Nothing Special   »   [go: up one dir, main page]

JP2022031246A - 液状組成物、シート及び積層体 - Google Patents

液状組成物、シート及び積層体 Download PDF

Info

Publication number
JP2022031246A
JP2022031246A JP2021129584A JP2021129584A JP2022031246A JP 2022031246 A JP2022031246 A JP 2022031246A JP 2021129584 A JP2021129584 A JP 2021129584A JP 2021129584 A JP2021129584 A JP 2021129584A JP 2022031246 A JP2022031246 A JP 2022031246A
Authority
JP
Japan
Prior art keywords
group
fibrous cellulose
mass
less
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021129584A
Other languages
English (en)
Inventor
一輝 小泉
Kazuki Koizumi
悠介 松原
Yusuke Matsubara
利奈 宍戸
Rina SHISHIDO
貴之 大渕
Takayuki Obuchi
義治 錦織
Yoshiharu Nishigori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp filed Critical Oji Holdings Corp
Publication of JP2022031246A publication Critical patent/JP2022031246A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paper (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】本発明は、微細繊維状セルロースを含むシートであって、加熱時の黄変が抑制されたシートを提供することを課題とする。
【解決手段】本発明は、繊維幅が1000nm以下の繊維状セルロースと、樹脂と、還元剤と、を含有する液状組成物に関する。また、本発明は、繊維幅が1000nm以下の繊維状セルロースと、樹脂と、還元剤と、を含有するシートに関する。
【選択図】なし

Description

本発明は、液状組成物、シート及び積層体に関する。
近年、石油資源の代替及び環境意識の高まりから、再生産可能な天然繊維を利用した材料が着目されている。天然繊維の中でも、繊維径が10μm以上50μm以下の繊維状セルロース、特に木材由来の繊維状セルロース(パルプ)は、主に紙製品としてこれまで幅広く使用されてきた。
繊維状セルロースとしては、繊維径が1μm以下の微細繊維状セルロースも知られている。微細繊維状セルロースは、新たな素材として注目されており、その用途は多岐にわたる。例えば、微細繊維状セルロースを含む分散体や複合体の開発が進められている。
例えば、特許文献1には、酸化セルロース繊維を、還元剤を含む反応液中で還元させ、還元型酸化セルロース繊維を得た後に、還元型酸化セルロース繊維を乾燥させてなるセルロース繊維が開示されている。このセルロース繊維は、溶媒に微細分散可能であり、このセルロース繊維から成形体を形成することも検討されている。また、特許文献2には、微細化した酸化セルロースの分散液に、金属塩と還元剤を添加して、平板状金属微粒子を還元析出させるとともに、平板状金属微粒子と微細セルロース繊維との複合体を形成する複合体の製造方法が開示されている。さらに、特許文献3には、平均繊維径が1~1000nmであり、酸化防止剤を導入してなるセルロース繊維を含む組成物が開示されている。
特開2015-113376号公報 特開2015-221844号公報 特開2011-127075号公報
上述したように微細繊維状セルロースを含む組成物やシートが知られている。しかしながら、従来の組成物からシートを成形した場合、使用環境や製造工程において加熱された場合にシートが黄変する場合があり問題となっていた。
そこで本発明者らは、このような従来技術の課題を解決するために、微細繊維状セルロースを含むシートであって、加熱時の黄変が抑制されたシートを提供することを目的として検討を進めた。
上記の課題を解決するために鋭意検討を行った結果、本発明者らは、繊維幅が1000nm以下の繊維状セルロースを含有する液状組成物に、樹脂と還元剤を添加することにより、加熱時の黄変が抑制されたシートが得られることを見出した。
具体的に、本発明は、以下の構成を有する。
[1] 繊維幅が1000nm以下の繊維状セルロースと、
樹脂と、
還元剤と、を含有する液状組成物。
[2] 繊維状セルロースにおけるイオン性置換基の導入量が0.5mmol/g未満である、[1]に記載の液状組成物。
[3] イオン性置換基がアニオン性基である、[2]に記載の液状組成物。
[4] アニオン性基が、リンオキソ酸基、リンオキソ酸基に由来する置換基、硫黄オキソ酸基、硫黄オキソ酸基に由来する置換基、カルボキシ基及びカルボキシ基に由来する置換基からなる群から選択される少なくとも1種である、[3]に記載の液状組成物。
[5] 還元剤は、亜硫酸ナトリウム、チオ硫酸ナトリウム、水素化ホウ素ナトリウム、亜硫酸水素ナトリウム、シアノ水素化ホウ素ナトリウム及び次亜硫酸ナトリウムからなる群から選択される少なくとも1種である、[1]~[4]のいずれかに記載の液状組成物。
[6] 樹脂は水溶性高分子である、[1]~[5]のいずれかに記載の液状組成物。
[7] 重合禁止剤をさらに含む、[1]~[6]のいずれかに記載の液状組成物。
[8] 還元剤の含有量は、繊維状セルロース100質量部に対して0.1~5質量部である、[1]~[7]のいずれかに記載の液状組成物。
[9] 繊維幅が1000nm以下の繊維状セルロースと、
樹脂と、
還元剤と、を含有するシート。
[10] 繊維状セルロースにおけるイオン性置換基の導入量が0.5mmol/g未満である、[9]に記載のシート。
[11] イオン性置換基がアニオン性基である、[10]に記載のシート。
[12] アニオン性基が、リンオキソ酸基、リンオキソ酸基に由来する置換基、硫黄オキソ酸基、硫黄オキソ酸基に由来する置換基、カルボキシ基及びカルボキシ基に由来する置換基からなる群から選択される少なくとも1種である、[11]に記載のシート。
[13] 還元剤は、亜硫酸ナトリウム、チオ硫酸ナトリウム、水素化ホウ素ナトリウム、亜硫酸水素ナトリウム、シアノ水素化ホウ素ナトリウム及び次亜硫酸ナトリウムからなる群から選択される少なくとも1種である、[9]~[12]のいずれかに記載のシート。
[14] 樹脂は水溶性高分子である、[9]~[13]のいずれかに記載のシート。
[15] 重合禁止剤をさらに含む、[9]~[14]のいずれかに記載のシート。
[16] 還元剤の含有量は、繊維状セルロース100質量部に対して0.1~5質量部である、[9]~[15]のいずれかに記載のシート。
[17] YI値が1.5以下である、[9]~[16]のいずれかに記載のシート。
[18] ヘーズが3.5%以下である、[9]~[17]のいずれかに記載のシート。
[19] 光学部材用である、[9]~[18]のいずれかに記載のシート。
[20] [9]~[19]のいずれかに記載のシートと、シートの少なくとも一方の面上に積層された樹脂層とを有する積層体。
本発明によれば、加熱時の黄変が抑制されたシートを得ることができる。
図1は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。 図2は、カルボキシ基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。
以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
(液状組成物)
本発明は、繊維幅が1000nm以下の繊維状セルロースと、樹脂と、還元剤と、を含有する液状組成物に関する。なお、本明細書において、繊維幅が1000nm以下の繊維状セルロースを微細繊維状セルロースもしくはCNFともいう。
本発明の液状組成物は、上記構成を有するものであるため、加熱時の黄変が抑制された成形体を形成することができる。なお、成形体の形状は特に限定されるものではないが、本実施形態においては、特に加熱時の黄変が抑制されたシートを形成することができる。本明細書において、加熱時の黄変は、160℃で6時間加熱した後のYI値によって評価することができ、160℃で6時間加熱した後のシートのYI値が5.0以下である場合に、加熱時の黄変が抑制されていると判定できる。
また、本発明の液状組成物は、上記構成を有するものであるため、透明性にも優れた成形体(シート)を形成することができる。また、本発明の液状組成物から形成される成形体(シート)は高透明で、かつ意匠性にも優れている。例えば、本実施形態のシートにおいては、繊維状セルロースの凝集が抑制されているため、異物感がなく意匠性にも優れている。
本実施形態における液状組成物のpHは2.0以上であることが好ましく、3.0以上であることがより好ましく、4.0以上であることがさらに好ましい。また、液状組成物のpHは11.0以下であることが好ましく、10.0以下であることがより好ましい。液状組成物のpHを上記範囲内とすることにより、液状組成物を加熱処理した際に繊維状セルロースが分解して、着色要因の一つである単糖を発生させることを抑制することができる。
本実施形態では、固形分濃度を0.4質量%とした際の液状組成物の粘度は、100mPa・s以上であることが好ましく、300mPa・s以上であることがより好ましく、500mPa・s以上であることがさらに好ましい。また、固形分濃度を0.4質量%とした際の液状組成物の粘度は、20000mPa・s以下であることが好ましく、10000mPa・s以下であることがより好ましい。ここで、液状組成物の粘度は、B型粘度計により測定される粘度である。測定条件は、回転速度3rpmとし、測定開始から3分後の粘度値を液状組成物の粘度とする。また、測定対象の液状組成物は測定前に23℃、相対湿度50%の環境下に24時間静置し、測定時の液状組成物の液温を23℃とする。B型粘度計としては、例えば、BLOOKFIELD社製、アナログ粘度計T-LVTを用いることができる。
本実施形態における液状組成物のヘーズは、15%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることがさらに好ましい。なお、液状組成物のヘーズは0.0%であってもよい。ここで、液状組成物のヘーズは、JIS K 7136:2000に準拠し、光路長1cmのガラスセルを用いて測定したヘーズ値である。具体的には、ヘーズメーター(村上色彩技術研究所社製、HM-150)を用いて測定を行う。光路長1cmのガラスセルとしては、例えば光路長1cmの液体用ガラスセル(藤原製作所製、MG-40、逆光路)を用いることができる。また、測定対象の液状組成物は測定前に23℃、相対湿度50%の環境下に24時間静置し、測定時の液状組成物の液温を23℃とする。なお、ゼロ点測定は、同ガラスセルに入れたイオン交換水で行う。
(還元剤)
本発明の液状組成物は還元剤を含む。本明細書において、還元剤とは、繊維状セルロースが元来含むアルデヒド基(還元末端)や、繊維状セルロースにイオン性官能基を導入する際に副次的に生成するアルデヒド基および/またはケトン基、繊維状セルロースを含むシートが加熱された際に生成するアルデヒド基および/またはケトン基を還元する作用を有する化合物である。また、還元剤は、繊維状セルロースを酸化し得る空気中の酸素、その他、系内に存在する酸化剤を還元する作用を有する化合物でもある。例えば、繊維状セルロースに生成したアルデヒド基および/またはケトン基に還元剤が作用した場合は、還元作用により、アルコール(水酸基)が生成する。
中でも、還元剤は、亜硫酸ナトリウム、チオ硫酸ナトリウム、水素化ホウ素ナトリウム、亜硫酸水素ナトリウム、シアノ水素化ホウ素ナトリウム及び次亜硫酸ナトリウムからなる群から選択される少なくとも1種であることが好ましく、亜硫酸ナトリウム及びチオ硫酸ナトリウムから選択される少なくとも1種であることがより好ましく、チオ硫酸ナトリウムであることが特に好ましい。還元剤として、上記化合物を用いることにより、液状組成物からシートを形成した際に、シートの加熱時の黄変をより効果的に抑制することができる。なお、チオ硫酸ナトリウムが特に加熱黄変を抑制できるメカニズムは定かではないが、上述の還元剤としての効果に加え、チオ硫酸ナトリウム溶液のpHが中性領域にあり、繊維状セルロース分散液のpHを変動させにくいため、還元剤の中でも特にチオ硫酸ナトリウムの還元作用が発揮されやすいものと推定される。例えば、繊維状セルロースがアニオン性置換基を有する場合、加水分解により水素イオンまたは水酸化物イオンが発生し黄変物質である単糖の生成が促進されるが、繊維状セルロースのpHを変動させにくいチオ硫酸ナトリウムを用いることにより単糖の発生が抑制され、加熱黄変が抑制されるものと考えられる。
還元剤の含有量は、繊維状セルロース100質量部に対して0.1質量部以上であることが好ましく、0.2質量部以上であることがより好ましく、0.3質量部以上であることがさらに好ましい。また、還元剤の含有量は、繊維状セルロース100質量部に対して5質量部以下であることが好ましく、4質量部以下であることがより好ましく、3質量部以下であることがさらに好ましい。還元剤の含有量を上記範囲内とすることにより、シートの加熱後の黄変をより効果的に抑制することができる。
(樹脂)
本発明の液状組成物は樹脂を含む。本発明において、樹脂は、シート中において、バインダー樹脂として機能する。樹脂として、例えば、水溶性高分子が使用される。水溶性高分子としては、例えば、ポリビニルアルコール及びその誘導体、ポリエチレンオキサイド、ポリエチレングリコール、澱粉及びその誘導体、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、エチルセルロース等のセルロース誘導体、ポリアクリル酸ソーダ、ポリビニルピロリドン、カゼイン、ゼラチン及びそれらの誘導体等が挙げられる。
樹脂としては、水溶性高分子以外の樹脂を用いることもできる。水溶性高分子以外の樹脂としては、例えば、アクリルアミド-アクリル酸エステル共重合体、アクリルアミド-アクリル酸エステル-メタアクリル酸エステル共重合体、スチレン-無水マレイン酸共重合体、イソブチレン-無水マレイン酸共重合体、ポリ酢酸ビニル、ポリウレタン、ポリアクリル酸、ポリアクリル酸エステル、塩化ビニル-酢酸ビニル共重合体、ポリブチルメタクリレート、エチレン-酢酸ビニル共重合体等のエマルジョン、スチレン-ブタジエン共重合体、スチレン-ブタジエン-アクリル系共重合体等が挙げられる。これらの樹脂は、水中に分散したラテックスとして用いられてもよい。
中でも、シート化のし易さ、透明性、加熱着色抑制の観点から、樹脂は水溶性高分子であることが好ましく、ポリエチレングリコール(PEG)、ポリエチレンオキサイド(PEO)及びポリビニルアルコール(PVA)からなる群から選択される少なくとも1種であることがより好ましく、ポリビニルアルコール(PVA)であることが特に好ましい。樹脂としてポリビニルアルコール(PVA)を用いることにより、液状組成物からシートを形成しやすくなり、また、高透明で加熱黄変が抑制されたシートが得られやすくなる。さらに、樹脂としてポリビニルアルコール(PVA)を用いることにより、液状組成物からシートを形成した際に、シートの高弾性化も可能となる。
樹脂として用いるポリビニルアルコール(PVA)の重量平均分子量は、300以上であることが好ましく、500以上であることがより好ましく、1000以上であることが特に好ましい。また、ポリビニルアルコール(PVA)の重量平均分子量は4500以下であることが好ましく、4000以下であることがより好ましく、3500以下であることが特に好ましい。ポリビニルアルコール(PVA)の重量平均分子量を上記範囲内とすることにより、液状組成物をシート化し易くなる。
樹脂の含有量は、繊維状セルロース100質量部に対して10質量部以上であることが好ましく、20質量部以上であることがより好ましく、30質量部以上であることがさらに好ましい。また、樹脂の含有量は、繊維状セルロース100質量部に対して500質量部以下であることが好ましく、400質量部以下であることがより好ましく、300質量部以下であることがさらに好ましい。樹脂の含有量を上記範囲内とすることにより、シートの加熱後の黄変をより効果的に抑制することができる。
(微細繊維状セルロース)
本発明の液状組成物は、繊維幅が1000nm以下である繊維状セルロース(微細繊維状セルロース)を含む。繊維状セルロースの繊維幅は100nm以下であることがより好ましく、50nm以下であることがより好ましく、20nm以下であることがさらに好ましく、10nm以下であることが一層好ましく、8nm以下であることが特に好ましい。
繊維状セルロースの繊維幅は、例えば電子顕微鏡観察などにより測定することが可能である。繊維状セルロースの平均繊維幅は、例えば1000nm以下である。繊維状セルロースの平均繊維幅は、例えば2nm以上1000nm以下であることが好ましく、2nm以上100nm以下であることがより好ましく、2nm以上50nm以下であることがさらに好ましく、2nm以上10nm以下であることが特に好ましい。繊維状セルロースの平均繊維幅を2nm以上とすることにより、セルロース分子として水に溶解することを抑制し、繊維状セルロースによる強度や剛性、寸法安定性の向上という効果をより発現しやすくすることができる。なお、繊維状セルロースは、例えば単繊維状のセルロースである。
繊維状セルロースの繊維幅は、例えば電子顕微鏡を用いて以下のようにして測定される。まず、濃度0.05質量%以上0.1質量%以下の繊維状セルロースの水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。次いで、観察対象となる繊維の幅に応じて1000倍、5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
上記条件を満足する観察画像に対し、直線X、直線Yと交差する繊維の幅を目視で読み取る。このようにして、少なくとも互いに重なっていない表面部分の観察画像を3組以上得る。次いで、各画像に対して、直線X、直線Yと交差する繊維の幅を読み取る。これにより、少なくとも20本×2×3=120本の繊維幅を読み取る。そして、読み取った繊維幅の平均値を、繊維状セルロースの平均繊維幅とする。
繊維状セルロースの繊維長は、特に限定されないが、例えば0.1μm以上1000μm以下であることが好ましく、0.1μm以上800μm以下であることがより好ましく、0.1μm以上600μm以下であることがさらに好ましい。繊維長を上記範囲内とすることにより、繊維状セルロースの結晶領域の破壊を抑制できる。また、繊維状セルロースのスラリー粘度を適切な範囲とすることも可能となる。なお、繊維状セルロースの繊維長は、例えばTEM、SEM、AFMによる画像解析より求めることができる。
繊維状セルロースはI型結晶構造を有していることが好ましい。ここで、繊維状セルロースがI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。繊維状セルロースに占めるI型結晶構造の割合は、例えば30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。これにより、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。
繊維状セルロースの軸比(繊維長/繊維幅)は、特に限定されないが、例えば20以上10000以下であることが好ましく、50以上1000以下であることがより好ましい。軸比を上記下限値以上とすることにより、繊維状セルロースを含有するシートを形成しやすい。また、溶媒分散体を作製した際に十分な増粘性が得られやすい。軸比を上記上限値以下とすることにより、例えば繊維状セルロースを水分散液として扱う際に、希釈等のハンドリングがしやすくなる点で好ましい。
繊維状セルロースは、例えば結晶領域と非結晶領域をともに有している。結晶領域と非結晶領域をともに有し、かつ軸比が上記範囲内にある繊維状セルロースは、後述する微細繊維状セルロースの製造方法により実現されるものである。
繊維状セルロースにおけるセルロース成分はα-セルロース成分とヘミセルロース成分に分類できる。ヘミセルロースの比率が低い方が、経時黄変や加熱黄変の抑制効果が得られやすいため好ましい。繊維状セルロースのヘミセルロースの比率は30%未満であることが好ましく、25%未満であることがより好ましく、20%未満であることがさらに好ましい。
繊維状セルロースに含まれる窒素量は0.08mmol/g以下であることが好ましく、0.04mmol/g以下であることがより好ましく、0.02mmol/g以下であることがさらに好ましい。また、繊維状セルロースに含まれる窒素量は0.001mmol/g以上であることが好ましい。なお、繊維状セルロース中の窒素量は、以下の方法で測定される値である。まず、繊維状セルロースを含む分散液を固形分濃度1質量%に調整し、ケルダール法(JIS K 0102:2016 44.1)で分解する。分解後、陽イオンクロマトグラフィでアンモニウムイオン量(mmol)を測定し、測定に使用したセルロース量(g)で除して窒素含有量(mmol/g)を算出する。
本実施形態において繊維状セルロースは、イオン性置換基を有していてもよい。イオン性置換基としては、例えばアニオン性基及びカチオン性基のいずれか一方又は双方を含むことができる。本実施形態において、繊維状セルロースがイオン性置換基を有する場合、イオン性置換基はアニオン性基であることが好ましい。また、イオン性置換基は、エステル結合またはエーテル結合を介して繊維状セルロースに導入される基であることが好ましく、エステル結合を介して繊維状セルロースに導入される基であることがより好ましい。この場合、エステル結合は、繊維状セルロースとイオン性置換基となる化合物の脱水縮合で形成されることが好ましい。
アニオン性基としては、例えば、リンオキソ酸基またはリンオキソ酸基に由来する置換基(単にリンオキソ酸基ということもある)、カルボキシ基またはカルボキシ基に由来する置換基(単にカルボキシ基ということもある)、硫黄オキソ酸基または硫黄オキソ酸基に由来する置換基(単に硫黄オキソ酸基ということもある)、ザンテート基またはザンテート基に由来する置換基(単にザンテート基ということもある)、ホスホン基またはホスホン基に由来する置換基(単にホスホン基ということもある)、ホスフィン基またはホスフィン基に由来する置換基(単にホスフィン基ということもある)、スルホン基またはスルホン基に由来する置換基(単にスルホン基ということもある)、カルボキシアルキル基(カルボキシメチル基やカルボキシエチル基を含む)等を挙げることができる。中でも、アニオン性基は、リンオキソ酸基、リンオキソ酸基に由来する置換基、硫黄オキソ酸基、硫黄オキソ酸基に由来する置換基、カルボキシ基及びカルボキシ基に由来する置換基からなる群から選択される少なくとも1種であることが好ましく、リンオキソ酸基、リンオキソ酸基に由来する置換基、硫黄オキソ酸基及び硫黄オキソ酸基に由来する置換基から選択される少なくとも1種であることがより好ましく、リンオキソ酸基又はリンオキソ酸基に由来する置換基であることが特に好ましい。アニオン性基としてリンオキソ酸基を導入することにより、例えば、アルカリ性条件下や酸性条件下においても、繊維状セルロースの分散性をより高めることができ、結果として高透明なシートが得られやすくなる。
リンオキソ酸基又はリンオキソ酸基に由来する置換基は、例えば下記式(1)で表される置換基である。各繊維状セルロースには、下記式(1)で表される置換基が複数導入されていてもよい。この場合、複数導入される下記式(1)で表される置換基はそれぞれ同一であっても異なっていてもよい。
Figure 2022031246000001
式(1)中、a、bおよびnは自然数であり、mは任意の数である(ただし、a=b×mである)。n個あるαおよびα’のうち少なくとも1つはOであり、残りはR又はORである。なお、各αおよびα’の全てがOであっても構わない。n個あるαは全て同じでも、それぞれ異なっていてもよい。βb+は有機物又は無機物からなる1価以上の陽イオンである。
Rは、各々、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、不飽和-環状炭化水素基、芳香族基、またはこれらの誘導基である。また、式(1)においては、nは1であることが好ましい。
飽和-直鎖状炭化水素基としては、メチル基、エチル基、n-プロピル基、又はn-ブチル基等が挙げられるが、特に限定されない。飽和-分岐鎖状炭化水素基としては、i-プロピル基、又はt-ブチル基等が挙げられるが、特に限定されない。飽和-環状炭化水素基としては、シクロペンチル基、又はシクロヘキシル基等が挙げられるが、特に限定されない。不飽和-直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、特に限定されない。不飽和-分岐鎖状炭化水素基としては、i-プロペニル基、又は3-ブテニル基等が挙げられるが、特に限定されない。不飽和-環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、特に限定されない。芳香族基としては、フェニル基、又はナフチル基等が挙げられるが、特に限定されない。
また、Rにおける誘導基としては、上記各種炭化水素基の主鎖又は側鎖に対し、カルボキシ基、カルボキシレート基(-COO)、ヒドロキシ基、アミノ基及びアンモニウム基などの官能基から選択される少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、特に限定されない。また、Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、リンオキソ酸基の分子量を適切な範囲とすることができ、繊維原料への浸透を容易にし、微細セルロース繊維の収率を高めることもできる。なお、式(1)中にRが複数個存在する場合や繊維状セルロースに上記式(1)で表される複数種の置換基が導入される場合には、複数存在するRはそれぞれ同一であっても異なっていてもよい。
βb+は有機物又は無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、有機オニウムイオンを挙げることができる。有機オニウムイオンとしては、例えば、有機アンモニウムイオンや有機ホスホニウムイオンを挙げることができる。有機アンモニウムイオンとしては、例えば、脂肪族アンモニウムイオンや芳香族アンモニウムイオンを挙げることができ、有機ホスホニウムイオンとしては、例えば、脂肪族ホスホニウムイオンや芳香族ホスホニウムイオンを挙げることができる。無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属のイオン、水素イオン、アンモニウムイオン等が挙げられる。なお、式(1)中にβb+が複数個存在する場合や繊維状セルロースに上記式(1)で表される複数種の置換基が導入される場合には、複数存在するβb+はそれぞれ同一であっても異なっていてもよい。有機物又は無機物からなる1価以上の陽イオンとしては、βb+を含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。
リンオキソ酸基又はリンオキソ酸基に由来する置換基としては、より具体的には、リン酸基(-PO)、リン酸基の塩、亜リン酸基(ホスホン酸基)(-PO)、亜リン酸基(ホスホン酸基)の塩が挙げられる。また、リンオキソ酸基又はリンオキソ酸基に由来する置換基は、リン酸基が縮合した基(例えば、ピロリン酸基)、ホスホン酸が縮合した基(例えば、ポリホスホン酸基)、リン酸エステル基(例えば、モノメチルリン酸基、ポリオキシエチレンアルキルリン酸基)、アルキルホスホン酸基(例えば、メチルホスホン酸基)などであってもよい。
また、硫黄オキソ酸基(硫黄オキソ酸基又は硫黄オキソ酸基に由来する置換基)は、例えば下記式(2)で表される置換基である。各繊維状セルロースには、下記式(2)で表される置換基が複数導入されていてもよい。この場合、複数導入される下記式(2)で表される置換基はそれぞれ同一であっても異なっていてもよい。
Figure 2022031246000002
上記構造式中、bおよびnは自然数であり、pは0または1であり、mは任意の数である(ただし、1=b×mである)。なお、nが2以上である場合、複数あるpは同一の数であってもよく、異なる数であってもよい。上記構造式中、βb+は有機物または無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、有機オニウムイオンを挙げることができる。有機オニウムイオンとしては、例えば、有機アンモニウムイオンや有機ホスホニウムイオンを挙げることができる。有機アンモニウムイオンとしては、例えば、脂肪族アンモニウムイオンや芳香族アンモニウムイオンを挙げることができ、有機ホスホニウムイオンとしては、例えば、脂肪族ホスホニウムイオンや芳香族ホスホニウムイオンを挙げることができる。無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属のイオン、水素イオン、アンモニウムイオン等が挙げられる。なお、繊維状セルロースに上記式(2)で表される複数種の置換基が導入される場合には、複数存在するβb+はそれぞれ同一であっても異なっていてもよい。有機物又は無機物からなる1価以上の陽イオンとしては、βb+を含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。
繊維状セルロースがイオン性置換基を有する場合、イオン性置換基の導入量は、例えば繊維状セルロース1g(質量)あたり0.05mmol/g以上であることが好ましく、0.10mmol/g以上であることがより好ましく、0.20mmol/g以上であることがさらに好ましく、0.40mmol/g以上であることが一層好ましく、0.60mmol/g以上であることが特に好ましい。また、繊維状セルロースに対するイオン性置換基の導入量は、例えば繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましく、2.50mmol/g以下であることが一層好ましく、2.00mmol/g以下であることが特に好ましい。ここで、単位mmol/gにおける分母は、イオン性置換基の対イオンが水素イオン(H)であるときの繊維状セルロースの質量を示す。イオン性置換基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。また、イオン性置換基の導入量を上記範囲内とすることにより、高透明なシートが得られやすくなる。
なお、本実施形態において、繊維状セルロースにおけるイオン性置換基の導入量は0.5mmol/g未満であってもよい。このような繊維状セルロースは、イオン性置換基を有する繊維状セルロースに対して置換基除去処理を施してイオン性置換基導入量を0.5mmol/g未満としたものであることが好ましい。すなわち、繊維状セルロースは、置換基除去微細繊維状セルロースであってもよい。このように、イオン性置換基の導入量が0.5mmol/g未満の置換基除去微細繊維状セルロースを用いることにより、シートの加熱後の黄変をより効果的に抑制することも可能となる。
繊維状セルロースに対するイオン性置換基の導入量は、例えば中和滴定法により測定することができる。中和滴定法による測定では、得られた繊維状セルロースを含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながらpHの変化を求めることにより、導入量を測定する。
図1は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。繊維状セルロースに対するリンオキソ酸基の導入量は、例えば次のように測定される。
まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図1の上側部に示すような滴定曲線を得る。図1の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図1の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ確認される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中に含まれる繊維状セルロースの第1解離酸量と等しくなり、第1終点から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる繊維状セルロースの第2解離酸量と等しくなり、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる繊維状セルロースの総解離酸量と等しくなる。そして、滴定開始から第1終点までに必要としたアルカリ量を滴定対象スラリー中の固形分(g)で除して得られる値が、リンオキソ酸基導入量(mmol/g)となる。なお、単にリンオキソ酸基導入量(又はリンオキソ酸基量)と言った場合は、第1解離酸量のことを表す。
なお、図1において、滴定開始から第1終点までの領域を第1領域と呼び、第1終点から第2終点までの領域を第2領域と呼ぶ。例えば、リンオキソ酸基がリン酸基の場合であって、このリン酸基が縮合を起こす場合、見かけ上、リンオキソ酸基における弱酸性基量(本明細書では第2解離酸量ともいう)が低下し、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、リンオキソ酸基における強酸性基量(本明細書では第1解離酸量ともいう)は、縮合の有無に関わらずリン原子の量と一致する。また、リンオキソ酸基が亜リン酸基の場合は、リンオキソ酸基に弱酸性基が存在しなくなるため、第2領域に必要としたアルカリ量が少なくなるか、第2領域に必要としたアルカリ量はゼロとなる場合もある。この場合、滴定曲線において、pHの増分が極大となる点は一つとなる。
なお、上述のリンオキソ酸基導入量(mmol/g)は、分母が酸型の繊維状セルロースの質量を示すことから、酸型の繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(酸型)と呼ぶ)を示している。一方で、リンオキソ酸基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(C型))を求めることができる。
すなわち、下記計算式によって算出する。
リンオキソ酸基量(C型)=リンオキソ酸基量(酸型)/{1+(W-1)×A/1000}
A[mmol/g]:繊維状セルロースが有するリンオキソ酸基由来の総アニオン量(リンオキソ酸基の総解離酸量)
W:陽イオンCの1価あたりの式量(例えば、Naは23、Alは9)
図2は、イオン性置換基としてカルボキシ基を有する繊維状セルロースを含有する分散液に対するNaOH滴下量とpHの関係を示すグラフである。繊維状セルロースに対するカルボキシ基の導入量は、例えば次のように測定される。
まず、繊維状セルロースを含有する分散液を強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図2の上側部に示すような滴定曲線を得る。図2の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図2の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が一つ確認され、この極大点を第1終点と呼ぶ。ここで、図2における滴定開始から第1終点までの領域を第1領域と呼ぶ。第1領域で必要としたアルカリ量が、滴定に使用した分散液中のカルボキシ基量と等しくなる。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の繊維状セルロースを含有する分散液中の固形分(g)で除すことで、カルボキシ基の導入量(mmol/g)を算出する。
なお、上述のカルボキシ基導入量(mmol/g)は、分母が酸型の繊維状セルロースの質量であることから、酸型の繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(酸型)と呼ぶ)を示している。一方で、カルボキシ基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(C型))を求めることができる。すなわち、下記計算式によって算出する。
カルボキシ基量(C型)=カルボキシ基量(酸型)/{1+(W-1)×(カルボキシ基量(酸型))/1000}
W:陽イオンCの1価あたりの式量(例えば、Naは23、Alは9)
滴定法によるイオン性置換基量の測定においては、水酸化ナトリウム水溶液1滴の滴下量が多すぎる場合や、滴定間隔が短すぎる場合、本来より低いイオン性置換基量となるなど正確な値が得られないことがある。適切な滴下量、滴定間隔としては、例えば、0.1N水酸化ナトリウム水溶液を5~30秒に10~50μLずつ滴定するなどが望ましい。また、繊維状セルロース含有スラリーに溶解した二酸化炭素の影響を排除するため、例えば、滴定開始の15分前から滴定終了まで、窒素ガスなどの不活性ガスをスラリーに吹き込みながら測定するなどが望ましい。
また、繊維状セルロースに対する硫黄オキソ酸基又はスルホン基の導入量は、繊維状セルロースを含むスラリーを凍結乾燥し、さらに粉砕した試料の硫黄量を測定することで算出することができる。具体的には、繊維状セルロースを含むスラリーを凍結乾燥し、さらに粉砕した試料を、密閉容器中で硝酸を用いて加圧加熱分解した後、適宜希釈してICP-OESで硫黄量を測定する。供試した繊維状セルロースの絶乾質量で割り返して算出した値を繊維状セルロースの硫黄オキソ酸基量又はスルホン基量(単位:mmol/g)とする。
繊維状セルロースに対するザンテート基の導入量は、Bredee法により以下の方法で測定することができる。まず、繊維状セルロース1.5質量部(絶乾質量)に飽和塩化アンモニウム溶液を40mL添加し、ガラス棒でサンプルを潰しながらよく混合し、約15分間放置後、GFPろ紙(ADVANTEC社製GS-25)でろ過して、飽和塩化アンモニウム溶液で十分に洗浄する。次いで、サンプルをGFPろ紙ごと500mLのトールビーカーに入れ、0.5M水酸化ナトリウム溶液(5℃)を50mL添加して撹拌し、15分間放置する。溶液がピンク色になるまでフェノールフタレイン溶液を添加した後、1.5M酢酸を添加して、溶液がピンク色から無色になった点を中和点とする。中和後蒸留水を250mL添加してよく撹拌し、1.5M酢酸10mL、0.05mol/Lヨウ素溶液10mLをホールピペットを使用して添加する。そして、この溶液を0.05mol/Lチオ硫酸ナトリウム溶液で滴定し、チオ硫酸ナトリウムの滴定量、繊維状セルロースの絶乾質量より次式からザンテート基量を算出する。
ザンテート基量(mmol/g)=(0.05×10×2-0.05×チオ硫酸ナトリウム滴定量(mL))/1000/繊維状セルロースの絶乾質量(g)
繊維状セルロースに対するカチオン基の導入量は、微量窒素分析を行い、下記式で算出することができる。
(カチオン基量)[mmol/g]=(窒素量)[g]/14×1000/(供試した微細繊維状セルロース量)[g]
(微細繊維状セルロースの製造方法)
<繊維原料>
微細繊維状セルロースは、セルロースを含む繊維原料から製造される。セルロースを含む繊維原料としては、特に限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、例えば木材パルプ、非木材パルプ、及び脱墨パルプが挙げられる。木材パルプとしては、特に限定されないが、例えば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)及び酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)及びケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)及びサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、特に限定されないが、例えばコットンリンター及びコットンリント等の綿系パルプ、麻、麦わら及びバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、特に限定されないが、例えば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。上記パルプの中でも、入手のしやすさという観点からは、例えば木材パルプ及び脱墨パルプが好ましい。また、木材パルプの中でも、セルロース比率が大きく解繊処理時の微細繊維状セルロースの収率が高い観点や、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の微細繊維状セルロースが得られる観点から、例えば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。なお、軸比の大きい長繊維の微細繊維状セルロースを用いると粘度が高くなる傾向がある。
セルロースを含む繊維原料としては、例えばホヤ類に含まれるセルロースや、酢酸菌が生成するバクテリアセルロースを利用することもできる。また、セルロースを含む繊維原料に代えて、キチン、キトサンなどの直鎖型の含窒素多糖高分子が形成する繊維を用いることもできる。
<リンオキソ酸基導入工程>
微細繊維状セルロースの製造工程は、イオン性置換基導入工程を含むことが好ましく、イオン性置換基導入工程としては、例えば、リンオキソ酸基導入工程が挙げられる。リンオキソ酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、リンオキソ酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。この工程により、リンオキソ酸基導入繊維が得られることとなる。
本実施形態に係るリンオキソ酸基導入工程では、セルロースを含む繊維原料と化合物Aの反応を、尿素及びその誘導体から選択される少なくとも1種(以下、「化合物B」ともいう)の存在下で行ってもよい。一方で、化合物Bが存在しない状態において、セルロースを含む繊維原料と化合物Aの反応を行ってもよい。
化合物Aを化合物Bとの共存下で繊維原料に作用させる方法の一例としては、乾燥状態、湿潤状態又はスラリー状の繊維原料に対して、化合物Aと化合物Bを混合する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態又は湿潤状態の繊維原料を用いることが好ましく、特に乾燥状態の繊維原料を用いることが好ましい。繊維原料の形態は、特に限定されないが、例えば綿状や薄いシート状であることが好ましい。化合物A及び化合物Bは、それぞれ粉末状又は溶媒に溶解させた溶液状又は融点以上まで加熱して溶融させた状態で繊維原料に添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、溶媒に溶解させた溶液状、特に水溶液の状態で添加することが好ましい。また、化合物Aと化合物Bは繊維原料に対して同時に添加してもよく、別々に添加してもよく、混合物として添加してもよい。化合物Aと化合物Bの添加方法としては、特に限定されないが、化合物Aと化合物Bが溶液状の場合は、繊維原料を溶液内に浸漬し吸液させたのちに取り出してもよいし、繊維原料に溶液を滴下してもよい。また、必要量の化合物Aと化合物Bを繊維原料に添加してもよいし、過剰量の化合物Aと化合物Bをそれぞれ繊維原料に添加した後に、圧搾や濾過によって余剰の化合物Aと化合物Bを除去してもよい。
本実施態様で使用する化合物Aとしては、リン原子を有し、セルロースとエステル結合を形成可能な化合物であればよく、リン酸もしくはその塩、亜リン酸もしくはその塩、脱水縮合リン酸もしくはその塩、無水リン酸(五酸化二リン)などが挙げられるが特に限定されない。リン酸としては、種々の純度のものを使用することができ、例えば100%リン酸(正リン酸)や85%リン酸を使用することができる。亜リン酸としては、99%亜リン酸(ホスホン酸)が挙げられる。脱水縮合リン酸は、リン酸が脱水反応により2分子以上縮合したものであり、例えばピロリン酸、ポリリン酸等を挙げることができる。リン酸塩、亜リン酸塩、脱水縮合リン酸塩としては、リン酸、亜リン酸又は脱水縮合リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。これらのうち、リンオキソ酸基の導入効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩又は亜リン酸、亜リン酸のナトリウム塩、亜リン酸のカリウム塩、亜リン酸のアンモニウム塩が好ましく、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸二水素アンモニウム、又は亜リン酸、亜リン酸ナトリウムがより好ましい。
繊維原料に対する化合物Aの添加量は、特に限定されないが、例えば化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)に対するリン原子の添加量が0.5質量%以上100質量%以下となることが好ましく、1質量%以上50質量%以下となることがより好ましく、2質量%以上30質量%以下となることがさらに好ましい。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、微細繊維状セルロースの収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。
本実施態様で使用する化合物Bは、上述のとおり尿素及びその誘導体から選択される少なくとも1種である。化合物Bとしては、例えば尿素、ビウレット、1-フェニル尿素、1-ベンジル尿素、1-メチル尿素、及び1-エチル尿素などが挙げられる。
反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。
繊維原料(絶乾質量)に対する化合物Bの添加量は、特に限定されないが、例えば1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましい。
セルロースを含む繊維原料と化合物Aの反応においては、化合物Bの他に、例えばアミド類又はアミン類を反応系に含んでもよい。アミド類としては、例えばホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、例えばメチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。
リンオキソ酸基導入工程においては、繊維原料に化合物A等を添加又は混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、リンオキソ酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、例えば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、例えば熱風乾燥装置、撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置を用いることができる。
本実施形態に係る加熱処理においては、例えば薄いシート状の繊維原料に化合物Aを含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物Aを混練又は撹拌しながら加熱する方法を採用することができる。これにより、繊維原料における化合物Aの濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一にリンオキソ酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物Aが表面張力によって水分子に引き付けられ、同様に繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることに起因するものと考えられる。
また、加熱処理に用いる加熱装置は、例えばスラリーが保持する水分、及び化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合(リン酸エステル化)反応に伴って生じる水分、を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、例えば送風方式のオーブン等が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、軸比の高い微細繊維状セルロースを得ることが可能となる。
加熱処理の時間は、例えば繊維原料から実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本実施形態では、加熱温度と加熱時間を適切な範囲とすることにより、リンオキソ酸基の導入量を好ましい範囲内とすることができる。
リンオキソ酸基導入工程は、少なくとも1回行えば良いが、2回以上繰り返して行うこともできる。2回以上のリンオキソ酸基導入工程を行うことにより、繊維原料に対して多くのリンオキソ酸基を導入することができる。
繊維原料に対するリンオキソ酸基の導入量は、例えば繊維原料1g(質量)あたり0.05mmol/g以上であることが好ましく、0.10mmol/g以上であることがより好ましく、0.20mmol/g以上であることがさらに好ましく、0.40mmol/g以上であることが一層好ましく、0.60mmol/g以上であることが特に好ましい。また、繊維原料に対するリンオキソ酸基の導入量は、例えば繊維原料1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましく、2.50mmol/g以下であることが一層好ましく、2.00mmol/g以下であることが特に好ましい。リンオキソ酸基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易にし、微細繊維状セルロースの安定性を高めることができる。また、リンオキソ酸基の導入量を上記範囲内とすることにより、加熱時の黄変が抑制されたシートが得られやすくなる。
<カルボキシ基導入工程>
微細繊維状セルロースの製造工程は、イオン性置換基導入工程として、例えば、カルボキシ基導入工程を含んでもよい。カルボキシ基導入工程は、セルロースを含む繊維原料に対し、オゾン酸化やフェントン法による酸化、TEMPO酸化処理などの酸化処理やカルボン酸由来の基を有する化合物もしくはその誘導体、又はカルボン酸由来の基を有する化合物の酸無水物もしくはその誘導体によって処理することにより行われる。
カルボン酸由来の基を有する化合物としては、特に限定されないが、例えばマレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸等のトリカルボン酸化合物が挙げられる。また、カルボン酸由来の基を有する化合物の誘導体としては、特に限定されないが、例えばカルボキシ基を有する化合物の酸無水物のイミド化物、カルボキシ基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシ基を有する化合物の酸無水物のイミド化物としては、特に限定されないが、例えばマレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。
カルボン酸由来の基を有する化合物の酸無水物としては、特に限定されないが、例えば無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。また、カルボン酸由来の基を有する化合物の酸無水物の誘導体としては、特に限定されないが、例えばジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等のカルボキシ基を有する化合物の酸無水物の少なくとも一部の水素原子が、アルキル基、フェニル基等の置換基により置換されたものが挙げられる。
カルボキシ基導入工程において、TEMPO酸化処理を行う場合には、例えばその処理をpHが6以上8以下の条件で行うことが好ましい。このような処理は、中性TEMPO酸化処理ともいう。中性TEMPO酸化処理は、例えばリン酸ナトリウム緩衝液(pH=6.8)に、繊維原料としてパルプと、触媒としてTEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)等のニトロキシラジカル、犠牲試薬として次亜塩素酸ナトリウムを添加することで行うことができる。さらに亜塩素酸ナトリウムを共存させることによって、酸化の過程で発生するアルデヒドを、効率的にカルボキシ基まで酸化することができる。また、TEMPO酸化処理は、その処理をpHが10以上11以下の条件で行ってもよい。このような処理は、アルカリTEMPO酸化処理ともいう。アルカリTEMPO酸化処理は、例えば繊維原料としてのパルプに対し、触媒としてTEMPO等のニトロキシラジカルと、共触媒として臭化ナトリウムと、酸化剤として次亜塩素酸ナトリウムを添加することにより行うことができる。
繊維原料に対するカルボキシ基の導入量は、置換基の種類によっても変わるが、例えばTEMPO酸化によりカルボキシ基を導入する場合、繊維原料1g(質量)あたり0.05mmol/g以上であることが好ましく、0.10mmol/g以上であることがより好ましく、0.20mmol/g以上であることがさらに好ましく、0.40mmol/g以上であることが一層好ましく、0.60mmol/g以上であることが特に好ましい。また、繊維状セルロースに対するカルボキシ基の導入量は、3.65mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましく、2.50mmol/g以下であることがさらに好ましく、2.00mmol/g以下であることが一層より好ましい。その他、置換基がカルボキシメチル基である場合、カルボキシ基の導入量は、微細繊維状セルロース1g(質量)あたり5.8mmol/g以下であってもよい。カルボキシ基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。また、カルボキシ基の導入量を上記範囲内とすることにより、加熱時の黄変が抑制されたシートが得られやすくなる。
<硫黄オキソ酸基導入工程>
微細繊維状セルロースの製造工程は、イオン性置換基導入工程として、例えば、硫黄オキソ酸基導入工程を含んでもよい。硫黄オキソ酸基導入工程は、セルロースを含む繊維原料が有する水酸基と硫黄オキソ酸が反応することで、硫黄オキソ酸基を有するセルロース繊維(硫黄オキソ酸基導入繊維)を得ることができる。
硫黄オキソ酸基導入工程では、上述した<リンオキソ酸基導入工程>における化合物Aに代えて、セルロースを含む繊維原料が有する水酸基と反応することで、硫黄オキソ酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物C」ともいう)を用いる。化合物Cとしては、硫黄原子を有し、セルロースとエステル結合を形成可能な化合物であればよく、硫酸もしくはその塩、亜硫酸もしくはその塩、硫酸アミドなどが挙げられるが特に限定されない。硫酸としては、種々の純度のものを使用することができ、例えば96%硫酸(濃硫酸)を使用することができる。亜硫酸としては、5%亜硫酸水が挙げられる。硫酸塩又は亜硫酸塩としては、硫酸塩又は亜硫酸塩のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。硫酸アミドとしては、スルファミン酸などを使用することができる。硫黄オキソ酸基導入工程では、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることが好ましい。
硫黄オキソ酸基導入工程においては、セルロース原料に硫黄オキソ酸、並びに、尿素及び/又は尿素誘導体を含む水溶液を混合した後、当該セルロース原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、硫黄オキソ酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、100℃以上であることが好ましく、120℃以上であることがより好ましく、150℃以上であることがさらに好ましい。また、加熱処理温度は、300℃以下であることが好ましく、250℃以下であることがより好ましく、200℃以下であることがさらに好ましい。
加熱処理工程では、実質的に水分がなくなるまで加熱をすることが好ましい。このため、加熱処理時間は、セルロース原料に含まれる水分量や、硫黄オキソ酸、並びに、尿素及び/又は尿素誘導体を含む水溶液の添加量によって、変動するが、例えば、10秒以上10000秒以下とすることが好ましい。加熱処理には、種々の熱媒体を有する機器を利用することができ、例えば熱風乾燥装置、撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置を用いることができる。
セルロース原料に対する硫黄オキソ酸基の導入量は、0.05mmol/g以上であることが好ましく、0.10mmol/g以上であることがより好ましく、0.20mmol/g以上であることがさらに好ましく、0.40mmol/g以上であることが一層好ましく、0.50mmol/g以上であることが特に好ましい。また、セルロース原料に対する硫黄オキソ酸基の導入量は、5.00mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましい。硫黄オキソ酸基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。また、硫黄オキソ酸基の導入量を上記範囲内とすることにより、加熱時の黄変が抑制されたシートが得られやすくなる。
<ザンテート基導入工程>
微細繊維状セルロースの製造工程は、イオン性置換基導入工程として、ザンテート基導入工程を含んでもよい。ザンテート基導入工程は、セルロースを含む繊維原料が有する水酸基を下記式(3)で表されるザンテート基で置換することで、ザンテート基を有するセルロース繊維(ザンテート基導入繊維)を得ることができる。
―OCSS……(3)
ここで、Mは水素イオン、一価金属イオン、アンモニウムイオン、脂肪族又は芳香族アンモニウムイオンから選ばれる少なくとも一種である。
ザンテート基導入工程では、まず、上記セルロースを含む繊維原料をアルカリ溶液で処理するアルカリ処理を行って、アルカリセルロースを得る。アルカリ溶液としては、水酸化アルカリ金属水溶液、水酸化アルカリ土類金属水溶液などが挙げられる。中でも、アルカリ溶液は、水酸化ナトリウムや水酸化カリウムなどの水酸化アルカリ金属水溶液であることが好ましく、水酸化ナトリウム水溶液であることが特に好ましい。アルカリ溶液が水酸化アルカリ金属水溶液の場合、水酸化アルカリ金属水溶液中の水酸化アルカリ金属濃度は4質量%以上であることが好ましく、5質量%以上であることがより好ましい。また、水酸化アルカリ金属水溶液中の水酸化アルカリ金属濃度は9質量%以下であることが好ましい。水酸化アルカリ金属濃度を上記下限値以上とすることにより、セルロースのマーセル化を十分に進行させることができ、その後のザンテート化の際に生じる副生成物の量を減らすことができ、結果として、ザンテート基導入繊維の収率を高めることができる。これにより、後述する解繊処理をより効果的に行うことができる。また、水酸化アルカリ金属濃度を上記上限値以下とすることにより、マーセル化を進行させつつも、セルロースの結晶領域にまで水酸化アルカリ金属水溶液が浸透することを抑制することができるため、セルロースI型の結晶構造が維持されやすくなり、微細繊維状セルロースの収率をより高めることができる。
上記アルカリ処理の時間は、30分間以上であることが好ましく、1時間以上であることがより好ましい。また、アルカリ処理の時間は、6時間以下であることが好ましく、5時間以下であることがより好ましい。アルカリ処理の時間を上記範囲内とすることにより、最終的な収率を高めることができ、生産性を高めることができる。
上記アルカリ処理で得られたアルカリセルロースは、その後に固液分離して水溶液分をできるだけ除去しておくことが好ましい。これにより、次いで行われるザンテート化処理時の水分含有量を減らすことができ、反応を促進できる。固液分離の方法としては、例えば遠心分離や濾別などの一般的な脱水方法を用いることができる。なお、固液分離後のアルカリセルロースに含まれる水酸化アルカリ金属の濃度は固液分離後のアルカリセルロースの全質量に対して3質量%以上8質量%以下であることが好ましい。
ザンテート基導入工程では、アルカリ処理の後にザンテート化処理工程を行う。ザンテート化処理工程ではアルカリセルロースに二硫化炭素(CS)を反応させて、(-ONa)基を(-OCSSNa)基にしてザンテート基導入繊維を得る。なお、上記において、アルカリセルロースに導入された金属イオンは、代表してNaで記述しているが、他のアルカリ金属イオンでも同様の反応が進行する。
ザンテート化処理では、アルカリセルロース中のセルロースの絶乾質量に対して、10質量%以上の二硫化炭素を供給することが好ましい。また、ザンテート化処理において、二硫化炭素とアルカリセルロースとが接触する時間は、30分以上であることが好ましく、1時間以上であることがより好ましい。アルカリセルロースに二硫化炭素が接触することでザンテート化は速やかに進行するが、アルカリセルロースの内部にまで二硫化炭素が浸透するには時間がかかるため、反応時間を上記範囲とすることが好ましい。一方で、二硫化炭素とアルカリセルロースとが接触する時間は6時間以下であればよく、これにより脱水後のアルカリセルロースの塊に対しても十分に浸透が進んで、反応可能なザンテート化をほぼ完了させることができる。
ザンテート化処理における反応温度は、46℃以下であることが好ましい。反応温度を上記範囲内とすることにより、アルカリセルロースの分解を抑制し易くなる。また、反応温度を上記範囲内とすることにより、均一に反応し易くなるため、副生成物の生成を抑制でき、さらには、生成したザンテート基の除去を抑制することもできる。
ザンテート基導入工程におけるザンテート基の導入量は、繊維原料1g(質量)あたり0.05mmol/g以上であることが好ましく、0.10mmol/g以上であることがより好ましく、0.20mmol/g以上であることがさらに好ましく、0.40mmol/g以上であることが一層好ましく、0.60mmol/g以上であることが特に好ましい。また、ザンテート基の導入量は、例えば繊維原料1g(質量)あたり5.00mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましい。ザンテート基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。また、ザンテート基の導入量を上記範囲内とすることにより、加熱時の黄変が抑制されたシートが得られやすくなる。
<塩素系酸化剤による酸化工程(第二のカルボキシ基導入工程)>
微細繊維状セルロースの製造工程は、イオン性置換基導入工程として、塩素系酸化剤による酸化工程を含んでもよい。塩素系酸化剤による酸化工程では、塩素系酸化剤を湿潤あるいは乾燥状態の、水酸基を有する繊維原料に加えて反応を行うことで、繊維原料にカルボキシ基が導入される。
塩素系酸化剤としては、次亜塩素酸、次亜塩素酸塩、亜塩素酸、亜塩素酸塩、塩素酸、塩素酸塩、過塩素酸、過塩素酸塩、二酸化塩素などが挙げられる。置換基の導入効率、ひいては解繊効率、コスト、取り扱いやすさの点から、塩素系酸化剤は、次亜塩素酸ナトリウム、亜塩素酸ナトリウム、二酸化塩素であることが好ましい。塩素系酸化剤を添加する際には、試薬(固形状もしくは液状)としてそのまま繊維原料に加えてもよいし、適当な溶媒に溶かして加えてもよい。
塩素系酸化剤による酸化工程における塩素系酸化剤の溶液中濃度は、たとえば有効塩素濃度に換算して、1質量%以上1,000質量%以下であることが好ましく、5質量%以上500質量%以下であることがより好ましく、10質量%以上100質量%以下であることがさらに好ましい。塩素系酸化剤の繊維原料100質量部に対する添加量は、1質量部以上100,000質量部以下であることが好ましく、10質量部以上10,000質量部以下であることがより好ましく、100質量部以上5,000質量部以下であることがさらに好ましい。
塩素系酸化剤による酸化工程における塩素系酸化剤との反応時間は、反応温度に応じて変わり得るが、たとえば1分間以上1,000分間以下であることが好ましく、10分間以上500分間以下であることがより好ましく、20分間以上400分間以下であることがさらに好ましい。反応時のpHは、5以上15以下であることが好ましく、7以上14以下であることがより好ましく、9以上13以下であることがさらに好ましい。また、反応開始時、反応中のpHは塩酸や水酸化ナトリウムを適宜添加しながら一定(たとえば、pH11)を保つことが好ましい。また、反応後は濾過等により、余剰の反応試薬、副生物等を水洗・除去してもよい。
<ホスホン基またはホスフィン基導入工程(ホスホアルキル化工程)>
微細繊維状セルロースの製造工程は、イオン性置換基導入工程として、ホスホン基またはホスフィン基導入工程(ホスホアルキル化工程)を含んでもよい。ホスホアルキル化工程では、必須成分として、反応性基とホスホ基またはホスフィン基とを有する化合物(化合物E)、任意成分としてアルカリ化合物、前述した尿素およびその誘導体から選択される化合物Bを、湿潤あるいは乾燥状態の、水酸基を有する繊維原料に加えて反応を行うことで、繊維原料にホスホン基またはホスフィン基が導入される。
反応性基としては、ハロゲン化アルキル基、ビニル基、エポキシ基(グリシジル基)などが挙げられる。
化合物Eとしては、たとえばビニルホスホン酸、フェニルビニルホスホン酸、フェニルビニルホスフィン酸等が挙げられる。置換基の導入効率、ひいては解繊効率、コスト、取り扱いやすさの点から化合物Eはビニルホスホン酸であることが好ましい。
さらに任意成分として、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることも好ましく、添加量も前述のようにすることが好ましい。
化合物Eを添加する際には、試薬(固形状もしくは液状)としてそのまま繊維原料に加えてもよいし、適当な溶媒に溶かして加えてもよい。繊維原料は事前にアルカリセルロース化するか、反応と同時にアルカリセルロース化されることが好ましい。アルカリセルロース化の方法は、前述のとおりである。
反応時の温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。
化合物Eの繊維原料100質量部に対する添加量は、1質量部以上100,000質量部以下であることが好ましく、2質量部以上10,000質量部以下であることがより好ましく、5質量部以上1,000質量部以下であることがさらに好ましい。
反応時間は、反応温度に応じて変わり得るが、たとえば1分間以上1,000分間以下であることが好ましく、10分間以上500分間以下であることがより好ましく、20分間以上400分間以下であることがさらに好ましい。また、反応後は濾過等により、余剰の反応試薬、副生物等を水洗・除去してもよい。
<スルホン基導入工程(スルホアルキル化工程)(第二のスルホン基導入工程)>
イオン性置換基導入工程としては、スルホン基導入工程(スルホアルキル化工程)を含んでもよい。スルホアルキル化では、必須成分として、反応性基とスルホン基とを有する化合物(化合物E)と、任意成分としてアルカリ化合物、前述した尿素およびその誘導体から選択される化合物Bを、湿潤あるいは乾燥状態の、水酸基を有する繊維原料に加えて反応を行うことで、繊維原料にスルホン基が導入される。
反応性基としては、ハロゲン化アルキル基、ビニル基、エポキシ基(グリシジル基)などが挙げられる。
化合物Eとしては、2-クロロエタンスルホン酸ナトリウム、ビニルスルホン酸ナトリウム、p-スチレンスルホン酸ナトリウム、2-アクリルアミド-2-メチルプロパンスルホン酸等が挙げられる。中でも、置換基の導入効率、ひいては解繊効率、コスト、取り扱いやすさの点から化合物Eはビニルスルホン酸ナトリウムであることが好ましい。
さらに任意成分として、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることも好ましく、添加量も前述のようにすることが好ましい。
化合物Eを添加する際には、試薬(固形状もしくは液状)としてそのまま繊維原料に加えてもよいし、適当な溶媒に溶かして加えてもよい。繊維原料は事前にアルカリセルロース化するか、反応と同時にアルカリセルロース化されることが好ましい。アルカリセルロース化の方法は、前述のとおりである。
反応時の温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。
化合物Eの繊維原料100質量部に対する添加量は、1質量部以上100,000質量部以下であることが好ましく、2質量部以上10,000質量部以下であることがより好ましく、5質量部以上1,000質量部以下であることがさらに好ましい。
反応時間は、反応温度に応じて変わり得るが、たとえば1分間以上1,000分間以下であることが好ましく、10分間以上500分間以下であることがより好ましく、15分間以上400分間以下であることがさらに好ましい。また、反応後は濾過等により、余剰の反応試薬、副生物等を水洗・除去してもよい。
<カルボキシアルキル化工程(第三のカルボキシ基導入工程)>
微細繊維状セルロースの製造工程は、イオン性置換基導入工程として、カルボキシアルキル化工程を含んでもよい。必須成分として、反応性基とカルボキシ基とを有する化合物(化合物E)、任意成分としてアルカリ化合物、前述した尿素およびその誘導体から選択される化合物Bを、湿潤あるいは乾燥状態の、水酸基を有する繊維原料に加えて反応を行うことで、繊維原料にカルボキシ基が導入される。
反応性基としては、ハロゲン化アルキル基、ビニル基、エポキシ基(グリシジル基)などが挙げられる。
化合物Eとしては、置換基の導入効率、ひいては解繊効率、コスト、取り扱いやすさの点からモノクロロ酢酸、モノクロロ酢酸ナトリウム、2-クロロプロピオン酸、3-クロロプロピオン酸、2-クロロプロピオン酸ナトリウム、3-クロロプロピオン酸ナトリウムが好ましい。
さらに任意成分として、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることも好ましく、添加量も前述のようにすることが好ましい。
化合物Eを添加する際には、試薬(固形状もしくは液状)としてそのまま繊維原料に加えてもよいし、適当な溶媒に溶かして加えてもよい。繊維原料は事前にアルカリセルロース化するか、反応と同時にアルカリセルロース化されることが好ましい。アルカリセルロース化の方法は、前述のとおりである。
反応時の温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。
化合物Eの繊維原料100質量部に対する添加量は、1質量部以上100,000質量部以下であることが好ましく、2質量部以上10,000質量部以下であることがより好ましく、5質量部以上1,000質量部以下であることがさらに好ましい。
反応時間は、反応温度に応じて変わり得るが、たとえば1分間以上1,000分間以下であることが好ましく、3分間以上500分間以下であることがより好ましく、5分間以上400分間以下であることがさらに好ましい。また、反応後は濾過等により、余剰の反応試薬、副生物等を水洗・除去してもよい。
<カチオン性基導入工程(カチオン化工程)>
必須成分として、反応性基とカチオン性基とを有する化合物(化合物E)、任意成分としてアルカリ化合物、前述した尿素およびその誘導体から選択される化合物Bを、湿潤あるいは乾燥状態の、水酸基を有する繊維原料に加えて反応を行うことで、繊維原料にカチオン基が導入される。
反応性基としては、ハロゲン化アルキル基、ビニル基、エポキシ基(グリシジル基)などが挙げられる。
カチオン性基としては、アンモニウム基、ホスホニウム基、スルホニウム基等を挙げることができる。中でもカチオン性基はアンモニウム基であることが好ましい。
化合物Eとしては、置換基の導入効率、ひいては解繊効率、コスト、取り扱いやすさの点からグリシジルトリメチルアンモニウムクロリド、3-クロロ-2-ヒドロキシプロピルトリメチルアンモニウムクロリド等が好ましい。
さらに任意成分として、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることも好ましい。添加量も前述のようにすることが好ましい。
化合物Eを添加する際には、試薬(固形状もしくは液状)としてそのまま繊維原料に加えてもよいし、適当な溶媒に溶かして加えてもよい。繊維原料は事前にアルカリセルロース化するか、反応と同時にアルカリセルロース化されることが好ましい。アルカリセルロース化の方法は、前述のとおりである。
反応時の温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。
化合物Eの繊維原料100質量部に対する添加量は、1質量部以上100,000質量部以下であることが好ましく、2質量部以上10,000質量部以下であることがより好ましく、5質量部以上1,000質量部以下であることがさらに好ましい。
反応時間は、反応温度に応じて変わり得るが、たとえば1分間以上1,000分間以下であることが好ましく、10分間以上500分間以下であることがより好ましく、20分間以上400分間以下であることがさらに好ましい。また、反応後は濾過等により、余剰の反応試薬、副生物等を水洗・除去してもよい。
<洗浄工程>
本実施形態における微細繊維状セルロースの製造方法においては、必要に応じてイオン性置換基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、例えば水や有機溶媒によりイオン性置換基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、特に限定されない。
<アルカリ処理工程>
微細繊維状セルロースを製造する場合、イオン性置換基導入工程と、後述する解繊処理工程との間に、繊維原料に対してアルカリ処理を行ってもよい。アルカリ処理の方法としては、特に限定されないが、例えばアルカリ溶液中に、イオン性置換基導入繊維を浸漬する方法が挙げられる。
アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、例えば水酸化ナトリウム又は水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水又は有機溶媒のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、又はアルコールに例示される極性有機溶媒などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、例えば水酸化ナトリウム水溶液、又は水酸化カリウム水溶液が好ましい。
アルカリ処理工程におけるアルカリ溶液の温度は、特に限定されないが、例えば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましい。アルカリ処理工程におけるイオン性置換基導入繊維のアルカリ溶液への浸漬時間は、特に限定されないが、例えば5分以上30分以下であることが好ましく、10分以上20分以下であることがより好ましい。アルカリ処理におけるアルカリ溶液の使用量は、特に限定されないが、例えばイオン性置換基導入繊維の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
アルカリ処理工程におけるアルカリ溶液の使用量を減らすために、イオン性置換基導入工程の後であってアルカリ処理工程の前に、イオン性置換基導入繊維を水や有機溶媒により洗浄してもよい。アルカリ処理工程の後であって解繊処理工程の前には、取り扱い性を向上させる観点から、アルカリ処理を行ったイオン性置換基導入繊維を水や有機溶媒により洗浄することが好ましい。
<酸処理工程>
微細繊維状セルロースを製造する場合、イオン性置換基を導入する工程と、後述する解繊処理工程の間に、繊維原料に対して酸処理を行ってもよい。例えば、イオン性置換基導入工程、酸処理、アルカリ処理及び解繊処理をこの順で行ってもよい。
酸処理の方法としては、特に限定されないが、例えば酸を含有する酸性液中に繊維原料を浸漬する方法が挙げられる。使用する酸性液の濃度は、特に限定されないが、例えば10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、使用する酸性液のpHは、特に限定されないが、例えば0以上4以下であることが好ましく、1以上3以下であることがより好ましい。酸性液に含まれる酸としては、例えば無機酸、スルホン酸、カルボン酸等を用いることができる。無機酸としては、例えば硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸等が挙げられる。スルホン酸としては、例えばメタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。カルボン酸としては、例えばギ酸、酢酸、クエン酸、グルコン酸、乳酸、シュウ酸、酒石酸等が挙げられる。これらの中でも、塩酸又は硫酸を用いることが特に好ましい。
酸処理における酸溶液の温度は、特に限定されないが、例えば5℃以上100℃以下が好ましく、20℃以上90℃以下がより好ましい。酸処理における酸溶液への浸漬時間は、特に限定されないが、例えば5分以上120分以下が好ましく、10分以上60分以下がより好ましい。酸処理における酸溶液の使用量は、特に限定されないが、例えば繊維原料の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
<解繊処理>
イオン性置換基導入繊維を解繊処理工程で解繊処理することにより、微細繊維状セルロースが得られる。解繊処理工程においては、例えば解繊処理装置を用いることができる。解繊処理装置は、特に限定されないが、例えば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、又はビーターなどを使用することができる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーを用いるのがより好ましい。
解繊処理工程においては、例えばイオン性置換基導入繊維を、分散媒により希釈してスラリー状にすることが好ましい。分散媒としては、水、及び極性有機溶媒などの有機溶媒から選択される1種又は2種以上を使用することができる。極性有機溶媒としては、特に限定されないが、例えばアルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、非プロトン性極性溶媒等が好ましい。アルコール類としては、例えばメタノール、エタノール、イソプロパノール、n-ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、例えばエチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、例えばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、例えば酢酸エチル、酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリジノン(NMP)等が挙げられる。
解繊処理時の微細繊維状セルロースの固形分濃度は適宜設定できる。また、イオン性置換基導入繊維を分散媒に分散させて得たスラリー中には、例えば水素結合性のある尿素などのイオン性置換基導入繊維以外の固形分が含まれていてもよい。
<窒素除去処理>
微細繊維状セルロースの製造工程は、窒素量を低減させる工程(窒素除去処理工程)をさらに含んでもよい。窒素量を低減させることで、さらに着色を抑制し得る微細繊維状セルロースを得ることができる。窒素除去処理工程は、解繊処理工程の前に設けられることが好ましい。
窒素除去処理工程においては、置換基導入繊維を含むスラリーのpHを10以上に調整し、加熱処理を行うことが好ましい。加熱処理においては、スラリーの液温を50℃以上100℃以下とすることが好ましく、加熱時間は15分以上180分以下とすることが好ましい。置換基導入繊維を含むスラリーのpHを調整する際には、上述したアルカリ処理工程で用いることができるアルカリ化合物をスラリーに添加することが好ましい。
窒素除去処理工程の後、必要に応じて置換基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、例えば水や有機溶媒によりイオン性置換基導入繊維を洗浄することにより行われる。また、各洗浄工程において実施される洗浄回数は、特に限定されない。
<置換基除去処理>
微細繊維状セルロースの製造方法は、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースから、置換基の少なくとも一部を除去する工程を含んでもよい。このような工程を経ることで、置換基導入量が低いが、繊維幅の小さい微細繊維状セルロースを得ることもできる。本明細書において、微細繊維状セルロースから、置換基の少なくとも一部を除去する工程は、置換基除去処理工程とも言う。
置換基除去処理工程としては、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを加熱処理する工程、酵素処理する工程、酸処理する工程、アルカリ処理する工程等が挙げられる。これらは単独で行ってもよく、組み合わせて行ってもよい。中でも、置換基除去処理工程は、加熱処理する工程又は酵素処理する工程であることが好ましい。上記処理工程を経ることで、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースから、置換基の少なくとも一部が除去され、置換基導入量が0.5mmol/g未満の微細繊維状セルロースを得ることができる。
置換基除去処理工程は、スラリー状で行われることが好ましい。すなわち、置換基除去処理工程は、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを含むスラリーを、加熱処理する工程、酵素処理する工程、酸処理する工程、アルカリ処理する工程等であることが好ましい。置換基除去処理工程をスラリー状で実施することによって、置換基除去処理時の加熱等によって生じる着色物質や、添加もしくは発生する酸、アルカリ、塩などの残留を防ぐことができる。これにより、液状組成物やシートの着色を抑制することができる。また、置換基除去処理後に除去した置換基由来の塩の除去処理を行う場合、塩の除去効率を高めることも可能となる。
置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを含むスラリーに対して置換基除去処理を行う場合、該スラリー中の微細繊維状セルロースの濃度は、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.2質量%以上であることがさらに好ましい。また、該スラリー中の微細繊維状セルロースの濃度は、20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。スラリー中の微細繊維状セルロースの濃度を上記範囲内とすることにより、置換基除去処理をより効率よく行うことができる。さらに、スラリー中の微細繊維状セルロースの濃度を上記範囲内とすることにより、置換基除去処理時の加熱等によって生じる着色物質や、添加もしくは発生する酸、アルカリ、塩などの残留を防ぐことができる。これにより、液状組成物やシートの着色を抑制することができる。また、置換基除去処理後に除去した置換基由来の塩の除去処理を行う場合、塩の除去効率を高めることも可能となる。
置換基除去処理工程が、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを加熱処理する工程である場合、加熱処理する工程における加熱温度は、40℃以上であることが好ましく、50℃以上であることがより好ましく、60℃以上であることがさらに好ましい。また、加熱処理する工程における加熱温度は、250℃以下であることが好ましく、230℃以下であることがより好ましく、200℃以下であることがさらに好ましい。中でも、置換基除去処理工程に供する微細繊維状セルロースが有する置換基がリンオキソ酸基である場合、加熱処理する工程における加熱温度は、80℃以上であることが好ましく、100℃以上であることがより好ましく、120℃以上であることがさらに好ましい。
置換基除去処理工程が加熱処理する工程である場合、加熱処理工程において使用できる加熱装置としては、特に限定されないが、熱風加熱装置、蒸気加熱装置、電熱加熱装置、水熱加熱装置、火力加熱装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波加熱装置、撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置を用いることができる。蒸発を防ぐ観点から、加熱は密閉系で行われることが好ましく、さらに加熱温度を高める観点から、耐圧性の装置内や容器内で行われることが好ましい。加熱処理はバッチ処理であってもよく、バッチ連続処理であってもよく、連続処理であってもよい。
置換基除去処理工程が、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを酵素処理する工程である場合、酵素処理する工程では、置換基の種類に応じて、リン酸エステル加水分解酵素、硫酸エステル加水分解酵素等を用いることが好ましい。
酵素処理工程では、微細繊維状セルロース1gに対して酵素活性が0.1nkat以上となるよう酵素を添加することが好ましく、1.0nkat以上となるよう酵素を添加することがより好ましく、10nkat以上となるよう酵素を添加することがさらに好ましい。また、微細繊維状セルロース1gに対して酵素活性が100000nkat以下となるよう酵素を添加することが好ましく、50000nkat以下となるよう酵素を添加することがより好ましく10000nkat以下となるよう酵素を添加することがさらに好ましい。微細繊維状セルロース分散液(スラリー)に酵素を添加した後には、0℃以上50℃未満の条件下で1分以上100時間以下処理を行うことが好ましい。
酵素反応の後、酵素を失活させる工程を設けてもよい。酵素を失活させる方法としては、酵素処理を施したスラリーに酸成分もしくはアルカリ成分を添加して酵素を失活させる方法、酵素処理を施したスラリーの温度を90℃以上に上昇させて酵素を失活させる方法が挙げられる。
置換基除去処理工程が、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを酸処理する工程である場合、酸処理する工程では、上述した酸処理工程で用いることができる酸化合物をスラリーに添加することが好ましい。
置換基除去処理工程が、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースをアルカリ処理する工程である場合、アルカリ処理する工程では、上述したアルカリ処理工程で用いることができるアルカリ化合物をスラリーに添加することが好ましい。
置換基除去処理工程では、置換基除去反応が均一に進むことが好ましい。反応を均一に進めるためには、例えば微細繊維状セルロースを含むスラリーを撹拌してもよく、スラリーの比表面積を高めてもよい。スラリーを撹拌する方法としては、外部からの機械的シェアを与えてもよく、反応中のスラリーの送液速度を上げることで自己撹拌を促してもよい。
置換基除去処理工程では、スペーサー分子を添加してもよい。スペーサー分子は、隣接する微細繊維状セルロースの間に入り込み、それにより微細繊維状セルロース間に微細なスペースを設けるためのスペーサーとして働く。置換基除去処理工程において、このようなスペーサー分子を添加することで、置換基除去処理後の微細繊維状セルロースの凝集を抑制することができる。これにより、液状組成物やシートの透明性をより効果的に高めることができる。
スペーサー分子は水溶性有機化合物であることが好ましい。水溶性有機化合物としては、例えば、糖や水溶性高分子、尿素等を挙げることができる。具体的には、トレハロース、尿素、ポリエチレングリコール(PEG)、ポリエチレンオキサイド(PEO)、カルボキシメチルセルロース、ポリビニルアルコール(PVA)等を挙げることができる。また、水溶性有機化合物として、メタクリル酸アルキル・アクリル酸コポリマー、ポリビニルピロリドン、ポリアクリル酸ナトリウム、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、イソプレングリコール、ヘキシレングリコール、1,3-ブチレングリコール、ポリアクリルアミド、キサンタンガム、グアーガム、タマリンドガム、カラギーナン、ローカストビーンガム、クインスシード、アルギン酸、プルラン、カラギーナン、ペクチン、カチオン化デンプン、生デンプン、酸化デンプン、エーテル化デンプン、エステル化デンプン、アミロース等のデンプン類、グリセリン、ジグリセリン、ポリグリセリン、ヒアルロン酸、ヒアルロン酸の金属塩を用いることもできる。
また、スペーサー分子として公知の顔料を使用することができる。例えば、カオリン(含クレー)、炭酸カルシウム、酸化チタン、酸化亜鉛、非晶質シリカ(含コロイダルシリカ)、酸化アルミニウム、ゼオライト、セピオライト、スメクタイト、合成スメクタイト、珪酸マグネシウム、炭酸マグネシウム、酸化マグネシウム、珪藻土、スチレン系プラスチックピグメント、ハイドロタルサイト、尿素樹脂系プラスチックピグメント、ベンゾグアナミン系プラスチックピグメント等が挙げられる。
<pH調整工程>
上述した置換基除去処理工程がスラリー状で行われる場合、置換基除去処理工程の前に、微細繊維状セルロースを含むスラリーのpHを調整する工程を設けてもよい。例えば、セルロース繊維にイオン性置換基を導入し、このイオン性置換基の対イオンがNaである場合、解繊後の微細繊維状セルロースを含むスラリーは弱アルカリ性を示す。この状態で加熱を行うと、セルロースの分解により着色要因の一つである単糖が発生する場合があるため、スラリーのpHを8以下に調整することが好ましい。また、酸性条件においても同様に単糖が発生する場合があるため、スラリーのpHを3以上に調整することが好ましい。
また、置換基を有する微細繊維状セルロースがリン酸基を有する微細繊維状セルロースである場合、置換基の除去効率向上の観点から、リン酸基のリンが求核攻撃を受けやすい状態であることが好ましい。求核攻撃を受けやすいのは、セルロース-O-P(=O)(-O-H)(-O-Na)と表される中和度1の状態であり、この状態とするには、スラリーのpHを3以上8以下に調整することが好ましく、pHを4以上6以下に調整することがさらに好ましい。
pHを調整する手段は特に限定されないが、例えば微細繊維状セルロースを含むスラリーに酸成分やアルカリ成分を添加してもよい。酸成分は無機酸および有機酸のいずれであってもよく、無機酸としては、硫酸、塩酸、硝酸、リン酸等が挙げられる。有機酸としては、ギ酸、酢酸、クエン酸、リンゴ酸、乳酸、アジピン酸、セバシン酸、ステアリン酸、マレイン酸、コハク酸、酒石酸、フマル酸、グルコン酸等が挙げられる。アルカリ成分は、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。無機アルカリ化合物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸水素リチウム、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウムなどが挙げられる。有機アルカリ化合物としては、アンモニア、ヒドラジン、メチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、ブチルアミン、ジアミノエタン、ジアミノプロパン、ジアミノブタン、ジアミノペンタン、ジアミノヘキサン、シクロヘキシルアミン、アニリン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ピリジン、N,N-ジメチル-4-アミノピリジン等が挙げられる。
また、pH調整工程では、pHを調整するためにイオン交換処理を行ってもよい。イオン交換処理に際しては、強酸性陽イオン交換樹脂もしくは弱酸性イオン交換樹脂を用いることができる。適切な量の陽イオン交換樹脂で十分な時間処理することにより、目的とするpHの微細繊維状セルロースを含むスラリーを得ることができる。さらに、pH調整工程では酸成分やアルカリ成分の添加とイオン交換処理を組み合わせてもよい。
<塩の除去処理>
置換基除去処理工程の後には、除去した置換基由来の塩の除去処理を行うことが好ましい。置換基由来の塩を除去することで、着色を抑制し得る微細繊維状セルロースが得られ易くなる。置換基由来の塩を除去する手段は特に限定されないが、例えば洗浄処理やイオン交換処理が挙げられる。洗浄処理は、例えば水や有機溶媒により、置換基除去処理で凝集した微細繊維状セルロースを洗浄することにより行われる。イオン交換処理では、イオン交換樹脂を用いることができる。
<均一分散処理>
置換基除去処理工程の後には、置換基除去処理を経て得られた微細繊維状セルロースを均一分散処理する工程を設けてもよい。微細繊維状セルロースに対して置換基除去処理を施すことにより、少なくとも一部の微細繊維状セルロースが凝集する。均一分散処理工程においては、このように凝集した微細繊維状セルロースを均一分散する工程である。
均一分散処理工程では、例えば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザー高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機又はビーターなどを使用することができる。上記均一分散処理装置の中でも、高速解繊機、高圧ホモジナイザーを用いることがより好ましい。
均一分散処理工程における処理条件は特に限定されないが、処理中の微細繊維状セルロースの最高移動速度や、処理時の圧力を大きくすることが好ましい。高速解繊機においては、その周速が20m/sec以上であることが好ましく、25m/sec以上であることがより好ましく、30m/sec以上であることがさらに好ましい。高圧ホモジナイザーは、高速解繊機よりも、処理中の微細繊維状セルロースの最高移動速度や、処理時の圧力が大きくなるため、より好ましく使用できる。高圧ホモジナイザー処理においては、処理時の圧力は1MPa以上350MPa以下が好ましく、10MPa以上300MPa以下がより好ましく、50MPa以上250MPa以下がさらに好ましい。
なお、均一分散処理工程においては、上述したスペーサー分子を新たに添加してもよい。均一分散処理工程において、このようなスペーサー分子を添加することで、微細繊維状セルロースの均一分散をよりスムーズに行うことができる。これにより、液状組成物やシートの透明性をより効果的に高めることができる。
(任意成分)
本発明の液状組成物は任意成分として、重合禁止剤をさらに含むものであってもよい。本明細書において、重合禁止剤は、ラジカル重合を引き起こすラジカル種と反応し、ラジカル重合を引き起こさない不活性なラジカルまたは安定な化合物にする作用(ラジカル捕捉作用)を有する。重合禁止剤としては、例えば、フェノチアジン、ジブチルヒドロキシトルエン、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、トリス(ノニルフェニル)フォスファイト、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、N-フェニル-1-ナフチルアミン、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2-メルカプトベンズイミダゾール、ハイドロキノン、N,N-ジエチルヒドロキシルアミン等を挙げることができる。液状組成物が重合禁止剤を含有する場合、重合禁止剤の含有量は、繊維状セルロース100質量部に対して0.1質量部以上5質量部以下であることが好ましい。重合禁止剤の含有量を上記範囲内とすることにより、シートの加熱後の黄変をより効果的に抑制することができる。
また、任意成分としては、フィラー、顔料、染料、安定剤、界面活性剤、pH調整剤、紫外線吸収剤等が挙げられる。
また、液状組成物には、任意成分として、上述した樹脂以外の水溶性有機化合物が含まれていてもよい。水溶性有機化合物としては、例えば、糖や水溶性高分子(上述した樹脂を除く)、尿素等を挙げることができる。具体的には、トレハロース、尿素、カルボキシメチルセルロース等を挙げることができる。また、水溶性有機化合物として、メタクリル酸アルキル・アクリル酸コポリマー、ポリビニルピロリドン、ポリアクリル酸ナトリウム、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、イソプレングリコール、ヘキシレングリコール、1,3-ブチレングリコール、ポリアクリルアミド、キサンタンガム、グアーガム、タマリンドガム、カラギーナン、ローカストビーンガム、クインスシード、アルギン酸、プルラン、カラギーナン、ペクチン、カチオン化デンプン、生デンプン、酸化デンプン、エーテル化デンプン、エステル化デンプン、アミロース等のデンプン類、グリセリン、ジグリセリン、ポリグリセリン、ヒアルロン酸、ヒアルロン酸の金属塩を用いることもできる。
(シート)
本発明は、上述した液状組成物から形成されるシートに関するものでもある。具体的には、本発明のシートは、繊維幅が1000nm以下の繊維状セルロースと、樹脂と、還元剤と、を含有する。シートに含まれる繊維状セルロースや樹脂、還元剤は、液状組成物に含まれるものと同様であり、上述したとおりである。
本実施形態において、シートの厚さ25μmにおけるYI値(黄色度)は、1.5以下であることが好ましく、1.3以下であることがより好ましく、1.2以下であることがさらに好ましい。なお、シートの厚さ25μmにおけるYI値(黄色度)の下限値は特に限定されるものではなく、0.0であってもよい。ここで、シートのYI値は、JIS K 7373:2006に準拠して測定される黄色度である。YI値の測定装置としては、例えば、Colour Cute i(スガ試験機株式会社製)を用いることができる。なお、上記のシートの黄色度は、次式のとおり、シート厚み25μmに比例換算した値である。
黄色度=シートの黄色度測定値×(25/シート厚み)
上述したYI値は、後述するようにシートを加熱する前に測定されたYI値であるため、初期YI値と呼ぶこともある。
本実施形態において、シートを160℃で6時間加熱した後のシートYI値は、5.5以下であることが好ましく、4.5以下であることがより好ましく、3.6以下であることがさらに好ましい。なお、シートを160℃で6時間加熱した後のシートのYI値の下限値は特に限定されるものではなく、0.0であってもよい。なお、このようなYI値は加熱後YI値と呼ぶこともある。加熱後YI値の測定方法は上述した方法と同様である。
本実施形態において、シートのYI増加率は、2700%以下であることが好ましく、2500%以下であることがより好ましく、2300%以下であることがさらに好ましく、2000%以下であることが一層好ましく、1500%以下であることが特に好ましい。なお、シートにおけるYI増加率の下限値は特に限定されるものではなく、0%であってもよい。ここで、シートのYI増加率とは、シートを160℃で6時間加熱した前後のシートのYI値の増加率である。具体的に、YI増加率は以下の式で算出される値である。
YI増加率(%)=(加熱後のシートの黄色度-加熱前のシートの黄色度)/加熱前のシートの黄色度×100
なお、上記式において、シートの黄色度はJIS K 7373:2006に準拠して測定した黄色度である。
本実施形態のシートのヘーズは3.5%以下であることが好ましく、3.0%以下であることがより好ましく、2.5%以下であることがさらに好ましく、2.0%以下であることが特に好ましい。シートのヘーズが上記範囲内であれば、本発明の微細繊維状セルロースを用いることで高透明なシートが形成されたと判定することができる。なお、シートのへーズは、JIS K 7136:2000に準拠し、ヘーズメーターを用いて測定される値である。
本実施形態のシートの全光線透過率は、75%以上であることが好ましく、80 %以上であることがより好ましく、85%以上であることがさらに好ましい。なお、シートのへーズは、JIS K 7361-1:1997に準拠し、ヘーズメーターを用いて測定される値である。
本実施形態のシート中の全固形分質量に対する繊維状セルロースの含有量は、1質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることがさらに好ましく、30質量%以上であることが特に好ましい。また、シート中の全固形分質量に対する繊維状セルロースの含有量は、99質量%以下であることが好ましく、90質量%以下であることがより好ましい。
本実施形態のシートの厚みは、特に限定されるものではないが、5μm以上であることが好ましく、10μm以上であることがより好ましく、20μm以上であることがさらに好ましい。また、シートの厚みの上限値は、特に限定されないが、1000μm以下であることが好ましい。シートの厚みは、例えば、定圧厚さ測定器(TECLOCK CのORPORATION製、PG-02)で測定することができる。
本実施形態のシートの坪量は、特に限定されないが、10g/m以上であることが好ましく、20g/m以上であることがより好ましく、30g/m以上であることがさらに好ましい。また、シートの坪量は、特に限定されないが、200g/m以下であることが好ましく、150g/m以下であることがより好ましい。ここで、シートの坪量は、例えばJIS P 8124:2011に準拠し、算出することができる。
本実施形態のシートの密度は、特に限定されないが、例えば0.1g/cm以上であることが好ましく、0.5g/cm以上であることがより好ましく、1.0g/cm以上であることがさらに好ましい。また、シートの密度は、特に限定されないが、例えば5.0g/cm以下であることが好ましく、3.0g/cm以下であることがより好ましい。ここで、シートの密度は、50mm角のシートを23℃、相対湿度50%条件下で24時間調湿した後、シートの厚みおよび質量を測定することにより算出することができる。
本実施形態のシートの弾性率は、特に限定されないが、例えば2GPa以上であることが好ましく、4GPa以上であることがより好ましく、6GPa以上であることがさらに好ましい。ここで、シートの弾性率は、例えばJIS P 8113:2006に準拠し、算出することができる。
(シートの製造方法)
本発明のシートの製造方法は、繊維幅が1000nm以下の繊維状セルロースと、樹脂と、還元剤とを含むスラリーを得る工程と、該スラリーを基材上に塗工する塗工工程、又は該スラリーを抄紙する抄紙工程を含む。これにより、上述したシートが得られることとなる。
<塗工工程>
塗工工程では、繊維幅が1000nm以下の繊維状セルロースと、樹脂と、還元剤とを含むスラリーを基材上に塗工し、これを乾燥して形成されたシートを基材から剥離することによりシートを得ることができる。また、塗工装置と長尺の基材を用いることで、シートを連続的に生産することができる。
塗工工程で用いる基材の材質は、特に限定されないが、スラリーに対する濡れ性が高いものの方が乾燥時のシートの収縮等を抑制することができてよいが、乾燥後に形成されたシートが容易に剥離できるものを選択することが好ましい。中でも樹脂製のフィルムや板または金属製のフィルムや板が好ましいが、特に限定されない。例えばアクリル、ポリエチレンテレフタレート、塩化ビニル、ポリスチレン、ポリ塩化ビニリデン等の樹脂のフィルムや板、アルミ、亜鉛、銅、鉄板の金属のフィルムや板、および、それらの表面を酸化処理したもの、ステンレスのフィルムや板、真ちゅうのフィルムや板等を用いることができる。
塗工工程において、スラリーの粘度が低く、基材上で展開してしまう場合には、所定の厚み及び坪量のシートを得るため、基材上に堰止用の枠を固定して使用してもよい。堰止用の枠としては、特に限定されないが、例えば乾燥後に付着するシートの端部が容易に剥離できるものを選択することが好ましい。このような観点から、樹脂板または金属板を成形したものがより好ましい。本実施形態においては、例えばアクリル板、ポリエチレンテレフタレート板、塩化ビニル板、ポリスチレン板、ポリ塩化ビニリデン板等の樹脂板や、アルミ板、亜鉛板、銅板、鉄板等の金属板、及びこれらの表面を酸化処理したもの、ステンレス板、真ちゅう板等を成形したものを用いることができる。
スラリーを基材に塗工する塗工機としては、特に限定されないが、例えばロールコーター、グラビアコーター、ダイコーター、カーテンコーター、エアドクターコーター等を使用することができる。シートの厚みをより均一にできることから、ダイコーター、カーテンコーター、スプレーコーターが特に好ましい。
スラリーを基材へ塗工する際のスラリー温度および雰囲気温度は、特に限定されないが、例えば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましく、15℃以上50℃以下であることがさらに好ましく、20℃以上40℃以下であることが特に好ましい。塗工温度が上記下限値以上であれば、スラリーをより容易に塗工できる。塗工温度が上記上限値以下であれば、塗工中の分散媒の揮発を抑制できる。
塗工工程においては、シートの仕上がり坪量が好ましくは10g/m以上200g/m以下となるように、より好ましくは20g/m以上150g/m以下となるように、スラリーを基材に塗工することが好ましい。坪量が上記範囲内となるように塗工することで、強度に優れたシートが得られる。
塗工工程は、上述のとおり、基材上に塗工したスラリーを乾燥させる工程を含む。スラリーを乾燥させる工程は、特に限定されないが、例えば非接触の乾燥方法、もしくはシートを拘束しながら乾燥する方法、またはこれらの組み合わせにより行われる。非接触の乾燥方法としては、特に限定されないが、例えば熱風、赤外線、遠赤外線もしくは近赤外線により加熱して乾燥する方法(加熱乾燥法)、または真空にして乾燥する方法(真空乾燥法)を適用することができる。加熱乾燥法と真空乾燥法を組み合わせてもよいが、通常は、加熱乾燥法が適用される。赤外線、遠赤外線または近赤外線による乾燥は、特に限定されないが、例えば赤外線装置、遠赤外線装置または近赤外線装置を用いて行うことができる。加熱乾燥法における加熱温度は、特に限定されないが、例えば20℃以上150℃以下とすることが好ましく、25℃以上105℃以下とすることがより好ましい。加熱温度を上記下限値以上とすれば、分散媒を速やかに揮発させることができる。また、加熱温度を上記上限値以下であれば、加熱に要するコストの抑制及び繊維状セルロースの熱による変色の抑制を実現できる。
<抄紙工程>
抄紙工程は、抄紙機によりスラリーを抄紙することにより行われる。抄紙工程で用いられる抄紙機としては、特に限定されないが、例えば長網式、円網式、傾斜式等の連続抄紙機、またはこれらを組み合わせた多層抄き合わせ抄紙機等が挙げられる。抄紙工程では、手抄き等の公知の抄紙方法を採用してもよい。
抄紙工程は、スラリーをワイヤーにより濾過、脱水して湿紙状態のシートを得た後、このシートをプレス、乾燥することにより行われる。スラリーを濾過、脱水する際に用いられる濾布としては、特に限定されないが、例えば繊維状セルロースは通過せず、かつ濾過速度が遅くなりすぎないものであることがより好ましい。このような濾布としては、特に限定されないが、例えば有機ポリマーからなるシート、織物、多孔膜が好ましい。有機ポリマーとしては特に限定されないが、例えばポリエチレンテレフタレートやポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)等のような非セルロース系の有機ポリマーが好ましい。本実施形態においては、例えば孔径0.1μm以上20μm以下であるポリテトラフルオロエチレンの多孔膜や、孔径0.1μm以上20μm以下であるポリエチレンテレフタレートやポリエチレンの織物等が挙げられる。
シート化工程において、スラリーからシートを製造する方法は、例えば微細繊維状セルロースを含むスラリーを無端ベルトの上面に吐出し、吐出されたスラリーから分散媒を搾水してウェブを生成する搾水セクションと、ウェブを乾燥させてシートを生成する乾燥セクションとを備える製造装置を用いて行うことができる。搾水セクションから乾燥セクションにかけて無端ベルトが配設され、搾水セクションで生成されたウェブが無端ベルトに載置されたまま乾燥セクションに搬送される。
抄紙工程において用いられる脱水方法としては、特に限定されないが、例えば紙の製造で通常に使用している脱水方法が挙げられる。これらの中でも、長網、円網、傾斜ワイヤーなどで脱水した後、さらにロールプレスで脱水する方法が好ましい。また、抄紙工程において用いられる乾燥方法としては、特に限定されないが、例えば紙の製造で用いられている方法が挙げられる。これらの中でも、シリンダードライヤー、ヤンキードライヤー、熱風乾燥、近赤外線ヒーター、赤外線ヒーターなどを用いた乾燥方法がより好ましい。
(積層体)
本発明は、上述したシートと、該シートの少なくとも一方の面上に積層された樹脂層とを有する積層体に関するものであってもよい。本発明は、シートの両面に樹脂層を有する積層体に関するものであってもよい。
樹脂層は、天然樹脂や合成樹脂を主成分とする層である。ここで、主成分とは、樹脂層の全質量に対して、50質量%以上含まれている成分を指す。樹脂の含有量は、樹脂層の全質量に対して、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましい。なお、樹脂の含有量は、100質量%とすることもでき、95質量%以下であってもよい。
天然樹脂としては、例えば、ロジン、ロジンエステル、水添ロジンエステル等のロジン系樹脂を挙げることができる。
合成樹脂としては、例えば、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ポリスチレン樹脂及びアクリル樹脂から選択される少なくとも1種であることが好ましい。中でも、合成樹脂はポリカーボネート樹脂及びアクリル樹脂から選択される少なくとも1種であることが好ましく、ポリカーボネート樹脂であることがより好ましい。なお、アクリル樹脂は、ポリアクリロニトリル及びポリ(メタ)アクリレートから選択される少なくともいずれか1種であることが好ましい。
樹脂層を構成するポリカーボネート樹脂としては、例えば、芳香族ポリカーボネート系樹脂、脂肪族ポリカーボネート系樹脂が挙げられる。これらの具体的なポリカーボネート系樹脂は公知であり、例えば特開2010-023275号公報に記載されたポリカーボネート系樹脂が挙げられる。
樹脂層を構成する樹脂は1種を単独で用いてもよく、複数の樹脂成分が共重合または、グラフト重合してなる共重合体を用いてもよい。また、複数の樹脂成分を物理的なプロセスで混合したブレンド材料として用いてもよい。
シートと樹脂層の間には、接着層が設けられていてもよく、また接着層が設けられておらず、シートと樹脂層が直接密着をしていてもよい。シートと樹脂層の間に接着層が設けられる場合は、接着層を構成する接着剤として、例えば、アクリル系樹脂を挙げることができる。また、アクリル系樹脂以外の接着剤としては、例えば、塩化ビニル樹脂、(メタ)アクリル酸エステル樹脂、スチレン/アクリル酸エステル共重合体樹脂、酢酸ビニル樹脂、酢酸ビニル/(メタ)アクリル酸エステル共重合体樹脂、ウレタン樹脂、シリコーン樹脂、エポキシ樹脂、エチレン/酢酸ビニル共重合体樹脂、ポリエステル系樹脂、ポリビニルアルコール樹脂、エチレンビニルアルコール共重合体樹脂や、SBR、NBR等のゴム系エマルジョンなどが挙げられる。
シートと樹脂層の間に接着層が設けられていない場合は、樹脂層が密着助剤を有してもよく、また、樹脂層の表面に親水化処理等の表面処理を行ってもよい。
密着助剤としては、例えば、イソシアネート基、カルボジイミド基、エポキシ基、オキサゾリン基、アミノ基及びシラノール基から選択される少なくとも1種を含む化合物や、有機ケイ素化合物が挙げられる。中でも、密着助剤はイソシアネート基を含む化合物(イソシアネート化合物)及び有機ケイ素化合物から選択される少なくとも1種であることが好ましい。有機ケイ素化合物としては、例えば、シランカップリング剤縮合物や、シランカップリング剤を挙げることができる。
表面処理の方法としては、コロナ処理、プラズマ放電処理、UV照射処理、電子線照射処理、火炎処理等を挙げることができる。
(用途)
本発明のシートは光学部材用として好ましく用いられる。光学部材としては、例えば、各種のディスプレイ装置、各種の太陽電池等の光透過性基板等を挙げることができる。
また、本発明のシートは、電子機器の基板、家電の部材、各種の乗り物や建物の窓材、内装材、外装材、包装用資材等の用途に用いることもできる。
以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<製造例1>
[リン酸化処理]
原料パルプとして、王子製紙株式会社製の広葉樹溶解パルプ(ドライシート)を使用した。この原料パルプに対してリン酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で250秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプ1を得た。
[洗浄処理]
次いで、得られたリン酸化パルプ1に対して洗浄処理を行った。洗浄処理は、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
[中和処理]
次いで、洗浄後のリン酸化パルプ1に対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水して、中和処理が施されたリン酸化パルプ1を得た。次いで、中和処理後のリン酸化パルプ1に対して、上記洗浄処理を行った。
これにより得られたリンオキソ酸化パルプ1に対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基のP=Oに基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。また、得られたリン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
[解繊処理]
得られたリン酸化パルプに1イオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、高圧ホモジナイザー(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液(リン酸化CNF1を含む分散液)を得た。X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、後述する[リンオキソ酸基量]の測定に記載の測定方法で測定されるリン酸基量(第1解離酸量)は、1.45mmol/gだった。なお、総解離酸量は、2.45mmol/gであった。
<製造例2>
製造例1で得られた微細繊維状セルロース分散液(リン酸化CNF1を含む分散液)に、下記の処理を行い、微細繊維状セルロースを含む微細繊維状セルロース分散液(リン酸化CNF2を含む分散液)を得た。
[置換基除去処理(高温熱処理)]
製造例1で得られた微細繊維状セルロース分散液に、20質量%のクエン酸水溶液を添加し、スラリーをpH5.5に調整した。得られたスラリーを耐圧容器に入れ、液温160℃で15分間、リン酸基量が0.08mmol/gとなるまで加熱を行った。この操作により微細繊維状セルロース凝集物の生成が確認された。
[置換基除去後スラリーの洗浄処理]
加熱後のスラリーに、スラリーと同量のイオン交換水を加えて固形分濃度が約1.0質量%のスラリーとし、スラリーを撹拌した後、濾過脱水する操作を繰り返すことにより、スラリーの洗浄を行った。ろ液の電気伝導度が10μS/cm以下となった時点で、再びイオン交換水を添加して約1.0質量%のスラリーとし、24時間静置した。そこからさらに濾過脱水する操作を繰り返し、再びろ液の電気伝導度が10μS/cm以下となった時点を洗浄終点とした。得られた微細繊維状セルロース凝集物にイオン交換水を加え、置換基除去後スラリーを得た。このスラリーの固形分濃度は1.7質量%であった。
[置換基除去後スラリーの均一分散]
得られた置換基除去後スラリーにイオン交換水を加え、固形分濃度が1.0質量%のスラリーとした後、湿式微粒化装置(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて3回処理し、置換基除去微細繊維状セルロースを含む置換基除去微細繊維状セルロース分散液を得た。微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。
<製造例3>
[亜リン酸化処理]
リン酸化処理においてリン酸二水素アンモニウムの代わりに亜リン酸(ホスホン酸)33質量部を用いた以外は、製造例1と同様に操作を行い、亜リン酸化パルプ及び微細繊維状セルロースを含む微細繊維状セルロース分散液(亜リン酸化CNFを含む分散液)を得た。
これにより得られた亜リン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、パルプに亜リン酸基(ホスホン酸基)が付加されていることが確認された。また、X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、後述する[リンオキソ酸基量の測定]に記載の測定方法で測定される(亜)リン酸基量(第1解離酸量)は1.51mmol/gであり、総解離酸量は、1.54mmol/gであった。
<製造例4>
[TEMPO酸化処理]
原料パルプとして、王子製紙株式会社製の広葉樹溶解パルプ(ドライシート)を使用した。この原料パルプに対してアルカリTEMPO酸化処理を次のようにして行った。まず、乾燥質量100質量部相当の上記原料パルプと、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)1.6質量部と、臭化ナトリウム10質量部を、水10000質量部に分散させた。次いで、13質量%の次亜塩素酸ナトリウム水溶液を、1.0gのパルプに対して3.8mmolになるように加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10以上10.5以下に保ち、pHに変化が見られなくなった時点で反応終了と見なした。
[洗浄処理]
次いで、得られたTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、TEMPO酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
[追酸化処理]
この脱水シートに対して、残存するアルデヒド基の追酸化処理を次のようにして行った。乾燥質量100質量部相当の上記脱水シートを、0.1mol/L酢酸緩衝液(pH4.8)10000質量部に分散させた。次いで80%亜塩素酸ナトリウム113質量部を加え、直ちに密閉した後、マグネチックスターラーを用いて500rpmで撹拌しながら室温で48時間反応させ、パルプスラリーを得た。
次いで、得られた追酸化済みTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、追酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。また、得られたTEMPO酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
[解繊処理]
得られたTEMPO酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて4回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液(TEMPO酸化CNFを含む分散液)を得た。X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、後述する測定方法で測定されるカルボキシ基量は、1.30mmol/gであった。
<製造例5>
[硫酸エステル化処理]
リン酸二水素アンモニウムの代わりにアミド硫酸(スルファミン酸)38質量部を用い、加熱時間を20分間に延長した以外は、製造例1と同様に操作を行い、硫酸化パルプ及び微細セルロースを含む微細繊維状セルロース分散液を得た。
得られた硫酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1220-1260cm-1付近に硫酸エステル基のS=Oに基づく吸収が観察され、パルプに硫酸エステル基が付加されていることが確認された。また、得られた硫酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、得られた微細繊維状セルロースについて、後述する(硫黄オキソ酸基量・スルホン基量の測定)に記載の測定方法で測定される硫酸エステル基量は1.47mmоl/gだった。
<製造例6>
[次亜塩素酸酸化処理]
針葉樹晒クラフトパルプ(NBKP)を抄き上げたシート(固形分濃度90質量%)を、ハンドミキサー(大阪ケミカル株式会社製、ラボミルサーPLUS)を用い、回転数20000rpmで15秒処理して綿状のフラッフィングパルプ(固形分濃度90質量%)にした。次いで、次亜塩素酸ナトリウム・5水和物をイオン交換水に加え、次亜塩素酸ナトリウムの固形分濃度を22質量%とした水溶液を準備した。綿状のフラッフィングパルプ100質量部に、22質量%の次亜塩素酸ナトリウム水溶液を9000質量部加え、温浴で30℃に調整しながら2時間反応させ、カルボキシ基導入パルプを得た。反応中は1N水酸化ナトリウム水溶液を適宜加え、pHを11に維持した。
[洗浄処理]
次いで、得られたカルボキシ基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたカルボキシ基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
また、得られたカルボキシ基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
[解繊処理]
得られたカルボキシ基導入パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。
X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、得られた微細繊維状セルロースについて、後述する測定方法で測定されるカルボキシ基量は、0.70mmоl/gだった。
<製造例7>
[マレイン酸エステル化処理]
針葉樹晒クラフトパルプ(NBKP)を抄き上げたシート(固形分濃度90質量%)を、ハンドミキサー(大阪ケミカル株式会社製、ラボミルサーPLUS)を用い、回転数20000rpmで15秒処理して綿状のフラッフィングパルプ(固形分濃度90質量%)にした。オートクレーブに、綿状のフラッフィングパルプ100質量部と無水マレイン酸50質量部とを充填し、150℃で2時間処理して、カルボキシ基導入パルプを得た。
[洗浄処理]
次いで、得られたカルボキシ基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたカルボキシ基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
得られたカルボキシ基導入パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1580および1720cm-1付近にカルボキシ基に基づく吸収が観察され、マレイン酸エステル化されていることを確認した。得られたカルボキシ基導入パルプについて、後述する測定方法で測定されるカルボキシ基量は、1.22mmol/gだった。また、カルボキシ基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
[解繊処理]
得られたカルボキシ基導入パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。
X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、得られた微細繊維状セルロースについて、後述する測定方法で測定されるカルボキシ基量は、1.22mmоl/gだった。
<製造例8>
[カルボキシメチル化処理]
原料パルプとして、王子製紙株式会社製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
この原料パルプ100質量部(絶乾質量)に、12N NaOH水溶液を83質量部と、モノクロロ酢酸ナトリウム175質量部、イオン交換水313質量部からなる薬液(合計571質量部)を加え、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを95℃の湯浴で60分加熱し、パルプ中のセルロースにカルボキシメチル基(カルボキシ基)を導入し、カルボキシ基導入パルプを得た。
次いで、得られたカルボキシ基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたカルボキシ基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
得られたカルボキシ基導入パルプについて、後述する測定方法で測定されるカルボキシ基量は、1.21mmol/gだった。 また、カルボキシ基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
得られたカルボキシ基導入パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。
X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、得られた微細繊維状セルロースについて、後述する測定方法で測定されるカルボキシ基量は、1.21mmol/gだった。
<製造例9>
[カルボキシエチル化処理]
原料パルプとして、王子製紙株式会社製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
この原料パルプ100質量部(絶乾質量)に、12N NaOH水溶液を250質量部と、2-クロロプロピオン酸163質量部、イオン交換水140質量部からなる薬液(合計553質量部)を加え、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で10分加熱し、パルプ中のセルロースにカルボキシエチル基(カルボキシ基)を導入し、カルボキシ基導入パルプを得た。
[洗浄処理]
次いで、得られたカルボキシ基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたカルボキシ基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
次いで、洗浄後のカルボキシ基導入パルプに対して中和処理を次のようにして行った。まず、洗浄後のカルボキシ基導入パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のカルボキシ基導入パルプスラリーを得た。次いで、当該カルボキシ基導入パルプスラリーを脱水および洗浄をして、中和処理が施されたカルボキシ基導入パルプを得た。
また、カルボキシ基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
[解繊処理]
得られたカルボキシ基導入パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。
X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、得られた微細繊維状セルロースについて、後述する測定方法で測定されるカルボキシ基量は、1.41mmоl/gだった。
<製造例10>
[スルホエチル化処理]
原料パルプとして、王子製紙株式会社製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
この原料パルプ100質量部(絶乾質量)に、2N NaOH水溶液を180質量部と25質量%濃度のビニルスルホン酸ナトリウム水溶液780質量部からなる薬液(合計960質量部)を加え、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で16分加熱し、パルプ中のセルロースにスルホエチル基(スルホン基)を導入し、スルホエチル基導入パルプ(スルホン基導入パルプ)を得た。
次いで、得られたスルホエチル基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたスルホエチル基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
また、スルホエチル基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
[解繊処理]
得られたスルホエチル基導入パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。
X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、得られた微細繊維状セルロースについて、後述する測定方法で測定されるスルホエチル基量(スルホン基量)は、1.48mmоl/gだった。
<製造例11>
[カチオン化処理]
原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
この原料パルプ100質量部(絶乾質量)に、1N NaOH水溶液を180質量部とカチオン化剤(カチオマスターG、四日市合成株式会社製、グリシジルトリメチルアンモニウムクロリド、純分73.1質量%、含水率20.2質量%)325質量部からなる薬液(合計505質量部)を加え、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で12分加熱し、パルプ中のセルロースにカチオン基を導入し、カチオン基導入パルプを得た。
次いで、得られたカチオン基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたカチオン基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
次いで、洗浄後のカチオン基導入パルプに対して中和処理を次のようにして行った。まず、洗浄後のカチオン基導入パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの塩酸を少しずつ添加することにより、pHが1以上2以下のカチオン基導入パルプスラリーを得た。次いで、当該カチオン基導入パルプスラリーを脱水および洗浄をして、中和処理が施されたカチオン基導入パルプを得た。
X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
[解繊処理]
得られたカチオン基導入パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。
X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、後述するカチオン性基の測定方法で測定されるカチオン性基量は、1.45mmоl/gであった。
<測定>
(リンオキソ酸基量の測定)
微細繊維状セルロースのリンオキソ酸基量(リンオキソ酸化パルプのリンオキソ酸基量と等しい)は、対象となる微細繊維状セルロースを含む微細繊維状セルロース分散液にイオン交換水を添加して、含有量を0.2質量%とし、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
イオン交換樹脂による処理は、上記微細繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社製、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
また、アルカリを用いた滴定は、イオン交換樹脂による処理後の微細繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を5秒に10μLずつ加えながら、スラリーが示すpHの値の変化を計測することにより行った。なお、滴定開始の15分前から窒素ガスをスラリーに吹き込みながら滴定を行った。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ観測される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ(図1)。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中の第1解離酸量と等しくなる。また、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。なお、滴定開始から第1終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値をリンオキソ酸基量(第1解離酸量)(mmol/g)とした。また、滴定開始から第2終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値を総解離酸量(mmol/g)とした。
(カルボキシ基量の測定)
微細繊維状セルロースのカルボキシ基量(TEMPO酸化パルプ等のカルボキシ基導入パルプのカルボキシ基量と等しい)は、対象となる微細繊維状セルロースを含む微細繊維状セルロース分散液にイオン交換水を添加して、含有量を0.2質量%とし、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
イオン交換樹脂による処理は、0.2質量%の微細繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社製、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を加えながら、スラリーが示すpHの値の変化を計測することにより行った。水酸化ナトリウム水溶液を加えながらpHの変化を観察すると、図2に示されるような滴定曲線が得られる。図2に示されるように、この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が一つ観測される。この増分の極大点を第1終点と呼ぶ。ここで、図2における滴定開始から第1終点までの領域を第1領域と呼ぶ。第1領域で必要としたアルカリ量が、滴定に使用したスラリー中のカルボキシ基量と等しくなる。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の微細繊維状セルロース含有スラリー中の固形分(g)で除すことで、カルボキシ基の導入量(mmol/g)を算出した。
なお、上述のカルボキシ基導入量(mmol/g)は、カルボキシ基の対イオンが水素イオン(H)であるときの繊維状セルロースの質量1gあたりの置換基量(以降、カルボキシ基量(酸型)と呼ぶ)を示している。
(硫黄オキソ酸基量・スルホン基量の測定)
微細繊維状セルロースの硫黄オキソ酸基量またはスルホン基量は、凍結乾燥及び粉砕処理後の試料を密閉容器中で硫酸を用いて加圧加熱分解し、適宜希釈してICP-OESで硫黄量を測定した。供試した微細繊維状セルロースの絶乾質量で割り返して算出した値を微細繊維状セルロースの硫黄オキソ酸基量またはスルホン基量(mmоl/g)とした。
(カチオン性基量の測定)
微細繊維状セルロースのカチオン性基量は、微量窒素分析を行い、下記式で計算した値を微細繊維状セルロースのカチオン性基量(mmоl/g)とした。
(カチオン性基量)[mmol/g]=(窒素量)[g]/14×1000/(供試したカチオン性基導入微細繊維状セルロース量)[g]
<実施例1>
[液状組成物Aの調製]
イオン交換水に、アセトアセチル基変性ポリビニルアルコール(三菱ケミカル株式会社製、ゴーセネックスZ-200)を12質量%になるように加え、95℃で1時間撹拌し、溶解した。以上の手順により、ポリビニルアルコール水溶液を得た。
製造例1で得た微細繊維状セルロース分散液、上記ポリビニルアルコール水溶液、及び亜硫酸ナトリウム(富士フイルム和光純薬株式会社製)をそれぞれ固形分濃度が0.5質量%となるようにイオン交換水で希釈した。次いで、希釈後の微細繊維状セルロース分散液100質量部に対して、樹脂として希釈後のポリビニルアルコール水溶液100質量部、及び還元剤として希釈した亜硫酸ナトリウム水溶液0.4質量部を添加し、液状組成物Aを得た。
[シートの作製]
シートの仕上がり坪量が34g/mになるように液状組成物Aを計量して、市販のアクリル板上に展開した。なお、所定の坪量となるようアクリル板上には堰止用の枠(内寸250mm×250mm、高さ5cm)を配置した。そのあと100℃の乾燥機で1時間乾燥し、アクリル板から剥離することで、微細繊維状セルロース含有シートを得た。シートの厚みは25μmであった。
<実施例2>
還元剤として、チオ硫酸ナトリウム(富士フイルム和光純薬株式会社製)を用いた以外は実施例1と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<実施例3>
還元剤として、水素化ホウ素ナトリウム(シグマアルドリッチジャパン合同会社製)を用いた以外は実施例1と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<実施例4>
還元剤として、亜硫酸水素ナトリウム(富士フイルム和光純薬株式会社製)を用いた以外は実施例1と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<実施例5>
還元剤として、シアノ水素化ホウ素ナトリウム(シグマアルドリッチジャパン合同会社製)を用いた以外は実施例1と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<実施例6>
還元剤として、次亜硫酸ナトリウム(富士フイルム和光純薬株式会社製)を用いた以外は実施例1と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<実施例7>
希釈したチオ硫酸ナトリウム水溶液の添加量を1質量部に変更した以外は実施例2と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<実施例8>
希釈したチオ硫酸ナトリウム水溶液の添加量を4質量部に変更した以外は実施例2と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<実施例9>
希釈後の微細繊維状セルロース分散液100質量部に対して、樹脂として希釈後のポリビニルアルコール水溶液43質量部、及び還元剤として希釈したチオ硫酸ナトリウム水溶液0.4質量部を添加した以外は実施例1と同様にして、液状組成物を得た。得られた液状組成物をシートの仕上がり坪量が35g/mとなるように計量した以外は実施例1と同様にして、微細繊維状セルロース含有シートを得た。シートの厚みは25μmであった。
<実施例10>
製造例2で得た微細繊維状セルロース分散液を用いた以外は実施例2と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<実施例11>
製造例2で得た微細繊維状セルロース分散液を用いた以外は実施例9と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<実施例12>
製造例2で得た微細繊維状セルロース分散液を用いた以外は実施例7と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<実施例13>
製造例2で得た微細繊維状セルロース分散液を用いた以外は実施例1と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<実施例14>
製造例3で得た微細繊維状セルロース分散液を用いた以外は実施例2と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<実施例15>
製造例4で得た微細繊維状セルロース分散液を用いた以外は実施例2と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<実施例16>
液状組成物Aに、重合禁止剤としてジブチルヒドロキシトルエン(富士フイルム和光純薬株式会社製)0.2質量部をさらに添加した以外は実施例1と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<実施例17>
液状組成物Aに、重合禁止剤としてフェノチアジン(富士フイルム和光純薬株式会社製)0.2質量部をさらに添加した以外は実施例1と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<実施例18>
樹脂としてアセトアセチル基変性ポリビニルアルコールに代えて、ポリエチレンオキサイド(富士フイルム和光純薬株式会社製:分子量100万)を用いた以外は実施例9と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<実施例19>
樹脂としてアセトアセチル基変性ポリビニルアルコールに代えて、ポリウレタン樹脂(第一工業製薬社製:スーパーフレックス170)を用いた以外は実施例9と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<実施例20~26>
製造例1で得た微細繊維状セルロース分散液に代えて、製造例5~11で得た微細繊維状セルロース分散液をそれぞれ用いた以外は実施例2と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<比較例1>
還元剤を含有しなかった以外は実施例1と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<比較例2>
還元剤を含有しなかった以外は実施例16と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<比較例3>
還元剤を含有しなかった以外は実施例17と同様にして、液状組成物及び微細繊維状セルロース含有シートを得た。
<比較例4>
希釈後の微細繊維状セルロース分散液にポリビニルアルコール水溶液を添加しなかった以外は実施例2と同様にして、液状組成物を得た。得られた液状組成物を用い、実施例1と同様の手順でシート作製を試みたが、乾燥による収縮が大きくシートを形成することができなかった。
<比較例5>
希釈後の微細繊維状セルロース分散液にポリビニルアルコール水溶液を添加しなかった以外は実施例15と同様にして、液状組成物を得た。得られた液状組成物を用い、実施例1と同様の手順でシート作製を試みたが、乾燥による収縮が大きくシートを形成することができなかった。
[評価]
実施例及び比較例で得られた液状組成物及び微細繊維状セルロース含有シートについて、下記の方法で評価を行った。
[液状組成物のpH測定]
液状組成物のpHは、校正済みのハンディpHメータ(株式会社堀場製作所製、D-51S)にて測定した。
[シートのヘーズ測定]
JIS K 7136:2000に準拠し、ヘーズメーター(株式会社村上色彩技術研究所製、HM-150)を用いてシートのヘーズを測定した。
[シートの加熱前後の黄色度測定]
JIS K 7373:2006に準拠し、Colour Cute i(スガ試験機株式会社製)を用いてシートの加熱前後の黄色度を測定した。なお、加熱後の黄色度は、160℃で6時間加熱したシートの黄色度とした。
なお、シートの黄色度は、次式のとおり、シート厚み25μmに比例換算した値とした。
黄色度=シートの黄色度測定値×(25/シート厚み)
[シートの厚み測定]
50mm角以上の大きさに切り出したシートを、23℃、相対湿度50%で24時間調湿した後、定圧厚さ測定器(TECLOCK CのORPORATION製、PG-02)を用いてシートの任意の点4点の厚みを測定し、その平均値をシートの厚みとした。
Figure 2022031246000003
Figure 2022031246000004
Figure 2022031246000005
Figure 2022031246000006
実施例で得られたシートは加熱後YI値が抑制されていた。また、実施例で得られたシートはヘーズが低く透明性にも優れていた。
さらに、以下の方法で微細繊維状セルロース含有シートの両面に樹脂層が積層された積層体を作製した。
<実施例50>
(樹脂層の形成)
変性ポリカーボネート樹脂(三菱ガス化学株式会社製、ユピゼータFPC-2136)15質量部、トルエン57質量部、メチルエチルケトン28質量部を混合し、樹脂塗工液を得た。次いで上記、樹脂塗工液に密着助剤としてイソシアネート化合物(旭化成ケミカルズ株式会社製、デュラネートTPA-100)を2.25質量部添加して混合した。
この樹脂塗工液を、実施例2で得た微細繊維状セルロース含有シートの一方の面にバーコーターにて塗布した。その後、100℃で1時間加熱して樹脂塗工液を硬化させ、樹脂層を形成した。次いで、微細繊維状セルロース含有シートの反対側の面にも同様の手順で樹脂層を形成した。以上の手順により、微細繊維状セルロース含有シートの両面に樹脂層が積層された積層体を得た。積層体の厚みは30μmであった。
得られた積層体のヘーズは0.2%であり、加熱前YI値は0.2であり、加熱後YI値は3.4であった。このように、積層体においても加熱後YI値が抑制されており、ヘーズも低く、透明性の高い積層体が得られた。

Claims (20)

  1. 繊維幅が1000nm以下の繊維状セルロースと、
    樹脂と、
    還元剤と、を含有する液状組成物。
  2. 前記繊維状セルロースにおけるイオン性置換基の導入量が0.5mmol/g未満である、請求項1に記載の液状組成物。
  3. 前記イオン性置換基がアニオン性基である、請求項2に記載の液状組成物。
  4. 前記アニオン性基が、リンオキソ酸基、リンオキソ酸基に由来する置換基、硫黄オキソ酸基、硫黄オキソ酸基に由来する置換基、カルボキシ基及びカルボキシ基に由来する置換基からなる群から選択される少なくとも1種である、請求項3に記載の液状組成物。
  5. 前記還元剤は、亜硫酸ナトリウム、チオ硫酸ナトリウム、水素化ホウ素ナトリウム、亜硫酸水素ナトリウム、シアノ水素化ホウ素ナトリウム及び次亜硫酸ナトリウムからなる群から選択される少なくとも1種である、請求項1~4のいずれか1項に記載の液状組成物。
  6. 前記樹脂は水溶性高分子である、請求項1~5のいずれか1項に記載の液状組成物。
  7. 重合禁止剤をさらに含む、請求項1~6のいずれか1項に記載の液状組成物。
  8. 前記還元剤の含有量は、前記繊維状セルロース100質量部に対して0.1~5質量部である、請求項1~7のいずれか1項に記載の液状組成物。
  9. 繊維幅が1000nm以下の繊維状セルロースと、
    樹脂と、
    還元剤と、を含有するシート。
  10. 前記繊維状セルロースにおけるイオン性置換基の導入量が0.5mmol/g未満である、請求項9に記載のシート。
  11. 前記イオン性置換基がアニオン性基である、請求項10に記載のシート。
  12. 前記アニオン性基が、リンオキソ酸基、リンオキソ酸基に由来する置換基、硫黄オキソ酸基、硫黄オキソ酸基に由来する置換基、カルボキシ基及びカルボキシ基に由来する置換基からなる群から選択される少なくとも1種である、請求項11に記載のシート。
  13. 前記還元剤は、亜硫酸ナトリウム、チオ硫酸ナトリウム、水素化ホウ素ナトリウム、亜硫酸水素ナトリウム、シアノ水素化ホウ素ナトリウム及び次亜硫酸ナトリウムからなる群から選択される少なくとも1種である、請求項9~12のいずれか1項に記載のシート。
  14. 前記樹脂は水溶性高分子である、請求項9~13のいずれか1項に記載のシート。
  15. 重合禁止剤をさらに含む、請求項9~14のいずれか1項に記載のシート。
  16. 前記還元剤の含有量は、前記繊維状セルロース100質量部に対して0.1~5質量部である、請求項9~15のいずれか1項に記載のシート。
  17. YI値が1.5以下である、請求項9~16のいずれか1項に記載のシート。
  18. ヘーズが3.5%以下である、請求項9~17のいずれか1項に記載のシート。
  19. 光学部材用である、請求項9~18のいずれか1項に記載のシート。
  20. 請求項9~19のいずれか1項に記載のシートと、前記シートの少なくとも一方の面上に積層された樹脂層とを有する積層体。
JP2021129584A 2020-08-07 2021-08-06 液状組成物、シート及び積層体 Pending JP2022031246A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020134647 2020-08-07
JP2020134647 2020-08-07

Publications (1)

Publication Number Publication Date
JP2022031246A true JP2022031246A (ja) 2022-02-18

Family

ID=80324967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021129584A Pending JP2022031246A (ja) 2020-08-07 2021-08-06 液状組成物、シート及び積層体

Country Status (1)

Country Link
JP (1) JP2022031246A (ja)

Similar Documents

Publication Publication Date Title
US11034806B2 (en) Resin composite and method for producing resin composite
JP2021004374A (ja) 繊維状セルロースの製造方法、繊維状セルロース分散液及びシート
WO2020138158A1 (ja) 繊維状セルロース、繊維状セルロース含有物、成形体及び繊維状セルロースの製造方法
JP2022026834A (ja) 成形体及び成形体の製造方法
JPWO2020085479A1 (ja) 微細繊維状セルロース含有組成物およびその製造方法
JP7090023B2 (ja) 繊維状セルロース、繊維状セルロース含有物、成形体及び繊維状セルロースの製造方法
JP7131296B2 (ja) 微細繊維状セルロース含有組成物およびその製造方法
US11987675B2 (en) Sheet
JP2022031246A (ja) 液状組成物、シート及び積層体
JP2021185278A (ja) シート及びシートの製造方法
JP2022042509A (ja) シート
JP2020204041A (ja) 繊維状セルロース、繊維状セルロース含有物、成形体及び繊維状セルロースの製造方法
EP4293069A1 (en) Sheet and layered body
WO2022145389A1 (ja) 積層体及び積層体の製造方法
JP7647568B2 (ja) 分散液
JP2020070342A (ja) セルロース含有組成物、液状組成物、固形状体及びセルロース含有組成物の製造方法
JP7593329B2 (ja) 繊維状セルロース、繊維状セルロース分散液及びシート
JP7327236B2 (ja) 繊維状セルロース、繊維状セルロース含有物、成形体及び繊維状セルロースの製造方法
JP7593330B2 (ja) 繊維状セルロース、繊維状セルロース分散液及びシート
JP6816837B1 (ja) 分散液
JP2022157193A (ja) 繊維状セルロース、分散液及びシート
JP2022175939A (ja) シート
JP2021175800A (ja) シートおよび積層体
JP2022157194A (ja) 繊維状セルロース、分散液及びシート
JP2022115099A (ja) 複層樹脂ガラスおよび自動車用ウインドウユニット

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20250217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20250218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20250411