Nothing Special   »   [go: up one dir, main page]

JP2022070491A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2022070491A
JP2022070491A JP2020179582A JP2020179582A JP2022070491A JP 2022070491 A JP2022070491 A JP 2022070491A JP 2020179582 A JP2020179582 A JP 2020179582A JP 2020179582 A JP2020179582 A JP 2020179582A JP 2022070491 A JP2022070491 A JP 2022070491A
Authority
JP
Japan
Prior art keywords
heat exchange
fluid
flow path
side connection
connection portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020179582A
Other languages
Japanese (ja)
Inventor
成多 山岸
Narumasa Yamagishi
利彦 松田
Toshihiko Matsuda
賢人 石室
Kento Ishimuro
庸人 和氣
Tsunehito Wake
勝文 井上
Katsufumi Inoue
亮平 坂本
Ryohei Sakamoto
人司 大西
Hitoshi Onishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Waki Seisakusho KK
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Waki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd, Waki Seisakusho KK filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020179582A priority Critical patent/JP2022070491A/en
Priority to US17/512,089 priority patent/US20220196336A1/en
Publication of JP2022070491A publication Critical patent/JP2022070491A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0075Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements the plates having openings therein for circulation of the heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/0056Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another with U-flow or serpentine-flow inside conduits; with centrally arranged openings on the plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/086Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning having one or more openings therein forming tubular heat-exchange passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2240/00Spacing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】複数の熱交換チューブを積層して構成される熱交換器において、熱交換チューブ間の隙間を精度よく形成する。【解決手段】熱交換器は、第1の流体F1が通過可能な隙間をあけて積層された複数の熱交換チューブ20を有する。熱交換チューブ20は、第1の流体F1と熱交換を行う第2の流体が流れ、折り返し部26aを含む内部流路26と、折り返し部26aからそれぞれ延在して間隔をあけて互いに対向する内部流路26における2つの流路部分26bの間に設けられた複数のスリット46と、隣接する他の熱交換チューブ20に接触して隙間を形成する複数の凸状支持部40と、を備える。複数の熱交換チューブ20の積層方向視で、複数のスリット46の少なくとも1つが、その延在方向の中心が隣接し合う2つの凸状支持部40を結ぶ直線上から外れた状態で延在する。【選択図】図3A heat exchanger configured by stacking a plurality of heat exchange tubes, in which gaps between the heat exchange tubes are formed with high accuracy. A heat exchanger has a plurality of heat exchange tubes (20) stacked with a gap through which a first fluid (F1) can pass. In the heat exchange tube 20, a second fluid that exchanges heat with the first fluid F1 flows, and an internal flow path 26 including a folded portion 26a extends from the folded portion 26a and faces each other with a gap. A plurality of slits 46 provided between two flow path portions 26b in the internal flow path 26, and a plurality of convex support portions 40 contacting other adjacent heat exchange tubes 20 to form gaps. . When viewed in the stacking direction of the plurality of heat exchange tubes 20, at least one of the plurality of slits 46 extends in a state where the center in the extending direction is off the straight line connecting two adjacent convex support portions 40. . [Selection drawing] Fig. 3

Description

本開示は、熱交換器に関する。 The present disclosure relates to heat exchangers.

特許文献1には、水(流体)が流れる内部流路を備えるフィン状の複数の熱交換チューブが隙間をあけて積層された熱交換器が開示されている。複数の熱交換チューブの間に熱交換対象の空気(流体)が通過する隙間を形成するために、熱交換チューブそれぞれには、隣接する他の熱交換チューブに接触する複数のエンボス部が設けられている。 Patent Document 1 discloses a heat exchanger in which a plurality of fin-shaped heat exchange tubes provided with an internal flow path through which water (fluid) flows are laminated with a gap. In order to form a gap through which the air (fluid) to be heat exchange passes between the plurality of heat exchange tubes, each heat exchange tube is provided with a plurality of embossed portions that come into contact with other adjacent heat exchange tubes. ing.

特許第6089172号Patent No. 6089172

ところで、特許文献1に記載するようなフィン状の複数の熱交換チューブを積層して構成される熱交換器の場合、熱交換チューブ間の隙間を精度よく形成する必要がある。さもなくば、熱交換チューブ間の流路抵抗にバラツキが生じ、その結果として熱交換器の熱交換率にバラツキが生じうる。 By the way, in the case of a heat exchanger configured by stacking a plurality of fin-shaped heat exchange tubes as described in Patent Document 1, it is necessary to accurately form a gap between the heat exchange tubes. Otherwise, the flow path resistance between the heat exchange tubes may vary, resulting in variations in the heat exchange rate of the heat exchanger.

そこで、本開示は、複数の熱交換チューブを積層して構成される熱交換器において、熱交換チューブ間の隙間を精度よく形成することを課題とする。 Therefore, it is an object of the present disclosure to accurately form a gap between heat exchange tubes in a heat exchanger configured by stacking a plurality of heat exchange tubes.

上述の課題を解決するために、本開示の一態様によれば、
第1の流体が通過可能な隙間をあけて積層された複数の熱交換チューブを有し、
前記熱交換チューブそれぞれが、
前記第1の流体と熱交換を行う第2の流体が流れ、折り返し部を含む内部流路と、
前記内部流路に連通し、前記第2の流体が流入する流入側接続部と、
前記内部流路に連通し、前記第2の流体が流出する流出側接続部と、
前記折り返し部からそれぞれ延在して間隔をあけて互いに対向する前記内部流路における2つの流路部分の間の前記熱交換チューブの部分に設けられた複数のスリットと、
隣接する他の熱交換チューブに接触して前記隙間を形成する複数の凸状支持部と、を備え、
前記複数の熱交換チューブの積層方向視で、前記複数のスリットの少なくとも1つが、その延在方向の中心が隣接し合う2つの前記凸状支持部を結ぶ直線上から外れた状態で延在する、熱交換器が提供される。
In order to solve the above-mentioned problems, according to one aspect of the present disclosure,
It has a plurality of heat exchange tubes laminated with a gap through which the first fluid can pass.
Each of the heat exchange tubes
A second fluid that exchanges heat with the first fluid flows, and has an internal flow path including a folded portion and an internal flow path.
An inflow side connection portion that communicates with the internal flow path and into which the second fluid flows,
An outflow side connection portion that communicates with the internal flow path and allows the second fluid to flow out.
A plurality of slits provided in the heat exchange tube portion between the two flow path portions in the internal flow path extending from the folded portion and facing each other at intervals, and a plurality of slits.
It comprises a plurality of convex supports, which are in contact with other adjacent heat exchange tubes to form the gap.
In the stacking direction view of the plurality of heat exchange tubes, at least one of the plurality of slits extends in a state where the center in the extending direction is off the straight line connecting the two adjacent convex supports portions. , A heat exchanger is provided.

本開示によれば、複数の熱交換チューブを積層して構成される熱交換器において、熱交換チューブ間の隙間を精度よく形成することができる。 According to the present disclosure, in a heat exchanger configured by stacking a plurality of heat exchange tubes, it is possible to accurately form a gap between the heat exchange tubes.

本開示の実施の形態1に係る熱交換器の正面図Front view of the heat exchanger according to the first embodiment of the present disclosure. 図1のA-A線に沿った熱交換器の部分断面図Partial cross-sectional view of the heat exchanger along line AA of FIG. 実施の形態1に係る熱交換器の熱交換チューブの斜視図Perspective view of the heat exchange tube of the heat exchanger according to the first embodiment. 実施の形態1に係る熱交換チューブの上面図Top view of the heat exchange tube according to the first embodiment 図4のB-B線に沿った熱交換チューブの断面図Sectional drawing of the heat exchange tube along the line BB of FIG. スリットと2つの凸状支持部とが設けられた比較例の熱交換チューブの簡易モデルを示す図The figure which shows the simplified model of the heat exchange tube of the comparative example provided with a slit and two convex supports parts. 積層によってねじれ変形した比較例の熱交換チューブの簡易モデルを示す図The figure which shows the simplified model of the heat exchange tube of the comparative example twisted and deformed by stacking. 実施例の熱交換チューブの簡易モデルを示す図The figure which shows the simplified model of the heat exchange tube of an Example. 好ましい実施例の熱交換チューブの簡易モデルを示す図The figure which shows the simplified model of the heat exchange tube of a preferable embodiment. 本開示の実施の形態2に係る熱交換器の熱交換チューブの断面図Sectional drawing of the heat exchange tube of the heat exchanger which concerns on Embodiment 2 of this disclosure 本開示の実施の形態3に係る熱交換器の熱交換チューブの斜視図Perspective view of the heat exchange tube of the heat exchanger according to the third embodiment of the present disclosure. 実施の形態3に係る熱交換チューブの断面図Sectional drawing of the heat exchange tube which concerns on Embodiment 3. 熱交換チューブの内部流路の一例を示す図The figure which shows an example of the internal flow path of a heat exchange tube 熱交換チューブの内部流路の別例を示す図The figure which shows another example of the internal flow path of a heat exchange tube 熱交換チューブの内部流路の異なる例を示す図The figure which shows a different example of the internal flow path of a heat exchange tube

本開示の一態様の熱交換器は、第1の流体が通過可能な隙間をあけて積層された複数の熱交換チューブを有し、前記熱交換チューブそれぞれが、前記第1の流体と熱交換を行う第2の流体が流れ、折り返し部を含む内部流路と、前記内部流路に連通し、前記第2の流体が流入する流入側接続部と、前記内部流路に連通し、前記第2の流体が流出する流出側接続部と、前記折り返し部からそれぞれ延在して間隔をあけて互いに対向する前記内部流路における2つの流路部分の間の前記熱交換チューブの部分に設けられた複数のスリットと、隣接する他の熱交換チューブに接触して前記隙間を形成する複数の凸状支持部と、を備え、前記複数の熱交換チューブの積層方向視で、前記複数のスリットの少なくとも1つが、その延在方向の中心が隣接し合う2つの前記凸状支持部を結ぶ直線上から外れた状態で延在する。 The heat exchanger of one aspect of the present disclosure has a plurality of heat exchange tubes laminated with a gap through which the first fluid can pass, and each of the heat exchange tubes exchanges heat with the first fluid. The second fluid flows, communicates with the internal flow path including the folded portion, communicates with the internal flow path, and communicates with the inflow side connecting portion into which the second fluid flows, and communicates with the internal flow path. It is provided in the heat exchange tube portion between the outflow side connection portion where the fluid of 2 flows out and the two flow path portions in the internal flow path extending from the folded portion and facing each other at intervals. The plurality of slits are provided with a plurality of slits and a plurality of convex support portions which are in contact with other adjacent heat exchange tubes to form the gap, and the plurality of slits can be viewed in the stacking direction of the plurality of heat exchange tubes. At least one extends in a state where the center in the extending direction deviates from the straight line connecting the two adjacent convex support portions.

このような態様によれば、複数の熱交換チューブを積層して構成される熱交換器において、熱交換チューブ間の隙間を精度よく形成することができる。 According to such an aspect, in a heat exchanger configured by stacking a plurality of heat exchange tubes, a gap between the heat exchange tubes can be formed with high accuracy.

例えば、前記積層方向視で、前記複数のスリットの少なくとも1つが、隣接し合う2つの前記凸状支持部を結ぶ直線と交差することなく延在してもよい。 For example, in the stacking direction view, at least one of the plurality of slits may extend without intersecting a straight line connecting two adjacent convex support portions.

例えば、前記積層方向視で前記流入側接続部と前記流出側接続部との間を通過する前記熱交換チューブの中心線上を外して、前記複数のスリットが延在してもよい。 For example, the plurality of slits may extend beyond the center line of the heat exchange tube passing between the inflow side connection portion and the outflow side connection portion in the stacking direction.

例えば、前記複数のスリットが、前記積層方向視で、中心線対称に前記熱交換チューブに設けられてもよい。 For example, the plurality of slits may be provided in the heat exchange tube symmetrically with respect to the center line in the stacking direction.

例えば、前記熱交換チューブが、切り起こし部を備え、前記スリットが、前記切り起こし部における貫通穴であってもよい。 For example, the heat exchange tube may include a raised portion, and the slit may be a through hole in the raised portion.

例えば、前記切り起こし部における切り起こし片が、前記貫通穴に対して前記第1の流体の流れ方向の下流側で起立し、前記流れ方向の上流側に傾いた壁状であってもよい。 For example, the cut-up piece in the cut-up portion may stand up on the downstream side of the first fluid flow direction with respect to the through hole, and may have a wall shape inclined to the upstream side in the flow direction.

例えば、前記切り起こし部における切り起こし片が、前記第1の流体の流れ方向に対して直交する方向に延在するブリッジ状であってもよい。 For example, the cut-up piece in the cut-up portion may have a bridge shape extending in a direction orthogonal to the flow direction of the first fluid.

例えば、前記流入側接続部と前記流出側接続部とが隣接し、前記積層方向視で前記流入側接続部と前記流出側接続部との間の前記熱交換チューブの部分に、貫通穴が設けられてもよい。 For example, the inflow side connection portion and the outflow side connection portion are adjacent to each other, and a through hole is provided in the heat exchange tube portion between the inflow side connection portion and the outflow side connection portion in the stacking direction. May be done.

例えば、前記流入側接続部と前記流出側接続部とが、前記第1の流体の流れ方向に並んでいてもよい。 For example, the inflow side connection portion and the outflow side connection portion may be arranged in the flow direction of the first fluid.

例えば、前記流入側接続部が前記第1の流体の流れ方向の下流側に位置し、前記流出側接続部が上流側に位置してもよい。 For example, the inflow side connection portion may be located on the downstream side in the flow direction of the first fluid, and the outflow side connection portion may be located on the upstream side.

以下、本開示の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.

(実施の形態1)
図1は、本実施の形態1に係る熱交換器の正面図である。また、図2は、図1のA-A線に沿った熱交換器の部分断面図である。なお、図に示すX-Y-Z直交座標系は、本開示の理解を容易にするためのものであって、本開示の実施の形態を限定するものではない。X軸方向は熱交換チューブの短手方向を示し、Y軸方向は熱交換チューブの長手方向を示し、Z軸方向は複数の熱交換チューブの積層方向を示している。
(Embodiment 1)
FIG. 1 is a front view of the heat exchanger according to the first embodiment. Further, FIG. 2 is a partial cross-sectional view of the heat exchanger along the line AA of FIG. The XYZ Cartesian coordinate system shown in the figure is for facilitating the understanding of the present disclosure, and does not limit the embodiment of the present disclosure. The X-axis direction indicates the lateral direction of the heat exchange tube, the Y-axis direction indicates the longitudinal direction of the heat exchange tube, and the Z-axis direction indicates the stacking direction of a plurality of heat exchange tubes.

図1に示す熱交換器10は、空調装置や冷凍装置などの冷凍サイクルや発熱を伴って作動する機器の冷却装置などに使用される。具体的には、本実施の形態1の場合、熱交換器10は、空気などの流体(第1の流体)F1によって水やハイドロフルオロカーボンなどの流体(第2の流体)F2を加熱または冷却するための装置である。 The heat exchanger 10 shown in FIG. 1 is used for a refrigerating cycle such as an air conditioner or a refrigerating device, or a cooling device for equipment that operates with heat generation. Specifically, in the case of the first embodiment, the heat exchanger 10 heats or cools a fluid (second fluid) F2 such as water or hydrofluorocarbon by a fluid (first fluid) F1 such as air. It is a device for.

図1および図2に示すように、熱交換器10は、第1の流体F1が通過可能な隙間をあけて積層された複数の熱交換チューブ20と、熱交換チューブ20を支持する筺体22とを有する。 As shown in FIGS. 1 and 2, the heat exchanger 10 includes a plurality of heat exchange tubes 20 laminated with a gap through which the first fluid F1 can pass, and a housing 22 that supports the heat exchange tubes 20. Have.

図3は、実施の形態1に係る熱交換器の熱交換チューブの斜視図である。また、図4は、実施の形態1に係る熱交換器の熱交換チューブの上面図である。そして、図5は、図4のB-B線に沿った熱交換チューブの断面図である。なお、図5は、2つの熱交換チューブが積層された状態を示している。 FIG. 3 is a perspective view of the heat exchange tube of the heat exchanger according to the first embodiment. Further, FIG. 4 is a top view of the heat exchange tube of the heat exchanger according to the first embodiment. FIG. 5 is a cross-sectional view of the heat exchange tube along the line BB of FIG. Note that FIG. 5 shows a state in which two heat exchange tubes are laminated.

図3~図4に示すように、熱交換チューブ20は、概ね薄板状、いわゆるフィン状の部材であって、第1の流体F1と熱交換を行う部材である。 As shown in FIGS. 3 to 4, the heat exchange tube 20 is a member having a substantially thin plate shape, that is, a so-called fin shape, and is a member that exchanges heat with the first fluid F1.

図5に示すように、熱交換チューブ20は、例えば、プレス成型された2つの金属薄板20A、20Bを互いに接合することによって作成されている。本実施の形態1の場合、熱交換チューブ20に使用される金属薄板20A、20Bは、両面にアルミシリコン合金などのロウ材層が形成され、厚さが0.2mmのアルミニウム基板、いわゆるクラッド板である。2つの金属薄板20A、20Bそれぞれにプレス成型によってエンボス部20a、20bが成型されている。これらのエンボス部20a、20bが互いに対向した状態で2つの金属薄板20A,20Bが接合されることにより、熱交換チューブ20の内部流路26が形成されている。なお、熱交換チューブ20は、ステンレス基板の両面に銅やニッケルなどのロウ材層を形成したクラッド材で作製されてもよいし、両面にロウ材が接合されたまたはメッキされた銅基板で作製されてもよい。 As shown in FIG. 5, the heat exchange tube 20 is made by, for example, joining two press-molded metal thin plates 20A and 20B to each other. In the case of the first embodiment, the metal thin plates 20A and 20B used for the heat exchange tube 20 have a brazing material layer such as an aluminum silicon alloy formed on both sides thereof, and an aluminum substrate having a thickness of 0.2 mm, that is, a so-called clad plate. Is. The embossed portions 20a and 20b are molded by press molding on the two metal thin plates 20A and 20B, respectively. The internal flow path 26 of the heat exchange tube 20 is formed by joining the two metal thin plates 20A and 20B in a state where the embossed portions 20a and 20b face each other. The heat exchange tube 20 may be made of a clad material having a brazing material layer such as copper or nickel formed on both sides of a stainless steel substrate, or may be made of a copper substrate having a brazing material bonded or plated on both sides. May be done.

図3~図5に示すように、熱交換チューブ20は、内部流路26に連通して第2の流体F2が流入する筒状の流入側接続部28と、内部流路26に連通して第2の流体F2が流出する筒状の流出側接続部30とを備える。本実施の形態1の場合、流入側接続部28と流出側接続部30は、熱交換チューブ20の長手方向(Y軸方向)の中心に、短手方向(X軸方向)に並んだ状態で配置されている。複数の熱交換チューブ20が積層された状態のとき、複数の熱交換チューブ20の流入側接続部28が積層方向(Z軸方向)に連結されるとともに、流出側接続部30が積層方向に連結される。流入側接続部28同士と、流出側接続部30同士は、加熱接合される、例えばロウ付けされる。複数の流入側接続部28が連結することにより、図2に示すように、熱交換チューブ20それぞれの内部流路26に第2の流体F2を分配する流入側マニホールド流路32が形成される。また、複数の流出側接続部30が連結することにより、熱交換チューブ20それぞれの内部流路26からの第2の流体F2が合流する流出側マニホールド流路34が形成される。 As shown in FIGS. 3 to 5, the heat exchange tube 20 communicates with the internal flow path 26 and communicates with the cylindrical inflow side connecting portion 28 into which the second fluid F2 flows into the internal flow path 26. A tubular outflow side connection portion 30 through which the second fluid F2 flows out is provided. In the case of the first embodiment, the inflow side connection portion 28 and the outflow side connection portion 30 are arranged in the lateral direction (X-axis direction) at the center of the heat exchange tube 20 in the longitudinal direction (Y-axis direction). Have been placed. When a plurality of heat exchange tubes 20 are stacked, the inflow side connection portions 28 of the plurality of heat exchange tubes 20 are connected in the stacking direction (Z-axis direction), and the outflow side connection portions 30 are connected in the stacking direction. Will be done. The inflow side connection portions 28 and the outflow side connection portions 30 are heat-bonded, for example, brazed. By connecting the plurality of inflow side connecting portions 28, as shown in FIG. 2, an inflow side manifold flow path 32 for distributing the second fluid F2 is formed in the internal flow path 26 of each of the heat exchange tubes 20. Further, by connecting the plurality of outflow side connection portions 30, an outflow side manifold flow path 34 is formed in which the second fluid F2 from the internal flow path 26 of each of the heat exchange tubes 20 joins.

なお、流入側接続部28と流出側接続部30は、本実施の形態1のように、第1の流体F1の流れ方向(X軸方向)に並んでいる、すなわち流れ方向に重なるのが好ましい。これにより、これらが流れ方向に並んでいない場合に比べて、熱交換チューブ20の間の隙間Sを流れる第1の流体F1に対する流路抵抗を小さくすることができる。 It is preferable that the inflow side connection portion 28 and the outflow side connection portion 30 are aligned in the flow direction (X-axis direction) of the first fluid F1, that is, overlap in the flow direction as in the first embodiment. .. As a result, the flow path resistance to the first fluid F1 flowing through the gap S between the heat exchange tubes 20 can be reduced as compared with the case where these are not arranged in the flow direction.

また、第1の流体F1と第2の流体F2との熱交換率を考慮すると、流入側接続部28が第1の流体F1の流れ方向(X軸方向)の下流側に位置し、流出側接続部30が第1の流体F1の流れ方向の上流側に位置するのが好ましい。図3に示すように、流入側接続部28から内部流路26を介して流出側接続部30に流れる第2の流体F2は、熱交換チューブ20の積層方向(Z軸方向)視で、第1の流体F1の流れ方向に対して反対方向に流れる。その結果、第2の流体F2の流れは、第1の流体F1の流れに対する対向流とみなすことができる。その結果、第1および第2の流体F1、F2が、積層方向視で同一方向に流れる場合に比べて、すなわち流入側接続部28が第1の流体F1の流れ方向の上流側に位置し、流出側接続部30が下流側に位置する場合に比べて、第1および第2の流体F1、F2間の熱交換率が向上する。 Further, considering the heat exchange rate between the first fluid F1 and the second fluid F2, the inflow side connecting portion 28 is located on the downstream side in the flow direction (X-axis direction) of the first fluid F1 and is located on the outflow side. It is preferable that the connecting portion 30 is located on the upstream side in the flow direction of the first fluid F1. As shown in FIG. 3, the second fluid F2 flowing from the inflow side connection portion 28 to the outflow side connection portion 30 via the internal flow path 26 is the second fluid F2 in the stacking direction (Z-axis direction) of the heat exchange tube 20. It flows in the direction opposite to the flow direction of the fluid F1 of 1. As a result, the flow of the second fluid F2 can be regarded as a countercurrent to the flow of the first fluid F1. As a result, the inflow side connecting portion 28 is located on the upstream side in the flow direction of the first fluid F1, as compared with the case where the first and second fluids F1 and F2 flow in the same direction in the stacking direction. The heat exchange rate between the first and second fluids F1 and F2 is improved as compared with the case where the outflow side connecting portion 30 is located on the downstream side.

図1および図2に示すように、積層状態の複数の熱交換チューブ20は、筺体22内に収容されている。筺体22は、熱交換チューブ20の短手方向(X軸方向)に開いた筒状であって、それにより第1の流体F1の流れ方向が熱交換チューブ20の短手方向に規制されている。 As shown in FIGS. 1 and 2, a plurality of heat exchange tubes 20 in a laminated state are housed in the housing 22. The housing 22 has a tubular shape that opens in the lateral direction (X-axis direction) of the heat exchange tube 20, whereby the flow direction of the first fluid F1 is restricted to the lateral direction of the heat exchange tube 20. ..

また、本実施の形態1の場合、筺体22は、天板部22a、底板部22b、および天板部22aと底板部22bとを接続する側壁部22cとを備える。天板部22a、複数の熱交換チューブ20、および底板部22bが積層された状態で加熱されて互いに接合されることにより、これらの積層体が作製される。その後、側壁部22cを、ビスなどで積層体の天板部22aと底板部22bとに固定することにより、熱交換器10が作製される。 Further, in the case of the first embodiment, the housing 22 includes a top plate portion 22a, a bottom plate portion 22b, and a side wall portion 22c connecting the top plate portion 22a and the bottom plate portion 22b. A laminated body thereof is produced by heating the top plate portion 22a, the plurality of heat exchange tubes 20, and the bottom plate portion 22b in a laminated state and joining them to each other. After that, the heat exchanger 10 is manufactured by fixing the side wall portion 22c to the top plate portion 22a and the bottom plate portion 22b of the laminated body with screws or the like.

また、筺体22は、流入側マニホールド流路32に連通する流入ポート36と、流出側マニホールド流路34に連通する流出ポート38とを備える。第2の流体F2は、流入ポート32を介して流入側マニホールド流路32内に入り、その流入側マニホールド流路32から熱交換チューブ20それぞれの内部流路26に入る。熱交換チューブ20それぞれの内部流路26内の第2の流体F2は、流出側マニホールド流路34で合流し、流出ポート38を介して熱交換器10の外部に流出する。 Further, the housing 22 includes an inflow port 36 communicating with the inflow side manifold flow path 32 and an outflow port 38 communicating with the outflow side manifold flow path 34. The second fluid F2 enters the inflow side manifold flow path 32 via the inflow port 32, and enters the internal flow path 26 of each of the heat exchange tubes 20 from the inflow side manifold flow path 32. The second fluid F2 in the internal flow path 26 of each of the heat exchange tubes 20 merges at the outflow side manifold flow path 34 and flows out to the outside of the heat exchanger 10 through the outflow port 38.

図5に示すように、複数の熱交換チューブ20は、第1の流体F1が通過可能な隙間Sをあけて積層される。その隙間Sを形成して維持するために、熱交換チューブ20それぞれは、積層方向(Z軸方向)の両面に複数の凸状支持部40、42を備える。複数の凸状支持部40は熱交換チューブ20の一方の表面(金属薄板20A)に設けられ、複数の凸状支持部42は、他方の表面(金属薄板20B)に設けられている。また、複数の熱交換チューブ20の積層方向(Z軸方向)視で、複数の凸状支持部40の位置と複数の凸状支持部42の位置は一致する。 As shown in FIG. 5, the plurality of heat exchange tubes 20 are laminated with a gap S through which the first fluid F1 can pass. In order to form and maintain the gap S, each of the heat exchange tubes 20 is provided with a plurality of convex support portions 40 and 42 on both sides in the stacking direction (Z-axis direction). The plurality of convex support portions 40 are provided on one surface (metal thin plate 20A) of the heat exchange tube 20, and the plurality of convex support portions 42 are provided on the other surface (metal thin plate 20B). Further, the positions of the plurality of convex support portions 40 and the positions of the plurality of convex support portions 42 coincide with each other in the stacking direction (Z-axis direction) of the plurality of heat exchange tubes 20.

このような熱交換チューブ20の複数の凸状支持部42と隣接する熱交換チューブ20の複数の凸状支持部44とが互いに接触して互いに支持し合うことにより、これら2つの熱交換チューブ20の間に、第1の流体F1が通過可能な隙間Sが形成される。凸状支持部42と凸状支持部44は、加熱接合される、例えばロウ付けされる。 The two heat exchange tubes 20 are supported by the plurality of convex support portions 42 of the heat exchange tube 20 and the plurality of convex support portions 44 of the adjacent heat exchange tubes 20 in contact with each other and supporting each other. A gap S through which the first fluid F1 can pass is formed between the two. The convex support portion 42 and the convex support portion 44 are heat-bonded, for example, brazed.

図4に示すように、本実施の形態1の場合、熱交換チューブ20の内部流路26は、積層方向(Z軸方向)視で、熱交換チューブ20の短手方向(X軸方向)に延在する中心線C1対称且つ長手方向(Y軸方向)に延在する中心線C2対称の形状を備える。具体的には、内部流路26は、流入側接続部28から流出側接続部30に向かって延在して熱交換チューブ20の長手方向の一方側に配置された略「M」字状の流路26Lと、流入側接続部28から流出側接続部30に向かって延在して長手方向の他方側に配置された略「M」字状流路26Rとから構成されている。その結果、内部流路26は、第2の流体F2の流れ方向が180度変わる複数の折り返し部26aを含んでいる。このような複数の折り返し部26aを内部流路26が含むことにより、その内部流路26内を流れる第2の流体F2と熱交換チューブ20上を流れる第1の流体F1との間の熱交換率が向上する。 As shown in FIG. 4, in the case of the first embodiment, the internal flow path 26 of the heat exchange tube 20 is in the lateral direction (X-axis direction) of the heat exchange tube 20 in the stacking direction (Z-axis direction). It has a shape that is symmetric with the extending center line C1 and symmetric with the center line C2 extending in the longitudinal direction (Y-axis direction). Specifically, the internal flow path 26 has a substantially "M" shape extending from the inflow side connection portion 28 toward the outflow side connection portion 30 and arranged on one side in the longitudinal direction of the heat exchange tube 20. It is composed of a flow path 26L and a substantially “M” -shaped flow path 26R extending from the inflow side connection portion 28 toward the outflow side connection portion 30 and arranged on the other side in the longitudinal direction. As a result, the internal flow path 26 includes a plurality of folded portions 26a in which the flow direction of the second fluid F2 changes by 180 degrees. When the internal flow path 26 includes such a plurality of folded portions 26a, heat exchange between the second fluid F2 flowing in the internal flow path 26 and the first fluid F1 flowing on the heat exchange tube 20 The rate improves.

図4に示すように、熱交換チューブ20には、複数のスリット46が設けられている。具体的には、折り返し部26aから延在して間隔をあけて互いに対向する内部流路26における2つの流路部分26bの間の熱交換チューブ20の部分に、複数のスリット46が形成されている。本実施の形態1の場合、スリット46は、直線状の流路部分26bの延在方向(Y軸方向)に延在して熱交換チューブ20を貫通する長穴である。スリット46は、例えばパンチ加工によって熱交換チューブ20に形成される。 As shown in FIG. 4, the heat exchange tube 20 is provided with a plurality of slits 46. Specifically, a plurality of slits 46 are formed in the portion of the heat exchange tube 20 between the two flow path portions 26b in the internal flow path 26 extending from the folded-back portion 26a and facing each other at intervals. There is. In the case of the first embodiment, the slit 46 is an elongated hole extending in the extending direction (Y-axis direction) of the linear flow path portion 26b and penetrating the heat exchange tube 20. The slit 46 is formed in the heat exchange tube 20 by, for example, punching.

このスリット46は、折り返し部26aから延在する2つの流路部分26bそれぞれを流れる第2の流体F2間の熱交換を抑制するために設けられている。すなわち、一方の流路部分26b内の第2の流体F2から他方の流路部分26b内の第2の流体F2への熱交換チューブ20を介する熱移動を、スリット46によって抑制している。言い換えると、スリット46は、熱のショートカットを抑制している。このような熱のショートカットが発生すると第1および第2の流体F1、F2間の熱交換率が低下するので、その対策としてスリット46が設けられている。 The slit 46 is provided to suppress heat exchange between the second fluid F2 flowing through each of the two flow path portions 26b extending from the folded-back portion 26a. That is, the heat transfer via the heat exchange tube 20 from the second fluid F2 in one flow path portion 26b to the second fluid F2 in the other flow path portion 26b is suppressed by the slit 46. In other words, the slit 46 suppresses heat shortcuts. When such a heat shortcut occurs, the heat exchange rate between the first and second fluids F1 and F2 decreases, so a slit 46 is provided as a countermeasure.

このようなスリット46により、熱のショートカットは抑制することができるものの、熱交換チューブ20はスリットがない場合に比べて変形しやすくなる。そこで、熱交換チューブ20の変形を抑制できるように、複数のスリット46は適切な位置に設けられている。 Although the heat shortcut can be suppressed by such a slit 46, the heat exchange tube 20 is more easily deformed than the case without the slit. Therefore, the plurality of slits 46 are provided at appropriate positions so that the deformation of the heat exchange tube 20 can be suppressed.

具体的には、図4に示すように、複数の熱交換チューブ20の積層方向(Z軸方向)視で、スリット46の延在方向(Y軸方向)の中心が隣接し合う2つの凸状支持部40を結ぶ直線上から外れた状態で、少なくとも1つのスリット46は熱交換チューブ20に設けられている。その理由について説明する。 Specifically, as shown in FIG. 4, two convex shapes in which the centers of the slits 46 in the extending direction (Y-axis direction) are adjacent to each other in the stacking direction (Z-axis direction) of the plurality of heat exchange tubes 20. At least one slit 46 is provided in the heat exchange tube 20 in a state of being off the straight line connecting the support portions 40. The reason will be explained.

図6Aは、スリットと2つの凸状支持部とが設けられた比較例の熱交換チューブの簡易モデルを示している。図6Bは、積層によってねじれ変形した比較例の熱交換チューブの簡易モデルを示している。 FIG. 6A shows a simplified model of a comparative heat exchange tube provided with a slit and two convex supports. FIG. 6B shows a simplified model of a heat exchange tube of a comparative example twisted and deformed by laminating.

図6Aに示すように、隣接し合う、例えば最短距離で隣接し合う2つの凸状支持部140を結ぶ直線VL上に、スリット146の延在方向(Y軸方向)中心CSが位置する場合、比較例の熱交換チューブ120は変形しやすくなる。 As shown in FIG. 6A, when the center CS of the slit 146 in the extending direction (Y-axis direction) is located on a straight line VL connecting two convex support portions 140 adjacent to each other, for example, adjacent to each other at the shortest distance. The heat exchange tube 120 of the comparative example is easily deformed.

上述したように、複数の比較例の熱交換チューブ120は、それぞれ凸状支持部140、142を介して互いに支持された状態で積層される。しかしながら、熱交換チューブ120それぞれの許容できる製造誤差(例えば、凸状支持部140、142の高さ誤差など)、複数の熱交換チューブ120の許容できる組み立て誤差が累積すると、ある熱交換チューブ120に変形が発生しうる。 As described above, the heat exchange tubes 120 of the plurality of comparative examples are laminated in a state of being supported by each other via the convex support portions 140 and 142, respectively. However, when the allowable manufacturing error of each of the heat exchange tubes 120 (for example, the height error of the convex supports 140 and 142) and the allowable assembly error of the plurality of heat exchange tubes 120 are accumulated, the heat exchange tube 120 has a certain heat exchange tube 120. Deformation can occur.

例えば、誤差の累積により、図6Bに示すように、隣接し合う2つの凸状支持部140の積層方向(Z軸方向)の位置(高さ位置)が異なるようなねじれ変形が、熱交換チューブ120に生じうる。これは、2つの凸状支持部140が、スリット146によって互いに拘束されておらず、互いに対して積層方向にシフトしやすいために生じる。このようなねじれ変形が生じると、熱交換チューブ120間の隙間の大きさにバラツキが生じ、それにより、この隙間を通過する第1の流体に対する流路抵抗にバラツキが生じうる。その結果、熱交換器の熱交換率にバラツキが生じうる。 For example, as shown in FIG. 6B, due to the accumulation of errors, the heat exchange tube is twisted and deformed so that the positions (height positions) of the two adjacent convex support portions 140 in the stacking direction (Z-axis direction) are different. Can occur at 120. This occurs because the two convex support portions 140 are not constrained to each other by the slits 146 and tend to shift in the stacking direction with respect to each other. When such torsional deformation occurs, the size of the gap between the heat exchange tubes 120 varies, and as a result, the flow path resistance to the first fluid passing through the gap may vary. As a result, the heat exchange rate of the heat exchanger may vary.

このようなねじれ変形は、図6Aに示すように、隣接し合う2つの凸状支持部140を結ぶ直線VL上にスリット146の延在方向(Y軸方向)中心CSが位置する場合に生じやすい。また、スリット146の長さが大きくなればなるほど、熱交換チューブ120の変形量も大きい。 As shown in FIG. 6A, such torsional deformation is likely to occur when the center CS of the slit 146 in the extending direction (Y-axis direction) is located on the straight line VL connecting two adjacent convex support portions 140. .. Further, the larger the length of the slit 146, the larger the amount of deformation of the heat exchange tube 120.

そこで、本実施の形態1の場合、図4に示すように、複数の熱交換チューブ20の積層方向(Z軸方向)視で、スリット46の延在方向(Y軸方向)の中心が隣接し合う2つの凸状支持部40を結ぶ直線上から外れた状態で、少なくとも1つのスリット46は熱交換チューブ20に設けられている。 Therefore, in the case of the first embodiment, as shown in FIG. 4, the centers of the slits 46 in the extending direction (Y-axis direction) are adjacent to each other in the stacking direction (Z-axis direction) of the plurality of heat exchange tubes 20. At least one slit 46 is provided in the heat exchange tube 20 in a state of being off the straight line connecting the two matching convex support portions 40.

図7Aは、実施例の熱交換チューブの簡易モデルを示す図である。また、図7Bは、好ましい実施例の熱交換チューブの簡易モデルを示す図である。 FIG. 7A is a diagram showing a simplified model of the heat exchange tube of the embodiment. Further, FIG. 7B is a diagram showing a simplified model of the heat exchange tube of the preferred embodiment.

図7Aに示す実施例の熱交換チューブ20において、複数の熱交換チューブ20の積層方向(Z軸方向)視で、スリット46の延在方向(Y軸方向)の中心CSは、隣接し合う2つの凸状支持部40を結ぶ直線VL上から外れている。その結果、中心CLが直線VL上に位置する図6Aに示す比較例の熱交換チューブ120に比べて、熱交換チューブ20は、積層することによって生じる変形が抑制される。 In the heat exchange tube 20 of the embodiment shown in FIG. 7A, the central CSs of the slits 46 in the extending direction (Y-axis direction) are adjacent to each other in the stacking direction (Z-axis direction) of the plurality of heat exchange tubes 20. It is off the straight line VL connecting the two convex support portions 40. As a result, the heat exchange tube 20 suppresses the deformation caused by laminating as compared with the heat exchange tube 120 of the comparative example shown in FIG. 6A in which the central CL is located on the straight line VL.

なお、隣接し合う2つの凸状支持部40を結ぶ直線VLが、スリット46の中心CSから離れてスリット46の両端に近づくほど、熱交換チューブ20の変形はより抑制される。 The deformation of the heat exchange tube 20 is further suppressed as the straight line VL connecting the two adjacent convex support portions 40 moves away from the center CS of the slit 46 and approaches both ends of the slit 46.

図7Bに示す好ましい実施例の熱交換チューブ20において、複数の熱交換チューブ20の積層方向(Z軸方向)視で、スリット46は、隣接し合う2つの凸状支持部40を結ぶ直線VLと交差することなく延在する。これにより、2つの凸状支持部40は、その間にスリット46が存在しないために、互いに対して積層方向にシフトし難くされている。その結果、図7Aに示す実施例の熱交換チューブ20に比べて、図7Bに示す熱交換チューブ20はさらに変形しにくくされている。 In the heat exchange tube 20 of the preferred embodiment shown in FIG. 7B, the slit 46 is a straight line VL connecting two adjacent convex support portions 40 in the stacking direction (Z-axis direction) of the plurality of heat exchange tubes 20. It extends without crossing. As a result, the two convex support portions 40 are difficult to shift in the stacking direction with respect to each other because the slit 46 does not exist between them. As a result, the heat exchange tube 20 shown in FIG. 7B is more difficult to be deformed than the heat exchange tube 20 of the embodiment shown in FIG. 7A.

熱交換チューブ20の変形を抑制するために、複数の凸状支持部40(42)に対して位置決めされているのに加えて、スリット46は、本実施の形態1の場合、以下のことを考慮して熱交換チューブ20に設けられている。 In addition to being positioned with respect to the plurality of convex support portions 40 (42) in order to suppress deformation of the heat exchange tube 20, the slit 46, in the case of the first embodiment, does the following. In consideration of this, the heat exchange tube 20 is provided.

まず、本実施の形態1の場合、図4に示すように、複数のスリット46は、熱交換チューブ20の長手方向(Y軸方向)に延在する中心線C2を外して延在するように、熱交換チューブ20に設けられている。すなわち、流入側接続部28と流出側接続部30との間を通過する中心線C2を外して延在するように、複数のスリット46は熱交換チューブ20に設けられている。これにより、複数の熱交換チューブ20を積層したときに、ある熱交換チューブ20が中心線C2に沿って折り曲がることを抑制している。 First, in the case of the first embodiment, as shown in FIG. 4, the plurality of slits 46 extend so as to remove the center line C2 extending in the longitudinal direction (Y-axis direction) of the heat exchange tube 20. , Is provided on the heat exchange tube 20. That is, the plurality of slits 46 are provided in the heat exchange tube 20 so as to extend beyond the center line C2 passing between the inflow side connection portion 28 and the outflow side connection portion 30. This prevents a certain heat exchange tube 20 from bending along the center line C2 when a plurality of heat exchange tubes 20 are laminated.

具体的に説明すると、熱交換チューブ20それぞれの流入側接続部28と流出側接続部30には、積層方向(Z軸方向)のサイズについて許容できる誤差が存在する。複数の熱交換チューブ20を積層してその誤差が累積すると、ある熱交換チューブ20において、流入側接続部28と流出側接続部30との間に曲げ応力が発生する。このとき、流入側接続部28と流出側接続部30との間を通過する熱交換チューブ20の中心線C2上に、複数のスリット46が延在していると、その中心線C2に沿って熱交換チューブ20が折り曲がる可能性がある。 Specifically, there is an acceptable error in the size of the inflow side connection portion 28 and the outflow side connection portion 30 of each of the heat exchange tubes 20 in the stacking direction (Z-axis direction). When a plurality of heat exchange tubes 20 are laminated and the errors are accumulated, bending stress is generated between the inflow side connection portion 28 and the outflow side connection portion 30 in a certain heat exchange tube 20. At this time, if a plurality of slits 46 extend on the center line C2 of the heat exchange tube 20 passing between the inflow side connection portion 28 and the outflow side connection portion 30, if a plurality of slits 46 extend along the center line C2. The heat exchange tube 20 may bend.

したがって、図4に示すように、複数のスリット46は、流入側接続部28と流出側接続部30との間を通過する中心線C2を外して、熱交換チューブ20に設けられている。 Therefore, as shown in FIG. 4, the plurality of slits 46 are provided in the heat exchange tube 20 by removing the center line C2 passing between the inflow side connection portion 28 and the outflow side connection portion 30.

また、本実施の形態1の場合、図4に示すように、複数のスリット46は、複数の熱交換チューブ20の積層方向(Z軸方向)視で、熱交換チューブ20の2つの中心線C1、C2対称に配置されている。これにより、熱交換チューブ20の剛性が一様になり、熱交換チューブ20の変形が抑制されている。 Further, in the case of the first embodiment, as shown in FIG. 4, the plurality of slits 46 are the two center lines C1 of the heat exchange tubes 20 in the stacking direction (Z-axis direction) of the plurality of heat exchange tubes 20. , C2 are arranged symmetrically. As a result, the rigidity of the heat exchange tube 20 becomes uniform, and the deformation of the heat exchange tube 20 is suppressed.

本実施の形態1の場合、熱交換チューブ20は、熱のショートカットを抑制する構成要素として、スリット46以外の構成要素も備えている。 In the case of the first embodiment, the heat exchange tube 20 also includes components other than the slit 46 as components for suppressing heat shortcuts.

図4に示すように、複数の熱交換チューブ20の積層方向(Z軸方向)視で、流入側接続部28と流出側接続部30は、その間に内部流路26が存在しない状態で近い距離で隣接している。その間の熱交換チューブ20の部分に、流入側接続部28を流れる第2の流体F2と流出側接続部30を流れる第2の流体F2との間の熱移動を抑制する貫通穴48が設けられている。 As shown in FIG. 4, when viewed in the stacking direction (Z-axis direction) of the plurality of heat exchange tubes 20, the inflow side connection portion 28 and the outflow side connection portion 30 are close to each other in a state where the internal flow path 26 does not exist between them. Adjacent to each other. A through hole 48 for suppressing heat transfer between the second fluid F2 flowing through the inflow side connection portion 28 and the second fluid F2 flowing through the outflow side connection portion 30 is provided in the portion of the heat exchange tube 20 in the meantime. ing.

具体的に説明すると、熱交換チューブ20において、流入側接続部28を流れる第2の流体F2と流出側接続部30を流れる第2の流体F2との間の温度差が最も大きい。したがって、流入側接続部28と流出側接続部30とが隣接している場合、これらの間で大量の熱のショートカットが生じうる。この熱のショートカットを抑制するために、貫通穴48が設けられている。 Specifically, in the heat exchange tube 20, the temperature difference between the second fluid F2 flowing through the inflow side connection portion 28 and the second fluid F2 flowing through the outflow side connection portion 30 is the largest. Therefore, when the inflow side connection portion 28 and the outflow side connection portion 30 are adjacent to each other, a large amount of heat shortcut may occur between them. A through hole 48 is provided to suppress this heat shortcut.

さらに、本実施の形態1の場合、図4に示すように、複数の熱交換チューブ20の積層方向(Z軸方向)視で、流入側接続部28と内部流路26との間の熱交換チューブ20の部分と流出側接続部30と内部流路26との間の熱交換チューブ20の部分とにも、これらの間の熱のショートカットを抑制するための貫通穴50が設けられている。 Further, in the case of the first embodiment, as shown in FIG. 4, heat exchange between the inflow side connection portion 28 and the internal flow path 26 in the stacking direction (Z-axis direction) of the plurality of heat exchange tubes 20. The portion of the heat exchange tube 20 between the portion of the tube 20 and the outflow side connection portion 30 and the internal flow path 26 is also provided with a through hole 50 for suppressing a heat shortcut between them.

以上のような本実施の形態1によれば、複数の熱交換チューブを積層して構成される熱交換器において、熱交換チューブ間の隙間を精度よく形成することができる。 According to the first embodiment as described above, in the heat exchanger configured by laminating a plurality of heat exchange tubes, it is possible to accurately form a gap between the heat exchange tubes.

(実施の形態2)
上述の実施の形態1の場合、図5に示すように、スリット46は、例えばパンチ加工によって熱交換チューブ20の一部を除去することによって形成される貫通穴状である。本実施の形態2は、そのスリットの形成方法が、上述の実施の形態1とは異なる。この異なる点を中心に、本実施の形態2について説明する。
(Embodiment 2)
In the case of the first embodiment described above, as shown in FIG. 5, the slit 46 has a through-hole shape formed by removing a part of the heat exchange tube 20 by, for example, punching. The method of forming the slit of the second embodiment is different from that of the first embodiment described above. The second embodiment will be described with a focus on this difference.

図8は、本実施の形態2に係る熱交換器の熱交換チューブの断面図である。なお、図8は、2つの熱交換チューブが積層された状態を示している。 FIG. 8 is a cross-sectional view of a heat exchange tube of the heat exchanger according to the second embodiment. Note that FIG. 8 shows a state in which two heat exchange tubes are laminated.

図8に示すように、スリット252bも、上述の実施の形態1の熱交換チューブ20のスリット46と同様に理由で、熱交換チューブ220に設けられている。しかしながら、本実施の形態2のスリット252bは、切り起こし部252の一部で構成されている。 As shown in FIG. 8, the slit 252b is also provided in the heat exchange tube 220 for the same reason as the slit 46 of the heat exchange tube 20 of the first embodiment described above. However, the slit 252b of the second embodiment is composed of a part of the cut-up portion 252.

切り起こし部252は、例えば、熱交換チューブ220に角括弧状の切込みを形成し、その切込みに囲まれた部分を起立させたものである切り起こし片252aと、切り起こし片252aが起立することによって生じた貫通穴から構成されている。その切り起こし部252における貫通穴が、異なる内部流路226の部分(折り返し部から延在して互いに対向する部分)を流れる第2の流体F2間の熱のショートカットを抑制するスリット252bとして機能する。 The cut-up portion 252 has, for example, a square bracket-shaped notch formed in the heat exchange tube 220, and the cut-up piece 252a and the cut-up piece 252a, which are obtained by erecting the portion surrounded by the notch, stand up. It consists of through holes created by. The through hole in the cut-up portion 252 functions as a slit 252b that suppresses a heat shortcut between the second fluids F2 flowing through the portion of the different internal flow path 226 (the portion extending from the folded portion and facing each other). ..

また、本実施の形態2の場合、切り起こし部252における切り起こし片252aは、スリット252b(貫通穴)に対して第1の流体F1の流れ方向の下流側で起立し、その流れ方向の上流側に傾いた壁状である。そのため、切り起こし片252aは、第1の流体F1の風向板として機能する。具体的には、切り起こし片252aは、第1の流体F1をスリット252b内にガイドする。それにより、第1の流体F1は、熱交換チューブ20の異なる隙間Sに流入する。その結果、熱交換器内を第1の流体F1は複雑に流れ、それにより第1の流体F1と第2の流体F2との間の熱交換率が、上述の実施の形態1に比べて向上する。 Further, in the case of the second embodiment, the cut-up piece 252a in the cut-up portion 252 stands up on the downstream side in the flow direction of the first fluid F1 with respect to the slit 252b (through hole), and is upstream in the flow direction. It is like a wall tilted to the side. Therefore, the cut-up piece 252a functions as a wind direction plate of the first fluid F1. Specifically, the cut-up piece 252a guides the first fluid F1 into the slit 252b. As a result, the first fluid F1 flows into the different gaps S of the heat exchange tube 20. As a result, the first fluid F1 flows in a complicated manner in the heat exchanger, whereby the heat exchange rate between the first fluid F1 and the second fluid F2 is improved as compared with the above-described first embodiment. do.

本実施の形態2も、上述の実施の形態1と同様に、複数の熱交換チューブを積層して構成される熱交換器において、熱交換チューブ間の隙間を精度よく形成することができる。 Also in the second embodiment, similarly to the first embodiment described above, in the heat exchanger configured by laminating a plurality of heat exchange tubes, the gap between the heat exchange tubes can be formed with high accuracy.

(実施の形態3)
本実施の形態3は、上述の実施の形態2の改良形態である。具体的には、切り起こし部における切り起こし片の形状が異なる。
(Embodiment 3)
The third embodiment is an improved form of the second embodiment described above. Specifically, the shape of the cut-up piece in the cut-up portion is different.

図9は、本実施の形態3に係る熱交換チューブの斜視図である。また、図10は、本実施の形態3に係る熱交換器の熱交換チューブの断面図である。なお、図10は、2つの熱交換チューブが積層された状態を示している。 FIG. 9 is a perspective view of the heat exchange tube according to the third embodiment. Further, FIG. 10 is a cross-sectional view of a heat exchange tube of the heat exchanger according to the third embodiment. Note that FIG. 10 shows a state in which two heat exchange tubes are laminated.

図9および図10に示すように、本実施の形態3に係る熱交換器の熱交換チューブ320も、上述の実施の形態2の熱交換チューブ220と同様に、切り起こし部352を備える。本実施の形態3の場合、切り起こし部352における切り起こし片352aは、第1の流体F1の流れ方向に対して直交する方向に延在するブリッジ状である。切り起こし部352における貫通穴352bは、異なる内部流路326の部分(折り返し部から延在して互いに対向する部分)を流れる第2の流体F2間の熱のショートカットを抑制するスリットとして機能する。 As shown in FIGS. 9 and 10, the heat exchange tube 320 of the heat exchanger according to the third embodiment also includes a cut-up portion 352 like the heat exchange tube 220 of the second embodiment described above. In the case of the third embodiment, the cut-up piece 352a in the cut-up portion 352 has a bridge shape extending in a direction orthogonal to the flow direction of the first fluid F1. The through hole 352b in the cut-up portion 352 functions as a slit that suppresses a heat shortcut between the second fluids F2 flowing through the portion of the different internal flow path 326 (the portion extending from the folded portion and facing each other).

図10に示すように、第1の流体F1は、ブリッジ状の切り起こし片352aによってその上下に分流される。これにより、上述の実施の形態2に比べて熱交換器内を第1の流体F1は複雑に流れ、それにより第1の流体F1と第2の流体F2との間の熱交換率がさらに向上する。 As shown in FIG. 10, the first fluid F1 is split above and below it by a bridge-shaped cut-up piece 352a. As a result, the first fluid F1 flows in a complicated manner in the heat exchanger as compared with the second embodiment described above, whereby the heat exchange rate between the first fluid F1 and the second fluid F2 is further improved. do.

本実施の形態3も、上述の実施の形態1と同様に、複数の熱交換チューブを積層して構成される熱交換器において、熱交換チューブ間の隙間を精度よく形成することができる。 Also in the third embodiment, similarly to the first embodiment described above, in the heat exchanger configured by laminating a plurality of heat exchange tubes, the gap between the heat exchange tubes can be formed with high accuracy.

以上、上述の実施の形態1~3を挙げて本開示を説明したが、本開示の実施の形態は上述の実施の形態に限らない。 Although the present disclosure has been described above with reference to the above-described embodiments 1 to 3, the embodiments of the present disclosure are not limited to the above-described embodiments.

例えば、上述の実施の形態1の場合、図4に示すように、熱交換チューブ20の内部流路26は、複数の熱交換チューブ20の積層方向(Z軸方向)視で、短手方向(X軸方向)に延在する中心線C1且つ長手方向(Y軸方向)に延在する中心線C2対称の形状である。具体的には、内部流路26は、熱交換チューブ20の長手方向の一方側に配置された略「M」字状の流路26Lと、長手方向の他方側に配置された略「M」字状流路26Rとから構成されている。 For example, in the case of the first embodiment described above, as shown in FIG. 4, the internal flow path 26 of the heat exchange tube 20 is in the lateral direction (Z-axis direction) in the stacking direction (Z-axis direction) of the plurality of heat exchange tubes 20. The shape is symmetrical with the center line C1 extending in the X-axis direction and the center line C2 extending in the longitudinal direction (Y-axis direction). Specifically, the internal flow path 26 has a substantially “M” -shaped flow path 26L arranged on one side in the longitudinal direction of the heat exchange tube 20 and a substantially “M” arranged on the other side in the longitudinal direction. It is composed of a character flow path 26R.

しかしながら、本開示の実施の形態に係る熱交換器における熱交換チューブの内部流路の形状は、これに限定されない。 However, the shape of the internal flow path of the heat exchange tube in the heat exchanger according to the embodiment of the present disclosure is not limited to this.

図11、図12、および図13は、熱交換チューブの内部流路の様々な例を示す図である。 11, 12, and 13 are diagrams showing various examples of the internal flow path of the heat exchange tube.

図11に示す熱交換チューブ420の場合、その内部流路426は、熱交換チューブ420の積層方向(Z軸方向)視で、短手方向(X軸方向)に延在する中心線C1且つ長手方向(Y軸方向)に延在する中心線C2対称の形状を備える。具体的には、内部流路426は、流入側接続部428から流出側接続部430に向かって延在して熱交換チューブ20の長手方向の一方側に配置された略「U」字状の流路426Lと、流入側接続部428から流出側接続部430に向かって延在して長手方向の他方側に配置された略「U」字状流路426Rとから構成されている。これにより、内部流路426は、2つの折り返し部426aと、その折り返し部426aから延在して間隔をあけて互いに対向する流路部分426bとを含んでいる。その流路部分426bの間の熱交換チューブ420の部分に、複数のスリット446が設けられている。 In the case of the heat exchange tube 420 shown in FIG. 11, the internal flow path 426 is the center line C1 extending in the lateral direction (X-axis direction) and the longitudinal direction in the stacking direction (Z-axis direction) of the heat exchange tube 420. It has a center line C2 symmetrical shape extending in the direction (Y-axis direction). Specifically, the internal flow path 426 extends from the inflow side connection portion 428 toward the outflow side connection portion 430 and is arranged on one side in the longitudinal direction of the heat exchange tube 20 in a substantially "U" shape. It is composed of a flow path 426L and a substantially "U" -shaped flow path 426R extending from the inflow side connection portion 428 toward the outflow side connection portion 430 and arranged on the other side in the longitudinal direction. As a result, the internal flow path 426 includes two folded-back portions 426a and a flow path portion 426b extending from the folded-back portion 426a and facing each other at a distance. A plurality of slits 446 are provided in the portion of the heat exchange tube 420 between the flow path portions 426b.

図12に示す熱交換チューブ520の場合、その内部流路526は、熱交換チューブ520の積層方向(Z軸方向)視で、長手方向(Y軸方向)に延在する中心線C2対称の形状を備える。しかし、内部流路526の形状は、短手方向(X軸方向)に延在する中心線C1対称の形状ではない。その理由は、流入側接続部528と流出側接続部530が、熱交換チューブ520において長手方向の中心ではなく、長手方向の一方の端部で短手方向に並んだ状態で設けられているからである。内部流路526は、流入側接続部528から流出側接続部530に向かって延在して略「M」字状の形状を備える。これにより、内部流路526は、3つの折り返し部526aと、その折り返し部526aから延在して間隔をあけて互いに対向する流路部分526bとを含んでいる。その流路部分526bの間の熱交換チューブ520の部分に、複数のスリット546が設けられている。なお、複数のスリット546は、中心線C2上を外して設けられている。 In the case of the heat exchange tube 520 shown in FIG. 12, the internal flow path 526 has a center line C2 symmetrical shape extending in the longitudinal direction (Y-axis direction) in the stacking direction (Z-axis direction) of the heat exchange tube 520. To prepare for. However, the shape of the internal flow path 526 is not a shape symmetrical with the center line C1 extending in the lateral direction (X-axis direction). The reason is that the inflow side connection portion 528 and the outflow side connection portion 530 are provided in the heat exchange tube 520 in a state where they are arranged in the lateral direction at one end in the longitudinal direction instead of the center in the longitudinal direction. Is. The internal flow path 526 extends from the inflow side connection portion 528 toward the outflow side connection portion 530 and has a substantially “M” shape. As a result, the internal flow path 526 includes three folded-back portions 526a and flow path portions 526b extending from the folded-back portion 526a and facing each other at intervals. A plurality of slits 546 are provided in the portion of the heat exchange tube 520 between the flow path portions 526b. The plurality of slits 546 are provided so as to be removed from the center line C2.

図13に示す熱交換チューブ620の場合、その内部流路626の形状は、熱交換チューブ520の積層方向(Z軸方向)視で、短手方向(X軸方向)に延在する中心線C1且つ長手方向(Y軸方向)に延在する中心線C2対称の形状ではない。その理由は、流入側接続部628と流出側接続部630が、熱交換チューブ620の対角線上に配置されているからである。そのため、内部流路626は、流入側接続部628から流出側接続部630に向かって延在して「逆S]字状の形状を備える。これにより、内部流路626は、2つの折り返し部626aと、その折り返し部626aから延在して間隔をあけて互いに対向する流路部分626bとを含んでいる。その流路部分626bの間の熱交換チューブ620の部分に、複数のスリット646が設けられている。 In the case of the heat exchange tube 620 shown in FIG. 13, the shape of the internal flow path 626 is the center line C1 extending in the lateral direction (X-axis direction) in the stacking direction (Z-axis direction) of the heat exchange tube 520. Moreover, the shape is not symmetrical with the center line C2 extending in the longitudinal direction (Y-axis direction). The reason is that the inflow side connection portion 628 and the outflow side connection portion 630 are arranged on the diagonal line of the heat exchange tube 620. Therefore, the internal flow path 626 extends from the inflow side connection portion 628 toward the outflow side connection portion 630 and has an "inverted S" shape, whereby the internal flow path 626 has two folded portions. It contains a 626a and a flow path portion 626b extending from the folded portion 626a and facing each other at a distance. A plurality of slits 646 are provided in a portion of the heat exchange tube 620 between the flow path portions 626b. It is provided.

このように熱交換器の内部流路の形状や流入側接続部と流出側接続部の位置は、用途に応じて種々に変更可能である。本開示の実施の形態に係る熱交換器における熱交換チューブの内部流路は、少なくとも1つの折り返し部を含む流路であればよい。すなわち、本開示の実施の形態に係る熱交換器における熱交換チューブは、1つの折り返し部によって間隔をあけて互いに対向する2つの流路部分が生じ、その2つの流路部分の間の熱交換チューブの部分にスリットが設けられている熱交換チューブである。 As described above, the shape of the internal flow path of the heat exchanger and the positions of the inflow side connection portion and the outflow side connection portion can be variously changed according to the application. The internal flow path of the heat exchange tube in the heat exchanger according to the embodiment of the present disclosure may be a flow path including at least one folded portion. That is, in the heat exchange tube in the heat exchanger according to the embodiment of the present disclosure, two flow path portions facing each other are generated at intervals by one folded portion, and heat exchange between the two flow path portions is generated. A heat exchange tube having a slit in the tube portion.

また、上述の実施の形態1の場合、図3に示すように、熱交換器10によって熱交換される第1の流体F1は、熱交換チューブ20の短手方向(X軸方向)に流れる。しかしながら、本開示の実施の形態はこれに限らない。熱交換チューブの長手方向に第1の流体が流れるように、熱交換器は構成されてもよい。 Further, in the case of the first embodiment described above, as shown in FIG. 3, the first fluid F1 heat-exchanged by the heat exchanger 10 flows in the lateral direction (X-axis direction) of the heat exchange tube 20. However, the embodiments of the present disclosure are not limited to this. The heat exchanger may be configured so that the first fluid flows in the longitudinal direction of the heat exchange tube.

すなわち、本開示の実施の形態に係る熱交換器は、広義には、第1の流体が通過可能な隙間をあけて積層された複数の熱交換チューブを有し、前記熱交換チューブそれぞれが、前記第1の流体と熱交換を行う第2の流体が流れ、折り返し部を含む内部流路と、前記内部流路に連通し、前記第2の流体が流入する流入側接続部と、前記内部流路に連通し、前記第2の流体が流出する流出側接続部と、前記折り返し部からそれぞれ延在して間隔をあけて互いに対向する前記内部流路における2つの流路部分の間の前記熱交換チューブの部分に設けられた複数のスリットと、隣接する他の熱交換チューブに接触して前記隙間を形成する複数の凸状支持部と、を備え、前記複数の熱交換チューブの積層方向視で、前記複数のスリットの少なくとも1つが、その延在方向の中心が隣接し合う2つの前記凸状支持部を結ぶ直線上から外れた状態で延在する。 That is, the heat exchanger according to the embodiment of the present disclosure has, in a broad sense, a plurality of heat exchange tubes laminated with a gap through which the first fluid can pass, and each of the heat exchange tubes has a plurality of heat exchange tubes. An inflow side connection portion through which a second fluid that exchanges heat with the first fluid flows and communicates with the internal flow path including a folded portion and into which the second fluid flows, and the inside thereof. The said between the outflow side connection portion that communicates with the flow path and outflows the second fluid, and the two flow path portions in the internal flow path that extend from the folded portion and face each other at intervals. A plurality of slits provided in a portion of the heat exchange tube and a plurality of convex support portions which are in contact with other adjacent heat exchange tubes to form the gap are provided, and the stacking direction of the plurality of heat exchange tubes is provided. Visually, at least one of the plurality of slits extends in a state where the center in the extending direction deviates from the straight line connecting the two adjacent convex support portions.

以上のように、本開示における技術の例示として、上述の実施の形態を説明してきた。そのために、図面および詳細な説明を提供している。したがって、図面及び詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上述の技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 As described above, the above-described embodiment has been described as an example of the technique in the present disclosure. For that purpose, drawings and detailed explanations are provided. Therefore, among the components described in the drawings and the detailed description, not only the components essential for problem solving but also the components not essential for problem solving in order to exemplify the above-mentioned technique. Can also be included. Therefore, the fact that those non-essential components are described in the drawings or detailed description should not immediately determine that those non-essential components are essential.

また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略等を行うことができる。 Further, since the above-described embodiment is for exemplifying the technique in the present disclosure, various changes, replacements, additions, omissions, etc. can be made within the scope of claims or the equivalent thereof.

本開示は、フィン状の複数の熱交換チューブを積層して構成される熱交換器に対して適用可能である。 The present disclosure is applicable to a heat exchanger configured by stacking a plurality of fin-shaped heat exchange tubes.

20 熱交換チューブ
26 内部流路
26a 折り返し部
26b 流路部分
40 凸状支持部
46 スリット
F1 第1の流体
20 Heat exchange tube 26 Internal flow path 26a Folded part 26b Flow path part 40 Convex support part 46 Slit F1 First fluid

Claims (10)

第1の流体が通過可能な隙間をあけて積層された複数の熱交換チューブを有し、
前記熱交換チューブそれぞれが、
前記第1の流体と熱交換を行う第2の流体が流れ、折り返し部を含む内部流路と、
前記内部流路に連通し、前記第2の流体が流入する流入側接続部と、
前記内部流路に連通し、前記第2の流体が流出する流出側接続部と、
前記折り返し部からそれぞれ延在して間隔をあけて互いに対向する前記内部流路における2つの流路部分の間の前記熱交換チューブの部分に設けられた複数のスリットと、
隣接する他の熱交換チューブに接触して前記隙間を形成する複数の凸状支持部と、を備え、
前記複数の熱交換チューブの積層方向視で、前記複数のスリットの少なくとも1つが、その延在方向の中心が隣接し合う2つの前記凸状支持部を結ぶ直線上から外れた状態で延在する、熱交換器。
It has a plurality of heat exchange tubes laminated with a gap through which the first fluid can pass.
Each of the heat exchange tubes
A second fluid that exchanges heat with the first fluid flows, and has an internal flow path including a folded portion and an internal flow path.
An inflow side connection portion that communicates with the internal flow path and into which the second fluid flows,
An outflow side connection portion that communicates with the internal flow path and allows the second fluid to flow out.
A plurality of slits provided in the heat exchange tube portion between the two flow path portions in the internal flow path extending from the folded portion and facing each other at intervals, and a plurality of slits.
It comprises a plurality of convex supports, which are in contact with other adjacent heat exchange tubes to form the gap.
In the stacking direction view of the plurality of heat exchange tubes, at least one of the plurality of slits extends in a state where the center in the extending direction is off the straight line connecting the two adjacent convex supports portions. ,Heat exchanger.
前記積層方向視で、前記複数のスリットの少なくとも1つが、隣接し合う2つの前記凸状支持部を結ぶ直線と交差することなく延在する、請求項1に記載の熱交換器。
The heat exchanger according to claim 1, wherein at least one of the plurality of slits extends without intersecting a straight line connecting two adjacent convex support portions in the stacking direction view.
前記積層方向視で前記流入側接続部と前記流出側接続部との間を通過する前記熱交換チューブの中心線上を外して、前記複数のスリットが延在する、請求項1または2に記載の熱交換器。
The first or second aspect of the present invention, wherein the plurality of slits extend on the center line of the heat exchange tube passing between the inflow side connection portion and the outflow side connection portion in the stacking direction. Heat exchanger.
前記複数のスリットが、前記積層方向視で、中心線対称に前記熱交換チューブに設けられている、請求項1から3のいずれか一項に記載の熱交換器。
The heat exchanger according to any one of claims 1 to 3, wherein the plurality of slits are provided in the heat exchange tube symmetrically with respect to the center line in the stacking direction.
前記熱交換チューブが、切り起こし部を備え、
前記スリットが、前記切り起こし部における貫通穴である、請求項1から4のいずれか一項に記載の熱交換器。
The heat exchange tube is provided with a raised portion and has a raised portion.
The heat exchanger according to any one of claims 1 to 4, wherein the slit is a through hole in the cut-up portion.
前記切り起こし部における切り起こし片が、前記貫通穴に対して前記第1の流体の流れ方向の下流側で起立し、前記流れ方向の上流側に傾いた壁状である、請求項5に記載の熱交換器。
The fifth aspect of the present invention, wherein the cut-up piece in the cut-up portion stands up with respect to the through hole on the downstream side in the flow direction of the first fluid and is inclined toward the upstream side in the flow direction. Heat exchanger.
前記切り起こし部における切り起こし片が、前記第1の流体の流れ方向に対して直交する方向に延在するブリッジ状である、請求項5に記載の熱交換器。
The heat exchanger according to claim 5, wherein the cut-up piece in the cut-up portion has a bridge shape extending in a direction orthogonal to the flow direction of the first fluid.
前記流入側接続部と前記流出側接続部とが隣接し、
前記積層方向視で前記流入側接続部と前記流出側接続部との間の前記熱交換チューブの部分に、貫通穴が設けられている、請求項1から7のいずれか一項に記載の熱交換器。
The inflow side connection portion and the outflow side connection portion are adjacent to each other,
The heat according to any one of claims 1 to 7, wherein a through hole is provided in a portion of the heat exchange tube between the inflow side connection portion and the outflow side connection portion in the stacking direction. Exchanger.
前記流入側接続部と前記流出側接続部とが、前記第1の流体の流れ方向に並んでいる、請求項1から8のいずれか一項に記載の熱交換器。
The heat exchanger according to any one of claims 1 to 8, wherein the inflow side connection portion and the outflow side connection portion are arranged in the flow direction of the first fluid.
前記流入側接続部が前記第1の流体の流れ方向の下流側に位置し、前記流出側接続部が上流側に位置する、請求項9に記載の熱交換器。 The heat exchanger according to claim 9, wherein the inflow side connection portion is located on the downstream side in the flow direction of the first fluid, and the outflow side connection portion is located on the upstream side.
JP2020179582A 2020-10-27 2020-10-27 Heat exchanger Pending JP2022070491A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020179582A JP2022070491A (en) 2020-10-27 2020-10-27 Heat exchanger
US17/512,089 US20220196336A1 (en) 2020-10-27 2021-10-27 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020179582A JP2022070491A (en) 2020-10-27 2020-10-27 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2022070491A true JP2022070491A (en) 2022-05-13

Family

ID=81534910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020179582A Pending JP2022070491A (en) 2020-10-27 2020-10-27 Heat exchanger

Country Status (2)

Country Link
US (1) US20220196336A1 (en)
JP (1) JP2022070491A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459402B1 (en) 2023-04-26 2024-04-01 三菱電機株式会社 Heat exchangers and air conditioners

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3141515A1 (en) * 2022-10-26 2024-05-03 Valeo Systemes Thermiques Sas Heat exchanger, particularly for a vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2957679A (en) * 1955-06-02 1960-10-25 Olin Mathieson Heat exchanger
US4270602A (en) * 1978-08-30 1981-06-02 The Garrett Corporation Heat exchanger
CA1313182C (en) * 1989-02-24 1993-01-26 Allan K. So In tank oil cooler
DE3914774A1 (en) * 1989-05-05 1990-11-08 Mtu Muenchen Gmbh HEAT EXCHANGER
DE9310827U1 (en) * 1993-07-06 1993-09-23 Balcke-Dürr AG, 40882 Ratingen HEAT EXCHANGER FROM SEVERAL EXCHANGER TUBES ARRANGED IN PARALLEL
JP2006284165A (en) * 2005-03-07 2006-10-19 Denso Corp Exhaust gas heat exchanger
US20140008046A1 (en) * 2012-07-05 2014-01-09 Airec Ab Plate for heat exchanger, heat exchanger and air cooler comprising a heat exchanger
CN105091630A (en) * 2014-05-16 2015-11-25 松下知识产权经营株式会社 Heat exchanger and heat exchanging unit
JP3192720U (en) * 2014-06-18 2014-08-28 有限会社和氣製作所 Plate member and heat exchanger
JP3222286U (en) * 2019-05-09 2019-07-25 有限会社和氣製作所 Heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459402B1 (en) 2023-04-26 2024-04-01 三菱電機株式会社 Heat exchangers and air conditioners
WO2024224513A1 (en) * 2023-04-26 2024-10-31 三菱電機株式会社 Heat exchanger and air conditioning device

Also Published As

Publication number Publication date
US20220196336A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
JP2022070491A (en) Heat exchanger
JP5394405B2 (en) Heat exchanger
JP2017180856A (en) Heat exchanger
US9863721B2 (en) Heat exchanger
JP2019530845A (en) Heat exchange plate and heat exchanger
CN101368802A (en) Tank structure for heat exchanger
CN111656124A (en) Structurally supported heat exchanger
JP2007232339A (en) Micro heat exchanger and manufacturing method thereof
JP2020079693A (en) Heat exchanger
JP5335568B2 (en) Flat tube heat exchanger
JP6562918B2 (en) Heat exchange plate with various pitches
JP5792591B2 (en) Flat plate of header plateless heat exchanger
JP3192720U (en) Plate member and heat exchanger
US10281222B2 (en) Heat exchanger
WO2021066083A1 (en) Plate for stack-type heat exchanger
JP5540944B2 (en) Cooler
JP2015059669A (en) Laminated heat exchanger
JP7021925B2 (en) Heat exchanger
CN115885150A (en) Heat exchanger
US20190376750A1 (en) Water heat exchanger
JP7375492B2 (en) Heat exchanger
JP3040213B2 (en) Plate heat exchanger
JP6096642B2 (en) Fin for heat exchanger, heat sink using the same, and method for manufacturing fin for heat exchanger
JP2000320986A (en) Plate heat exchanger
JP2005300062A (en) Heat exchanger and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240621

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20250107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20250203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250205