Nothing Special   »   [go: up one dir, main page]

JP2022083366A - Total heat exchange type ventilation unit with less contamination - Google Patents

Total heat exchange type ventilation unit with less contamination Download PDF

Info

Publication number
JP2022083366A
JP2022083366A JP2020205391A JP2020205391A JP2022083366A JP 2022083366 A JP2022083366 A JP 2022083366A JP 2020205391 A JP2020205391 A JP 2020205391A JP 2020205391 A JP2020205391 A JP 2020205391A JP 2022083366 A JP2022083366 A JP 2022083366A
Authority
JP
Japan
Prior art keywords
ventilation
heat exchange
air
housing
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020205391A
Other languages
Japanese (ja)
Inventor
裕 渡邊
Yutaka Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Heat Use Technology
Original Assignee
Yokohama Heat Use Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Heat Use Technology filed Critical Yokohama Heat Use Technology
Priority to JP2020205391A priority Critical patent/JP2022083366A/en
Publication of JP2022083366A publication Critical patent/JP2022083366A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Duct Arrangements (AREA)

Abstract

To solve the problem that since a water vapor selective permeable film has low strength because it is a thin film, although conventional total heat exchangers using the water vapor selective permeable film use a metal or plastic formwork or metal wire to hold the water vapor selective permeable film, as a result, the conventional total heat exchangers have a low degree of freedom for shape and are heavy and large-sized, which leads to the drawback that they are not suitable for a ventilation system with a large ventilation volume.SOLUTION: A corrugated support structure made of a lightweight sheet material is sandwiched between two water vapor selective permeable films to form a ventilation path unit; after the ventilation path units are further laminated with the corrugated support structure at regular intervals, it is possible to manufacture a flexible and high-strength ventilation unit that is lightweight and has high impact resistance by being stored in a tight state inside a housing. The ventilation unit realizes a total heat exchange type ventilation device that is lightweight, highly efficient and does not cause contamination.SELECTED DRAWING: Figure 5

Description

本発明は住居、事務所、商業施設、体育館、イベント会場、工場、乗り物などの室内空間に新鮮な外気を導入する換気装置において、室内気が保有する潜熱ならびに顕熱を導入外気へ移動する全熱交換を高効率に行うと共に、排気される室内気に含まれる汚れ成分が導入外気に混入して室内へ還流することを防止できる換気装置に関する。 The present invention is a ventilation device that introduces fresh outside air into indoor spaces such as residences, offices, commercial facilities, gymnasiums, event venues, factories, and vehicles. The present invention relates to a ventilation device capable of performing heat exchange with high efficiency and preventing the dirt component contained in the exhausted indoor air from being mixed with the introduced outside air and returning to the room.

近年、COVIT-19の様なウイルスによる疫病が世界的に蔓延しており、その対策として居室や事業所の積極的な換気が奨励されている。
しかしながら、寒冷時や多湿時に外気を室内へ導入し、室内気を外部へ排出する事は、室内気に蓄えられた温熱や水蒸気の潜熱を戸外へ捨てることになり、空調のための追加的エネルギーが必要となるほか、居住者の快適性が損なわれるなどの課題がある。
In recent years, epidemics caused by viruses such as COVIT-19 have spread worldwide, and active ventilation of living rooms and business establishments is encouraged as a countermeasure.
However, introducing the outside air into the room and discharging the room air to the outside in cold weather or high humidity means that the latent heat of the heat and water vapor stored in the room air is discarded to the outside, which is an additional energy for air conditioning. In addition to the need for water vapor, there are issues such as impaired resident comfort.

世界的に空調設備の導入は増加しつつあり、そのエネルギー使用量も拡大しつつある。これは地球温暖化の原因でもあるため、空調設備のエネルギー使用量削減は喫緊の課題である。 The introduction of air conditioning equipment is increasing worldwide, and the amount of energy used is also expanding. Since this is also a cause of global warming, reducing the energy consumption of air conditioning equipment is an urgent issue.

一方、住宅、オフィス、事業所などでは省エネルギーのために住空間の高気密化が推進されてきたが、住空間の高気密化はCOVIT-19の様なウイルスによる感染拡大を助長する事から、積極的な換気と省エネルギーを両立させる必要がある。 On the other hand, in houses, offices, offices, etc., the airtightness of living spaces has been promoted for energy saving, but the airtightness of living spaces promotes the spread of infection by viruses such as COVIT-19. It is necessary to achieve both active ventilation and energy saving.

このような状況に対し、近年、水蒸気のみを選択的に通過させる水蒸気選択透過性膜が出現している。この機能は例えば高分子収着剤やフッ素系樹脂の様な特殊な樹脂を担持したシート、あるいは樹脂薄膜で確認されており、相対湿度が高い空気に接する一方の面から、相対湿度が低い空気に接する他方の面へ向けて水蒸気のみを通過させる特性を有している。 In response to this situation, in recent years, a water vapor selective permeable membrane that selectively allows only water vapor to pass through has appeared. This function has been confirmed in sheets carrying special resins such as polymer sorbents and fluororesins, or resin thin films, and air with low relative humidity from one side in contact with air with high relative humidity. It has the property of allowing only water vapor to pass toward the other surface in contact with.

しかしながら、これらの水蒸気選択透過性膜は薄膜であるため、この膜を介しての水蒸気や熱を交換する際には空気流間の圧力差や風の流れに耐える強度が求められる。従来の技術では水蒸気選択透過性膜を金属やプラスチックの枠材に固定して用いるため、枠材の制約があり、装置形状が制約され、重量、サイズの増大を伴うなどの欠点があった。 However, since these water vapor selective permeable membranes are thin films, when exchanging water vapor or heat through the membranes, the strength to withstand the pressure difference between the air flows and the wind flow is required. In the conventional technique, since the water vapor selective permeable membrane is fixed to a metal or plastic frame material, there are restrictions on the frame material, the shape of the device is restricted, and there are drawbacks such as an increase in weight and size.

例えば下記特許文献1、2には、水蒸気選択透過性膜を金属あるいはプラスチックの薄板開口部に接着したり、吸湿剤そのものを微細な金網の開口部に塗り込んだりして強度を持った水蒸気選択透過性膜を形成するデシカント換気システムが提案されている。 For example, in the following Patent Documents 1 and 2, the water vapor selective permeable film is adhered to the opening of a thin plate of metal or plastic, or the hygroscopic agent itself is applied to the opening of a fine wire mesh to select water vapor with strength. A desiccant ventilation system that forms a permeable membrane has been proposed.

特許第4341924号Patent No. 4341924 特許第6352915号Patent No. 6352915

上記特許文献1、2記載のデシカント換気システムの構成要素となる換気ユニットでは、導入外気ならびに室内排気の流通時に両流体間で全熱交換を行う熱交換ユニットの形状を保つために水蒸気選択性透過膜を補強部材となる枠材に接着や塗り込みなどを行っている。このため、換気ユニットならびに熱交換ユニットの製作工程が複雑となり、コスト増大や熱交換ユニットの形状が制約されるなどの課題がある。 In the ventilation unit that is a component of the desiccant ventilation system described in Patent Documents 1 and 2, the water vapor selective permeation is performed in order to maintain the shape of the heat exchange unit that exchanges total heat between both fluids when the introduced outside air and the indoor exhaust flow. The film is bonded or coated on the frame material that is the reinforcing member. For this reason, the manufacturing process of the ventilation unit and the heat exchange unit becomes complicated, and there are problems such as cost increase and restrictions on the shape of the heat exchange unit.

本発明の主たる目的は、この課題を解決するため水蒸気選択透過性膜を軽量部材で強固に保持すると共に、水蒸気選択透過性膜を介して導入外気ならびに室内排気の間で全熱交換を行い、かつ室内排気中に含まれるウイルスを含む有害物質などのコンタミの室内への還流の無い熱交換ユニットおよび熱交換ユニットを収納した換気ユニットを提供し、換気装置の軽量化、コンパクト化、低コスト化、ならびに全熱交換効率の改善と、COVIT-19の様な感染力の強いウイルス対策としても有効なコンタミレス換気装置の普及を図ることにある。 A main object of the present invention is to firmly hold the steam selective permeable film with a lightweight member in order to solve this problem, and to exchange total heat between the introduced outside air and the indoor exhaust through the steam selective permeable film. In addition, we provide a heat exchange unit that does not return to the room due to contamination such as harmful substances including viruses contained in the room exhaust and a ventilation unit that houses the heat exchange unit, making the ventilation device lighter, more compact, and lower in cost. In addition, the purpose is to improve the total heat exchange efficiency and to popularize a contactless ventilation device such as COVIT-19, which is also effective as a countermeasure against highly infectious viruses.

本発明による高効率な全熱交換とコンタミレスを実現する換気装置は、外気(1)の室内(2)への導入を行う外気導入ダクト(1-1)と室内気を室外へ排気する排気ダクト(2-1)とが接続される換気ユニット(3)の筐体(4)内に熱交換ユニット(5)を収納し、前記熱交換ユニット(5)は、波板状(コルゲート状)あるいは三角を成す折り板状の支持構造体(6)を2枚の水蒸気選択透過性膜間(7)にてサンドイッチ状に挟んで接着形成される通気路Aと、別の支持部材を介して前記通気路Aを一定間隔で積層することで通気路Aの間に通気路Bのある熱交換ユニット(5)を形成し、該熱交換ユニット(5)の底面ならびに上面にクッション板(13)を粘着した上で、前記筐体(4)の内壁面に固定具(10)を介して固定する。
前記筐体(4)の側面部には外気および室内気の出入り口(4-1)を設置し、筐体(4)内に固定された熱交換ユニット(5)の通気路Aおよび通気路Bへの空気流を形成する。
熱交換ユニット(5)内では通気路Aと通気路Bを流れる空気流との間で水蒸気選択透過性膜(7)を介して熱および水蒸気の交換が行われる構成である。
The ventilation device that realizes highly efficient total heat exchange and contaminationless according to the present invention includes an outside air introduction duct (1-1) that introduces the outside air (1) into the room (2) and an exhaust that exhausts the room air to the outside. The heat exchange unit (5) is housed in the housing (4) of the ventilation unit (3) to which the duct (2-1) is connected, and the heat exchange unit (5) has a corrugated plate shape (corrugated shape). Alternatively, a ventilation passage A formed by sandwiching a triangular folded plate-shaped support structure (6) between two steam selective permeable films (7) in a sandwich shape and another support member is used. By laminating the ventilation passages A at regular intervals, a heat exchange unit (5) having a ventilation passage B is formed between the ventilation passages A, and a cushion plate (13) is formed on the bottom surface and the upper surface of the heat exchange unit (5). Is adhered to the inner wall surface of the housing (4) via a fixture (10).
An inlet / outlet (4-1) for outside air and indoor air is provided on the side surface of the housing (4), and the ventilation passage A and the ventilation passage B of the heat exchange unit (5) fixed in the housing (4). Form an air flow to.
In the heat exchange unit (5), heat and water vapor are exchanged between the air passage A and the air flow flowing through the air passage B via the water vapor selective permeable membrane (7).

前記水蒸気選択透過性膜(7)の一方の面が接する空気と他方の面が接する空気の間の相対湿度差により高相対湿度の空気側で空気中の水蒸気分子が膜表面でトラップされて水分子となり、膜内に吸水され、吸水された水分子は膜内を移動して、低相対湿度の空気側で空気中に発散され、水蒸気のみが選択的に膜を透過する。
また、採用する水蒸気選択透過性膜(7)は膜の厚みが0.5mm以下であり、膜を介しての熱移動の際の熱抵抗が小さく、通気路A、通気路Bを通過する空気間の熱交換性も良好である。
Water vapor molecules in the air are trapped on the surface of the air on the air side with high relative humidity due to the relative humidity difference between the air in contact with one surface of the water vapor selective permeability film (7) and the air in contact with the other surface. It becomes molecules, is absorbed into the membrane, and the absorbed water molecules move in the membrane and are released into the air on the air side with low relative humidity, and only water vapor selectively permeates the membrane.
Further, the water vapor selective permeable membrane (7) to be adopted has a membrane thickness of 0.5 mm or less, has a small thermal resistance during heat transfer through the membrane, and has air passing through the air passage A and the air passage B. The heat exchange between them is also good.

また、通気路A、および通気路Bに設置される波板状(コルゲート状)あるいは三角を成す折り板状の支持構造体(6)のシート厚を0.1mm以上とし、かつシート材を短ピッチで波型とした形状であるため通気路Aあるいは通気路Bからなる熱交換ユニット積層体は軽量でフレキシブル性が高く、かつ通気路Aおよび通気路Bにおいて流下する空気の流れ方向が互いに直交する様にそれぞれの支持構造体(6)を構成しているので、熱交換ユニット(5)の強度も十分である。 Further, the sheet thickness of the corrugated plate-shaped (corrugated) or triangular folded plate-shaped support structure (6) installed in the ventilation passage A and the ventilation passage B is 0.1 mm or more, and the sheet material is short. The heat exchange unit laminate consisting of the air passage A or the air passage B is lightweight and highly flexible because of the corrugated shape at the pitch, and the flow directions of the air flowing down in the air passage A and the air passage B are orthogonal to each other. Since each support structure (6) is configured so as to do so, the strength of the heat exchange unit (5) is also sufficient.

さらに本発明では、波板状(コルゲート状)あるいは三角を成す折り板状の支持構造体(6)と水蒸気選択透過性膜(7)とを接着しているので、通気路Aならびに通気路Bの積層からなる熱交換ユニット(5)の強度が確保され、さらにこの熱交換ユニット(5)と固定具(10)を接着した上で筐体(4)内壁面に収納・接着しているので、熱交換ユニット(5)の稜線部からの通過空気の混入が防止される上、換気ユニット(3)の強度も確保されている。
このため、水蒸気選択透過性膜(7)を介して導入外気と室内からの排気が通過する際の空気圧の差で発生する通気路Aおよび通気路Bの形状変化や熱交換ユニット(5)ならびに換気ユニット(3)の変形・破損が防止される。
Further, in the present invention, since the corrugated plate-shaped (corrugated) or triangular folded plate-shaped support structure (6) and the water vapor selective permeability film (7) are adhered to each other, the ventilation passage A and the ventilation passage B are bonded. Since the strength of the heat exchange unit (5) made of laminated layers is secured, and the heat exchange unit (5) and the fixture (10) are bonded and then stored and bonded to the inner wall surface of the housing (4). In addition to preventing the entry of passing air from the ridgeline portion of the heat exchange unit (5), the strength of the ventilation unit (3) is also ensured.
Therefore, the shape change of the ventilation passage A and the ventilation passage B, the heat exchange unit (5), and the heat exchange unit (5) generated by the difference in air pressure when the introduced outside air and the exhaust from the room pass through the steam selective permeable membrane (7). Deformation / damage of the ventilation unit (3) is prevented.

さらに請求項4にかかる本発明では、通気路Aならびに通気路Bを交互に積層した状態で形成された複数個の熱交換ユニット(5)を筐体(4)内に設置する際に、各熱交換ユニット(5)の通気路Aが流れ方向に接続されるように各熱交換ユニット(5)を筐体(4)内に設置する。その際、筐体(4)の短辺となる一対の側面部(4-1)に通気路Aを通過する空気の入口と出口を設置し、筐体(4)の長辺となる一対の側面部(4-2)には通気路Bを通過する空気の入口と出口を複数設置すると共に、その長辺側の側面出口から出た空気がユーターンして再び長辺側の側面入口から隣接する別の熱交換ユニット(5)の通気路Bへ進むユーターンダクト(4-3)を設置した。これにより通気路Aを直進状態で進む空気流に対し通気路Bを通過する空気流がジグザグな流れとなる。その結果、両流体間の熱移動あるいは水蒸気移動を対向流に近い条件として構成できるため高い全熱交換効率の換気ユニット(3)が提供される。 Further, in the present invention according to claim 4, when a plurality of heat exchange units (5) formed in a state where the ventilation passages A and the ventilation passages B are alternately laminated are installed in the housing (4), respectively. Each heat exchange unit (5) is installed in the housing (4) so that the ventilation passage A of the heat exchange unit (5) is connected in the flow direction. At that time, an inlet and an outlet for air passing through the ventilation passage A are provided on a pair of side surface portions (4-1) which are short sides of the housing (4), and a pair of long sides of the housing (4) are provided. A plurality of inlets and outlets for air passing through the ventilation passage B are installed on the side surface portion (4-2), and the air discharged from the side outlet on the long side thereof makes a u-turn and is adjacent to the side inlet on the long side again. A u-turn duct (4-3) leading to the ventilation path B of another heat exchange unit (5) was installed. As a result, the air flow passing through the ventilation path B becomes a zigzag flow with respect to the air flow traveling straight through the ventilation path A. As a result, the ventilation unit (3) having high total heat exchange efficiency can be provided because the heat transfer or water vapor transfer between the two fluids can be configured as a condition close to the countercurrent.

さらに請求項5にかかる本発明では、通気路Aならびに通気路Bを交互に積層した複数個の熱交換ユニット(5)の底面形状をほぼ正方形とした上で、互いに接触する熱交換ユニット(5)の積層方向(縦方向)稜線を固定具(10)により接着固定しているので、各熱交換ユニット(5)の積層方向(縦方向)稜線部からの空気の漏れを防ぐと同時に、筐体(4)内に熱交換ユニット群(8)としての設置が容易になった。
また、熱交換ユニット(5)の他の積層方向(縦方向)稜線のすべてを筐体(4)の内側の壁面に固定具(10)を介して接着固定したので、熱交換ユニット(5)の積層方向(縦方向)稜線部からの空気の漏れを防ぐと共に筐体(4)に強固に固定可能となっている。
Further, in the present invention according to claim 5, the heat exchange units (5) which are in contact with each other after having a substantially square bottom surface shape of a plurality of heat exchange units (5) in which the air passages A and B are alternately laminated. ) Is bonded and fixed by the fixture (10), so that air leakage from the stacking direction (vertical) ridges of each heat exchange unit (5) is prevented and at the same time, the housing Installation as a heat exchange unit group (8) in the body (4) has become easier.
Further, since all of the other stacking direction (longitudinal) ridges of the heat exchange unit (5) were adhesively fixed to the inner wall surface of the housing (4) via the fixture (10), the heat exchange unit (5) It is possible to prevent air from leaking from the ridgeline portion in the stacking direction (vertical direction) and firmly fix it to the housing (4).

また、筐体(4)の一方の短辺側の側面部に一対の空気の出入り口(4-1)を設置し、筐体の反対側となる短辺側の側面部にも一対の空気の出入り口を設置したので、筐体の短辺側の入り口から流入した空気は熱交換ユニット(5)内の通気路を斜めに通過した後に隣接する熱交換ユニット(5)の通気路から流入し、再度斜めに進む。同様に筐体(4)の他方の短辺側(4-1)に設置される他の入り口から流入した空気は熱交換ユニット(4)内の別の通気路を経由して斜めに進み、隣接する熱交換ユニット(5)の通気路に再度流入して通気路を斜めに進む経路を取る。結果的に熱交換ユニット(5)と筐体(4)の内側壁面から構成される空間(14)、(15)を通過しつつ流れる二つの空気流は熱交換ユニット(5)内で互いに直交しつつ水蒸気選択透過性膜を介して熱と水蒸気を交換する対向流型のジグザグ流として高効率な全熱交換が形成される。 In addition, a pair of air inlets / outlets (4-1) are installed on the side surface portion on one short side of the housing (4), and a pair of air is also provided on the side surface portion on the short side side opposite to the housing. Since the doorway is installed, the air flowing in from the entrance on the short side of the housing passes diagonally through the ventilation path in the heat exchange unit (5) and then flows in from the ventilation path of the adjacent heat exchange unit (5). Proceed diagonally again. Similarly, the air flowing in from the other inlet installed on the other short side (4-1) of the housing (4) travels diagonally through another ventilation path in the heat exchange unit (4). It flows into the ventilation path of the adjacent heat exchange unit (5) again and takes a path that travels diagonally through the ventilation path. As a result, the two air flows that flow while passing through the space (14) and (15) composed of the inner wall surface of the heat exchange unit (5) and the housing (4) are orthogonal to each other in the heat exchange unit (5). While doing so, highly efficient total heat exchange is formed as a countercurrent type zigzag flow that exchanges heat and water vapor through the water vapor selective permeable film.

以上説明したとおり本発明によれば、室内気を室外へ排出する際に室内気が保有する顕熱(温熱または冷熱のための空調負荷により付加された熱エネルギー)ならびに潜熱(加湿または除湿のために付加された熱エネルギー)を高効率に導入外気へ転嫁する全熱交換型の換気ユニットが形成される。
加えて、室内気に含まれる有害物質(例えば炭酸ガス、細菌、ウイルス、アンモニアなど)のコンタミが導入外気に乗り移り、室内へ還流する現象が防止される。
この効果から、冬季や夏季の空調負荷が増大する季節においても低いエネルギー消費量で清潔な外気を導入する高性能な全熱交換型コンタミレス換気ユニットの提供が可能となる。
As described above, according to the present invention, the apparent heat (heat energy added by the air conditioning load for hot or cold heat) and latent heat (for humidification or dehumidification) possessed by the indoor air when the indoor air is discharged to the outside of the room. A total heat exchange type ventilation unit is formed that transfers the heat energy added to the heat to the outside air with high efficiency.
In addition, contamination of harmful substances (for example, carbon dioxide, bacteria, viruses, ammonia, etc.) contained in the indoor air is prevented from being transferred to the introduced outside air and returning to the indoor air.
From this effect, it becomes possible to provide a high-performance total heat exchange type contaminationless ventilation unit that introduces clean outside air with low energy consumption even in the season when the air conditioning load increases in winter and summer.

本発明の重要技術である水蒸気選択透過性膜を介して、導入外気と室内からの排気が通気路を移動する際に、水蒸気が通気路内で交換される機能を示したイメージ図である。 It is an image diagram showing the function that water vapor is exchanged in a ventilation path when the introduced outside air and the exhaust gas from a room move through the ventilation path through the water vapor selective permeable membrane which is an important technique of the present invention. 本発明の基本的形態である通気路Aの構成と通気路Aが熱交換ユニット内で積層される状況を示した構成概要図である。 It is a configuration schematic diagram which showed the structure of the ventilation path A which is a basic form of this invention, and the situation where the ventilation path A is laminated in a heat exchange unit. 本発明の基本的形態例である熱交換ユニットの構成を示す概要図である。通気路Aならびに通気路Bの非開口部がパテにて密閉されて空気漏洩を防止する状況も併せ示されている。 It is a schematic diagram which shows the structure of the heat exchange unit which is an example of the basic form of this invention. A situation is also shown in which the non-openings of the vent passage A and the vent passage B are sealed with putty to prevent air leakage. 本発明の第1形態例に係る全熱交換型コンタミレス換気ユニットの構成概要を示す平面図である。 It is a top view which shows the structural outline of the total heat exchange type contaminationless ventilation unit which concerns on 1st Embodiment of this invention. 本発明の第2形態例に係る全熱交換型コンタミレス換気ユニットの構成概要を示す平面図である。 It is a top view which shows the structural outline of the total heat exchange type contaminationless ventilation unit which concerns on 2nd Embodiment of this invention.

以下、本発明の実施の形態について図面を参照しながら詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1形態例First form example

本発明の第1形態例に係る全熱交換型コンタミレス換気装置は、図4に示されるように外気(1)を、室内へ導く供給ダクト(1-1)と、室内(2)から室内気を外部へ排出する排気ダクト(2-1)、ならびに、全熱交換型コンタミレスの換気ユニット(3)、図示していないが各空気ダクトに設置されている通気ファン(11)などから構成される。 The total heat exchange type contourless ventilation device according to the first embodiment of the present invention has a supply duct (1-1) for guiding the outside air (1) into the room and a room (2) to the room as shown in FIG. It consists of an exhaust duct (2-1) that exhausts air to the outside, a total heat exchange type contourless ventilation unit (3), and a ventilation fan (11) installed in each air duct (not shown). Will be done.

全熱交換型コンタミレスの換気ユニット(3)は、筐体(4)とその内部に設置される複数個の熱交換ユニット(5)からなる熱交換ユニット群(8)を有しており、熱交換ユニット群(8)はそれぞれの通気路A、通気路Bが接続される空気流路を有している。但し、通気路Aの次に通気路Bを経由する流れの形成でも良い。
また、熱交換ユニット群(8)を構成する熱交換ユニット(5)は互いに接触していても良いが、若干の間隔を保って設置することが望ましい。
The total heat exchange type contourless ventilation unit (3) has a heat exchange unit group (8) composed of a housing (4) and a plurality of heat exchange units (5) installed inside the housing (4). The heat exchange unit group (8) has an air flow path to which the respective ventilation passages A and B are connected. However, the flow may be formed via the ventilation passage B next to the ventilation passage A.
Further, the heat exchange units (5) constituting the heat exchange unit group (8) may be in contact with each other, but it is desirable to install them at a slight interval.

熱交換ユニット(5)は複数の通気路Aが一定間隔で波板状(コルゲート状)の支持構造体(6)を介して積層し、通気路Aの間に通気路Bが形成されている。
通気路Aは2枚の水蒸気選択性透過膜(7)と波板状(コルゲート状)の支持構造体(6)により構成されるが、前記波板状(コルゲート状)の支持構造体(6)は前記水蒸気選択性透過膜(7)の全面にわたり設置されていることが望ましい。
同様に、通気路Bにおいても通気路Aの積層方向高さ間隔を規定する波板状(コルゲート状)の支持構造体(6)は通気路Aの水蒸気選択透過性膜(7)の全面にわたり設置されていることが望ましい。
通気路Aの水蒸気選択性透過膜(7)と波板状(コルゲート状)の支持構造体(6)ならびに通気路Bを形成する波板状(コルゲート状)の支持構造体(6)はそれぞれが水蒸気選択性透過膜(7)と接着固定されているが、通気路Aあるいは通気路Bの空気の流れ方向の側面端部において、波板状の支持構造体(6)の端部と水蒸気選択性透過膜(7)の端部は互いに接着された上、パテ(12)にて空気の漏れが発生しない様に仕上げられている。
パテ(12)は接着材でも良く、通気路A,Bの側面端部において上下の水蒸気選択性透過膜(7)と波板状の支持構造体(6)の双方に接着して、側面端部からの空気の漏れが発生しないように仕上げられている。
In the heat exchange unit (5), a plurality of ventilation passages A are laminated at regular intervals via a corrugated plate-like (corrugated) support structure (6), and the ventilation passage B is formed between the ventilation passages A. ..
The ventilation path A is composed of two water vapor selective permeable membranes (7) and a corrugated plate-shaped (corrugated) support structure (6), and the corrugated plate-shaped (corrugated) support structure (6). ) Is preferably installed over the entire surface of the water vapor selective permeable membrane (7).
Similarly, in the ventilation passage B, the corrugated plate-shaped (corrugated) support structure (6) that defines the height interval in the stacking direction of the ventilation passage A covers the entire surface of the water vapor selective permeable membrane (7) of the ventilation passage A. It is desirable that it is installed.
The water vapor selective permeable film (7) of the air passage A, the corrugated plate-shaped (corrugated) support structure (6), and the corrugated plate-shaped (corrugated) support structure (6) forming the air passage B are respectively. Is adhesively fixed to the water vapor selective permeable film (7), but at the side end of the air passage A or the air passage B in the air flow direction, the end of the corrugated support structure (6) and the water vapor. The ends of the selective permeable film (7) are bonded to each other and finished with a putty (12) so that air leakage does not occur.
The putty (12) may be an adhesive, and is adhered to both the upper and lower water vapor selective permeable membranes (7) and the corrugated support structure (6) at the side end portions of the ventilation passages A and B to be adhered to the side surface ends. It is finished so that air does not leak from the part.

また、通気路Aの波板状(コルゲート状)の支持構造体(6)と通気路Bの波板状(コルゲート状)の支持構造体(6)は互いに流れ方向が直交する方向で水蒸気選択性透過膜(7)に接着固定されている。 Further, the corrugated plate-shaped (corrugated) support structure (6) of the ventilation path A and the corrugated (corrugated) support structure (6) of the ventilation path B select water vapor in a direction in which the flow directions are orthogonal to each other. It is adhesively fixed to the permeable film (7).

複数個の熱交換ユニット(5)からなる熱交換ユニット群(8)を収納する筐体(4)の底面形状は長方形であり、その短辺側の筐体側面には室外から外気(1)を導く外気導入ダクト(1-1)が接続されており、反対側の筐体側面に熱交換ユニット群(8)を通過した外気を室内(2)へ導く外気導入ダクト(1-1)が接続されている。
一方、筐体(4)の長辺側の側面には室内(2)から室内気を外部へ排出する排気ダクト(2-1)が接続されており、排気ダクト(2-1)から流入した室内気は最初の熱交換ユニット(5)の通気路Bを経由して、筐体(4)の反対側にある側面開口部を通り筐体(4)から流出した後、前記開口部の外側に設置されているユーターン流路(4-3)を経由して筐体(4)内へ戻り、次の熱交換ユニット(5)の通気路Bへ流入する。
The bottom surface of the housing (4) for accommodating the heat exchange unit group (8) composed of a plurality of heat exchange units (5) is rectangular, and the side surface of the housing on the short side thereof is exposed to the outside air (1) from the outside. The outside air introduction duct (1-1) that guides the outside air is connected, and the outside air introduction duct (1-1) that guides the outside air that has passed through the heat exchange unit group (8) to the room (2) is connected to the side surface of the housing on the opposite side. It is connected.
On the other hand, an exhaust duct (2-1) that exhausts indoor air from the room (2) to the outside is connected to the side surface on the long side of the housing (4), and flows in from the exhaust duct (2-1). The indoor air passes through the ventilation passage B of the first heat exchange unit (5), passes through the side opening on the opposite side of the housing (4), flows out from the housing (4), and then flows out from the housing (4), and then outside the opening. It returns to the inside of the housing (4) via the U-turn flow path (4-3) installed in, and flows into the ventilation passage B of the next heat exchange unit (5).

この様に、室内(2)からの排気は、筐体(4)の長辺側の側面開口部から筐体(4)内へ流入した後、最初の熱交換ユニット(5)の通気路Bを通過した後、ユーターン流路(4-3)を経由するジグザグ流れを繰り返し、熱交換ユニット群(8)の最終熱交換ユニット(5)を経て筐体(4)に接続される排気ダクト(2-1)を経て外部へ排気される。 In this way, the exhaust from the room (2) flows into the housing (4) from the side opening on the long side of the housing (4), and then the ventilation passage B of the first heat exchange unit (5). After passing through, the zigzag flow via the U-turn flow path (4-3) is repeated, and the exhaust duct (4) connected to the housing (4) via the final heat exchange unit (5) of the heat exchange unit group (8). It is exhausted to the outside through 2-1).

室外からの外気(1)は換気ユニット(3)の筐体(4)内に設置される複数の熱交換ユニット(5)の通気路Aを直進する形で通過し、同時に室内(2)からの排気は複数の熱交換ユニット(5)の通気路Bと筐体(4)の長辺側の側面に設置されたユーターン流路(4-3)により流れ方向をユーターンさせながら熱交換ユニット(5)の通気路Bを通過する。
その結果、換気ユニット(3)を通過した後の外気が室内に供給される際には、その温度と絶対湿度は、室内気の温度と絶対湿度に近づいた状態となる。
The outside air (1) from the outside passes through the ventilation passages A of the plurality of heat exchange units (5) installed in the housing (4) of the ventilation unit (3) in a straight line, and at the same time from the room (2). The exhaust of the heat exchange unit (4-3) is a heat exchange unit (4-3) while the flow direction is u-turned by the ventilation passage B of the plurality of heat exchange units (5) and the u-turn flow path (4-3) installed on the side surface on the long side of the housing (4). It passes through the ventilation passage B of 5).
As a result, when the outside air after passing through the ventilation unit (3) is supplied to the room, the temperature and the absolute humidity are close to the temperature and the absolute humidity of the room air.

次に図1の原理図を用いて、本発明による全熱交換型コンタミレス換気ユニットの優れた点について説明する。 Next, the advantages of the total heat exchange type contaminationless ventilation unit according to the present invention will be described with reference to the principle diagram of FIG.

水蒸気選択透過性膜(7)は表面に空気中の水蒸気分子をトラップする機能を有する樹脂が担持されている。
トラップされた水蒸気分子は水分子の形態となり樹脂内に取り込まれる。
取り込まれた水分子は樹脂内を移動し、水蒸気選択透過性膜(7)の反対側の面に到達する。反対側の面に接する空気の相対湿度が低い場合には水蒸気選択透過性膜(7)を通過した水分子はこの相対湿度の低い空気中へ水蒸気として蒸散する。
水蒸気をトラップした際に、水蒸気から水に相変化する際の発熱があり、この発熱は水蒸気選択透過性膜の反対側の面に伝わり、そこから水が蒸散する際の蒸発熱として消費されるため、厳密には水分子の移動と同時に相変化に伴う熱の移動が発生している。
すなわち、水蒸気選択透過性膜(7)は内部を水分子が移動可能であり、その膜厚が薄い事から高い熱移動の機能を有している。これらの特性から水蒸気のみを選択的に物質移動することが可能となっている。
The water vapor selective permeable membrane (7) is supported on the surface of a resin having a function of trapping water vapor molecules in the air.
The trapped water vapor molecules are in the form of water molecules and are incorporated into the resin.
The incorporated water molecules move in the resin and reach the opposite surface of the water vapor selective permeable membrane (7). When the relative humidity of the air in contact with the opposite surface is low, the water molecules that have passed through the water vapor selective permeable film (7) evaporate as water vapor into the air having a low relative humidity.
When water vapor is trapped, there is heat generated when the phase changes from water vapor to water, and this heat is transmitted to the opposite surface of the water vapor selective permeable film, where it is consumed as heat of vaporization when water evaporates. Therefore, strictly speaking, the transfer of heat due to the phase change occurs at the same time as the transfer of water molecules.
That is, the water vapor selective permeable membrane (7) has a high heat transfer function because water molecules can move inside and the film thickness is thin. These characteristics make it possible to selectively transfer only water vapor.

第2形態例Second form example

次に本発明の第2の形態例に係る全熱交換型コンタミレス換気装置について、図5を用いて説明する。 Next, the total heat exchange type contaminationless ventilation device according to the second embodiment of the present invention will be described with reference to FIG.

全熱交換型コンタミレスの換気装置は図示していないが、室外からの導入外気ならびに室内からの排気を送風する通気ファン(11)を、各空気ダクトあるいは換気ユニットの内側あるいは外側に設置している。また、全熱交換型コンタミレスの換気装置は図5に示されるように室外から外気(1)を、室内2へ導く供給ダクト(1-1)と、室内(2)から室内気を室外へ排出する排気ダクト(2-1)ならびに、換気ユニット(3)、熱交換ユニット(5)などから構成される。 Although the ventilation device of the total heat exchange type contaminationless is not shown, a ventilation fan (11) for blowing out the outside air introduced from the outside and the exhaust from the room is installed inside or outside each air duct or ventilation unit. There is. Further, as shown in FIG. 5, the total heat exchange type contaminationless ventilation system has a supply duct (1-1) that guides the outside air (1) from the outside to the room 2 and an indoor air from the room (2) to the outside. It is composed of an exhaust duct (2-1) for discharging, a ventilation unit (3), a heat exchange unit (5), and the like.

換気ユニット(3)は、筐体(4)と筐体(4)の内部に設置される複数個の熱交換ユニット(5)を有しており、熱交換ユニット(5)は通気路Aと通気路Bの積層体からなり、その底面形状は正方形であり、各熱交換ユニット(5)はその積層方向(縦方向)稜線で固定具(10)を介して互いに接合して熱交換ユニット群(8)を構成する。
また、該熱交換ユニット群(8)は固定具(10)を介して、熱交換ユニットの積層方向(縦方向)稜線のすべてが筐体(4)の内側面に接合されている。
筐体(4)の短辺側の両側面部には一対の空気の出入り口が設置されている。すなわち、筐体(4)の一方の短辺端部にある空気の出入り口は外気導入ダクト(1-1)に接続されていて、そこから流入した外気は、一つ目の熱交換ユニット(5)の通気路Aあるいは通気路Bの開口部から熱交換ユニット(5)に流入し、その後、熱交換ユニット(5)と筐体(4)の内面で囲まれた空間(14)に流出する。
空間(14)に流出した外気は、下流側の熱交換ユニット(5)の通気路Aあるいは通気路Bの開口部から次の熱交換ユニット(5)内に流入する。
この流れを繰り返し、筐体4の一方の端部にある開口部を経て外気導入ダクト(1-1)から流入した外気は反対側の筐体短辺に設置した外気導入ダクト(1-1)を経て室内(2)へ向かう。
The ventilation unit (3) has a housing (4) and a plurality of heat exchange units (5) installed inside the housing (4), and the heat exchange unit (5) has a ventilation path A. It is composed of a laminated body of ventilation passages B, the bottom surface shape of which is square, and each heat exchange unit (5) is joined to each other via a fixture (10) at a ridgeline in the stacking direction (longitudinal direction) to form a group of heat exchange units. (8) is configured.
Further, in the heat exchange unit group (8), all the ridges in the stacking direction (vertical direction) of the heat exchange units are joined to the inner surface of the housing (4) via the fixture (10).
A pair of air inlets and outlets are installed on both side surfaces of the housing (4) on the short side. That is, the air inlet / outlet at one of the short side ends of the housing (4) is connected to the outside air introduction duct (1-1), and the outside air flowing in from there is the first heat exchange unit (5). ) Inflows into the heat exchange unit (5) from the opening of the ventilation passage A or the ventilation passage B, and then flows out into the space (14) surrounded by the inner surfaces of the heat exchange unit (5) and the housing (4). ..
The outside air flowing out to the space (14) flows into the next heat exchange unit (5) from the opening of the ventilation passage A or the ventilation passage B of the heat exchange unit (5) on the downstream side.
This flow is repeated, and the outside air flowing in from the outside air introduction duct (1-1) through the opening at one end of the housing 4 is the outside air introduction duct (1-1) installed on the short side of the housing on the opposite side. Head to the room (2) via.

同様に、外気(1)の入口側とは反対側の筐体(4)の短辺端部の開口部から排気ダクト(2-1)を経て室内(2)からの排気は筐体(4)内へ流入し、一つ目の熱交換ユニット(5)の通気路Aあるいは通気路Bの開口部に流入し、その後、熱交換ユニット(5)と筐体(4)内面で囲まれた空間(15)に流出する。
空間(15)へ流出した空気は、下流側の次の熱交換ユニット(5)の通気路Aあるいは通気路Bの開口部から次の熱交換ユニット(5)に流入する。
この流れを繰り返すことで、筐体(4)の一方の端部にある入口から流入した室内気は反対側の筐体短辺に設置した排気ダクト(2-1)を経て外部へ流出する。
Similarly, the exhaust from the room (2) through the exhaust duct (2-1) from the opening at the short side end of the housing (4) on the side opposite to the inlet side of the outside air (1) is the housing (4). ), Flowed into the opening of the ventilation passage A or the ventilation passage B of the first heat exchange unit (5), and then surrounded by the inner surface of the heat exchange unit (5) and the housing (4). It flows out to the space (15).
The air flowing out to the space (15) flows into the next heat exchange unit (5) through the opening of the ventilation passage A or the ventilation passage B of the next heat exchange unit (5) on the downstream side.
By repeating this flow, the indoor air flowing in from the inlet at one end of the housing (4) flows out to the outside through the exhaust duct (2-1) installed on the short side of the housing on the opposite side.

この様に、室外からの導入外気と室内からの排気が換気ユニット(3)の筐体(4)内部に設置された複数の熱交換ユニット(5)から構成される熱交換ユニット群(8)内にてそれぞれが対向するジグザグ流を形成する。この対向流効果で個々の熱交換ユニット(5)内では水蒸気選択透過性膜(7)を介して、熱ならびに水蒸気の交換が高効率に達成される。 In this way, the heat exchange unit group (8) composed of a plurality of heat exchange units (5) installed inside the housing (4) of the ventilation unit (3) in which the outside air introduced from the outside and the exhaust from the room are exhausted. Within, they form opposite zigzag flows. Due to this countercurrent effect, heat and water vapor exchange can be achieved with high efficiency in the individual heat exchange units (5) via the water vapor selective permeable membrane (7).

このように構成された全熱交換型コンタミレス換気ユニットでは、換気ユニット(3)内に設置される熱交換ユニット(5)において、室外から室内へ導入される外気、および室内から室外へ排出される排気がそれぞれ通気路Aと通気路Bを独立して通過する際に、薄膜である水蒸気選択透過性膜(7)を介して熱と水蒸気を高効率に交換すると共に、その際、室内からの排気に含まれる有害物質(例えば炭酸ガス、細菌、ウイルス、アンモニアなど)のコンタミは水蒸気選択透過性膜(7)を通過できないので、排気中の有害物質が室内に還流する心配がない。 In the total heat exchange type controllerless ventilation unit configured in this way, in the heat exchange unit (5) installed in the ventilation unit (3), the outside air introduced from the outside to the room and the outside air discharged from the room to the outside are discharged. When the exhaust air passes through the ventilation passage A and the ventilation passage B independently, heat and water vapor are exchanged with high efficiency through the thin water vapor selective permeable film (7), and at that time, from the room. Since the contamination of harmful substances (for example, carbon dioxide, bacteria, viruses, ammonia, etc.) contained in the exhaust of the air cannot pass through the water vapor selective permeable film (7), there is no concern that the harmful substances in the exhaust will return to the room.

また、換気ユニット(3)内に設置される複数個の熱交換ユニット(5)を熱交換ユニット群(8)として設置することで、室外から室内へ導入される外気、および室内から室外へ排出される排気の流れが、相互にジグザグな対向流を形成できるので、さらに効率よく導入外気と室内からの排気の間での熱および水蒸気の交換が可能となる。 Further, by installing a plurality of heat exchange units (5) installed in the ventilation unit (3) as a heat exchange unit group (8), the outside air introduced from the outside to the room and the outside air discharged from the room to the outside are discharged. Since the flow of the exhaust gas to be generated can form a countercurrent flow that is zigzag with each other, heat and water vapor can be exchanged more efficiently between the introduced outside air and the exhaust gas from the room.

また、水蒸気選択透過性膜(7)を介しての熱および水蒸気を交換する際に、水蒸気選択性透過膜(7)の両面全域にわたり波板状(コルゲート状)あるいは三角を成す折り板状の支持構造体(6)を互いに直交する方向で水蒸気選択性透過膜(7)に接着して通気路A、あるいは通気路Bを形成しているので、熱交換ユニット(5)は軽量であると共に、圧縮や振動に強い形状となる。 Further, when exchanging heat and water vapor through the water vapor selective permeable film (7), a corrugated plate (corrugated) or a triangular folded plate is formed over the entire surface of the water vapor selective permeable film (7). Since the support structure (6) is adhered to the water vapor selective permeable film (7) in the direction orthogonal to each other to form the air passage A or the air passage B, the heat exchange unit (5) is lightweight and lightweight. The shape is resistant to compression and vibration.

さらに、水蒸気選択透過性膜(7)の両面に接着されている波板状(コルゲート状)あるいは三角を成す折り板状の支持構造体(6)にて形成される通気路A、Bの側面端部に接着性のパテ(12)を塗り込んで端部側面からの空気の漏れを防止している事に加えて、
熱交換ユニット(5)の積層方向(縦方向)稜線部においても、熱交換ユニット(5)どうしの接続部、あるいは筐体(4)の内側側面との接続部に固定具(10)を設置し、固定具(10)と熱交換ユニット(5)の積層方向(縦方向)稜線部ならびに筐体を接着剤で接合しているので、これらの部分からの空気の漏れや混入が防止されている。
Further, the side surfaces of the ventilation passages A and B formed by the corrugated plate-shaped (corrugated) or triangular folded plate-shaped support structure (6) bonded to both sides of the water vapor selective permeability film (7). In addition to applying adhesive putty (12) to the edges to prevent air leakage from the sides of the edges,
Even in the stacking direction (longitudinal) ridgeline portion of the heat exchange unit (5), a fixture (10) is installed at the connection portion between the heat exchange units (5) or the connection portion with the inner side surface of the housing (4). However, since the stacking direction (vertical direction) ridges of the fixture (10) and the heat exchange unit (5) and the housing are joined with an adhesive, air leakage and mixing from these parts are prevented. There is.

1:外気、1-1:外気導入ダクト
2:室内、2-1:排気ダクト
3:換気ユニット、4:換気ユニットの筐体
4-1、4-2:筐体の空気の出入り口
4-3:筐体に設置されるユーターン流路
5:熱交換ユニット
6:支持構造体
7:水蒸気選択透過性膜
8:熱交換ユニット群
10:固定具(熱交換ユニットの接続、固定に使用される)
11:ファン
12:パテまたは接着剤
13:クッション板
14,15:熱交換ユニットと筐体により形成される空間
通気路A・・・水蒸気選択透過性膜2枚と支持構造体で構成される通気路
通気路B・・・2つの通気路Aと支持構造体で構成される通気路
1: Outside air, 1-1: Outside air introduction duct 2: Indoor, 2-1: Exhaust duct 3: Ventilation unit 4: Ventilation unit housing 4-1 and 4-2: Housing air inlet / outlet 4-3 : U-Turn flow path installed in the housing 5: Heat exchange unit 6: Support structure 7: Steam selective permeable film 8: Heat exchange unit group 10: Fixture (used for connecting and fixing the heat exchange unit)
11: Fan 12: Putty or adhesive 13: Cushion plate 14, 15: Space ventilation path formed by the heat exchange unit and the housing ... Ventilation composed of two water vapor selective permeable films and a support structure. Path Ventilation Path B: A ventilation path composed of two ventilation paths A and a support structure.

Claims (5)

波板状(コルゲート状)あるいは三角を成す折り板状の支持構造体を2枚の水蒸気選択透過性膜によりサンドイッチ状に挟み、前記水蒸気選択透過性膜の全域にわたり前記水蒸気選択透過性膜と前記波板状(コルゲート状)あるいは三角を成す折り板状の支持構造体を接着して形成される通気路Aと、
複数の前記通気路Aを、別の波板状(コルゲート状)あるいは三角を成す折り板状の支持構造体により前記通気路Aの全域にわたり一定間隔で積層することで通気路Aの間に通気路Bが形成された熱交換ユニットであって、
前記熱交換ユニットの上下に2枚のクッション板を設置した後に、所定の通風ダクトに繋がる所定の通風開口部を側面部に有する筐体内に密閉収納し、通気路Aを流れる空気流と通気路Bを流れる空気流との間で水蒸気選択透過性膜を介して熱および水蒸気の交換が行われることを特徴とする換気ユニット。
A corrugated (corrugated) or triangular folded plate-shaped support structure is sandwiched between two water vapor selective permeable membranes, and the water vapor selective permeable membrane and the water vapor selective permeable membrane are covered over the entire area of the water vapor selective permeable membrane. A ventilation path A formed by adhering a corrugated plate-shaped (corrugated) or triangular folded plate-shaped support structure, and
A plurality of the ventilation passages A are laminated at regular intervals over the entire area of the ventilation passage A by another corrugated plate-like (corrugated) or triangular folded plate-like support structure to ventilate between the ventilation passages A. A heat exchange unit in which the path B is formed,
After installing two cushion plates on the upper and lower sides of the heat exchange unit, the heat exchange unit is hermetically stored in a housing having a predetermined ventilation opening connected to a predetermined ventilation duct on the side surface, and the air flow and the ventilation path flowing through the ventilation path A. A ventilation unit characterized in that heat and water vapor are exchanged with and from the air flow flowing through B via a water vapor selective permeable film.
前項記載の換気ユニットにおいて、熱交換ユニットに積層設置される通気路Aならびに通気路Bの積層方向の間隔はそれぞれが一定値で、
かつ通気路Bに設置される波板状(コルゲート状)あるいは三角を成す折り板状の支持構造体の向きは通気路Aに設置された波板状(コルゲート状)あるいは三角を成す折り板状の支持構造体の向きと直交することを特徴とする換気ユニット。
In the ventilation unit described in the preceding paragraph, the distance between the ventilation passage A and the ventilation passage B laminated and installed in the heat exchange unit in the stacking direction is a constant value.
The direction of the corrugated plate-shaped (corrugated) or triangular folded plate-shaped support structure installed in the ventilation passage B is the corrugated plate-shaped (corrugated) or triangular folded plate-shaped installed in the ventilation passage A. A ventilation unit characterized by being orthogonal to the orientation of the support structure.
請求項1,2に記載の換気ユニットにおいて、
換気ユニットの筐体の底面形状は長方形であり、
該筐体内に収納される複数個の熱交換ユニットの底面形状は長方形であり、
該筐体の短辺側の一対の側面部に空気の入口と出口が設置され、
該短辺側の空気入口から流入した空気は各熱交換ユニットの通気路Aまたは通気路Bを直進し、反対側の短辺側の空気出口から流出し、
前記筐体の長辺側の一対の側面部にも空気の入口、出口、ならびにユーターンを行う空気の出口と入口が設置され、
該長辺側の空気入口から流入した空気は、初めの熱交換ユニットの通気路Aまたは通気路Bを通過した後、筐体の反対側の長辺側の側面の出口を経たのちに、筐体側面部に設置したユーターン経路を経て、再び長辺側の側面の入口から筐体内へ流入し、次の熱交換ユニットの通気路Aまたは通気路Bへ進んだ後、ユーターン経路を経て、次の熱交換ユニットを通過して最終的に筐体長辺側の側面の空気出口から流出する構成であり、
前記筐体の短辺側の空気入口から流入した空気と、前記筐体の長辺側の入口から流入した空気は、筐体内の複数の熱交換ユニット内の空気流路を互いに直交しつつ、
各熱交換ユニット内にて水蒸気選択透過性膜を介して熱および水蒸気の交換を行う構成としたことを特徴とする換気ユニット。
In the ventilation unit according to claims 1 and 2,
The bottom shape of the ventilation unit housing is rectangular,
The bottom surface shape of the plurality of heat exchange units housed in the housing is rectangular.
Air inlets and outlets are installed on a pair of side surfaces on the short side of the housing.
The air flowing in from the air inlet on the short side goes straight through the air passage A or the air passage B of each heat exchange unit, and flows out from the air outlet on the short side on the opposite side.
An air inlet and an outlet, and an air outlet and an inlet for making a U-turn are also installed on the pair of side surfaces on the long side of the housing.
The air flowing in from the air inlet on the long side passes through the air passage A or the air passage B of the first heat exchange unit, and then passes through the outlet on the side surface on the long side opposite to the housing, and then the casing. After passing through the Uturn path installed on the side surface of the body, it flows into the housing again from the entrance on the side surface on the long side, proceeds to the ventilation path A or the ventilation path B of the next heat exchange unit, and then goes through the Uturn path to the next. It is configured to pass through the heat exchange unit of the above and finally flow out from the air outlet on the side surface on the long side of the housing.
The air that has flowed in from the air inlet on the short side of the housing and the air that has flowed in from the inlet on the long side of the housing are orthogonal to each other in the air flow paths in the plurality of heat exchange units in the housing.
A ventilation unit characterized in that heat and water vapor are exchanged in each heat exchange unit via a water vapor selective permeable membrane.
請求項1,2に記載の換気ユニットにおいて、
換気ユニットの筐体内に収納される複数個の熱交換ユニットの底面形状は正方形であり、
該熱交換ユニットの積層方向(縦方向)稜線を互いに接合して、複数個の熱交換ユニットから構成される熱交換ユニット群を形成し、
該熱交換ユニット群の他の積層方向(縦方向)稜線のすべてを換気ユニットの筐体内壁の側面部に空気タイトに接合し、
該筐体の短辺側の両側面に外気と排気の出入り口を独立させ設置し、外気と排気が互いに逆方向へ進む流路構成としたことを特徴とする換気ユニット
In the ventilation unit according to claims 1 and 2,
The bottom shape of the multiple heat exchange units housed in the housing of the ventilation unit is square.
The stacking direction (longitudinal) ridges of the heat exchange units are joined to each other to form a heat exchange unit group composed of a plurality of heat exchange units.
All of the other stacking direction (longitudinal) ridges of the heat exchange unit group are joined to the side surface of the inner wall of the housing of the ventilation unit in an air tight manner.
A ventilation unit characterized in that the entrances and exits of the outside air and the exhaust are installed independently on both sides of the short side of the housing, and the flow path configuration is such that the outside air and the exhaust proceed in opposite directions.
請求項4,5に記載の換気ユニットにおいて、
換気ユニットの筐体内に収納される複数個の熱交換ユニットは水蒸気選択性透過膜の片側表面に波板状(コルゲート状)あるいは三角を成す折り板状の支持構造体を接着貼付した片ダンボール形状の素材を所定寸法に切断し、切断された片ダンボール材を波板状(コルゲート状)あるいは三角を成す折り板状の支持構造体の向きが交互に直交する方向で積層して熱交換ユニットを形成したことを特徴とする換気ユニット。
In the ventilation unit according to claims 4 and 5.
The multiple heat exchange units housed in the housing of the ventilation unit have a one-sided cardboard shape in which a corrugated plate-shaped (corrugated) or triangular folded plate-shaped support structure is adhered to one side of the water vapor selective permeable film. The heat exchange unit is made by cutting the material of A ventilation unit characterized by being formed.
JP2020205391A 2020-11-24 2020-11-24 Total heat exchange type ventilation unit with less contamination Pending JP2022083366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020205391A JP2022083366A (en) 2020-11-24 2020-11-24 Total heat exchange type ventilation unit with less contamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020205391A JP2022083366A (en) 2020-11-24 2020-11-24 Total heat exchange type ventilation unit with less contamination

Publications (1)

Publication Number Publication Date
JP2022083366A true JP2022083366A (en) 2022-06-03

Family

ID=81802245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020205391A Pending JP2022083366A (en) 2020-11-24 2020-11-24 Total heat exchange type ventilation unit with less contamination

Country Status (1)

Country Link
JP (1) JP2022083366A (en)

Similar Documents

Publication Publication Date Title
US11098909B2 (en) Methods and systems for turbulent, corrosion resistant heat exchangers
US10317095B2 (en) Counter-flow energy recovery ventilator (ERV) core
US20140262125A1 (en) Energy exchange assembly with microporous membrane
US10012444B2 (en) Multiple opening counter-flow plate exchanger and method of making
JP2019504287A (en) Enthalpy exchanger
US20200182553A9 (en) Counter-Flow Membrane Plate Exchanger and Method of Making
US9562726B1 (en) Counter-flow membrane plate exchanger and method of making
JP2022083366A (en) Total heat exchange type ventilation unit with less contamination
WO2009110494A1 (en) Heat exchange element and air conditioner or heating/cooling device using the same
JP2018004134A (en) Total heat exchange element and total heat exchange-type ventilation device
JP2020051655A (en) Heat exchange element and heat exchange type ventilation device using the same
JP2023105326A (en) Heat exchange element and heat exchange type ventilating device using the same
JP2005291618A (en) Total enthalpy heat exchange element and total enthalpy heat exchanger
JP6833106B2 (en) Total heat exchanger and total heat exchanger
JP2019113238A (en) Heat exchange element and heat exchange type ventilation device using the same
JP2023065737A (en) Heat exchange type ventilation device
JP6352915B2 (en) Device with hygroscopic membrane and water vapor separator and heat exchanger with device with hygroscopic membrane
WO2022130470A1 (en) Total heat exchange element and total heat exchange ventilation device
CA2856625C (en) Counter-flow energy recovery ventilator (erv) core
JP2004225957A (en) Moistening sheet, humidifier and ventilating arrangement
WO2019026102A1 (en) Total heat exchange element and heat exchange ventilating device