Nothing Special   »   [go: up one dir, main page]

JP2021122163A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2021122163A
JP2021122163A JP2020014598A JP2020014598A JP2021122163A JP 2021122163 A JP2021122163 A JP 2021122163A JP 2020014598 A JP2020014598 A JP 2020014598A JP 2020014598 A JP2020014598 A JP 2020014598A JP 2021122163 A JP2021122163 A JP 2021122163A
Authority
JP
Japan
Prior art keywords
rotor
electric machine
rotary electric
permanent magnets
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020014598A
Other languages
Japanese (ja)
Inventor
良一 高畑
Ryoichi Takahata
良一 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2020014598A priority Critical patent/JP2021122163A/en
Priority to CN202110042562.2A priority patent/CN113206564A/en
Publication of JP2021122163A publication Critical patent/JP2021122163A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

To provide a rotary electric machine that can suppress the demagnetization of a permanent magnet.SOLUTION: A rotor core (12) comprises: first magnet insertion holes (13a) into each of which a first permanent magnet (14a) having an arc cross section is inserted; and second magnet insertion holes (13b and 13c), extending from the inside to outside of a rotor (3) in the radial direction, into which second permanent magnets (14b and 14c), each having a rectangular cross section and extending from the inside to outside in the radial direction, are inserted. Each magnetic pole of the rotor (3) is configured of one first permanent magnet (14a) and two second permanent magnets (14b and 14c) arranged in line symmetry to the radial direction of the rotor (3). The second magnet insertion holes (13b and 13c) have air gap portions (20b and 20c) at the outside end of the rotor (3) in the radial direction.SELECTED DRAWING: Figure 4

Description

本発明は、界磁用の永久磁石を回転子に備えている回転電機に関する。 The present invention relates to a rotating electric machine having a permanent magnet for a field magnet in a rotor.

近年、回転電機においては、界磁に永久磁石が用いられ、小形・高効率化が図られている。永久磁石が用いられる回転電機の小形化と高効率化の手段として、回転軸方向に沿った永久磁石の表面積を拡大し、永久磁石の磁束量を増やすことが挙げられる。そして、永久磁石の磁束量を増やすための手段の一つとして、永久磁石の形状・配置を工夫することがある。 In recent years, permanent magnets have been used as field magnets in rotary electric machines to improve their compactness and efficiency. As a means for reducing the size and increasing the efficiency of a rotating electric machine in which a permanent magnet is used, it is possible to increase the surface area of the permanent magnet along the direction of the rotation axis and increase the amount of magnetic flux of the permanent magnet. Then, as one of the means for increasing the amount of magnetic flux of the permanent magnet, the shape and arrangement of the permanent magnet may be devised.

回転電機に用いられる永久磁石の形状や配置に関する従来技術として、例えば、特許文献1(図1)に記載の技術が知られている。この従来技術では、回転子に埋設される永久磁石が、回転子の径方向内側へ向かって凸となる円弧状の中央部と、この中央部の両端部から回転子の外周面へ向かって延びる直線状の複数の側部とを備える。このような、永久磁石の形状・配置より、円弧状の中央部と直線状の側部との間の屈曲部において、着磁によって得られる磁束量が確保され、磁束量を増やすことができる。 As a conventional technique relating to the shape and arrangement of permanent magnets used in a rotary electric machine, for example, the technique described in Patent Document 1 (FIG. 1) is known. In this conventional technique, a permanent magnet embedded in the rotor extends toward the outer peripheral surface of the rotor from an arcuate central portion that is convex inward in the radial direction of the rotor and both ends of the central portion. It has a plurality of linear side portions. Due to the shape and arrangement of the permanent magnets, the amount of magnetic flux obtained by magnetism is secured at the bent portion between the central portion of the arc shape and the side portion of the linear shape, and the amount of magnetic flux can be increased.

特開2016−171646号公報Japanese Unexamined Patent Publication No. 2016-171646

しかしながら、上記従来技術では、永久磁石の直線状の複数の側部における回転子外周側に位置する先端部が、固定子が備える電機子巻線による磁界によって減磁され易いという問題がある。このため、永久磁石のトルク特性の低下を招く恐れがある。 However, in the above-mentioned conventional technique, there is a problem that the tip portion of the plurality of linear side portions of the permanent magnet located on the outer peripheral side of the rotor is easily demagnetized by the magnetic field generated by the armature winding included in the stator. Therefore, the torque characteristics of the permanent magnet may be deteriorated.

そこで、本発明は、永久磁石の減磁を抑制できる回転電機を提供する。 Therefore, the present invention provides a rotary electric machine capable of suppressing demagnetization of a permanent magnet.

上記課題を解決するために、本発明による回転電機は、固定子鉄心と、前記固定子鉄心に巻装される電機子巻線とを有する固定子と、回転子鉄心と、前記回転子鉄心に埋設される複数の永久磁石と、前記回転子鉄心に固定される回転シャフトとを有する回転子と、を備えるものであって、前記複数の永久磁石は、前記回転子の径方向内側に凸となる円弧状断面を有する複数の第1永久磁石と、矩形状断面を有し、前記矩形状断面が、前記回転子の径方向内側から径方向外側に向かって延びる複数の第2永久磁石と、を含み、前記回転子鉄心は、前記複数の第1永久磁石が挿入される複数の第1磁石挿入孔と、前記複数の第2永久磁石が挿入される複数の第2磁石挿入孔と、を有し、前記回転子の複数の磁極の各々は、一つの前記第1永久磁石と、二つの前記第2永久磁石とが、前記第1永久磁石の両側に前記第2永久磁石が配置され、かつ前記回転子の径方向に対して線対称に配置されて構成され、前記第2磁石挿入孔は、前記回転子の径方向外側の端部に空隙部を有する。 In order to solve the above problems, the rotor electric machine according to the present invention has a stator core, a stator having an armature winding wound around the stator core, a rotor core, and the rotor core. A plurality of permanent magnets to be embedded and a rotor having a rotating shaft fixed to the rotor core are provided, and the plurality of permanent magnets are convex inward in the radial direction of the rotor. A plurality of first permanent magnets having an arcuate cross section, and a plurality of second permanent magnets having a rectangular cross section and the rectangular cross section extending from the radial inside to the radial outside of the rotor. The rotor core includes a plurality of first magnet insertion holes into which the plurality of first permanent magnets are inserted, and a plurality of second magnet insertion holes into which the plurality of second permanent magnets are inserted. Each of the plurality of magnetic poles of the rotor has one first permanent magnet and two second permanent magnets, and the second permanent magnets are arranged on both sides of the first permanent magnet. Moreover, the second magnet insertion hole is arranged linearly symmetrically with respect to the radial direction of the rotor, and the second magnet insertion hole has a gap portion at an end portion on the outer side in the radial direction of the rotor.

また、上記課題を解決するために、本発明による回転電機は、固定子鉄心と、前記固定子鉄心に巻装される電機子巻線とを有する固定子と、回転子鉄心と、前記回転子鉄心に埋設される一磁極当たり二つのみの永久磁石と、前記回転子鉄心に固定される回転シャフトとを有する回転子と、を備えるものであって、前記二つの永久磁石は、矩形状断面を有し、前記矩形状断面が、前記回転子の径方向内側から径方向外側に向かって延び、前記回転子鉄心は、前記二つの永久磁石が挿入される二つの磁石挿入孔を有し、前記回転子の複数の磁極の各々は、前記二つの永久磁石が、前記回転子の径方向に対して線対称に配置されて構成され、前記磁石挿入孔は、前記回転子の径方向外側の端部に空隙部を有し、前記回転子鉄心は、前記回転子の最外周表面と前記空隙部との間に介在する第1ブリッジ部を有し、前記第1ブリッジ部は、前記回転子の周方向に沿って位置し、前記空隙部における前記回転子の径方向に沿う二つの内壁面の内、前記磁極の磁束軸であるd軸の側に位置する一方の内壁面の長さをL1とし、前記磁束軸に電気角で直交するq軸の側に位置する他方の内壁面の長さL2とすると、L1<L2である。 Further, in order to solve the above problems, the rotor electric machine according to the present invention includes a rotor core, a stator having an armature winding wound around the stator core, a rotor core, and the rotor. It includes only two permanent magnets per magnetic pole embedded in the iron core and a rotor having a rotor shaft fixed to the rotor core, and the two permanent magnets have a rectangular cross section. The rectangular cross section extends from the radially inner side of the rotor toward the radial outer side, and the rotor core has two magnet insertion holes into which the two permanent magnets are inserted. Each of the plurality of magnetic poles of the rotor is configured such that the two permanent magnets are arranged line-symmetrically with respect to the radial direction of the rotor, and the magnet insertion holes are radially outside the rotor. The rotor core has a gap portion at an end, the rotor core has a first bridge portion interposed between the outermost outer peripheral surface of the rotor and the gap portion, and the first bridge portion is the rotor. Of the two inner wall surfaces along the circumferential direction of the rotor and along the radial direction of the rotor in the gap, the length of one inner wall surface located on the d-axis side, which is the magnetic flux axis of the magnetic pole. Assuming that L1 is the length L2 of the other inner wall surface located on the side of the q-axis orthogonal to the magnetic flux axis in terms of electric angle, L1 <L2.

本発明によれば、永久磁石の減磁を抑制することができる。 According to the present invention, demagnetization of a permanent magnet can be suppressed.

上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.

第一の実施例である回転電機の固定子および回転子の軸方向に垂直な方向における断面図である。It is sectional drawing in the direction perpendicular to the axial direction of the stator and the rotor of the rotary electric machine which is 1st Example. 図1に示す回転電機1の軸方向における断面図である。It is sectional drawing in the axial direction of the rotary electric machine 1 shown in FIG. 第一の実施例である回転電機の回転子の軸方向に垂直な方向における断面図である。It is sectional drawing in the direction perpendicular to the axial direction of the rotor of the rotary electric machine which is 1st Example. 図3示す回転子断面における1磁極分の断面を示す部分断面図である。FIG. 3 is a partial cross-sectional view showing a cross section of one magnetic pole in the rotor cross section shown in FIG. 実施例の回転電機のトルク特性図である。It is a torque characteristic diagram of the rotary electric machine of an Example. 第二の実施例である回転電機の回転子の軸方向に垂直な方向における部分断面図である。It is a partial cross-sectional view in the direction perpendicular to the axial direction of the rotor of the rotary electric machine which is the 2nd Example. 第三の実施例である回転電機の回転子の軸方向に垂直な方向における部分断面図である。It is a partial cross-sectional view in the direction perpendicular to the axial direction of the rotor of the rotary electric machine which is the 3rd Example. 第四の実施例である回転電機の回転子の軸方向に垂直な方向における部分断面図である。It is a partial cross-sectional view in the direction perpendicular to the axial direction of the rotor of the rotary electric machine which is the 4th Example. 第五の実施例である回転電機の回転子の軸方向に垂直な方向における部分断面図である。It is a partial cross-sectional view in the direction perpendicular to the axial direction of the rotor of the rotary electric machine which is a fifth embodiment.

以下、本発明の実施形態について、下記の実施例1〜5により、図面を用いながら説明する。各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。 Hereinafter, embodiments of the present invention will be described with reference to the following Examples 1 to 5 with reference to the drawings. In each figure, those having the same reference number indicate the same constituent requirements or constituent requirements having similar functions.

各実施例は、回転子鉄心に永久磁石が埋設される埋込磁石型の回転電機であり、同期電動機として動作する。また、各実施例においては、回転子の磁極数が8極、固定子のスロット数が48である。なお、磁極数とスロット数の組み合わせは、「8極、48スロット」に限らず、所望のモータ特性に応じて適宜設定できる。 Each embodiment is an embedded magnet type rotary electric machine in which a permanent magnet is embedded in a rotor core, and operates as a synchronous motor. Further, in each embodiment, the number of magnetic poles of the rotor is 8 and the number of slots of the stator is 48. The combination of the number of magnetic poles and the number of slots is not limited to "8 poles, 48 slots" and can be appropriately set according to desired motor characteristics.

また、本明細書では、「軸方向」とは回転子の回転軸方向を示し、「径方向」とは回転子の径方向を示し、「周方向」とは回転子の周方向を示す。 Further, in the present specification, the "axial direction" indicates the rotation axis direction of the rotor, the "diametrical direction" indicates the radial direction of the rotor, and the "circumferential direction" indicates the circumferential direction of the rotor.

まず、図1、図2を用いて、本発明の第一の実施例である回転電機の全体構成について概略的に説明する。 First, with reference to FIGS. 1 and 2, the overall configuration of the rotary electric machine according to the first embodiment of the present invention will be schematically described.

図1は、本発明の第一の実施例である回転電機の固定子および回転子の軸方向に垂直な方向における断面図である。 FIG. 1 is a cross-sectional view of a stator and a rotor of a rotary electric machine according to a first embodiment of the present invention in a direction perpendicular to the axial direction.

図1に示すように、回転電機1は、固定子2と、固定子2の内側に所定のギャップを介して回転可能に配置される回転子3から構成されている。この回転子3には、負荷と機械的に接続される回転シャフト15が固定的に設けられている。 As shown in FIG. 1, the rotary electric machine 1 is composed of a stator 2 and a rotor 3 rotatably arranged inside the stator 2 through a predetermined gap. The rotor 3 is fixedly provided with a rotating shaft 15 that is mechanically connected to the load.

固定子2は、磁性体からなる固定子鉄心6を有する。固定子鉄心6は、コアバック5と、コアバック5から径方向内側へ向けて突出する複数のティース4とからなる。複数のティース4は、その径方向に沿って、外周側でコアバック5によって連結される。また、複数のティース4は、周方向に等間隔に配列されている。周方向に隣り合う二つのティース4間には、回転子3の最外周表面3bに向かって開口し、三相巻線である電機子巻線(図1では図示せず)が巻装される固定子スロット7が設けられる。 The stator 2 has a stator core 6 made of a magnetic material. The stator core 6 includes a core back 5 and a plurality of teeth 4 protruding inward in the radial direction from the core back 5. The plurality of teeth 4 are connected by a core back 5 on the outer peripheral side along the radial direction thereof. Further, the plurality of teeth 4 are arranged at equal intervals in the circumferential direction. An armature winding (not shown in FIG. 1), which is a three-phase winding, is wound between two teeth 4 adjacent to each other in the circumferential direction so as to open toward the outermost outer peripheral surface 3b of the rotor 3. The stator slot 7 is provided.

本実施例では、電機子巻線は、複数(本実施例では48個)のスロットに、分布巻きで巻装されている。なお、電機子巻線は、集中巻きでもよい。 In this embodiment, the armature windings are wound in a plurality of slots (48 in this embodiment) in a distributed winding manner. The armature winding may be a centralized winding.

回転子3は、磁性体からなる回転子鉄心12と、回転子鉄心12に埋設される複数の永久磁石とを有する。回転子3の一つの磁極は、3個で1組の永久磁石(14a,14b,14c)から構成される。本実施例では、図1に示すように、8組の永久磁石によって、8極の磁極が構成される。永久磁石(14a,14b,14c)は、回転シャフト15の軸方向から磁石挿入孔(13a,13b,13c)に挿入されている。さらに詳細な回転子3の構成については、後述する。 The rotor 3 has a rotor core 12 made of a magnetic material and a plurality of permanent magnets embedded in the rotor core 12. One magnetic pole of the rotor 3 is composed of three permanent magnets (14a, 14b, 14c). In this embodiment, as shown in FIG. 1, eight sets of permanent magnets form an eight-pole magnetic pole. The permanent magnets (14a, 14b, 14c) are inserted into the magnet insertion holes (13a, 13b, 13c) from the axial direction of the rotating shaft 15. A more detailed configuration of the rotor 3 will be described later.

図2は、図1に示す回転電機1の軸方向における断面図である。なお、図2においては、固定子2および回転子3を支持するケース、フレーム、軸受けなどは図示を省略している。 FIG. 2 is a cross-sectional view of the rotary electric machine 1 shown in FIG. 1 in the axial direction. In FIG. 2, the case, frame, bearing, etc. that support the stator 2 and the rotor 3 are not shown.

図2に示すように、固定子鉄心6および回転子鉄心12は、珪素鋼板などの磁性体からなる薄板30を複数積層した積層体から構成される。これにより、固定子鉄心6および円柱状の回転子鉄心12に発生する渦電流損などの鉄損が低減される。複数の薄板30は、溶接やカシメ等によって、互いに接合されて、一体化されている。固定子スロット7は、軸方向に沿って、固定子鉄心6を貫通する。また、磁石挿入孔(13a,13b,13c)は、軸方向に沿って、回転子鉄心12を貫通する。 As shown in FIG. 2, the stator core 6 and the rotor core 12 are composed of a laminated body in which a plurality of thin plates 30 made of a magnetic material such as a silicon steel plate are laminated. As a result, iron loss such as eddy current loss generated in the stator core 6 and the columnar rotor core 12 is reduced. The plurality of thin plates 30 are joined to each other and integrated by welding, caulking, or the like. The stator slot 7 penetrates the stator core 6 along the axial direction. Further, the magnet insertion holes (13a, 13b, 13c) penetrate the rotor core 12 along the axial direction.

電機子巻線40を構成する複数の導体素線は、固定子スロット7を通る部分がコイルサイドを構成し、固定子スロット7から固定子2外へ突出する部分がコイルエンドを構成する。 In the plurality of conductor strands constituting the armature winding 40, a portion passing through the stator slot 7 constitutes a coil side, and a portion protruding from the stator slot 7 to the outside of the stator 2 constitutes a coil end.

永久磁石(14a,14b,14c)は、軸方向の長さが磁石挿入孔(13a,13b,13c)と同等である一個の板状(長方形断面)の磁石である。本実施例において、永久磁石(14a,14b,14c)は、比較的安価なフェライト製の永久磁石である。 The permanent magnets (14a, 14b, 14c) are single plate-shaped (rectangular cross-section) magnets whose axial length is equivalent to that of the magnet insertion holes (13a, 13b, 13c). In this embodiment, the permanent magnets (14a, 14b, 14c) are relatively inexpensive ferrite permanent magnets.

なお、永久磁石(14a,14b,14c)は、軸方向において、複数に分割されてもよい。また、永久磁石(14a,14b,14c)として、ネオジム磁石などの希土類磁石を用いてもよい。 The permanent magnets (14a, 14b, 14c) may be divided into a plurality of pieces in the axial direction. Further, as the permanent magnets (14a, 14b, 14c), rare earth magnets such as neodymium magnets may be used.

このような回転電機1においては、固定子2の電機子巻線に三相交流電流を流すと回転磁界が発生する。この回転磁界によって回転子3に働く電磁力により、回転子3が回転する。これにより、回転電機1は、同期電動機として動作する。 In such a rotating electric machine 1, a rotating magnetic field is generated when a three-phase AC current is passed through the armature winding of the stator 2. The rotor 3 is rotated by the electromagnetic force acting on the rotor 3 by this rotating magnetic field. As a result, the rotary electric machine 1 operates as a synchronous motor.

次に、図3、図4を用いて、本実施例における回転子の詳細な構成について説明する。 Next, the detailed configuration of the rotor in this embodiment will be described with reference to FIGS. 3 and 4.

図3は、本発明の第一の実施例である回転電機の回転子の軸方向に垂直な方向における断面図である。 FIG. 3 is a cross-sectional view in a direction perpendicular to the axial direction of the rotor of the rotary electric machine according to the first embodiment of the present invention.

図3に示すように、回転子鉄心12の最外周表面3bと、ティース4の内周面との間には、径方向にギャップ長g1の空隙が介在する。 As shown in FIG. 3, a gap having a gap length g1 is interposed in the radial direction between the outermost outer peripheral surface 3b of the rotor core 12 and the inner peripheral surface of the teeth 4.

図3に示す回転子断面において、1磁極に対し、3個の磁石挿入孔、すなわち、回転シャフト15の軸方向から見て、円弧状断面の磁石挿入孔(13a)と直線状断面の磁石挿入孔(13b,13c)が、略U字状もしくは略V字状に配置されている。各磁石挿入孔には、磁石挿入孔と同様の断面形状を有するフェライト製の永久磁石が挿入されている。 In the rotor cross section shown in FIG. 3, three magnet insertion holes for one magnetic pole, that is, a magnet insertion hole (13a) having an arcuate cross section and a magnet insertion having a linear cross section when viewed from the axial direction of the rotary shaft 15. The holes (13b, 13c) are arranged in a substantially U-shape or a substantially V-shape. A ferrite permanent magnet having a cross-sectional shape similar to that of the magnet insertion hole is inserted into each magnet insertion hole.

ここで、図3に示すように、一つの磁極において、永久磁石による磁束の方向に、回転子3の回転中心を起点(O)とするようにd軸を定め、電気角でd軸と直交する方向に、回転子3の回転中心を起点(O)とするようにq軸を定める。なお、本実施例では、d軸およびq軸が回転中心を起点とするので、d軸およびq軸の方向は径方向でもある。また、q軸は、隣接する二つの磁極間に介在し、その中央を通る。したがって、q軸としては、d軸を対称軸として、図示された側部永久磁石14c側のq軸と、このq軸とは、線対称に位置する、図示しない側部永久磁石14b側のq軸が存在する。 Here, as shown in FIG. 3, at one magnetic pole, the d-axis is defined so that the rotation center of the rotor 3 is the starting point (O) in the direction of the magnetic flux generated by the permanent magnet, and the electric angle is orthogonal to the d-axis. The q-axis is determined so that the rotation center of the rotor 3 is the starting point (O) in the direction of rotation. In this embodiment, since the d-axis and the q-axis start from the center of rotation, the directions of the d-axis and the q-axis are also radial directions. Further, the q-axis is interposed between two adjacent magnetic poles and passes through the center thereof. Therefore, as the q-axis, the q-axis on the side permanent magnet 14c side shown with the d-axis as the axis of symmetry and the q-axis on the side permanent magnet 14b side (not shown) located line-symmetrically. There is an axis.

図3に示す回転子3の断面において、永久磁石(14a,14b,14c)は、径方向を向き、かつ回転子3の回転中心を通る対称軸、すなわちd軸に対し、線対称(左右対称)に配置される。なお、本実施例では、永久磁石(14a,14b,14c)は、前述のように略U字状もしくは略V字状に配置されているが、このU字もしくはV字は、径方向内側に向かって凸となるように、かつ径方向外側に向かって開口するように、配置されることを言う。 In the cross section of the rotor 3 shown in FIG. 3, the permanent magnets (14a, 14b, 14c) are axisymmetric (left-right symmetric) with respect to the axis of symmetry that is radially oriented and passes through the center of rotation of the rotor 3, that is, the d-axis. ) Is placed. In this embodiment, the permanent magnets (14a, 14b, 14c) are arranged in a substantially U-shape or a substantially V-shape as described above, but the U-shape or V-shape is inward in the radial direction. It means that it is arranged so as to be convex toward the outside and open toward the outside in the radial direction.

図4は、図3に示す回転子断面における1磁極分の断面を示す部分断面図である。 FIG. 4 is a partial cross-sectional view showing a cross section of one magnetic pole in the rotor cross section shown in FIG.

図4に示すように、一つの磁極を構成する一組の永久磁石は、3個の永久磁石、すなわち、回転子の径方向内側に凸となる円弧状の中央部永久磁石(第1永久磁石)14aと、この中央部永久磁石14aから、中央部永久磁石14aの端部における接線方向に、回転子3の径方向内側から径方向外側に向かって延びる二つの直線状の側部永久磁石(第2永久磁石)14b,14cとを含む。これら複数の永久磁石、すなわち本実施例では側部永久磁石14b、中央部永久磁石14a、側部永久磁石14cが、この順に連なるように配置されている。すなわち、本実施例では、これらの複数の永久磁石が、側部永久磁石14bの一端と中央部永久磁石14aの一端とが対向し、かつ中央部永久磁石14aの他端と側部永久磁石14cの一端とが対向するように配置されている。 As shown in FIG. 4, the set of permanent magnets constituting one magnetic pole is three permanent magnets, that is, an arc-shaped central permanent magnet (first permanent magnet) that is convex inward in the radial direction of the rotor. ) 14a and two linear side permanent magnets extending from the central permanent magnet 14a in the tangential direction at the end of the central permanent magnet 14a from the radial inside to the radial outside of the rotor 3 ( Second permanent magnets) 14b, 14c and the like. These plurality of permanent magnets, that is, the side permanent magnets 14b, the central permanent magnets 14a, and the side permanent magnets 14c in this embodiment are arranged in this order. That is, in this embodiment, in these plurality of permanent magnets, one end of the side permanent magnet 14b and one end of the central permanent magnet 14a face each other, and the other end of the central permanent magnet 14a and the side permanent magnet 14c It is arranged so that one end of the magnet is opposed to the magnet.

なお、円弧状の中央部永久磁石14aの中心角は180度よりも小さく、側部永久磁石14b,14cは、径方向内側から径方向外側に向かって開くように配置されている。 The central angle of the arc-shaped central permanent magnet 14a is smaller than 180 degrees, and the side permanent magnets 14b and 14c are arranged so as to open from the inside in the radial direction to the outside in the radial direction.

このような永久磁石の形状および配置によれば、磁極を構成する永久磁石の表面積を所望の値に設定しながらも、回転子鉄心12における側部永久磁石14b,14c間の部分10(図3)の断面積が大きくなるのでリラクタンストルクを向上できる。 According to the shape and arrangement of such permanent magnets, the portion 10 between the side permanent magnets 14b and 14c in the rotor core 12 while setting the surface area of the permanent magnets constituting the magnetic poles to a desired value (FIG. 3). ) Is large, so the reluctance torque can be improved.

また、本実施例における永久磁石の形状および配置によれば、前述の特許文献1に記載の技術と同様に、円弧状の中央部永久磁石と直線状の側部永久磁石との間の屈曲部において、着磁によって得られる磁束量が確保される。この様子を、図4中に、磁石表面磁束φm(図中、各磁石の表面に記す矢印)として示す。図示のように、φmの向きが、中央部永久磁石14aの端部と、側部永久磁石14b,14cの径方向内側の端部との間で、例えば中央部永久磁石が直線状である場合に比べ、緩やかに変化している(特許文献1参照)。このような円弧状の中央部永久磁石と直線状の側部永久磁石との間の屈曲部においては、確実に着磁がなされる。これにより、磁束量が確保され、永久磁石の表面積に見合った磁束量が得られる。 Further, according to the shape and arrangement of the permanent magnets in this embodiment, the bent portion between the arc-shaped central permanent magnet and the linear side permanent magnet is similar to the technique described in Patent Document 1 described above. In, the amount of magnetic flux obtained by magnetization is secured. This state is shown in FIG. 4 as a magnet surface magnetic flux φm (arrows marked on the surface of each magnet in the figure). As shown in the figure, when the direction of φm is linear between the end of the central permanent magnet 14a and the radial inner ends of the side permanent magnets 14b and 14c, for example, the central permanent magnet. (See Patent Document 1). Magnetization is reliably performed at the bent portion between the arc-shaped central permanent magnet and the linear side permanent magnet. As a result, the amount of magnetic flux is secured, and the amount of magnetic flux corresponding to the surface area of the permanent magnet can be obtained.

なお、図4に示すように、円弧状の中央部永久磁石14aと回転シャフト15の径方向最外周3aとの距離をL3、中央部永久磁石14aの径方向幅をL4、中央部永久磁石14aの外周面と回転子3の最外周表面3bとの距離をL5とすると、L3,L4,L5を次のような関係とすることが好ましい。 As shown in FIG. 4, the distance between the arc-shaped central permanent magnet 14a and the radial outermost circumference 3a of the rotating shaft 15 is L3, the radial width of the central permanent magnet 14a is L4, and the central permanent magnet 14a. Assuming that the distance between the outer peripheral surface of the rotor 3 and the outermost outer peripheral surface 3b of the rotor 3 is L5, it is preferable that L3, L4, and L5 have the following relationship.

まず、L3≦L4<L5とすることにより、永久磁石の表面積が拡大するとともに、中央部永久磁石14aの端部および側部永久磁石14b,14cの径方向内側の端部における磁束の相殺量を抑えることができる。 First, by setting L3 ≦ L4 <L5, the surface area of the permanent magnets is increased, and the amount of magnetic flux cancellation at the ends of the central permanent magnets 14a and the radial inner ends of the side permanent magnets 14b and 14c is increased. It can be suppressed.

また、L4≦L3とすることにより、中央部永久磁石14aを回転子の径方向外側の方へ近づけて着磁を容易にすることができる。なお、本実施例では、各永久磁石を構成する磁性部材が埋め込まれた回転子の外部に複数の巻線を配置して、それらの巻線に電流を供給することにより着磁が行われる。 Further, by setting L4 ≦ L3, the permanent magnet 14a at the center can be brought closer to the outer side in the radial direction of the rotor to facilitate magnetization. In this embodiment, magnetization is performed by arranging a plurality of windings outside the rotor in which the magnetic members constituting the permanent magnets are embedded and supplying a current to those windings.

また、L4≦L3<L5とすることにより、永久磁石の表面積の拡大、並びに磁束の相殺量を抑制しつつ、中央部永久磁石14aを回転子の径方向外側の方へ近づけて着磁を容易にすることができる。 Further, by setting L4 ≦ L3 <L5, the central permanent magnet 14a is brought closer to the outer side in the radial direction of the rotor to facilitate magnetization while suppressing the expansion of the surface area of the permanent magnet and the amount of magnetic flux canceling. Can be.

さらに、本実施例では、一磁極分の回転子鉄心12内に、3個の磁石挿入孔、すなわち回転子の径方向内側に凸となる円弧状の中央部磁石挿入孔(第1磁石挿入孔)13aと、この中央部磁石挿入孔13aから、中央部磁石挿入孔13aの接線方向に、回転子3の径方向内側から径方向外側に向かって延びる二つの直線状の側部磁石挿入孔(第2磁石挿入孔)13b,13cが設けられている。中央部磁石挿入孔13a、側部磁石挿入孔13bおよび側部磁石挿入孔13cには、それぞれ、中央部永久磁石14a、側部永久磁石14bおよび側部永久磁石14cが挿入されて固定されている。なお、中央部磁石挿入孔13a、側部磁石挿入孔13bおよび側部磁石挿入孔13cは、回転子鉄心12内において、中央部永久磁石14a、側部永久磁石14bおよび側部永久磁石14cを挿入できるように、それぞれ、上述の中央部永久磁石14a、側部永久磁石14bおよび側部永久磁石14cと同様の位置に配置される。 Further, in this embodiment, three magnet insertion holes, that is, arc-shaped central magnet insertion holes (first magnet insertion holes) that are convex inward in the radial direction of the rotor in the rotor core 12 for one magnetic pole. ) 13a and two linear side magnet insertion holes extending from the central magnet insertion hole 13a in the tangential direction of the central magnet insertion hole 13a from the radial inside to the radial outside of the rotor 3 ( Second magnet insertion holes) 13b and 13c are provided. A central permanent magnet 14a, a side permanent magnet 14b, and a side permanent magnet 14c are inserted and fixed to the central magnet insertion hole 13a, the side magnet insertion hole 13b, and the side magnet insertion hole 13c, respectively. .. The central magnet insertion hole 13a, the side magnet insertion hole 13b, and the side magnet insertion hole 13c insert the central permanent magnet 14a, the side permanent magnet 14b, and the side permanent magnet 14c in the rotor core 12. As possible, they are arranged at the same positions as the central permanent magnet 14a, the side permanent magnets 14b, and the side permanent magnets 14c, respectively, as described above.

中央部永久磁石14a、側部永久磁石14bおよび側部永久磁石14cは、嵌め合いや接着などによって、それぞれ、中央部磁石挿入孔13a、側部磁石挿入孔13bおよび側部磁石挿入孔13cの内壁面に接する。これにより、中央部永久磁石14a、側部永久磁石14bおよび側部永久磁石14cは、それぞれ、中央部磁石挿入孔13a内、側部磁石挿入孔13b内および側部磁石挿入孔13c内に固定される。 The central permanent magnet 14a, the side permanent magnet 14b, and the side permanent magnet 14c are included in the central magnet insertion hole 13a, the side magnet insertion hole 13b, and the side magnet insertion hole 13c, respectively, by fitting or bonding. It touches the wall. As a result, the central permanent magnet 14a, the side permanent magnet 14b, and the side permanent magnet 14c are fixed in the central magnet insertion hole 13a, the side magnet insertion hole 13b, and the side magnet insertion hole 13c, respectively. NS.

3個の磁石挿入孔の内、側部磁石挿入孔13b,13cは、これらの両端部の内、径方向外側の端部に、側部永久磁石14b,14cが位置していない空隙部20b,20cを有する。空隙部20b,20cは、側部磁石挿入孔13b,13cにおける側部永久磁石14b,14cが位置する領域から径方向外側に向かって延びている。なお、空隙部20b,20cと回転子鉄心12の最外周表面3bとの間には回転子鉄心12の一部が介在して、最外周側ブリッジ部(第1ブリッジ部)16b,16cが構成される。 Of the three magnet insertion holes, the side magnet insertion holes 13b and 13c are voids 20b, in which the side permanent magnets 14b and 14c are not located at the radial outer ends of both ends thereof. Has 20c. The gaps 20b and 20c extend radially outward from the region where the side permanent magnets 14b and 14c are located in the side magnet insertion holes 13b and 13c. A part of the rotor core 12 is interposed between the gaps 20b and 20c and the outermost surface 3b of the rotor core 12, and the outermost bridge portions (first bridge portions) 16b and 16c are configured. Will be done.

空隙部20b,20cの周方向の幅は、側部磁石挿入孔13b,13cにおける側部永久磁石14b,14cが位置する領域の周方向の幅と同等である。すなわち、空隙部20b,20cにおいては、側部磁石挿入孔13b,13cにおける内壁面の内、側部磁石挿入孔13b,13cの長手方向における2つの内壁面が、側部永久磁石14b,14cが位置する領域の両端の内、径方向外側の一端から、径方向外側に向かって直線状に延びている。 The circumferential width of the gaps 20b and 20c is equivalent to the circumferential width of the region where the side permanent magnets 14b and 14c are located in the side magnet insertion holes 13b and 13c. That is, in the gaps 20b and 20c, of the inner wall surfaces of the side magnet insertion holes 13b and 13c, the two inner wall surfaces of the side magnet insertion holes 13b and 13c in the longitudinal direction are the side permanent magnets 14b and 14c. It extends linearly from one end of the radial outer side of both ends of the located region toward the radial outer side.

また、空隙部20b,20cの径方向外側の終端となる周方向の内壁面20b1,20c1は、回転子鉄心12の最外周表面3bから径方向内側へ所定距離だけ離れた位置に、回転子鉄心12の最外周表面3bに沿って位置する。これにより、空隙部20b,20cと回転子鉄心12の最外周表面3bとの間には回転子鉄心12の一部が介在して、最外周側ブリッジ部16b,16cが構成される。 Further, the inner wall surfaces 20b1 and 20c1 in the circumferential direction, which are the ends of the gaps 20b and 20c on the outer side in the radial direction, are located at positions separated from the outermost outer peripheral surface 3b of the rotor core 12 by a predetermined distance inward in the radial direction. It is located along the outermost outer peripheral surface 3b of 12. As a result, a part of the rotor core 12 is interposed between the gaps 20b and 20c and the outermost surface 3b of the rotor core 12, and the outermost bridge portions 16b and 16c are formed.

図4に示すように、側部永久磁石14b,14cは、長辺が径方向(図4では、径方向からややずれているが、「略径方向」という意味で、便宜上、「径方向」と称する)に延びる矩形(長方形)状の断面を有する。ここで、図4に示すように、空隙部20b,20cの径方向の二つの内壁面の内、側部永久磁石14b,14c間に位置する回転子鉄心12側すなわちd軸側の内壁面20b2,20c2の径方向の長さをL1とし、隣接する磁極側すなわちq軸側の内壁面20b3,20c3の径方向の長さをL2とする。L1およびL2の大小関係は、本実施例では、L1<L2となる。 As shown in FIG. 4, the long sides of the side permanent magnets 14b and 14c are in the radial direction (although they are slightly deviated from the radial direction in FIG. 4, they are "diametrically" for convenience in the sense of "approximately radial direction". It has a rectangular (rectangular) cross section extending to (referred to as). Here, as shown in FIG. 4, the inner wall surface 20b2 on the rotor core 12 side, that is, the d-axis side, located between the side permanent magnets 14b and 14c among the two inner wall surfaces in the radial direction of the gap portions 20b and 20c. The radial length of 20c2 is L1, and the radial length of the inner wall surfaces 20b3 and 20c3 on the adjacent magnetic pole side, that is, the q-axis side is L2. The magnitude relationship between L1 and L2 is L1 <L2 in this embodiment.

これらL1,L2は、いわば、側部永久磁石の長手方向に対して垂直な側部永久磁石14b,14cの二つの終端面の内、径方向外側の終端面14b1,14c1と、空隙部20b,20cの内壁面20b1,20c1におけるd軸側の端部との距離(L1)およびq軸側の端部との距離(L2)でもある。したがって、L1<L2とすることにより、最外周側ブリッジ部16b,16cの径方向の幅16bt,16ctが、周方向に沿ってほぼ一様な寸法、すなわち、略一定値に設定できる。 These L1 and L2 are, so to speak, the terminal surfaces 14b1 and 14c1 on the outer side in the radial direction and the gap portion 20b among the two terminal surfaces of the side permanent magnets 14b and 14c perpendicular to the longitudinal direction of the side permanent magnets. It is also the distance (L1) from the end on the d-axis side and the distance (L2) from the end on the q-axis side on the inner wall surfaces 20b1 and 20c1 of 20c. Therefore, by setting L1 <L2, the radial widths 16bt and 16ct of the outermost outermost bridge portions 16b and 16c can be set to substantially uniform dimensions along the circumferential direction, that is, substantially constant values.

なお、本実施例においては、図4に示すように、上述のような空隙部20b,20cを有する側部磁石挿入孔13b,13cの全体的な断面形状は、径方向を長手方向とする細長い台形状である。この台形において、長手方向に延びる2辺は互いに平行であり(すなわち台形の上底および下底であり)、他の2辺(すなわち台形の脚)の内、径方向内側に位置する1辺(1脚)は平行な2辺と直角を成す。互いに平行な2辺の内、側部磁石挿入孔13b,13c間に位置する回転子鉄心12側すなわちd軸側の1辺は、隣接する磁極側すなわちq軸側の1辺よりも短い。 In this embodiment, as shown in FIG. 4, the overall cross-sectional shape of the side magnet insertion holes 13b and 13c having the gaps 20b and 20c as described above is elongated with the radial direction as the longitudinal direction. It is trapezoidal. In this trapezoid, the two sides extending in the longitudinal direction are parallel to each other (that is, the upper base and the lower base of the trapezoid), and one of the other two sides (that is, the legs of the trapezoid) is located on the inner side in the radial direction (that is, one side). One leg) forms a right angle with two parallel sides. Of the two sides parallel to each other, one side of the rotor core 12 side, that is, the d-axis side, which is located between the side magnet insertion holes 13b and 13c, is shorter than one side of the adjacent magnetic pole side, that is, the q-axis side.

上述の空隙部20b,20cは、その周囲の回転子鉄心12よりも磁気抵抗が大きく、ティース4に巻装される電機子巻線によって回転子鉄心12の最外周表面3b付近に発生する磁束密度の高い磁束φsが侵入しにくい。このため、側部永久磁石14b,14cの径方向外側の終端面14b1,14c1が、磁束φsから離れるので、側部永久磁石14b,14cの径方向外側の端部の減磁が防止できる。 The above-mentioned gaps 20b and 20c have a higher magnetic resistance than the rotor core 12 around them, and the magnetic flux density generated in the vicinity of the outermost outer peripheral surface 3b of the rotor core 12 by the armature winding wound around the teeth 4. High magnetic flux φs is hard to penetrate. Therefore, since the terminal surfaces 14b1, 14c1 on the radial outer side of the side permanent magnets 14b, 14c are separated from the magnetic flux φs, demagnetization of the radial outer ends of the side permanent magnets 14b, 14c can be prevented.

さらに、本実施例では、空隙部20b,20cを設けたことにより、最外周側ブリッジ部16b,16cの径方向の幅が、周方向に沿ってほぼ一様な寸法に設定できている。これにより、図4中のA部(点線円内の領域)に示すように、電機子巻線による磁束φsは最外周側ブリッジ部16b,16cを通る。これにより、側部永久磁石14b,14cの径方向外側の終端面14b1,14c1が、空隙部20b,20cを設けた分は確実に磁束φsから離れる。したがって、側部永久磁石14b,14cの径方向外側の端部の減磁が確実に防止できる。 Further, in this embodiment, by providing the gap portions 20b and 20c, the radial width of the outermost peripheral side bridge portions 16b and 16c can be set to substantially uniform dimensions along the circumferential direction. As a result, as shown in the A portion (the region within the dotted line circle) in FIG. 4, the magnetic flux φs due to the armature winding passes through the outermost peripheral side bridge portions 16b and 16c. As a result, the radial outer end surfaces 14b1, 14c1 of the side permanent magnets 14b, 14c are surely separated from the magnetic flux φs by the amount provided with the gaps 20b, 20c. Therefore, demagnetization of the radial outer ends of the side permanent magnets 14b and 14c can be reliably prevented.

また、径方向外側の端部の減磁が防止できるので、電機子反作用による全鎖交磁束の高調波成分を低減できる。 Further, since demagnetization of the outer end portion in the radial direction can be prevented, the harmonic component of the full interchain magnetic flux due to the armature reaction can be reduced.

さらに、側部永久磁石14b,14cの径方向外側の端部と、最外周側ブリッジ部16b,16cとの間に、空隙部20b,20cが介在するので、側部永久磁石14b,14cの径方向外側の端部における漏れ磁束を低減できる。このため、トルクに寄与する磁石磁束が漏れ磁束により低減されることを防止できる。 Further, since the gap portions 20b and 20c are interposed between the radial outer ends of the side permanent magnets 14b and 14c and the outermost peripheral bridge portions 16b and 16c, the diameters of the side permanent magnets 14b and 14c Leakage flux at the end outside the direction can be reduced. Therefore, it is possible to prevent the magnet magnetic flux that contributes to torque from being reduced by the leakage flux.

なお、空隙部20b,20cは、いわば電機子巻線による磁束や漏れ磁束に対する磁気的障壁である。したがって、空隙部20b,20cには、樹脂などの非磁性固体物質が充填されていてもよい。 The gaps 20b and 20c are, so to speak, magnetic barriers to magnetic flux and leakage flux due to the armature winding. Therefore, the voids 20b and 20c may be filled with a non-magnetic solid substance such as resin.

また、最外周側ブリッジ部16b,16cの径方向の幅が、周方向に沿ってほぼ一様な寸法に設定できるので、回転子鉄心が最外周側ブリッジ部を有しながらも、回転子3の機械的強度の低下を防止できる。 Further, since the radial widths of the outermost peripheral side bridge portions 16b and 16c can be set to substantially uniform dimensions along the circumferential direction, the rotor 3 has the rotor outermost peripheral side bridge portion even though the rotor core has the outermost peripheral side bridge portion. It is possible to prevent a decrease in mechanical strength of.

さらに、本実施例では、側部磁石挿入孔13b,13cの径方向内側の端部および中央部磁石挿入孔13aの円弧に沿った方向での両端部においては、回転子鉄心12の内側になるほど磁束φsが入り込みにくくなるため、減磁防止のための空隙が設けられていない。したがって、側部永久磁石14b,14cの径方向内側の終端面14b2,14c2は、側部磁石挿入孔13b,13cの径方向内側の終端内壁面13b2,13c2に接する。換言すれば、側部永久磁石14b,14cの矩形状断面の径方向内側の短辺は、側部磁石挿入孔13b,13cの台形状断面の径方向内側の脚に接する。さらに、中央部永久磁石14aにおける、円弧に沿った方向での両終端面14a1は、中央部磁石挿入孔13aの円弧に沿った方向での終端内壁面13a1に接する。これにより、永久磁石の端部が回転子鉄心12によって支持されるので、永久磁石の微振動(ガタつき)が防止される。このため、永久磁石などの破断が防止され、回転子3の機械的耐久性が向上する。 Further, in this embodiment, at the radial inner ends of the side magnet insertion holes 13b and 13c and both ends of the central magnet insertion holes 13a in the direction along the arc, the more the inside of the rotor core 12 becomes. Since it becomes difficult for the magnetic flux φs to enter, a gap for preventing demagnetization is not provided. Therefore, the radial inner end surfaces 14b2 and 14c2 of the side permanent magnets 14b and 14c are in contact with the radial inner end inner wall surfaces 13b2 and 13c2 of the side magnet insertion holes 13b and 13c. In other words, the radially inner short side of the rectangular cross section of the side permanent magnets 14b, 14c is in contact with the radially inner leg of the trapezoidal cross section of the side magnet insertion holes 13b, 13c. Further, both end surfaces 14a1 of the central permanent magnet 14a in the direction along the arc are in contact with the end inner wall surface 13a1 in the direction along the arc of the central magnet insertion hole 13a. As a result, since the end portion of the permanent magnet is supported by the rotor core 12, micro-vibration (rattling) of the permanent magnet is prevented. Therefore, breakage of the permanent magnet and the like is prevented, and the mechanical durability of the rotor 3 is improved.

なお、本実施例においては、永久磁石(14a,14b,14c)は、磁石挿入孔(13a,13b,13c)の内壁に、接着剤によって固定されて、接している。なお、永久磁石(14a,14b,14c)は、圧入などにより、磁石挿入孔(13a,13b,13c)の内壁に、固定されて、直接、接していてもよい。 In this embodiment, the permanent magnets (14a, 14b, 14c) are fixed and in contact with the inner wall of the magnet insertion holes (13a, 13b, 13c) with an adhesive. The permanent magnets (14a, 14b, 14c) may be fixed to the inner wall of the magnet insertion holes (13a, 13b, 13c) by press fitting or the like and may be in direct contact with the inner wall.

さらに、本実施例では、図4に示すように、側部磁石挿入孔13b,13cの径方向内側端部と中央部磁石挿入孔13aの円弧に沿った方向における両端部の間に、回転子鉄心12の一部が介在して、内周側ブリッジ部(第2ブリッジ部)16aが構成される。内周側ブリッジ部16aの径方向の幅16atは、周方向の両端部間において、略一定の所定値に設定される。この所定値は、好ましくは、回転電機1が駆動されて回転子3が回転するときに、内周側ブリッジ部16aが、遠心力によって機械的に降伏しないような厚さに設定される。
このような内周側ブリッジ部16aを設けることにより、回転子鉄心12における遠心力が働く場合における、回転子鉄心12の最外周側ブリッジ部16b,16cにおける応力集中が抑制できるので、回転子の機械的強度が向上する。
Further, in this embodiment, as shown in FIG. 4, a rotor is provided between the radial inner ends of the side magnet insertion holes 13b and 13c and both ends of the central magnet insertion holes 13a in the direction along the arc. A part of the iron core 12 is interposed to form an inner peripheral side bridge portion (second bridge portion) 16a. The radial width 16at of the inner peripheral side bridge portion 16a is set to a substantially constant predetermined value between both end portions in the circumferential direction. This predetermined value is preferably set to a thickness so that the inner peripheral side bridge portion 16a does not mechanically yield due to centrifugal force when the rotary electric machine 1 is driven and the rotor 3 rotates.
By providing such an inner peripheral side bridge portion 16a, stress concentration at the outermost peripheral side bridge portions 16b and 16c of the rotor core 12 can be suppressed when a centrifugal force acts on the rotor core 12, so that the rotor Mechanical strength is improved.

図5は、本実施例の回転電機のトルク特性図である。なお、図5の特性図は、本発明者による一検討結果である。 FIG. 5 is a torque characteristic diagram of the rotary electric machine of this embodiment. The characteristic diagram of FIG. 5 is the result of a study by the present inventor.

図5において、縦軸および横軸は、それぞれトルクおよび電機子電流をper unit値(P.U.)で示す。なお、比較のために、前述の特許文献1に記載の技術による回転電機、すなわち側部磁石挿入孔の径方向外周側端部に空隙を有さない回転電機を比較例として、そのトルク特性を示す。 In FIG. 5, the vertical axis and the horizontal axis represent torque and armature current as per unit values (PU), respectively. For comparison, a rotary electric machine according to the technique described in Patent Document 1 described above, that is, a rotary electric machine having no gap at the radial outer peripheral side end of the side magnet insertion hole is used as a comparative example, and its torque characteristics are shown. show.

図5に示すように、本実施例によれば、回転電機のトルクが向上している。 As shown in FIG. 5, according to this embodiment, the torque of the rotary electric machine is improved.

これらの構成により、高速域におけるトルク特性を低下させることなく、永久磁石の表面積を拡大でき、小形・高効率な回転電機1を提供することが可能となる。また、高速域において、高負荷、ならびに電機子巻線を増加して高インダクタンスとなる場合でも、電機子反作用による機内磁束の高調波成分を低減し、力率改善による高トルク化が図られる。また、電機子反作用による永久磁石の減磁に起因した磁束量の低下を抑制できる。さらに、永久磁石挿入孔の周方向端部(第2ブリッジ部)、永久磁石の破損を防止でき、小形・高効率な回転電機を提供できる。 With these configurations, the surface area of the permanent magnet can be increased without deteriorating the torque characteristics in the high-speed range, and it becomes possible to provide a compact and highly efficient rotary electric machine 1. Further, in the high speed range, even when the load is high and the armature winding is increased to increase the inductance, the harmonic component of the in-machine magnetic flux due to the armature reaction is reduced, and the torque can be increased by improving the power factor. In addition, it is possible to suppress a decrease in the amount of magnetic flux due to demagnetization of the permanent magnet due to the reaction of the armature. Further, the peripheral end portion (second bridge portion) of the permanent magnet insertion hole and the permanent magnet can be prevented from being damaged, and a compact and highly efficient rotary electric machine can be provided.

上述のように、本実施例によれば、永久磁石の減磁が抑制されるので、永久磁石の表面積に見合った磁石磁束が得られる。これにより、回転電機のトルクが向上するとともに、回転電機を小型化できる。また、電機子反作用による全鎖交磁束の高調波成分を低減できるので、トルク脈動や電磁騒音の発生を抑制できる。さらに、回転子の機械的強度が向上するので、トルクの向上と相俟って、回転電機を高速化することができる。 As described above, according to the present embodiment, since the demagnetization of the permanent magnet is suppressed, a magnet magnetic flux corresponding to the surface area of the permanent magnet can be obtained. As a result, the torque of the rotary electric machine can be improved and the rotary electric machine can be miniaturized. Further, since the harmonic component of the full interlinkage magnetic flux due to the armature reaction can be reduced, the generation of torque pulsation and electromagnetic noise can be suppressed. Further, since the mechanical strength of the rotor is improved, the speed of the rotating electric machine can be increased in combination with the improvement of the torque.

なお、本実施例は、上述のような磁石磁束の相殺や減磁の影響が希土類磁石に比べて大であるフェライト磁石が適用される回転電機に好適である。 It should be noted that this embodiment is suitable for a rotary electric machine to which a ferrite magnet, which has a larger effect of canceling magnet magnetic flux and demagnetization as described above, is larger than that of a rare earth magnet.

図6は、本発明の第二の実施例である回転電機の回転子の軸方向に垂直な方向における部分断面図である。なお、この図6は、回転子断面における1磁極分の断面を示す。 FIG. 6 is a partial cross-sectional view in a direction perpendicular to the axial direction of the rotor of the rotary electric machine according to the second embodiment of the present invention. Note that FIG. 6 shows a cross section of one magnetic pole in the cross section of the rotor.

以下、前述の第一の実施例と異なる点について説明する。 Hereinafter, the points different from the above-described first embodiment will be described.

図6に示すように、本実施例においては、空隙部20b,20cの周方向の幅は、側部磁石挿入孔13b,13cにおける側部永久磁石14b,14cが位置する領域の周方向の幅よりも狭い。 As shown in FIG. 6, in this embodiment, the circumferential width of the gaps 20b and 20c is the circumferential width of the region where the side permanent magnets 14b and 14c are located in the side magnet insertion holes 13b and 13c. Narrower than.

より具体的には、空隙部20b’,20c’においては、側部磁石挿入孔13b,13cの長手方向におけるd軸側およびq軸側の内壁面の内、d軸側の内壁面は、第1の実施例(図4)と同様に、側部永久磁石14b,14cが位置する領域の両端の内、径方向外側の一端から、径方向外側に向かって直線状に延びている。これに対し、q軸側の内壁面は、側部永久磁石14b,14cの径方向外側かつq軸側の角部に沿ってd軸側に曲がり、さらに、側部永久磁石14b,14cの径方向外側の終端面内において、同終端面に対して垂直な方向すなわち径方向外側方向に向かって曲がって同方向に延びる。 More specifically, in the gap portions 20b'and 20c', the inner wall surface on the d-axis side and the inner wall surface on the q-axis side in the longitudinal direction of the side magnet insertion holes 13b and 13c is the third. Similar to the first embodiment (FIG. 4), the side permanent magnets 14b and 14c extend linearly from one end of the radial outer side of both ends of the region where the side permanent magnets 14b and 14c are located to the radial outer side. On the other hand, the inner wall surface on the q-axis side bends to the d-axis side along the radial outer side of the side permanent magnets 14b and 14c and along the corners on the q-axis side, and further, the diameters of the side permanent magnets 14b and 14c. Within the end plane on the outer side of the direction, it bends in the direction perpendicular to the end face, that is, in the radial outer direction, and extends in the same direction.

これにより、周方向の幅が狭い空隙部20b’,20c’が形成されると共に、側部永久磁石14b,14cの径方向外側で、かつq軸側の角部において、側部永久磁石14b,14cの径方向外側の終端面の一部が側部磁石挿入孔13b,13cの内壁面に接している。こうして側部磁石挿入孔13b,13c内において、側部永久磁石14b,14cの径方向への移動が拘束される。このため、側部永久磁石14b,14cが回転子鉄心12によって支持されるので、遠心力による永久磁石の損傷が防止される。したがって、回転子3の機械的強度が向上する。 As a result, gaps 20b'and 20c', which are narrow in the circumferential direction, are formed, and the side permanent magnets 14b, A part of the radial outer end surface of 14c is in contact with the inner wall surfaces of the side magnet insertion holes 13b and 13c. In this way, the movement of the side permanent magnets 14b and 14c in the radial direction is restricted in the side magnet insertion holes 13b and 13c. Therefore, since the side permanent magnets 14b and 14c are supported by the rotor core 12, damage to the permanent magnets due to centrifugal force is prevented. Therefore, the mechanical strength of the rotor 3 is improved.

さらに、空隙部20b’,20c’における最外周側ブリッジ部16b,16cと接する角部は、円弧状に曲がっている。また、空隙部20b’,20c’は、側部永久磁石14b,14cの径方向外側かつq軸側の角部に隣接する部分において、q軸に向かって円弧状に突出する突出部21b,21cを有する。これらにより、側部永久磁石14b,14cが、側部磁石挿入孔13b,13cの内壁面に接するときの応力集中を抑制できる。このため、回転子3の機械的強度が向上する。 Further, the corner portions of the gap portions 20b'and 20c' that are in contact with the outermost peripheral side bridge portions 16b and 16c are curved in an arc shape. Further, the gap portions 20b'and 20c' are projecting portions 21b and 21c that project in an arc shape toward the q-axis at the portions adjacent to the corners on the radial outer side and the q-axis side of the side permanent magnets 14b and 14c. Has. As a result, stress concentration when the side permanent magnets 14b and 14c come into contact with the inner wall surface of the side magnet insertion holes 13b and 13c can be suppressed. Therefore, the mechanical strength of the rotor 3 is improved.

また、図6に示すように、本実施例では、側部磁石挿入孔13b,13cは、径方向内側の端部に、空隙部20b’,20c’、突出部21b,21cと同様の構成を有する空隙部23b,23c、突出部22b,22cを備えている。また、中央部磁石挿入孔13aは、円弧に沿った方向での両端部において、空隙部20a、突出部21aを備えている。 Further, as shown in FIG. 6, in the present embodiment, the side magnet insertion holes 13b and 13c have the same configurations as the gaps 20b'and 20c' and the protrusions 21b and 21c at the radial inner ends. The gap portions 23b and 23c and the protruding portions 22b and 22c are provided. Further, the central magnet insertion hole 13a includes gaps 20a and protrusions 21a at both ends in the direction along the arc.

空隙部23b,23c,20aによれば、永久磁石の端部における漏れ磁束を抑制できる。また、円弧状の突出部22b,22c,21aにより、側部磁石挿入孔13b,13c、並びに中央部磁石挿入孔13aに接する回転子鉄心12の領域における応力集中を抑制できる。 According to the gaps 23b, 23c, 20a, the leakage flux at the end of the permanent magnet can be suppressed. Further, the arc-shaped protrusions 22b, 22c, 21a can suppress stress concentration in the region of the rotor core 12 in contact with the side magnet insertion holes 13b, 13c and the central magnet insertion hole 13a.

図7は、本発明の第三の実施例である回転電機の回転子の軸方向に垂直な方向における部分断面図である。なお、この図7は、回転子断面における1磁極分の断面を示す。 FIG. 7 is a partial cross-sectional view in a direction perpendicular to the axial direction of the rotor of the rotary electric machine according to the third embodiment of the present invention. Note that FIG. 7 shows a cross section of one magnetic pole in the cross section of the rotor.

以下、前述の第二の実施例と異なる点について説明する。 Hereinafter, the points different from the above-mentioned second embodiment will be described.

本実施例では、第二の実施例(図6)とは異なり、一つの側部永久磁石(図6では14b,14c)が複数個の単位側部永久磁石から構成される。 In this embodiment, unlike the second embodiment (FIG. 6), one side permanent magnet (14b, 14c in FIG. 6) is composed of a plurality of unit side permanent magnets.

すなわち、図7に示すように、側部磁石挿入孔13bには、同じ形状の2個の単位側部永久磁石14b1,14b2が挿入される。単位側部永久磁石14b1,14b2は径方向で互いに接触しており、一つの側部永久磁石として機能する。また、側部磁石挿入孔13cには、同じ形状の2個の単位側部永久磁石14c1,14c2が挿入される。単位側部永久磁石14c1,14c2は径方向で互いに接触しており、一つの側部永久磁石として機能する。この単位側部永久磁石は、それぞれ3個以上に分割して一つの側部永久磁石として機能させても良い。 That is, as shown in FIG. 7, two unit side permanent magnets 14b1 and 14b2 having the same shape are inserted into the side magnet insertion holes 13b. The unit side permanent magnets 14b1 and 14b2 are in contact with each other in the radial direction and function as one side permanent magnet. Further, two unit side permanent magnets 14c1 and 14c2 having the same shape are inserted into the side magnet insertion holes 13c. The unit side permanent magnets 14c1 and 14c2 are in contact with each other in the radial direction and function as one side permanent magnet. The unit side permanent magnets may be divided into three or more to function as one side permanent magnet.

このように、本実施例によれば、単位側部永久磁石の個数によって永久磁石の総表面磁束量を容易に設定することができる。 As described above, according to this embodiment, the total surface magnetic flux amount of the permanent magnets can be easily set by the number of permanent magnets on the unit side.

図8は、本発明の第四の実施例である回転電機の回転子の軸方向に垂直な方向における部分断面図である。なお、この図8は、回転子断面における1磁極分の断面を示す。 FIG. 8 is a partial cross-sectional view in a direction perpendicular to the axial direction of the rotor of the rotary electric machine according to the fourth embodiment of the present invention. Note that FIG. 8 shows a cross section of one magnetic pole in the cross section of the rotor.

以下、前述の第二の実施例と異なる点について説明する。 Hereinafter, the points different from the above-mentioned second embodiment will be described.

本実施例では、第二の実施例(図6)とは異なり、中央部磁石挿入孔13aおよび中央部永久磁石14aが、回転子3の最外周表面3bと、側部永久磁石14b,14cの径方向内側の端部との間における、回転子鉄心12の領域内に位置する。すなわち、中央部磁石挿入孔13aおよび中央部永久磁石14aが、d軸方向すなわち回転子3の径方向に沿って、回転子3の最外周表面3bと、側部永久磁石14b,14cの径方向内側の端部との間に位置する。本実施例では、図7に示すように、中央部磁石挿入孔13aおよび中央部永久磁石14aは、d軸方向において、側部磁石挿入孔13b,13cの径方向内側の端部よりも径方向外側の端部に近い側に位置する。 In this embodiment, unlike the second embodiment (FIG. 6), the central magnet insertion hole 13a and the central permanent magnet 14a are formed on the outermost outer peripheral surface 3b of the rotor 3 and the side permanent magnets 14b and 14c. It is located within the region of the rotor core 12 with the radially inner end. That is, the central magnet insertion hole 13a and the central permanent magnet 14a are arranged along the d-axis direction, that is, the radial direction of the rotor 3, with the outermost outer peripheral surface 3b of the rotor 3 and the radial directions of the side permanent magnets 14b and 14c. Located between the inner edge. In this embodiment, as shown in FIG. 7, the central magnet insertion hole 13a and the central permanent magnet 14a are radial in the d-axis direction with respect to the radial inner ends of the side magnet insertion holes 13b and 13c. Located on the side closer to the outer edge.

本実施例によれば、中央部磁石挿入孔13aおよび中央部永久磁石14aを、回転子鉄心の外周側すなわち電機子巻線側に近づけることができるので、各永久磁石を構成する磁性部材が埋め込まれた回転子の外部に複数の巻線を配置して着磁が行なう場合に、永久磁石の着磁が容易になる。 According to this embodiment, the central magnet insertion hole 13a and the central permanent magnet 14a can be brought closer to the outer peripheral side of the rotor core, that is, the armature winding side, so that the magnetic members constituting each permanent magnet are embedded. When a plurality of windings are arranged outside the rotor and magnetized, the permanent magnet can be easily magnetized.

図9は、本発明の第五の実施例である回転電機の回転子の軸方向に垂直な方向における部分断面図である。この図9は、回転子断面における1磁極分の断面を示す。 FIG. 9 is a partial cross-sectional view in a direction perpendicular to the axial direction of the rotor of the rotary electric machine according to the fifth embodiment of the present invention. FIG. 9 shows a cross section of one magnetic pole in the cross section of the rotor.

以下、前述の第二の実施例と異なる点について説明する。 Hereinafter, the points different from the above-mentioned second embodiment will be described.

本実施例の回転電機においては、いわば、第二の実施例(図6)の回転子3から中央部磁石挿入孔13aおよび中央部永久磁石14aを取り除かれている。すなわち、図9に示すように、1磁極が、2個の側部永久磁石14b,14cのみで構成される。 In the rotary electric machine of the present embodiment, so to speak, the central magnet insertion hole 13a and the central permanent magnet 14a are removed from the rotor 3 of the second embodiment (FIG. 6). That is, as shown in FIG. 9, one magnetic pole is composed of only two side permanent magnets 14b and 14c.

なお、本実施例においては、側部永久磁石14b,14cはフェライト製である。このため、所望の磁束を得るためには、側部永久磁石14b,14cの矩形断面の長辺の長さを調整したり、側部永久磁石14b,14cの矩形断面の短辺の長さを調整したりする。本実施例では、側部永久磁石14b,14cの矩形断面の短辺の長さの設定の自由度が向上し、フェライト製の側部永久磁石14b,14cの矩形断面の短辺の長さを容易に大きくすることができる。これにより、フェライト製の側部永久磁石14b,14cにより、所望の磁束を得ることができる。 In this embodiment, the side permanent magnets 14b and 14c are made of ferrite. Therefore, in order to obtain a desired magnetic flux, the length of the long side of the rectangular cross section of the side permanent magnets 14b, 14c is adjusted, or the length of the short side of the rectangular cross section of the side permanent magnets 14b, 14c is adjusted. Adjust it. In this embodiment, the degree of freedom in setting the length of the short side of the rectangular cross section of the side permanent magnets 14b, 14c is improved, and the length of the short side of the rectangular cross section of the ferrite side permanent magnets 14b, 14c is increased. It can be easily increased. As a result, a desired magnetic flux can be obtained by the side permanent magnets 14b and 14c made of ferrite.

2個の側部永久磁石14b,14cは、前述の各実施例と同様に、d軸を対称軸として、線対称に配置される。このため、内周側ブリッジ部16aは、d軸上に位置する。 The two side permanent magnets 14b and 14c are arranged line-symmetrically with the d-axis as the axis of symmetry, as in each of the above-described embodiments. Therefore, the inner peripheral side bridge portion 16a is located on the d-axis.

空隙部23bおよび空隙部23cは、d軸に平行な内壁面を有する。これら内壁面は、互いに平行になるように位置する。これにより、内周側ブリッジ部16aの周方向の幅は、d軸に沿って、略一定の所定値に設定される。 The gap portion 23b and the gap portion 23c have an inner wall surface parallel to the d-axis. These inner wall surfaces are located so as to be parallel to each other. As a result, the width of the inner peripheral side bridge portion 16a in the circumferential direction is set to a substantially constant predetermined value along the d-axis.

また、本実施例5によれば、各実施例と同様に、側部永久磁石14b,14cの径方向外側の端部における減磁が防止される。 Further, according to the fifth embodiment, as in each embodiment, demagnetization at the radial outer ends of the side permanent magnets 14b and 14c is prevented.

なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。 The present invention is not limited to the above-described examples, and includes various modifications. For example, the above-described examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.

例えば、永久磁石は、焼結磁石でもよいし、ボンド磁石でもよい。また、固定子鉄心および回転子鉄心は、バルク材料により構成してもよい。 For example, the permanent magnet may be a sintered magnet or a bonded magnet. Further, the stator core and the rotor core may be made of a bulk material.

1 回転電機、2 固定子、3 回転子、4 ティース、
5 コアバック、6 固定子鉄心、7 固定子スロット、12 回転子鉄心、
13a 中央部磁石挿入孔、13b,13c 側部磁石挿入孔、
14a 中央部永久磁石、14b,14c 側部永久磁石、
14b1,14b2,14c1,14c2 単位側部永久磁石、
15 回転シャフト、16a 内周側ブリッジ部、
16b,16c 最外周側ブリッジ部、20a,20b,20c 空隙部、
21a,21b,21c,22b,22c,23b,23c 突出部、
40 電機子巻線
1 Rotor, 2 Stator, 3 Rotor, 4 Teeth,
5 core back, 6 stator core, 7 stator slot, 12 rotor core,
13a Central magnet insertion hole, 13b, 13c Side magnet insertion hole,
14a Central Permanent Magnet, 14b, 14c Side Permanent Magnet,
14b1, 14b2, 14c1, 14c2 Unit side permanent magnets,
15 rotating shaft, 16a inner peripheral side bridge,
16b, 16c outermost peripheral bridge portion, 20a, 20b, 20c gap portion,
21a, 21b, 21c, 22b, 22c, 23b, 23c protrusions,
40 Armature winding

Claims (14)

固定子鉄心と、前記固定子鉄心に巻装される電機子巻線とを有する固定子と、
回転子鉄心と、前記回転子鉄心に埋設される複数の永久磁石と、前記回転子鉄心に固定される回転シャフトとを有する回転子と、
を備える回転電機において、
前記複数の永久磁石は、
前記回転子の径方向内側に凸となる円弧状断面を有する複数の第1永久磁石と、
矩形状断面を有し、前記矩形状断面が、前記回転子の径方向内側から径方向外側に向かって延びる複数の第2永久磁石と、
を含み、
前記回転子鉄心は、
前記複数の第1永久磁石が挿入される複数の第1磁石挿入孔と、
前記複数の第2永久磁石が挿入される複数の第2磁石挿入孔と、
を有し、
前記回転子の複数の磁極の各々は、一つの前記第1永久磁石と、二つの前記第2永久磁石とが、前記第1永久磁石の両側に前記第2永久磁石が配置され、かつ前記回転子の径方向に対して線対称に配置されて構成され、
前記第2磁石挿入孔は、前記回転子の径方向外側の端部に空隙部を有することを特徴とする回転電機。
A stator having a stator core and an armature winding wound around the stator core,
A rotor having a rotor core, a plurality of permanent magnets embedded in the rotor core, and a rotating shaft fixed to the rotor core.
In a rotary electric machine equipped with
The plurality of permanent magnets
A plurality of first permanent magnets having an arcuate cross section that is convex inward in the radial direction of the rotor,
A plurality of second permanent magnets having a rectangular cross section, wherein the rectangular cross section extends from the radial inside to the radial outside of the rotor.
Including
The rotor core is
A plurality of first magnet insertion holes into which the plurality of first permanent magnets are inserted, and
A plurality of second magnet insertion holes into which the plurality of second permanent magnets are inserted, and
Have,
Each of the plurality of magnetic poles of the rotor has one first permanent magnet and two second permanent magnets, the second permanent magnets are arranged on both sides of the first permanent magnet, and the rotation It is configured to be arranged line-symmetrically with respect to the radial direction of the child.
The second magnet insertion hole is a rotary electric machine characterized by having a gap portion at an end portion on the outer side in the radial direction of the rotor.
請求項1に記載の回転電機において、
前記回転子鉄心は、前記回転子の最外周表面と前記空隙部との間に介在する第1ブリッジ部を有し、
前記第1ブリッジ部は前記回転子の周方向に沿って位置し、
前記第1ブリッジ部は、前記回転子の径方向における幅が、前記回転子の周方向に沿って、一定値に設定されることを特徴とする回転電機。
In the rotary electric machine according to claim 1,
The rotor core has a first bridge portion interposed between the outermost outer peripheral surface of the rotor and the gap portion.
The first bridge portion is located along the circumferential direction of the rotor.
The first bridge portion is a rotary electric machine characterized in that the width of the rotor in the radial direction is set to a constant value along the circumferential direction of the rotor.
請求項2に記載の回転電機において、
前記空隙部は、前記回転子の径方向に沿う二つの内壁面の内、
前記磁極の磁束軸であるd軸の側に位置する一方の内壁面の長さをL1とし、前記磁束軸に電気角で直交するq軸の側に位置する他方の内壁面の長さL2とすると、L1<L2であることを特徴とする回転電機。
In the rotary electric machine according to claim 2,
The gap is formed in the two inner wall surfaces along the radial direction of the rotor.
The length of one inner wall surface located on the d-axis side, which is the magnetic flux axis of the magnetic pole, is L1, and the length L2 of the other inner wall surface located on the q-axis side orthogonal to the magnetic flux axis in terms of electrical angle. Then, the rotary electric machine characterized in that L1 <L2.
請求項2又は請求項3に記載の回転電機において、
前記第1ブリッジ部に接する、前記空隙部の角部は、円弧状であることを特徴とする回転電機。
In the rotary electric machine according to claim 2 or 3.
A rotary electric machine characterized in that the corner portion of the gap portion in contact with the first bridge portion has an arc shape.
請求項2から請求項4のいずれかに記載の回転電機において、
前記第1ブリッジ部に接する、前記空隙部の前記回転子の周方向における幅が、前記第2永久磁石の幅よりも狭い空隙部を有することを特徴とする回転電機。
In the rotary electric machine according to any one of claims 2 to 4.
A rotating electric machine having a gap portion in which the width of the gap portion in the circumferential direction in contact with the first bridge portion is narrower than the width of the second permanent magnet.
請求項1から請求項5のいずれかに記載の回転電機において、
前記第2磁石挿入孔の前記回転子の径方向内側の端部および/または前記第1磁石挿入孔の両端部に空隙部を有することを特徴とする回転電機。
In the rotary electric machine according to any one of claims 1 to 5.
A rotary electric machine having voids at the radial inner end of the rotor of the second magnet insertion hole and / or at both ends of the first magnet insertion hole.
請求項6に記載の回転電機において、
前記回転子鉄心は、前記第1永久磁石の端部と、前記回転子の径方向内側における前記第2永久磁石の端部との間に介在する第2ブリッジ部を有することを特徴とする回転電機。
In the rotary electric machine according to claim 6,
The rotor core has a second bridge portion interposed between the end portion of the first permanent magnet and the end portion of the second permanent magnet inside the rotor in the radial direction. Electric.
請求項7に記載の回転電機において、
前記第2ブリッジ部は、前記回転子の径方向における幅が、前記回転子の周方向における両端部間で、一定値に設定されることを特徴とする回転電機。
In the rotary electric machine according to claim 7,
The second bridge portion is a rotary electric machine characterized in that the width of the rotor in the radial direction is set to a constant value between both ends of the rotor in the circumferential direction.
請求項7又は請求項8に記載の回転電機において、
前記第2ブリッジ部に接する、前記第2磁石挿入孔の前記回転子の径方向内側の端部および/または前記第1磁石挿入孔の両端部における前記空隙部の角部は、円弧状であることを特徴とする回転電機。
In the rotary electric machine according to claim 7 or 8.
The radial inner ends of the rotor of the second magnet insertion hole and / or the corners of the gap at both ends of the first magnet insertion hole in contact with the second bridge are arcuate. A rotating electric machine characterized by that.
請求項7から請求項9のいずれかに記載の回転電機において、
前記第2ブリッジ部に接する、前記第2磁石挿入孔の前記回転子の径方向内側の端部および/または前記第1磁石挿入孔の両端部における前記空隙部の前記回転子の周方向における幅が、前記第2永久磁石の幅よりも狭い空隙部を有することを特徴とする回転電機。
In the rotary electric machine according to any one of claims 7 to 9.
The radial inner end of the rotor of the second magnet insertion hole and / or the width of the gap at both ends of the first magnet insertion hole in the circumferential direction of the rotor in contact with the second bridge. However, the rotary electric machine is characterized by having a gap portion narrower than the width of the second permanent magnet.
請求項1から請求項10のいずれかに記載の回転電機において、
前記回転シャフトの最外周と、前記第1永久磁石の円弧状断面の外周面との距離をL3とし、前記回転子の径方向における前記第1永久磁石の幅をL4とすると、L4≦L3であることを特徴とする回転電機。
In the rotary electric machine according to any one of claims 1 to 10.
Assuming that the distance between the outermost circumference of the rotating shaft and the outer peripheral surface of the arcuate cross section of the first permanent magnet is L3 and the width of the first permanent magnet in the radial direction of the rotor is L4, L4 ≦ L3. A rotating electric machine characterized by being there.
請求項11に記載の回転電機において、
前記第1永久磁石の円弧状断面の内周面と、前記回転子の最外周表面との距離をL5とすると、L4≦L3<L5であることを特徴とする回転電機。
In the rotary electric machine according to claim 11,
A rotary electric machine characterized in that L4 ≦ L3 <L5, where L5 is the distance between the inner peripheral surface of the arcuate cross section of the first permanent magnet and the outermost outer peripheral surface of the rotor.
請求項1から請求項12のいずれかに記載の回転電機において、
前記第2永久磁石は複数の永久磁石から構成されることを特徴とする回転電機。
In the rotary electric machine according to any one of claims 1 to 12.
The second permanent magnet is a rotary electric machine characterized by being composed of a plurality of permanent magnets.
請求項1から請求項13のいずれかに記載の回転電機において、
前記複数の磁極の各々では、前記第1永久磁石が、前記回転子の径方向において、前記回転子の最外周面と、二つの前記第2永久磁石の前記回転子の径方向内側の端部との間に位置することを特徴とする回転電機。
In the rotary electric machine according to any one of claims 1 to 13.
At each of the plurality of magnetic poles, the first permanent magnets, in the radial direction of the rotor, the outermost peripheral surface of the rotor and the radially inner ends of the two second permanent magnets of the rotor. A rotating electric machine characterized by being located between and.
JP2020014598A 2020-01-31 2020-01-31 Rotary electric machine Pending JP2021122163A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020014598A JP2021122163A (en) 2020-01-31 2020-01-31 Rotary electric machine
CN202110042562.2A CN113206564A (en) 2020-01-31 2021-01-13 Rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020014598A JP2021122163A (en) 2020-01-31 2020-01-31 Rotary electric machine

Publications (1)

Publication Number Publication Date
JP2021122163A true JP2021122163A (en) 2021-08-26

Family

ID=77025173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020014598A Pending JP2021122163A (en) 2020-01-31 2020-01-31 Rotary electric machine

Country Status (2)

Country Link
JP (1) JP2021122163A (en)
CN (1) CN113206564A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114844259B (en) * 2022-05-13 2023-12-15 浙江新能机电科技有限公司 Motor rotor structure with high torque density

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080608A (en) * 2010-09-30 2012-04-19 Aisin Aw Co Ltd Rotor for rotary electric machine
JP2016171646A (en) * 2015-03-12 2016-09-23 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Permanent magnet dynamo-electric machine, and compressor for use therein

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09294344A (en) * 1996-04-26 1997-11-11 Meidensha Corp Rotor of permanent magnet type rotating machine
US7851958B2 (en) * 2006-06-12 2010-12-14 Remy International, Inc. Electric machine with interior permanent magnets
JP5643127B2 (en) * 2011-02-03 2014-12-17 トヨタ自動車株式会社 Rotating machine rotor
JP6090987B2 (en) * 2013-02-21 2017-03-08 本田技研工業株式会社 Rotating electric machine
US9130422B2 (en) * 2013-03-08 2015-09-08 GM Global Technology Operations LLC Interior permanent magnet machine having a mixed rare earth magnet and ferrite magnet rotor
JP6002617B2 (en) * 2013-04-05 2016-10-05 株式会社日立産機システム Permanent magnet synchronous machine
EP2993761B1 (en) * 2013-05-01 2018-06-06 Hitachi Automotive Systems, Ltd. Rotary electrical machine, and rotor for rotary electrical machine
CN105186818A (en) * 2015-09-14 2015-12-23 常州市普世汽车电动系统有限公司 Permanent magnet synchronous motor with hybrid magnetic circuit arrangement
JP6573031B2 (en) * 2016-06-03 2019-09-11 アイシン・エィ・ダブリュ株式会社 Rotor
JP7113003B2 (en) * 2017-02-28 2022-08-04 日立Astemo株式会社 Rotor of rotary electric machine and rotary electric machine provided with the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080608A (en) * 2010-09-30 2012-04-19 Aisin Aw Co Ltd Rotor for rotary electric machine
JP2016171646A (en) * 2015-03-12 2016-09-23 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Permanent magnet dynamo-electric machine, and compressor for use therein

Also Published As

Publication number Publication date
CN113206564A (en) 2021-08-03

Similar Documents

Publication Publication Date Title
JP5268711B2 (en) Electric motor and compressor, air conditioner and vacuum cleaner
JP5436525B2 (en) Electric motor
KR100918893B1 (en) Axial air-gap electronic motor
CN108475972B (en) Rotor, magnetizing method, motor, and scroll compressor
CN108475971B (en) Magnetizing method, rotor, motor and scroll compressor
JP3602392B2 (en) Permanent magnet embedded motor
JPWO2017183162A1 (en) Electric motor and air conditioner
JP2011223742A (en) Permanent magnet type rotary machine
KR20000009230A (en) Brushless dc motor
JP7293371B2 (en) Rotor of rotary electric machine
JP2005354798A (en) Electric motor
JP2009050148A (en) Permanent-magnet electric motor with constant output in wide range
CN111953097A (en) Rotating electrical machine
JP4855747B2 (en) Permanent magnet type reluctance rotating electric machine
WO2001097363A1 (en) Permanent magnet synchronous motor
JP2005328679A (en) Permanent magnet reluctance type rotating electric machine
WO2021039016A1 (en) Interior permanent magnet motor
JP2019165593A (en) Rotary electric machine
JP2021122163A (en) Rotary electric machine
JP2018098936A (en) Magnet unit
CN114157066A (en) Rotating electrical machine
KR102242638B1 (en) Rotor for maximizing air-gap magnetic flux in slotless motor and slotless motor including the same
KR102390035B1 (en) Flux Concentrate Type Motor
JP5750995B2 (en) Synchronous motor
JP2022154152A (en) Rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240716