as in Example 1, except that the blending amount of the thickening agent in the dispersion was varied to set the viscosity of the dispersion to 3 to 60 mPa·s.
(実施例6~9)
解繊工程と分散安定工程において、撹拌機30の回転数を変化させ、見掛循環回数を1.0~17.0回/分にした以外は実施例1と同様にして、繊維シートを製造した。
(Examples 6-9)
A fiber sheet is produced in the same manner as in Example 1, except that in the fibrillation process and the dispersion stabilization process, the number of rotations of the
(実施例10)
図1と図2の撹拌機30における撹拌翼を吐出係数が0.498のパドル翼にし、見掛循環回数が実施例1と同様になるように回転数を調整した以外は実施例1と同様にして、繊維シートを製造した。
(Example 10)
The same as in Example 1 except that the stirring blades in the
(実施例11)
図1と図2の撹拌機30における撹拌翼を吐出係数が0.300のタービン翼にし、見掛循環回数が実施例1と同様になるように回転数を調整した以外は実施例1と同様にして、繊維シートを製造した。
(Example 11)
The same as Example 1 except that the stirring blades in the
(実施例12~15)
図1と図2の撹拌機30における撹拌翼の直径を変更し、撹拌翼の直径/撹拌槽の内径(d/D)を0.10~0.52にした以外は実施例1と同様にして、繊維シートを製造した。
(Examples 12-15)
The same procedure as in Example 1 was carried out except that the diameter of the stirring blades in the
(実施例16)
図1と図2の撹拌機30における撹拌翼段数を1段にした以外は実施例1と同様にして、繊維シートを製造した。
(Example 16)
A fiber sheet was produced in the same manner as in Example 1, except that the number of stages of stirring blades in the
(実施例17)
図1と図2の撹拌装置10における撹拌翼1段目33の高さを撹拌槽20の高さの35%にした以外は実施例1と同様にして、繊維シートを製造した。
(Example 17)
A fiber sheet was produced in the same manner as in Example 1 except that the height of the
(実施例18~20)
図1の撹拌装置10の偏心率を13~30%にした以外は実施例1と同様にして、繊維シートを製造した。
(Examples 18-20)
A fiber sheet was produced in the same manner as in Example 1, except that the eccentricity of the stirring
(実施例21)
図2の撹拌装置10の偏心率を4%にした以外は実施例1と同様にして、繊維シートを製造した。
(Example 21)
A fiber sheet was produced in the same manner as in Example 1, except that the eccentricity of the stirring
(比較例1)
分散安定工程において、偏心率が23%である図1の撹拌装置10を用いた以外は実施例1と同様にして、繊維シートを製造した。
(Comparative example 1)
A fiber sheet was produced in the same manner as in Example 1, except that the stirring
(比較例2)
解繊工程において、偏心率が0%である図2の撹拌装置10を用いた以外は実施例1と同様にして、繊維シートを製造した。
(Comparative example 2)
A fiber sheet was produced in the same manner as in Example 1, except that the stirring
(比較例3)
図1の撹拌装置10の偏心率を3%にした以外は実施例1と同様にして、繊維シートを製造した。
(Comparative Example 3)
A fiber sheet was produced in the same manner as in Example 1, except that the eccentricity of the stirring
(比較例4)
図1の撹拌装置10の偏心率を32%にした以外は実施例1と同様にして、繊維シートを製造した。
(Comparative Example 4)
A fiber sheet was produced in the same manner as in Example 1, except that the eccentricity of the stirring
(比較例5)
図2の撹拌装置10の偏心率を10%にした以外は実施例1と同様にして、繊維シートを製造した。
(Comparative Example 5)
A fiber sheet was produced in the same manner as in Example 1, except that the eccentricity of the stirring
10 撹拌装置
20 撹拌槽
21 上蓋
22 側壁部
23 底壁部
24 排出口
25 撹拌槽高さ
D 撹拌槽の内径
30 撹拌機
31 撹拌軸
32 駆動モーター
33 撹拌翼1段目
34 撹拌翼2段目
35 撹拌槽底部から撹拌翼1段目最下部までの高さ
R 撹拌槽中心軸から撹拌軸までの距離
d 撹拌翼の直径
40 分散液またはスラリー
10
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021046842A JP2022146056A (en) | 2021-03-22 | 2021-03-22 | Manufacturing method of fiber sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021046842A JP2022146056A (en) | 2021-03-22 | 2021-03-22 | Manufacturing method of fiber sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022146056A true JP2022146056A (en) | 2022-10-05 |
Family
ID=83461383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021046842A Pending JP2022146056A (en) | 2021-03-22 | 2021-03-22 | Manufacturing method of fiber sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022146056A (en) |
-
2021
- 2021-03-22 JP JP2021046842A patent/JP2022146056A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110528314A (en) | A kind of composite sheet and its preparation method and application of the polyphenylene sulfide superfine fiber containing melt-blown | |
CN110205862B (en) | Preparation method of aramid nanofiber self-reinforced aramid mica paper | |
CN103855346A (en) | Storage battery AGM separator, preparation method thereof and storage battery | |
JP2010202987A (en) | Composite sheet material and method for producing the same | |
JP5585450B2 (en) | Porous electrode substrate and method for producing the same | |
JP5948544B2 (en) | Production method of composite sheet material | |
CN110380016A (en) | Carbon nanotube aqueous slurry, carbon nanotube silicon carbon material and preparation method thereof | |
JP4051714B2 (en) | Electrode substrate for polymer electrolyte fuel cell and method for producing the same | |
JP5526969B2 (en) | Porous electrode substrate and method for producing the same | |
JP4409211B2 (en) | Method for producing porous electrode substrate for polymer electrolyte fuel cell | |
CN110158346A (en) | A kind of polyimide fiber paper based insulation material and preparation method thereof | |
JP2022146056A (en) | Manufacturing method of fiber sheet | |
US20120164448A1 (en) | Short carbon fiber bundle dispersion method and short carbon fiber fine bundle made by the same | |
JP2018133266A (en) | Porous electrode material and manufacturing method of the same | |
JP2004353124A (en) | Nonwoven fabric of carbon fiber and method for producing the same | |
JP5581299B2 (en) | Manufacturing method of diffusion electrode for fuel cell | |
WO2009148178A1 (en) | Thin tissue material, manufacturing method thereof, and electrical and electronic parts using same | |
CN114541175A (en) | Preparation method of high wet strength paper and high wet strength paper | |
CN117779515A (en) | Carbon fiber base paper for fuel cell and preparation method thereof | |
JPH0411091A (en) | Method for making inorganic paper and inorganic paper by the method | |
CN118223329B (en) | Sunflower stalk skin TOCNF, preparation method and application thereof | |
CN110491685A (en) | A kind of graphene method for preparing super capacitor slurry and the graphene supercapacitor prepared using graphene super capacitor slurry | |
RU2279159C1 (en) | Composite material for alkali storage battery separators and its production process | |
JP2004247148A (en) | Water repellent paste for gas diffusion layer | |
JP3782148B2 (en) | Alkaline battery separator |