JP2021115080A - 遊技機 - Google Patents
遊技機 Download PDFInfo
- Publication number
- JP2021115080A JP2021115080A JP2020008339A JP2020008339A JP2021115080A JP 2021115080 A JP2021115080 A JP 2021115080A JP 2020008339 A JP2020008339 A JP 2020008339A JP 2020008339 A JP2020008339 A JP 2020008339A JP 2021115080 A JP2021115080 A JP 2021115080A
- Authority
- JP
- Japan
- Prior art keywords
- pin
- board
- connector
- signal
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 390
- 239000000758 substrate Substances 0.000 claims abstract description 317
- 230000000694 effects Effects 0.000 description 352
- 239000000872 buffer Substances 0.000 description 179
- 238000001514 detection method Methods 0.000 description 167
- 238000006243 chemical reaction Methods 0.000 description 68
- 238000011144 upstream manufacturing Methods 0.000 description 48
- 238000010586 diagram Methods 0.000 description 38
- 238000004519 manufacturing process Methods 0.000 description 38
- 239000004973 liquid crystal related substance Substances 0.000 description 34
- 239000003990 capacitor Substances 0.000 description 33
- 238000012545 processing Methods 0.000 description 33
- 230000008859 change Effects 0.000 description 29
- 230000006870 function Effects 0.000 description 29
- 238000013461 design Methods 0.000 description 22
- 238000003860 storage Methods 0.000 description 16
- 230000004888 barrier function Effects 0.000 description 15
- 239000004020 conductor Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 239000002131 composite material Substances 0.000 description 14
- 238000005034 decoration Methods 0.000 description 14
- 238000010304 firing Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 230000001976 improved effect Effects 0.000 description 8
- 238000013016 damping Methods 0.000 description 7
- 230000015654 memory Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 101100476983 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SDT1 gene Proteins 0.000 description 5
- 102100039856 Histone H1.1 Human genes 0.000 description 4
- 101001035402 Homo sapiens Histone H1.1 Proteins 0.000 description 4
- 230000001795 light effect Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000005236 sound signal Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 102100035861 Cytosolic 5'-nucleotidase 1A Human genes 0.000 description 3
- 230000003139 buffering effect Effects 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 102100039855 Histone H1.2 Human genes 0.000 description 2
- 101001035375 Homo sapiens Histone H1.2 Proteins 0.000 description 2
- 102220477449 YY1-associated factor 2_D15E_mutation Human genes 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000004397 blinking Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 102220523009 3'(2'),5'-bisphosphate nucleotidase 1_R59E_mutation Human genes 0.000 description 1
- 102220470958 Amiloride-sensitive sodium channel subunit delta_R21E_mutation Human genes 0.000 description 1
- 102220505831 Borealin_R17E_mutation Human genes 0.000 description 1
- 102220470259 Charged multivesicular body protein 5_D11N_mutation Human genes 0.000 description 1
- 102220503738 Cyclin-dependent kinase inhibitor 2A_D14E_mutation Human genes 0.000 description 1
- 102220503592 Cyclin-dependent kinase inhibitor 2A_R24C_mutation Human genes 0.000 description 1
- 102220501358 Cytosolic iron-sulfur assembly component 3_R23E_mutation Human genes 0.000 description 1
- 102220498069 Electron transfer flavoprotein subunit beta_R56E_mutation Human genes 0.000 description 1
- 102220498066 Electron transfer flavoprotein subunit beta_R60E_mutation Human genes 0.000 description 1
- 102220503561 FYVE, RhoGEF and PH domain-containing protein 1_D15C_mutation Human genes 0.000 description 1
- 102220573434 Fibroblast growth factor 22_D14C_mutation Human genes 0.000 description 1
- 102220465475 Insulin-like growth factor II_R58E_mutation Human genes 0.000 description 1
- 102220465474 Insulin-like growth factor II_R61E_mutation Human genes 0.000 description 1
- 102220465473 Insulin-like growth factor II_R62E_mutation Human genes 0.000 description 1
- 102220465608 Insulin-like growth factor II_R64E_mutation Human genes 0.000 description 1
- 102220517591 Methyl-CpG-binding domain protein 3-like 2B_R11C_mutation Human genes 0.000 description 1
- 102220552591 Phospholipase A2, membrane associated_R27E_mutation Human genes 0.000 description 1
- 102220582332 Porphobilinogen deaminase_R22C_mutation Human genes 0.000 description 1
- 102220582336 Porphobilinogen deaminase_R26C_mutation Human genes 0.000 description 1
- 102220630211 Protein amnionless_R29E_mutation Human genes 0.000 description 1
- 102220612930 Small EDRK-rich factor 1_R11E_mutation Human genes 0.000 description 1
- 102220608498 Suppressor of cytokine signaling 2_R57E_mutation Human genes 0.000 description 1
- 102220524051 Transcription initiation factor IIB_R66K_mutation Human genes 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000002844 continuous effect Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 102200016458 rs104894274 Human genes 0.000 description 1
- 102200097959 rs1049306 Human genes 0.000 description 1
- 102200042453 rs121909606 Human genes 0.000 description 1
- 102200025788 rs179363875 Human genes 0.000 description 1
- 102220024746 rs199473444 Human genes 0.000 description 1
- 102220068344 rs199989979 Human genes 0.000 description 1
- 102220113236 rs201392536 Human genes 0.000 description 1
- 102200078752 rs201827340 Human genes 0.000 description 1
- 102200160920 rs35304565 Human genes 0.000 description 1
- 102200084288 rs375181336 Human genes 0.000 description 1
- 102200001405 rs377584435 Human genes 0.000 description 1
- 102200093330 rs397514644 Human genes 0.000 description 1
- 102220045526 rs587782181 Human genes 0.000 description 1
- 102200108030 rs6791924 Human genes 0.000 description 1
- 102220098395 rs7023652 Human genes 0.000 description 1
- 102220258510 rs746360906 Human genes 0.000 description 1
- 102220290611 rs765385264 Human genes 0.000 description 1
- 102220084927 rs778740017 Human genes 0.000 description 1
- 102220094037 rs864622206 Human genes 0.000 description 1
- 102220117774 rs886041141 Human genes 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Pinball Game Machines (AREA)
Abstract
Description
下記特許文献では、各種演出動作の制御のための技術が開示されている。
そこで本発明では、これらの問題を軽減するために遊技機において望ましい構成を提案することを目的とする。
<1.遊技機の構造>
<2.遊技機の制御構成>
[2.1 主制御基板]
[2.2 演出制御基板]
<3.動作の概要説明>
[3.1 図柄変動表示ゲーム]
[3.2 遊技状態]
[3.3 当りについて]
[3.4 演出について]
<4.開閉構造と基板の配置>
<5.基板の接続構成>
[5.1 各基板の接続状態]
[5.2 内枠LED中継基板400]
[5.3 前枠LED接続基板500]
[5.4 中継基板550]
[5.5 サイドユニット右上LED基板600]
[5.6 サイドユニット右下LED基板620]
[5.7 サイドユニット上LED基板630]
[5.8 ボタンLED接続基板640]
[5.9 ボタンLED基板660]
[5.10 LED接続基板700]
[5.11 盤裏左中継基板720]
[5.12 装飾基板740]
[5.13 中継基板760]
[5.14 LED基板780]
[5.15 盤裏下中継基板800]
[5.16 装飾基板820]
<6.注目構成の説明>
[6.1 内枠2と扉6の間のシリアルデータ信号]
[6.2 伝送線路Hの電源本数(その1)]
[6.3 コネクタ構造]
[6.4 配線経路]
[6.5 伝送線路Hの電源本数(その2)]
[6.6 電源供給経路]
[6.7 その他]
図1及び図2を参照して、本発明に係る実施形態としてのパチンコ遊技機1の構造について説明する。図1はパチンコ遊技機1の外観を示す正面側の斜視図を、図2はパチンコ遊技機1が有する遊技盤3の正面側を示した図である。
なお、パチンコ遊技機1の場合、枠部材と、枠部材に対して開閉可能に設けられた扉部材と、枠部材に対して交換可能に取り付けられた交換部材を有する。
以下説明するパチンコ遊技機1では、枠部材に相当する構成としての内枠2、扉部材に相当する構成としての扉6、交換部材に相当する構成としての遊技盤3を有することになる。
この遊技領域3aの前側には、透明ガラスを支持した扉6が設けられている。また遊技盤3の背面側には、遊技動作を制御するための各種制御基板(図3参照)が配設されている。
サイドユニット10は、それ自体が遊技機1のテーマに合わせた装飾形状とされるとともに、内部にLEDや役物等の演出部材が設けられることもあり、遊技者に遊技の雰囲気を伝える演出効果を発揮する。このサイドユニット10は扉6に対して交換可能に取り付けられたユニットとされる。
前面操作パネル7には、上受け皿ユニット8が設けられ、この上受け皿ユニット8には、排出された遊技球を貯留する上受け皿9が形成されている。
また上受け皿ユニット8には、遊技者が操作可能に構成された演出ボタン13(操作手段)が設けられている。この演出ボタン13は、所定の入力受付期間中に内蔵ランプ(ボタンLED75)が点灯されて操作可能(入力受付可能)となり、その内蔵ランプ点灯中に所定の操作(押下、連打、長押し等)をすることにより演出に変化をもたらすことが可能となっている。
また上受け皿ユニット8には、遊技者やホールスタッフ等の使用者が各種の項目の選択や方向指示等を行うための十字キー15aや、選択項目の決定を指示するための決定ボタン15b等の操作子が設けられている。
複数のスピーカ46により、演出に関する音などについて、いわゆるステレオ音響再生や、より多チャネルの音響再生を行うことができるようにされている。
図示の遊技盤3には、発射された遊技球を案内する球誘導レール5が盤面区画部材として環状に装着されており、この球誘導レール5取り囲まれた略円形状の領域が遊技領域3a、四隅は非遊技領域となっている。
この液晶表示装置36は、後述する演出制御基板30の制御の下、装飾図柄の変動表示動作の他、種々の演出を画像により表示する。
本実施形態では、センター飾り48の存在によって遊技領域3a内の上部両側(左側と右側)に遊技球の流路が形成されるように、センター飾り48は遊技領域3aのほぼ中央部に配置されている。発射装置32により遊技領域3aの上部側に打ち込まれた遊技球は、鎧枠部48bの上部側で左右に振り分けられ、センター飾り48の左側の左流下経路3bと右側の右流下経路3cとの何れかを流下する。
なお特別図柄表示装置38a、38bを含む各種機能表示部を図4に拡大して示している。
この複合表示装置38dでは、4つのLEDの点灯・消灯状態の組合せにより、大当りに係る規定ラウンド数(最大ラウンド数)を報知するラウンド数表示が行われる。例えば4つのLEDの点灯・消灯状態の組合せにより、大当りに係る規定ラウンド数(最大ラウンド数)を報知する。
また複合表示装置38dでは、普通図柄表示として、1個のLEDにより表現される普通図柄の変動表示動作により普通図柄変動表示ゲームが実行されるようになっている。
また複合表示装置38dでは、3個のLEDにより右打ち表示が行われるようになっている。
また右流下経路3cには、開閉動作を行う始動口35(第2の特別図柄始動口:第2の始動手段)が設けられ、内部には、遊技球の通過を検出する検出センサ35a(始動口センサ35a:図3参照)が形成されている。
また遊技盤の領域内には遊技球の流下を妨害しない位置に、視覚的演出効果を奏する可動体役物(図示せず)が配設されている。
大入賞口50の周囲は、流下する遊技球を大入賞口50の方向に寄せる働きをする案内部55や風車53が設けられている。
センター飾り48の上面と球誘導レール5との間の遊動領域を通過し右流下経路3cを経た遊技球は、案内部55によって大入賞口50の方向に導かれる。大入賞口50が開いている状態(大入賞口開状態)であれば、遊技球が大入賞口50内に導かれる。
また始動口35は、後述の電サポ有り状態を伴う遊技状態になると、通常状態よりも有利な開閉パターンで動作するようになっている。
図3のブロック図を参照して、遊技機1の遊技動作制御を実現するための構成(制御構成)について説明する。
本実施形態の遊技機1は、遊技動作全般に係る制御(遊技動作制御)を統括的に司る主制御基板(主制御手段)20と、主制御基板20から演出制御コマンドを受けて、演出手段による演出の実行制御(現出制御)を統括的に司る演出制御基板30(演出制御手段)と、賞球の払い出し制御を行う払出制御基板(払出制御手段)29と、外部電源(図示せず)から遊技機1に必要な電源を生成し供給する電源基板(電源制御手段(図示せず))と、を有して構成される。
なお、図3において、各部への電源供給ルートは省略している。
主制御基板20は、CPU(Central Processing Unit)20a(主制御CPU)を内蔵したマイクロプロセッサを搭載すると共に、遊技動作制御手順を記述した制御プログラムの他、遊技動作制御に必要な種々のデータを格納するROM(Read Only Memory)20b(主制御ROM)と、ワーク領域やバッファメモリとして機能するRAM(Random Access Memory)20c(主制御RAM)とを搭載し、全体としてマイクロコンピュータを構成している。
なお、ホールコンピュータHCは、主制御基板20からの遊技情報を監視して、パチンコホールの遊技機の稼働状況を統括的に管理するための情報処理装置(コンピュータ装置)である。
なお、払出制御基板29が上記球詰りエラーを検出すると、主制御基板20に球詰り信号を送信すると共に発射制御基板28に対する発射許可信号の出力を停止し(発射許可信号OFF)、上受け皿9の満杯状態が解消されるまで打ち出し動作を停止する制御を行うようになっている。
また、払出制御基板29は、発射制御基板28に対する発射の許可信号の出力を、主制御基板20より発射許可が指示されたことを条件に行う。
設定キースイッチ94は、電源投入時にホールスタッフが所持する設定鍵を挿入してON/OFF操作することにより設定変更モード(ON操作時)に切り替えるためのキースイッチとされる。
ここで、設定変更モードは、設定値Veを変更可能なモードである。設定値Veは、遊技者に有利な遊技状態に当選させるか否かの当選確率についての段階を表す値である。
また、設定キースイッチ94は、上記した設定鍵を挿抜可能とされたキーシリンダが対応して設けられており、該キーシリンダに挿入された設定鍵が順方向に回動されることでON、該ONの状態から逆方向に回動されることでOFFとなる。
キーシリンダは、内枠2が開放された状態で設定鍵の挿入による操作が可能となるように設けられている。なお、キーシリンダは、設定鍵が挿入されることで操作可能とされた操作子として機能する。
設定・性能表示器97は、例えば7セグメント表示器を有して構成され、設定値Veと性能情報(後述する)の表示が可能とされた表示手段として機能する。設定・性能表示器97は、例えば主制御基板20上の視認し易い位置に搭載されている。
主制御基板20は、設定・性能表示器97に対して設定値Veや性能情報を表示させるための制御信号を送信可能とされている。
このように、設定値Veとは、大当り当選確率や機械割などを規定する値であり、遊技者に作用する利益状態などの特定事象の発生し易さに関連する等級についての値を意味し、本実施形態では、各設定値Veに応じて遊技に係る有利度が規定されることになる。
この前提の下で、本例のパチンコ遊技機1は、規則上使用可能な設定値Veのうち、一部の設定値Veのみを使用する。具体的に、本例のパチンコ遊技機1は、使用可能範囲Re内の設定値Veである「1」〜「6」のうち、例えば「1」「2」「6」の3値のみを使用する。換言すれば、当選確率についての段階を規則上の最大段階である6段階とするのではなく、3段階に制限した仕様とされている。
以下、パチンコ遊技機1において実際に使用される設定値Veの範囲、具体的には使用可能範囲Re内の設定値Veのうちで実際に使用される設定値Veの範囲(上記例では「1」「2」「6」の範囲)のことを「使用範囲Ru」と表記する。
設定値Veを変更するためには、本例では、遊技機1の電源がオフとされ内枠2が解放された状態において、設定キースイッチ94をON操作(設定変更モード側に操作)し且つRAMクリアボタンを押圧した状態(RAMクリアスイッチ98がONの状態)で遊技機1への電源を投入する。すると、現在の設定値Veが設定・性能表示器97に表示され、設定値Ve(本例では1、2、6)の変更操作が可能な「設定変更モード」に移行される。
また、設定キースイッチ94がOFFされると、設定変更モードが終了され、設定・性能表示器97の表示がクリアされる。
設定変更モードが終了すると、遊技進行を許容する状態に移行される。
主制御基板20は、設定・性能表示器97に対し所定の性能情報を表示させるための制御信号を送信可能とされている。
性能情報とは、パチンコホールや関係各庁が確認したい情報であり、遊技機1に対する過剰賞球等の不正賞球ゴトの有無や遊技機1本来の出玉性能などに関する情報などがその代表例である。従って、性能情報自体は、予告演出等とは異なり、遊技者が遊技に興じる際に、その遊技進行自体には直接的に関係の無い情報となる。
上記「総払出個数」とは、入賞口(始動口34、始動口35、一般入賞口43、大入賞口50)に入賞した際に払い出された遊技球(賞球)の合計値である。本実施形態の場合、始動口34または始動口35は3個、大入賞口50は13個、一般入賞口43は10個である。
また、特定状態として、何れの状態を採用するかについては、如何なる状態下の性能情報を把握したいかに応じて適宜定めることができる。本実施形態の場合であれば、通常状態、潜確状態、時短状態、確変状態、大当り遊技中のうち、何れの状態も採用することができる。また、複数種類の状態を計測対象としてもよい。例えば、通常状態と確変状態や、当り遊技中を除く全ての遊技状態等であり、その計測対象とする種類は適宜定めることができる。
また、特定状態中の期間として、大当り抽選確率が低確率状態又は高確率状態の何れかの期間を採用してもよい。
また、1又は複数の特定の入賞口を計測対象から除外したものを総払出個数としてもよい(特定入賞口除外総払出個数)。例えば、各入賞口のうち、大入賞口50を計測対象から除外したものを、総払出個数としてもよい。
従って、通常時払出個数、通常時アウト個数、通常時比率情報の各データが、主制御RAM20cの該当領域(特定中総賞球数格納領域、特定中アウト個数格納領域、特定比率情報格納領域)にそれぞれ格納(記憶)されるようになっている。但し、単に永続的に計測して性能情報を表示するのではなく、総アウト球数が所定の規定個数(例えば、60000個)に達した場合、一旦、計測を終了する。この規定個数とは、通常状態の総アウト球数ではなく、全遊技状態中(当り遊技中を含む)の総アウト球数(以下「全状態アウト個数」と称する)である。この全状態アウト個数もリアルタイムに計測され、主制御RAM20cの該当領域(全状態アウト個数格納領域)に格納される。以下、説明の便宜のために、特定中総賞球数格納領域、特定中アウト個数格納領域、特定比率情報格納領域、全状態アウト個数格納領域を「計測情報格納領域」と略称する。
なお、設定値Veと性能情報を共通の表示器により表示する構成に限定されず、別々の表示器により表示する構成を採ることもできる。その場合、設定値Veと性能情報の表示が並行して行われてもよい。
主制御基板20は、処理状態に応じて、特別図柄変動表示ゲームに関する情報やエラーに関する情報等を含む種々の演出制御コマンドを、演出制御基板30に対して送信可能とされている。但し、ゴト行為等の不正を防止するために、主制御基板20は演出制御基板30に対して信号を送信するのみで、演出制御基板30からの信号を受信不可能な片方向通信の構成となっている。
演出制御基板30は、演出制御CPU30aを内蔵したマイクロプロセッサを搭載すると共に、演出制御処理に要する演出データを格納した演出制御ROM30bと、ワーク領域やバッファメモリとして機能する演出制御RAM30cとを搭載したマイクロコンピュータを中心に構成され、その他、音響制御部(音源IC)、RTC(Real Time Clock)機能部、カウンタ回路、割込みコントローラ回路、リセット回路、WDT回路などが設けられ、演出動作全般を制御する。
演出制御RAM30cは、演出制御CPU30aが各種演算処理に使用するワークエリアや、テーブルデータ領域、各種入出力データや処理データのバッファ領域等として用いられる。
なお、演出制御基板30は、例えば1チップマイクロコンピュータとその周辺回路が搭載された構成とされるが、演出制御基板30の構成は各種考えられる。例えばマイクロコンピュータに加えて、各部とのインタフェース回路、演出のための抽選用乱数を生成する乱数生成回路、各種の時間計数のためのCTC、ウォッチドッグタイマ(WDT)回路、演出制御CPU30aに割込み信号を与える割込コントローラ回路などを備える場合もある。
VDPは、画像展開処理や画像の描画などの映像出力処理全般の制御を行う機能を指している。
画像ROMとは、VDPが画像展開処理を行う画像データ(演出画像データ)が格納されているメモリを指す。
VRAMは、VDPが展開した画像データを一時的に記憶する画像メモリ領域である。
ここで、図2において示される「液晶表示装置36」は「主液晶表示装置36M」である。副液晶表示装置36Sについては図2における図示が省略されている。
また、演出制御基板30には、装飾ランプ45や各種LEDを含む光表示装置45aに対する光表示制御部として機能するランプドライバ部45dと、可動体(図示せず)を動作させる可動体役物モータ80cに対する駆動制御部として機能するモータドライバ部80d(モータ駆動回路)とが接続されている。演出制御基板30は、これらランプドライバ部45dやモータドライバ部80dに指示を行って光表示装置45aによる光表示動作や可動体役物モータ80cの動作を制御する。
原点スイッチ81は、例えばフォトインターラプタ等で構成され、可動体役物モータ80cが原点位置にあるか否かを検出する。原点位置は、例えば可動体が図2の盤面に通常は表出しない位置などとされる。演出制御基板30は、この原点スイッチ81の検出情報に基づいて可動体役物モータ80cが原点位置にあるか否かを判定可能とされている。
また、演出制御基板30は、位置検出センサ82からの検出情報に基づき、可動体役物の現在の動作位置(例えば、原点位置からの移動量)を監視しながらその動作態様を制御する。さらに演出制御基板30は、位置検出センサ82からの検出情報に基づき、可動体役物の動作の不具合を監視し、不具合が生じれば、これをエラーとして検出する。
この際、演出制御CPU30aは、ストローブ信号の入力に基づいて割込みが発生した場合には、他の割込みに基づく割込み処理(定期的に実行されるタイマ割込処理)の実行中であっても、当該処理に割り込んでコマンド受信割込処理を行い、他の割込みが同時に発生してもコマンド受信割込処理を優先的に行うようになっている。
[3.1 図柄変動表示ゲーム]
次に、上記のような制御構成(図3)により実現される遊技機1の遊技動作の概要について説明する。
先ずは、図柄変動表示ゲームについて説明する。
本実施形態のパチンコ遊技機1では、所定の始動条件、具体的には、遊技球が始動口34又は始動口35に遊技球が入球(入賞)したことに基づき、主制御基板20において乱数抽選による「大当り抽選」が行われる。主制御基板20は、その抽選結果に基づき、特別図柄表示装置38a、38bに特別図柄1、特別図柄2を変動表示して特別図柄変動表示ゲームを開始させ、所定時間経過後に、その結果を特別図柄表示装置に導出表示して、これにより特別図柄変動表示ゲームを終了させる。
また、上述の特別図柄変動表示ゲームが開始されると、これに伴って、主液晶表示装置36Mに装飾図柄(演出的な遊技図柄)を変動表示して装飾図柄変動表示ゲームが開始され、これに付随して種々の演出が展開される。そして特別図柄変動表示ゲームが終了すると、装飾図柄変動表示ゲームも終了し、特別図柄表示装置には大当り抽選結果を示す所定の特別図柄が、そして主液晶表示装置36Mには当該大当り抽選結果を反映した装飾図柄が導出表示されるようになっている。すなわち、装飾図柄の変動表示動作を含む演出的な装飾図柄変動表示ゲームにより、特別図柄変動表示ゲームの結果を反映表示するようになっている。
また遊技機1においては、普通図柄始動口37に遊技球が通過(入賞)したことに基づき、主制御基板20において乱数抽選による「補助当り抽選」が行なわれる。この抽選結果に基づき、LEDにより表現される普通図柄を複合表示装置38dで変動表示させて普通図柄変動表示ゲームを開始し、一定時間経過後に、その結果をLEDの点灯と非点灯の組合せにて停止表示するようになっている。例えば、普通図柄変動表示ゲームの結果が「補助当り」であった場合、複合表示装置38dの普通図柄の表示部を特定の点灯状態(例えば、2個のLED39が全て点灯状態、又は「○」と「×」を表現するLEDのうち「○」側のLEDが点灯状態)にて停止表示させる。
ここで本実施形態では、特別/装飾図柄変動表示ゲーム中、普通図柄変動表示ゲーム中、大当り遊技中、又は普電開放遊技中等に、始動口34又は始動口35若しくは普通図柄始動口37に入賞が発生した場合、すなわち始動口センサ34a又は始動口センサ35a若しくは普通図柄始動口センサ37aからの検出信号の入力があり、対応する始動条件(図柄遊技開始条件)が成立した場合、これを変動表示ゲームの始動権利に係るデータとして、変動表示中に関わるものを除き、所定の上限値である最大保留記憶数(例えば最大4個)まで保留記憶されるようになっている。この図柄変動表示動作に供されていない保留中の保留データ、又はその保留データに係る遊技球を、「作動保留球」とも称する。この作動保留球の数を遊技者に明らかにするため、遊技機1の適所に設けた専用の保留表示器(図示せず)、又は液晶表示装置36(主液晶表示装置36M又は副液晶表示装置36S)による画面中にアイコン画像として設けた保留表示器を点灯表示させる。
本実施形態に係る遊技機1では、特別遊技状態である上記大当りの他、複数種類の遊技状態を発生可能に構成されている。本実施形態の理解を容易なものとするために、先ず、種々の遊技状態について説明する。
続いて、遊技機1における「当り」について説明する。
本実施形態の遊技機1においては、複数種類の当りを対象に大当り抽選(当り抽選)を行うようになっている。本例の場合、当りの種別には、大当り種別に属する例えば「通常4R」「通常6R」「確変6R」「確変10R」の各大当りが含まれる。
なお、上記「R」の表記は、規定ラウンド数(最大ラウンド数)を意味する。
前述のように、当落抽選の結果が「はずれ」であった場合には、図柄抽選においてはずれ種別の抽選が行われる。
(演出モード)
次に、演出モード(演出状態)について説明する。本実施形態の遊技機1には、遊技状態に関連する演出を現出させるための複数種類の演出モードが設けられており、その演出モード間を行き来可能に構成されている。具体的には、通常状態、時短状態、潜確状態、確変状態のそれぞれに対応した、通常演出モード、時短演出モード、潜確演出モード、確変演出モードが設けられている。各演出モードでは、装飾図柄の変動表示画面のバックグラウンドとしての背景表示が、それぞれ異なる背景演出により表示され、遊技者が現在、どのような遊技状態に滞在しているかを把握することができるようになっている。
次に、予告演出について説明する。演出制御基板30は、主制御基板20からの演出制御コマンドの内容、具体的には、少なくとも変動パターン指定コマンドに含まれる変動パターン情報に基づき、現在の演出モードと大当り抽選結果とに関連した様々な「予告演出」を現出制御可能に構成されている。このような予告演出は、当り種別に当選したか否かの期待度(以下「当選期待度」と称する)を示唆(予告)し、遊技者の当選期待感を煽るための「煽り演出」として働く。予告演出として代表的なものには、「リーチ演出」や「疑似連演出」、さらには「先読み予告演出」等がある。演出制御基板30は、これら演出を実行(現出)制御可能な予告演出制御手段として機能する。
具体的に、本例の先読み演出は、未だ図柄変動表示ゲームの実行(特別図柄の変動表示動作)には供されていない作動保留球(未消化の作動保留球)について、主に、保留表示態様や先に実行される図柄変動表示ゲームの背景演出等を利用して、当該作動保留球が図柄変動表示ゲームに供される前に、当選期待度を事前に報知し得る演出態様で行われる。なお、図柄変動表示ゲームにおいては、上記「リーチ演出」の他、いわゆる「SU(ステップアップ)予告演出」や「タイマ予告演出」、「復活演出」、「プレミア予告演出」などの種々の演出が発生し、ゲーム内容を盛り上げるようになっている。
本実施形態の遊技機1の場合、主液晶表示装置36Mの画面内の上側の表示エリアには、装飾図柄変動表示ゲームを現出する表示エリア(装飾図柄の変動表示演出や予告演出を現出するための表示領域)が設けられており、また画面内の下側の表示エリアには、特別図柄1側の作動保留球数を表示する保留表示領域76(保留表示部a1〜d1)と特別図柄2側の作動保留球数を表示する保留表示領域77(保留表示部a2〜d2)とが設けられている。作動保留球の有無に関しては、所定の保留表示態様により、その旨が報知される。図5では、作動保留球の有無を点灯状態(作動保留球あり:図示の「○(白丸印)」)、又は消灯状態(作動保留球なし:図示の破線の丸印)にて、現在の作動保留球数に関する情報が報知される例を示している。
本実施形態の場合、上記保留加算コマンドは2バイトで構成され、保留加算コマンドは、先読み判定時の作動保留球数を特定可能とする上位バイト側のデータと、先読み判定情報を特定可能とする下位バイト側データとから構成される。
先読み判定時に得られた大当り抽選結果の情報は、図柄変動表示ゲームにおける図柄変動パターンを選択(抽選)するために用いられるものであり、いわば「変動パターン選択用情報」と換言することができる。従って、主制御基板20は、先読み判定を行って、その結果得られる「変動パターン選択用情報」を主制御RAM20cの所定領域に保留記憶していると言うことができる。
本例では、保留加算コマンドには先読み当落情報、先読み図柄情報、及び先読み変動パターン情報が含まれているものとする。
図5では、ハッチングされた保留表示部b1の作動保留球が、特別保留表示に変化した例を示している。ここで、保留アイコンの青色、緑色、赤色、デンジャー柄の表示は、この順に、当選期待度が高いことを意味しており、特にデンジャー柄の保留アイコンの表示は、大当り当選期待度が極めて高い表示となるプレミアム的な保留アイコンとされている。
遊技機1における各種の演出は、遊技機1に配設された演出手段により現出される。この演出手段は、視覚、聴覚、触覚など、人間の知覚に訴えることにより演出効果を発揮し得る刺激伝達手段であれば良く、装飾ランプ45やLED装置などの光発生手段(光表示装置45a:光演出手段)、スピーカ46などの音響発生装置(音響発生装置46a:音演出手段)、主液晶表示装置36Mや副液晶表示装置36Sなどの演出表示装置(表示手段)、操作者の体に接触圧を伝える加圧装置、遊技者の体に風圧を与える風圧装置、その動作により視覚的演出効果を発揮する可動体役物などは、その代表例である。ここで、演出表示装置は、画像表示装置と同じく視覚に訴える表示装置であるが、画像によらないもの(例えば7セグメント表示器)も含む点で画像表示装置と異なる。画像表示装置と称する場合は主として画像表示により演出を現出するタイプを指し、7セグメント表示器のように画像以外により演出を現出するものは、上記演出表示装置の概念の中に含まれる。
上述した図3の構成は、実際には複数の基板を経由して実現される。以下では、遊技機1に搭載される基板うちの一部の基板を抜粋して、それらの配置を説明する。また基板の搭載位置のために遊技機1の開閉構造についても説明する。
扉6が開放されることで、内枠2及び内枠2に装着された遊技盤3が直接表出される。
なお扉6に配置される基板と内枠2に配置される基板の間は伝送線路H8としてのハーネスによって配線接続されている。
図6は内枠2を開いた状態を示している。内枠2が開かれることで、内枠2に取り付けられた遊技盤3も外枠4から開放された状態になる。図6では遊技盤3の背面側となる位置に取り付けられた背面カバー18が見えている状態を示している。図6では遊技盤3が示されていないが、背面カバー18を外す(開く)と遊技盤3の背面側が表出する。実際には背面カバー18が透明又は半透明であることで、図6の状態で遊技盤3の背面側が視認可能である。
なお、遊技盤3はさらに内枠2から取り外すことができる。
また遊技盤3の上方に上接続基板905が配置される。
また同じく扉6の上方にサイドユニット上LED基板630が設けられ、扉6の右上にはサイドユニット右上LED基板600が設けられ、その下方にサイドユニット右下LED基板620が設けられる。なお、これらサイドユニット右上LED基板600、サイドユニット右下LED基板620、サイドユニット上LED基板630は、サイドユニット10(図1参照)内に取り付けられ、各基板は、サイドユニット10が扉6に装着されることで、この図8の位置状態となる。
また扉6の下方には前枠LED接続基板500が配置される。
また右下にはボタンLED接続基板640が配置され、演出ボタン13の内部にボタンLED基板660が配置される。
この背面側の下方に電源基板300と払出制御基板29が前後に配置されている。
また背面側からみて下方右側には内枠LED中継基板400が取り付けられる。
また図10に示したデバイスも、遊技機1に設けられるデバイスの一部にすぎない。
[5.1 各基板の接続状態]
上述のように配置される各基板の接続構成を説明するとともに、電源電圧の供給経路について言及する。
この場合、遊技盤3に搭載される基板として、主制御基板20、演出制御基板30、枠LED中継基板840、LED接続基板700、盤裏左中継基板720、装飾基板740、中継基板760、LED基板780、LED基板790、盤裏下中継基板800、装飾基板820を示している。
内枠2に搭載される基板としては、電源基板300、払出制御基板29、内枠LED中継基板400を示している。
扉6に搭載される基板としては、前枠LED接続基板500、中継基板550、サイドユニット右上LED基板600、サイドユニット右下LED基板620、サイドユニット上LED基板630、ボタンLED接続基板640、ボタンLED基板660を示している。
主制御基板20、演出制御基板30、払出制御基板29については図3で説明したとおりである。
上述のように扉6には装飾ユニットの1つとしてサイドユニット10が取り付けられており、サイドユニット10は扉6に対して着脱し交換可能とされている。サイドユニット右上LED基板600、サイドユニット右下LED基板620、サイドユニット上LED基板630はサイドユニット10とともに着脱されることになる。
サイドユニット10が装着され、中継基板550とサイドユニット右上LED基板600の伝送線路H10が接続されることで電気的には図11に示す構成となる。
ボタンLED接続基板640は、ボタンLED基板660への制御信号や電源電圧を中継し、また各種センサの検出信号を転送する。
枠LED中継基板840は内枠LED中継基板400と演出制御基板30との間の信号経路を中継する。
装飾基板740は中継及び他のLED基板の駆動を行う。
盤裏左中継基板720は中継を行う。
装飾基板820はLEDを搭載する。
盤裏下中継基板800は中継を行う。
LED接続基板700は、演出制御基板30からの制御信号に基づいてLED、モータ等の演出手段の発光駆動のための各種必要な信号処理を行う。
各伝送線路Hにおいて、信号や電源電圧等を伝送する個々の配線経路を単に「線路」ともいう。
伝送線路Hは1又は複数の線路の集合を指す。
伝送線路Hは、フレキシブルハーネス、フレキシブル基板、ワイヤーハーネスなどの各種の形態のものを含む。また伝送線路Hは、複数の線路が一体化されたものでもよいし、個々の線路がバインダ、テープなどでまとめられたものでもよい。
さらにコネクタ同士が直接接続される場合、その各コネクタの端子が伝送線路Hとなる。つまりハーネス等の線材が存在しない場合も「伝送線路H」に含める。
即ち伝送線路Hは、特定の種別、形状を指すのではなく、基板間等で電気的配線を形成するものを広く指す。
また電源基板300と内枠LED中継基板400は伝送線路H3で接続される。
これらの伝送線路H1,H3は内枠2内で配設されるハーネス等によるものとなる。
払出制御基板29と主制御基板20は伝送線路H4で接続される。
内枠LED中継基板400と枠LED中継基板840は伝送線路H7で接続される。
これらの伝送線路H2,H4,H7は、内枠2と遊技盤3の間を跨いで接続するハーネス等によるものとなる。
演出制御基板30と枠LED中継基板840は伝送線路H6で接続される。
演出制御基板30とLED接続基板700は伝送線路H20で接続される。
LED接続基板700と盤裏左中継基板720は伝送線路H21で接続される。
盤裏左中継基板720と装飾基板740は伝送線路H22で接続される。
装飾基板740と中継基板760は伝送線路H23で接続される。可動体役物に取り付けられている中継基板760との接続のため伝送線路H23はフレキシブルケーブルとされることが考えられる。
中継基板760とLED基板780は伝送線路H24で接続される。
LED基板780とLED基板790は伝送線路H25で接続される。
LED接続基板700と盤裏下中継基板800は伝送線路H30で接続される。
盤裏下中継基板800と装飾基板820は伝送線路H31で接続される。
これらの伝送線路H5,H6,H20,H21,H22,H23,H24,H25,H30,H31は遊技盤3内で配設されるハーネスによるものとなる。
この伝送線路H8は、内枠2と扉6の間を跨いで接続するハーネス等によるものとなる。
中継基板550とサイドユニット右上LED基板600は伝送線路H10で接続される。
サイドユニット右上LED基板600とサイドユニット右下LED基板620は伝送線路H11で接続される。
サイドユニット右上LED基板600とサイドユニット上LED基板630は伝送線路H12で接続される。
前枠LED接続基板500とボタンLED接続基板640は伝送線路H15で接続される。
ボタンLED接続基板640とボタンLED基板660は伝送線路H16で接続される。
これらの伝送線路H9,H10,H11,H12,H15,H16は扉6内で配設されるハーネス等によるものとなる。
図12に電源基板300についての電源系入出力を示している。
電源基板300は、コネクタCN1A〜CN7Aが搭載されている。
コネクタCN5A,CN6A、CN7Aには、図11では図示を省略した伝送線路H40,H41,H42の伝送線路端が接続される。
そして本明細書では「コネクタCN」は基板上に設けられるコネクタ端子部品を指す。そして伝送線路Hの端部に形成されるコネクタ接続のため端子部を「伝送線路端」と呼ぶこととする。
「コネクタCN」は「伝送線路端」と接続される。或いは「コネクタCN」は対応する形状の他のコネクタCNと直接接続される場合もある。
またグランド端子302、伝送線路H40、コネクタCN5Aを介したFG(フレームグランド)経路(FG)が形成される。グランド端子302は例えば遊技機本体外に接続される。
2端子構成のコネクタCN7Aには伝送線路H42が接続され、グランド端子305,306を介したFG経路(FG−2)が形成される。グランド端子305,306は例えば遊技機本体に接続される。
伝送線路H1−1により払出制御基板29に対して、35V直流電圧(DC35VA)、12V直流電圧(DC12VA)、5V直流電圧(DC5VA)が供給され、またグランド経路(GND)が形成される。
伝送線路H1−2により払出制御基板29に対して、2系統の24V直流電圧(DC24VA、DC24VB)が供給され、またFG経路(FG)が形成される。
伝送線路H2により演出制御基板30に対して、5V直流電圧(DC5VB)、12V直流電圧(DC12VB)、35V直流電圧(DC35VB)が供給され、またグランド経路(GND)が形成される。
一方、枠LED中継基板840は、単なる中継配線を有する基板で電源電圧は不要とされ、演出制御基板30からの電源電圧供給は行われていない。
電源電圧については、電源基板300が最も上流であり、実際の演出デバイスに向かって「下流」とする。
伝送線路H3により内枠LED中継基板400に対して、12V直流電圧(DC12VB)が供給され、またグランド経路(GND)が形成される。
つまり内枠LED中継基板400は、演出制御基板30から制御される基板であるが、電源基板300から直接電源電圧供給を受ける構成とされている。
内枠LED中継基板400より下流の扉6に設けられる各基板(前枠LED接続基板500等)は、内枠LED中継基板400から電源電圧の供給を受ける。
以下、図11に示した基板のうちのいくつかの回路構成を説明していく。まず内枠LED中継基板400を図13,図14を用いて説明する。
図13,図14は内枠LED中継基板400に設けられる回路構成を分けて示したものである。
枠LED中継基板840についての詳細は省略するが、上述のように単なる中継配線を有する基板である。従ってコネクタCN1Bは、実質的には、伝送線路H7、枠LED中継基板840、伝送線路H6を介して演出制御基板30との間の配線を形成するものとなる。
なお説明の便宜上、コネクタCNの「ピン」という用語は、ピン形状のオス端子のみを指すのではなく、オス端子、メス端子のいずれも含み、また、いわゆる平面上のコンタクトパターンや、それに対応する端子なども含むものとして用いる。
第19ピンから第28ピンはスピーカ46としての右上スピーカ、右中スピーカ、右下スピーカ、左上スピーカ、左中スピーカ、下スピーカのそれぞれについての+端子、−端子にアサインされている。
クロック信号S_IN_CLK、ロード信号S_IN_LOADは、演出制御基板30から内枠LED中継基板400に供給され、さらに前枠LED接続基板500に送られる。これらは下流側である前枠LED接続基板500からのシリアルデータ送信動作に用いられる。
例えばデータ信号DATA_L、DATA_Mは、LEDの階調を示す発光駆動信号やモータ駆動信号などであり、クリア信号CLR_L、CLR_M等、クロック信号CLK_L、CLK_M等、イネーブル信号ENABLE_L、ENABLE_M等は、LEDドライバやモータドライバの動作制御のための信号である。
なお、クロック信号CLK_L、CLK_M等の末尾の「_L」は主にLEDの動作制御に用いる信号で、「_M」は主にモータ動作制御に用いる信号であることを示している。
このコネクタCN2Bは“1”〜“30”の数字を付したように第1ピンから第30ピンまでの30端子構成である。
第27ピンから第30ピンまでの4つのピンは12V直流電圧(DC12VB)の端子とされる。
第5ピン、第7ピン、第8ピン、第17ピン、第18ピンはグランド端子とされる。なお、コネクタCN2Bのハウジングにおける導体点P1,P2もグランドに接続されている。
第9ピンはクリア信号CLR_L、第10ピンはクリア信号CLR_M、第11ピンはクロック信号CLK_L、第12ピンはクロック信号CLK_M、第13ピンはデータ信号DATA_L、第14ピンはデータ信号DATA_M、第15ピンは汎用出力ポート、第16ピンはイネーブル信号ENABLE_Mの各端子としてアサインされている。
第19ピンから第26ピンはスピーカ46としての右上スピーカ、右中スピーカ、右下スピーカ、左上スピーカ、左中スピーカのそれぞれについての+端子、−端子に、図示のようにアサインされている。
このコネクタCN4Bは“1”〜“6”の数字を付したように第1ピンから第6ピンまでの6端子構成であり、電源基板300のコネクタCN3Aと同様にアサインされている。即ち第1ピン、第2ピン、第3ピンは12V直流電圧(DC12VA)が電源基板300から供給される端子とされる。第4ピン、第5ピン、第6ピンはグランド端子とされる。
即ち12V直流電圧(DC12VA)から5V直流電圧(DC5VB)を生成する5V生成部410が形成されている。
なおコネクタCN2Bの第27ピンから第30ピンを介して下流側の基板に供給される12V直流電圧(DC12VB)は、図14のコネクタCN4Bの第1ピン、第2ピン、第3ピンを介して電源基板300から供給される電圧である。
バッファ回路402,403としては、第1ピンのCONT端子がLレベル時にはインバータ、Hレベル時にはバッファとして機能するICを用いており、この場合、5V直流電圧(DC5VB)によりHレベルを印加することでバッファとして機能させている。
また動作電源として、第20ピンのVCC端子に5V直流電圧(DC5VB)が印加される。
つまりA1端子に入力された信号はバッファ処理されてY1端子から出力され、A2端子に入力された信号はバッファ処理されてY2端子から出力され、・・・A8端子に入力された信号はバッファ処理されてY8端子から出力される。
コネクタCN1Bの第2ピンからのクロック信号S_IN_CLKは、バッファ回路402のA3端子に入力され、Y3端子から出力されてコネクタCN2Bの第2ピンに供給される。
コネクタCN1Bの第4ピンからのロード信号S_IN_LOADは、バッファ回路402のA1端子に入力され、Y1端子から出力されてコネクタCN2Bの第4ピンに供給される。
下流側からコネクタCN2Bの第6ピンに入力されたシリアルデータ信号S_IN_DATAは、バッファ回路402のA5端子に入力され、Y5端子から出力されてコネクタCN1Bの第6ピンに供給される。
コネクタCN1Bの第9ピン〜第16ピンから入力されるこれらの各信号は、それぞれバッファ回路402のA1端子〜A8端子のいずれかに入力され、Y1端子〜Y8端子から出力されてコネクタCN2Bの第9ピン〜第16ピンに供給される。
またバッファ回路403は、第10ピン(GND端子)、第19ピン(G ̄端子)はグランドに接続されている。
・演出制御基板30(枠LED中継基板840)からコネクタCN1Bに供給されるクロック信号S_IN_CLK、ロード信号S_IN_LOADを、バッファ回路402で信号補償して、コネクタCN2Bにより下流側に送信する。
・下流の前枠LED接続基板500からコネクタCN2Bに供給されるシリアルデータ信号S_IN_DATAを、バッファ回路402で信号補償して、コネクタCN1Bにより上流側に送信する。
・演出制御基板30(枠LED中継基板840)からコネクタCN1Bに供給されるクリア信号CLR_L、CLR_M、クロック信号CLK_L、CLK_M、データ信号DATA_L、DATA_M、イネーブル信号ENABLE_L、ENABLE_Mを、バッファ回路403で信号補償して、コネクタCN2Bにより下流側に送信する。
・演出制御基板30側(枠LED中継基板840)と接続されるコネクタCN1B(伝送線路H7)からは電源電圧は供給されない。
・コネクタCN4Bにより電源基板300から12V直流電圧(DC12V)を受け取り、ヒューズF1Bを介して下流側に供給する12V直流電圧(DC12VB)とする。
・12V直流電圧(DC12V)を用いて内枠LED中継基板400及び下流側で用いる5V直流電圧(DC5VB)を生成し、バッファ回路402の、403の動作電源とするとともに下流側に供給する。
例えばクロック信号S_IN_CLK、ロード信号S_IN_LOAD、クリア信号CLR_L、CLR_M、クロック信号CLK_L、CLK_M、データ信号DATA_L、DATA_M、イネーブル信号ENABLE_L、ENABLE_Mについては、入力側(コネクタCN1B側)に抵抗R25B、R26B、R8B、R9B、R10B、R11B、R12B、R13B、R14B、R15Bがダンピング抵抗として挿入されている。また出力側(コネクタCN2B側)に抵抗R3B、R2B、チップ抵抗RA1B、RA2Bがダンピング抵抗として挿入されている。
この場合、コネクタとダンピング抵抗の間の配線距離をLA、ダンピング抵抗とバッファ回路402,403の間の配線距離をLBとした場合、
LA<LB
の関係となっている。つまり、バッファ回路402,403よりもコネクタ(CN1B又はCN2B)の近くにダンピング抵抗を配置するようにする。これにより信号ノイズの低減性能を高めている。
前枠LED接続基板500を図15,図16,図17,図18,図19,図20を用いて説明する。これらの図は前枠LED接続基板500に設けられる回路構成を分けて示したものである。
従って、このコネクタCN2Cは“1”〜“30”の数字を付したように第1ピンから第30ピンまでの30端子構成であり、端子のアサインは上述のコネクタCN2Bと同様となる。コネクタCN2Cのハウジングにおける導体点P1,P2もグランドに接続されている。
なお、重ねて言及しないが、後述のコネクタCN1C、CN3C、CN4C、CN7C、CN8C、CN9C、CN10Cのハウジングにおける導体点P1,P2もグランドに接続されている。
またコネクタCN4Cも不図示のハンドル内LED基板に接続される。
第1ピンと第6ピンはグランド端子、第2ピンはクロック信号CLKの端子、第3ピンは5V直流電圧(DC5V)の端子、第4ピンはデータ信号DATAの端子、第5ピンはリセット信号RESETの端子、第7ピンは12V直流電圧(DC12V)の端子とされている。
このLED発光駆動電流(17-R6、17-G6、17-B6、17-R7、17-G7、17B-7)は、そのままコネクタCN4Cの第2ピンから第7ピンを介して不図示の別の下流側のハンドル内LED基板に供給される。
またコネクタCN4Cの第1ピンには12V直流電圧(DC12VB)が印加され、不図示のハンドル内LED基板側に電源電圧供給がなされる。
即ち前枠LED接続基板500は、LEDドライバの動作のために、クロック信号CLK、5V直流電圧(DC5V)、データ信号DATA、リセット信号RESET、12V直流電圧(DC12V)を出力する。そしてそのLEDドライバによるLED発光駆動電流を戻し、中継して他方のLED基板に送る構成である。
またLED発光駆動電流(17-R6、17-G6、17-B6、17-R7、17-G7、17B-7)を中継することで、下流の2つのLED基板間でこれらを伝送するハーネスが不要となる。
このコネクタCN3Cは“1”〜“22”の数字を付したように第1ピンから第22ピンまでの22端子構成である。
第2ピンは5V直流電圧(DC5VB)の端子とされる。
第5ピン、第7ピン、第9ピンの3つのピンは12V直流電圧(DC12VB)の端子とされる。
なお、第2ピンから第9ピンのセンス信号SENS0〜SENS7については、チップ抵抗RA3C、RA4Cを介して5V直流電圧(DC5VB)によりプルアップされている。
なお、センス信号SENS14については、抵抗R26Cを介して5V直流電圧(DC5VB)によりプルアップされている。
このコネクタCN10Cは“1”〜“20”を付した第1ピンから第20ピンまでの20端子構成である。
第8ピンは5V直流電圧(DC5VB)の端子とされる。
第6ピンは12V直流電圧(DC12VB)の端子とされる。
第5ピン、第7ピンは12Vモータ駆動電圧(MOT12V)の端子とされる。
第15ピン、第17ピン、第20ピンは下流側からの検出信号であるセンス信号SENS8、SENS9、SENS11が入力される端子である。
なお、センス信号SENS8、SENS9、SENS11については、チップ抵抗RA5Cを介して5V直流電圧(DC5VB)によりプルアップされている。
前枠LED接続基板500には、ICとして、先に図13で説明したバッファ回路402と同様の8回路入りシュミットトリガバッファであるバッファ回路501,502,503,507,508や、トリプルバッファゲートであるバッファ回路504,512,513が搭載される。
これらに対する電源電圧としては、コネクタCN2Cの第1ピンから供給される5V直流電圧(DC5VB)が用いられる。
12Vモータ駆動電圧(MOT12V)はモータ駆動用の電源電圧としており、12V直流電圧(DC12VS)はモータドライバ510,511等のモータドライバ用の電源電圧としている。
即ち12V直流電圧(DC12VA)から12Vモータ駆動電圧(MOT12V)を生成するモータ電圧生成部520が形成されている。
図15のコネクタCN2Cには、内枠LED中継基板400から、クリア信号CLR_L、CLR_M、クロック信号CLK_L、CLK_M、データ信号DATA_L、DATA_M、汎用出力ポートの信号(汎用信号HANYOU)、イネーブル信号ENABLE_Mが送信されてくる。
これらの各信号は、バッファ回路501のA1端子〜A8端子に入力され、信号補償される。
なお内枠LED中継基板400から供給されたクリア信号CLR_L、CLR_Mは、前枠LED接続基板500内ではリセット信号RESET_L、RESET_Mとして示している。
LEDドライバ509は、クロック信号CLK_L、データ信号DATA_Lに応じた発光駆動電流を出力するデバイスであるが、この場合、主にモータ駆動のためのシリアル/パラレル(S/P)変換回路として用いられる。
LEDドライバ509は、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR8、LEDG8、LEDB8を有し、24系統の駆動電流出力を行うことができるが、この場合は出力端子LEDR1、LEDG1、LEDB1、LEDR2、LEDG2、LEDB2、LEDR3の7端子を用いている。図示のとおり他の出力端子はグランドに接続される。
そして出力端子LEDR1、LEDG1、LEDB1、LEDR2、LEDG2、LEDB2、LEDR3の出力(電流23-R1、23-G1、23-B1、23-R2、23-G2、23-B2、23-R3)は、バッファ回路508でバッファ処理されたうえで、モータドライバ510の入力端子IN1、IN2、IN3、IN4、モータドライバ511の入力端子IN1、IN3、IN4に供給される。
モータドライバ511は入力端子IN1、IN3、IN4の信号に基づいて出力端子OUT1、OUT3、OUT4から、モータ駆動信号MOT3-1、MOT3-3、MOT3-4を出力する。
モータ駆動信号MOT3-3、MOT3-4は、図17のコネクタCN3Cに供給され、上述の駆動汎用信号1、駆動汎用信号2として中継基板550に出力される。
従って、中継基板550以降の下流側には、シリアルデータ送信のための信号が、バッファ回路501、502で信号補償されて送信されることになる。
P/S CONT 端子=Lの場合、Q/D1端子〜Q/D8端子の8端子はパラレル出力となり、SI端子のデータがCK端子の入力波形の立ち上がりで各レジスタに蓄えられるとともにQ/D1端子〜Q/D8端子へ出力される。またCLR/LOAD端子=Lにすることで、CK端子の入力に非同期に各レジスタはリセットされる。
P/S CONT端子=Hの場合、Q/D1端子〜Q/D8端子の8端子はパラレル入力となりCLR/LOAD端子=LでCK端子入力に非同期にQ/D1端子〜Q/D8端子の入力データが各レジスタに蓄えられる。
また、図15のコネクタCN2Cから入力されるクロック信号S_IN_CLK、ロード信号S_IN_LOADはそれぞれバッファ回路513でバッファ処理されてP/S変換回路505、506に入力される。即ちクロック信号S_IN_CLKがCK端子の入力となり、ロード信号S_IN_LOADがCLR/LOAD端子の入力となる。
Q/D3端子、Q/D5端子、Q/D6端子、Q/D8端子はグランドに接続されている。即ち各入力は「0」(Lレベル)となる。
センス信号SENS8、SENS9、SENS11は、図20のコネクタCN10Cに下流のボタンLED接続基板640から入力される、ボタン操作を検出するスイッチセンサや、ボタン内部の可動体の回転位置や原点位置を検出するセンサの検出信号である。
センス信号SENS14は図18のコネクタCN9Cから入力されるタッチセンサの検出信号である。
これらのセンス信号SENS0〜SENS7は、図18のコネクタCN7Cに入力される、十字キー15a等の検出信号である。
コネクタCN7Cからのセンス信号SENS0〜SENS7は、バッファ回路507で信号補償されたうえで、P/S変換回路506の上記の各端子に入力される。
図21に、上流の内枠LED中継基板400からコネクタCN2Cに供給されるクロック信号CLK_L、CLK_M、クリア信号CLR_L、CLR_M(リセット信号RESET_L、RESET_M)、データ信号DATA_L、DATA_M、汎用信号HANYOU、イネーブル信号ENABLE_Mについての流れをまとめた。
・クロック信号CLK_L、クリア信号CLR_L(リセット信号RESET_L)、データ信号DATA_Lは、バッファ回路504を介してコネクタCN1Cによりクロック信号CLK、リセット信号RESET、データ信号DATAとして下流側に送信される。
・クロック信号CLK_L、クリア信号CLR_L(リセット信号RESET_L)、データ信号DATA_Lは、バッファ回路512を介してコネクタCN10Cによりクロック信号CLK_L、クリア信号CLR_L、データ信号DATA_Lとして下流側に送信される。
・クロック信号CLK_L、データ信号DATA_Lは、汎用信号HANYOUは、LEDドライバ509に供給されモータ駆動電流の生成に用いられる。
・クロック信号S_IN_CLK、ロード信号S_IN_LOADは、バッファ回路513を介してP/S変換回路505、506に供給され、パラレル/シリアル変換処理に用いられる。
・スピーカへの音声信号を中継してスピーカユニットへ送信する。
・コネクタCN2Cにより12V直流電圧(DC12VB)、5V直流電圧(DC5VB)を受け取り、動作電源としている。
・12V直流電圧(DC12VB)を用いてモータ駆動信号生成に用いる12Vモータ駆動電圧(MOT12V)と12V直流電圧(DC12VS)を生成している。LED及びLEDドライバ用の12V直流電圧(DC12VB)と、モータ駆動用の12Vモータ駆動電圧(MOT12V)と、モータドライバ用の12V直流電圧(DC12VS)として用途に応じて電源を分けることでノイズによる悪影響を防止している。
・12V直流電圧(DC12VB)、5V直流電圧(DC5VB)を下流側に動作電源電圧として供給している。
クリア信号CLR_L、CLR_M、クロック信号CLK_L、CLK_M、データ信号DATA_L、DATA_M、汎用出力ポートの信号(汎用信号HANYOU)、イネーブル信号ENABLE_Mなどの信号線のダンピング抵抗としては、図15のコネクタCN2C側に抵抗R8C、R10C、R12C、R13C、R14C、R16C、R17C、R18Cを挿入し、さらにチップ抵抗RA1C、RA2Cを挿入している。つまりコネクタCN2Cの近傍と信号分岐の手前にダンピング抵抗を入れることで波形を成形する構成としている。
また図示の通りタップTP1C〜TP14Cが設けられ所要箇所との接続に用いられる。
また図示を省略しているが、直流5Vや直流12Vの電源ラインとグランドの間には適宜、電源ノイズ低減等のためのコンデンサが配置されている。
中継基板550の構成を図23に示す。中継基板550にはコネクタCN1D、CN2Dが搭載される。
従って、このコネクタCN1Dは“1”〜“22”の数字を付したように第1ピンから第22ピンまでの22端子構成であり、端子のアサインは上述のコネクタCN3Cと同様となる。コネクタCN1Dのハウジングにおける導体点P1,P2もグランドに接続されている。
このコネクタCN2Dは“1”〜“20”の数字を付したように第1ピンから第20ピンまでの20端子構成である。
第1ピンは5V直流電圧(DC5VB)の端子とされる。
第5ピン、第7ピンの2つのピンは12V直流電圧(DC12VB)の端子とされる。
またコネクタCN1Dでは第1ピン、第3ピン、第11ピン、第13ピン、第18ピンの5端子をグランド端子としたものを、コネクタCN2D側では第3ピン、第9ピン、第11ピン、第16ピンの4端子としている。
これにより下流側へのコネクタCN2Dの端子数を削減している。
またコネクタCN1DとコネクタCN2Dは、コネクタの種類が異なるものとしている。コネクタCN2Dの方が1ピンあたりの定格電流が大きく、このためコネクタCN2Dの電源端子とグランド端子の数を少なくできる。
またコネクタCN2DのほうがコネクタCN1Dより抜き差しが容易で、端子が太く、ハウジングが大きいものとなっている。
サイドユニット右上LED基板600を図24,図25,図26,図27,図28,図29を用いて説明する。これらの図はサイドユニット右上LED基板600に設けられる回路構成を分けて示したものである。
従って、このコネクタCN1Eは“1”〜“20”の数字を付したように第1ピンから第20ピンまでの20端子構成であり、端子のアサインは上述のコネクタCN2Dと同様となる。
第1ピンにはサイドユニットデバイス101のセンサ側の電源電圧となる12V直流電圧(DC12VB)が印加される。第2ピンにはグランド端子とされる。
このコネクタCN2Eは第1ピンから第6ピンが、グランド端子、クロック信号CLKの端子、データ信号DATAの端子、リセット信号RESETの端子、グランド端子、12V直流電圧(DC12VB)の端子としてアサインされている。
このコネクタCN3Eは“1”〜“16”の数字を付したように第1ピンから第16ピンまでの16端子構成である。
第8ピン、第13ピンはグランド端子とされる。
第15ピンは12Vモータ駆動電圧(MOT12V)の端子とされる。なお第15ピンとグランド間には保護回路としてツェナーダイオードD11Eが接続される。
なおセンス信号SENS1Xは、図25に示すように、抵抗R13Eを介して5V直流電圧(DC5V)によりプルアップされている。
またセンス信号SENS_A、センス信号SENS_B、センス信号SENS_Cもそれぞれ抵抗R29E、R27E、R21Eを介して5V直流電圧(DC5V)によりプルアップされている。
なお第10ピン、第12ピン、第14ピン、第16ピンとグランド間には保護回路としてそれぞれツェナーダイオードD10E,D12E,D13E,D14Eが接続される。
サイドユニット右上LED基板600には、ICとして、図25のバッファ回路601,図26のバッファ回路604,図28のバッファ回路607が搭載される。これらは先に図13で説明したバッファ回路402と同様の8回路入りシュミットトリガバッファである。
これらに対する電源電圧としては5V直流電圧(DC5V)が用いられる。5V直流電圧(DC5V)は、図24のコネクタCN1Eの第1ピンから供給される5V直流電圧(DC5VB)について、ヒューズF1Eを介したコンデンサC1Eの正極側の電圧である。
この場合の12V直流電圧(DC12VB)は、図24のコネクタCN1Eの第5ピン、第7ピンからヒューズF2Eを介したコンデンサC2Eの正極側の電圧として取り出される。
図29に示すように、12V直流電圧(DC12VB)のラインに対して、ショットキーバリアダイオードD8Eのアノード側が接続されている。ショットキーバリアダイオードD8Eのカソード側とグランドの間には、抵抗R23E、コンデンサC10E、C11E、チップバリスタ611が並列に接続される。この構成により、過電圧保護がなされた電源電圧として12Vモータ駆動電圧(MOT12V)が生成される。
12V直流電圧(DC12VS)は、同図に示すように、ダイオードD7E、抵抗R17E、コンデンサC8Eによる回路を用いて、12V直流電圧(DC12VB)から生成している。
図24のコネクタCN1Eには、中継基板550から、ロード信号S_IN_LOAD、クロック信号S_IN_CLK、イネーブル信号ENABLE_L(リセット信号RESET_M)、クロック信号CLK_P、リセット信号RESET_P、データ信号DATA_Pが入力され、これらの信号は図25のバッファ回路601で信号補償される。
なお、これらの各信号の信号経路には図24のように抵抗R3EとツェナーダイオードD2E、抵抗R6EとツェナーダイオードD3E、抵抗R66EとツェナーダイオードD15E、抵抗R9EとツェナーダイオードD6E、抵抗R11EとツェナーダイオードD5E、抵抗R12EとツェナーダイオードD15Eによる保護回路が設けられている。
そしてバッファ処理されてY1端子、Y2端子、Y3端子から出力される信号が、コネクタCN2Eからクロック信号CLK、データ信号DATA、リセット信号RESETとして出力される。
またバッファ処理されてY5端子、Y6端子、Y7端子から出力される信号がコネクタCN3Eからクロック信号CLK、データ信号DATA、リセット信号RESETとして出力される。
また、このようにコネクタCN2E、CN3Eから出力されるクロック信号CLK、データ信号DATA、リセット信号RESETは、元々は図24のコネクタCN1Eから入力されたクロック信号CLK_P、データ信号DATA_P、リセット信号RESET_Pである。これらは上述のように図25のバッファ回路601でバッファ処理されたうえで、クロック信号CLK_A、データ信号DATA_A、リセット信号RESET_Aとして出力され、図26のバッファ回路604の段階で2系統に分岐される。つまり分岐前もバッファ処理されることで、それまでの伝送路での減衰が補償されたうえで分岐されることになる。共通の信号を2つの基板に分配する際に安定した信号供給を実現している。
LEDドライバ605は、クロック信号CLK_A、データ信号DATA_A、リセット信号RESET_Aに応じた発光駆動電流を出力する。
LEDドライバ605は、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR8、LEDG8、LEDB8を有し、24系統の駆動電流出力を行うことができるが、この場合は出力端子LEDR1、LEDG1、LEDB1、LEDR2、LEDG2、LEDB2、LEDR3、LEDG3、LEDB3、LEDR4、LEDG4、LEDB4、LEDR5、LEDG5の14端子を用いている。図示のとおり他の出力端子はグランドに接続される。
発光部612の各系統のLED回路は、それぞれ図示のとおり、2又は3つのLED(LED1,LED2・・・)の直列接続と抵抗素子により構成されている。各系統のLED回路は並列とされ、それぞれアノード側に12V直流電圧(DC12VB)が印加される。
この場合、発光駆動制御のための信号を、バッファ回路601でバッファ処理した後にLEDドライバと下流の基板への送信用に分岐していることで、安定した送信を行うとともに、バッファ回路構成を効率化している。
LEDドライバ606は、クロック信号CLK_A、データ信号DATA_A、リセット信号RESET_Mに応じた発光駆動電流を出力するデバイスであるが、この場合、主にモータ駆動のためのシリアル/パラレル変換回路として機能する。LEDドライバ606は、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR8、LEDG8、LEDB8を有し、24系統の駆動電流出力を行うことができるが、この場合は出力端子LEDG1、LEDB1、LEDR2、LEDG2、LEDB2、LEDR3、LEDG3の7端子を用いている。図示のとおり他の出力端子はグランドに接続される。
そして出力端子LEDG1、LEDB1、LEDR2、LEDG2、LEDB2、LEDR3、LEDG3の出力(電流30-G1,30-B1,30-R2,30-G2,30-B2,30-R3,30-G3)は、バッファ回路607でバッファ処理されたうえで、モータドライバ608の入力端子IN2、IN3、IN4、モータドライバ609の入力端子IN1、IN2、IN3、IN4に供給される。
従ってLEDドライバ605からモータドライバ609までの回路は、サイドユニット右上LED基板600内において、下流側のサイドユニット右下LED基板620のモータ駆動信号を生成する回路系となる。
P/S変換回路602,603は、P/S CONT端子に5V直流電圧(DC5V)が印加されることとでP/S CONT端子=Hとされ、Q/D1端子〜Q/D8端子の8端子はパラレル入力とされる。
Q/D6端子、Q/D7端子、Q/D8端子はグランドに接続されている。
センス信号SENS_A、SENS_B、SENS_C、SENS1Xは、コネクタCN3Eから入力される。センス信号SENS2XはコネクタCN7Eから入力される。
P/S変換回路602はSI端子に入力されるP/S変換回路603からのシリアルデータ信号SDT3と、Q/D1端子〜Q/D8端子の論理(H/L)をまとめてシリアルデータ(シリアルデータ信号SDT4)に変換してQ8端子から出力する。このシリアルデータ信号SDT4はバッファ回路601に入力され、バッファ処理される。この出力が当該サイドユニット右上LED基板600からのシリアルデータ信号S_IN_DATAxとして、図24のコネクタCN1Eから上流側に送信される。
・イネーブル信号ENABLE_L(リセット信号RESET_M)、クロック信号CLK_P、リセット信号RESET_P、データ信号DATA_Pが入力され、これらに対してバッファ回路601でバッファ処理を行う。そしてバッファ処理後の信号は、LED発光に用いられたり、モータ駆動信号の生成に用いられたり、下流側へ転送されたりする。
・各種センス信号SENS_A、SENS_B、SENS_C、SENS1X、SENS2Xをまとめてシリアルデータに変換してシリアルデータ信号S_IN_DATAxが生成される。このシリアルデータ信号S_IN_DATAxを上流側に送信される。なお上述のように、このシリアルデータ信号S_IN_DATAxは、前枠LED接続基板500においてさらにセンス信号SENS8、SENS9、SENS11、SENS1とともにシリアルデータ化され、シリアルデータ信号S_IN_DATAとされて内枠LED中継基板400を介して演出制御基板30に送信されることになる。
・12V直流電圧(DC12VB)を用いてモータ駆動信号生成に用いる12Vモータ駆動電圧(MOT12V)と12V直流電圧(DC12VS)を生成している。
・12V直流電圧(DC12VB)、5V直流電圧(DC5VB)を下流側に動作電源電圧として供給している。
また図示の通りタップTP1E、TP2E・・・が設けられ所要箇所との接続に用いられる。
また図示を省略しているが、直流5Vや直流12Vの電源ラインとグランドの間には適宜、電源ノイズ低減等のためのコンデンサが配置されている。
サイドユニット右下LED基板620を図30,図31を用いて説明する。これらの図はサイドユニット右下LED基板620に設けられる回路構成を分けて示したものである。
従って、このコネクタCN3Fは“1”〜“16”の数字を付したように第1ピンから第16ピンまでの16端子構成であり、端子のアサインは上述のコネクタCN3Eと同様となる。
第3ピン、第4ピンには12Vモータ駆動電圧(MOT12V)が印加される。第1ピン、第2ピン、第5ピン、第6ピンからはコネクタCN3Fから入力されたモータ駆動信号MOT1-/2、MOT1-/1、MOT1-2、MOT1-1が出力される。
第1ピンは12V直流電圧(DC12VB)、第2ピンはグランドの端子とされる。第3ピンは、接続された位置検出スイッチからのセンス信号SENS1Xの入力端子となる。
サイドユニット右下LED基板620には、フォトカプラPC1F、PC2F、PC3Fが搭載される。
これらに対する電源電圧としては5V直流電圧(DC5V)が用いられる。5V直流電圧(DC5V)はコネクタCN3Fの第1ピンから供給される。
また、図30のコネクタCN1Fから出力される12Vモータ駆動電圧(MOT12V)は、コネクタCN3Fの第15ピンから供給される。
コネクタCN3Fには、サイドユニット右上LED基板600から、クロック信号CLK、データ信号DATA、リセット信号RESETが入力され、これらの信号は図31のLEDドライバ621に供給される。
LEDドライバ621は、クロック信号CLK、データ信号DATA、リセット信号RESETに応じた発光駆動電流を出力する。
発光部622の各系統のLED回路は、それぞれ図示のとおり、1又は3つのLEDの直列接続と抵抗素子により構成されている。各系統のLED回路は並列とされ、それぞれアノード側に12V直流電圧(DC12VB)が印加される。
出力端子LEDR7、LEDG7、LEDB7、LEDR8は発光駆動部623の4系統に接続される。発光駆動部623では、4系統の発光駆動電流(27-R7、27-G7、27-B7・・・27-R8)をコネクタCN2Fから出力する。
またコネクタCN4Fから得られるセンス信号SENS1XもコネクタCN3Fからサイドユニット右上LED基板600に送信される。
これらのセンス信号SENS_A、SENS_B、SENS_C、SENS1Xは上述のようにシリアルデータ化される。
また図示の通りタップTP1F、TP2F・・・が設けられ所要箇所との接続に用いられる。
サイドユニット上LED基板630を、図32を用いて説明する。
サイドユニット上LED基板630にはコネクタCN1Tが搭載される。
コネクタCN1Tは、図26のサイドユニット右上LED基板600のコネクタCN2Eとの間を接続する伝送線路H12の伝送線路端が接続される。
なお、コネクタCN1Tのハウジングにおける導体点P1,P2はグランドに接続されている。
コネクタCN1Tには、サイドユニット右上LED基板600から、クロック信号CLK、データ信号DATA、リセット信号RESETが入力され、これらの信号はLEDドライバ631に供給される。
LEDドライバ631は、クロック信号CLK、データ信号DATA、リセット信号RESETに応じた発光駆動電流を出力する。
発光部632の各系統のLED回路は、それぞれ図示のとおり、2つのLEDの直列接続と抵抗素子により構成されている。各系統のLED回路は並列とされ、それぞれアノード側に12V直流電圧(DC12VB)が印加される。
また図示の通りタップTP1T、TP2T・・・が設けられ所要箇所との接続に用いられる。
ボタンLED接続基板640を、図33を用いて説明する。
ボタンLED接続基板640にはコネクタとして、コネクタCN1G、CN2G、CN3G、CN4G、CN5G、CN6G、CN8Gが搭載される。
従って、このコネクタCN1Eは“1”〜“20”の数字を付したように第1ピンから第20ピンまでの20端子構成であり、端子のアサインは上述のコネクタCN10Cと同様となる。
第3ピン、第7ピンにはボタンLED基板660の電源電圧となる12V直流電圧(DC12VB)が印加される。第1ピンと第6ピンはグランド端子とされている。
第2ピン、第4ピン、第5ピンは、それぞれクロック信号CLK、データ信号DATA、リセット信号RESETの端子とされる。
コネクタCN1Gから入力されるモータ駆動信号MOTφ1、MOTφ/1、MOTφ2、MOTφ/2は、コネクタCN3Gの第6ピン、第2ピン、第5ピン、第1ピンから出力される。
またコネクタCN1Gから入力される12Vモータ駆動電圧(MOT12V)が、図示の12Vモータ駆動電圧(MOT12VA)として第3ピン、第4ピンに印加される。
第1ピンは12V直流電圧(DC12VB)、第2ピンはグランドの端子とされる。第3ピンは、接続された押しボタンセンサからのセンス信号SENS8の入力端子となる。
第1ピンは12V直流電圧(DC12VB)、第3ピンはグランドの端子とされる。第2ピンは、接続された回転原点センサからのセンス信号SENS9の入力端子となる。
第1ピンは12V直流電圧(DC12VB)、第3ピンはグランドの端子とされる。第2ピンは、接続された回転演出ライトセンサからのセンス信号SENS11の入力端子となる。
上流の前枠LED接続基板500からコネクタCN1Gに供給されるクロック信号CLK_L、クリア信号CLR_L、データ信号DATA_Lは、チップ抵抗RA1Gを介してバッファ回路641に入力され、バッファ処理される。そしてチップ抵抗RA2Gを介してコネクタCN2Gに送られ、下流のボタンLED基板660に送信される。
なおバッファ回路641の5V直流電圧(DC5V)とグランド間にコンデンサC1Gが挿入される。
ボタンLED基板660を図34,図35を用いて説明する。これらの図はボタンLED基板660に設けられる回路構成を分けて示したものである。
コネクタCN1Hは、図33のボタンLED接続基板640のコネクタCN2Gとの間を接続する伝送線路H16の伝送線路端が接続される。
従って、このコネクタCN1Hは“1”〜“7”の数字を付したように第1ピンから第7ピンまでの7端子構成であり、端子のアサインは上述のコネクタCN2Gと同様となる。
またコネクタCN1Hのハウジングにおける導体点P1,P2はグランドに接続されている。
ボタンLED基板660には、ICとして、図34のLEDドライバ661、図35のLEDドライバ663が搭載され、これに対する電源電圧としては、12V直流電圧(DC12VB)が用いられる。
発光部664,662の電源電圧も12V直流電圧(DC12VB)が用いられる。
コネクタCN1Hには、サイドユニット右上LED基板600から、クロック信号CLK、データ信号DATA、リセット信号RESETが入力され、これらの信号は図34のチップ抵抗RA1Hを介してLEDドライバ661に供給される。
LEDドライバ661は、クロック信号CLK、データ信号DATA、リセット信号RESETに応じた発光駆動電流を出力する。
即ち出力端子LEDR1、LEDG1、LEDB1・・・LEDR8、LEDG8、LEDB8には、発光部662として形成された24系統のLED回路のそれぞれに接続され、発光駆動電流(19-R1、19-G1、19-B1・・・19-R8、19-G8、19-B8)を流す。
発光部662の各系統のLED回路は、それぞれ図示のとおり、2又は3つのLEDの直列接続と抵抗素子により構成されている。各系統のLED回路は並列とされ、それぞれアノード側に12V直流電圧(DC12VB)が印加される。
LEDドライバ663は、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR6、LEDG6、LEDB6を、3端子ずつ用いて6系統のLED発光駆動を行う。
即ち出力端子LEDR1、LEDG1、LEDB1・・・LEDR6、LEDG6、LEDB6には、発光部664として形成された6系統のLED回路のそれぞれに接続され、発光駆動電流(20-R1、20-G1、20-B1・・・20-R6、20-G6、20-B6)を流す。
発光部664の各系統のLED回路は、それぞれ図示のとおり、2又は3つのLEDの直列接続と抵抗素子により構成されている。各LEDには並列にツェナーダイオードが接続されている。各系統のLED回路は並列とされ、それぞれアノード側に12V直流電圧(DC12VB)が印加される。
また図示の通りタップTP1H、TP2H・・・が設けられ所要箇所との接続に用いられる。
続いて、遊技盤3側に配置される基板を説明していく。
まずLED接続基板700を図36,図37,図38,図39,図40,図41を用いて説明する。これらの図はLED接続基板700に設けられる回路構成を分けて示したものである。
LED接続基板700は図11のとおり、遊技盤3において演出制御基板30と接続される基板である。
このコネクタCN1Jは“1”〜“40”の数字を付したように第1ピンから第40ピンまでの40端子構成である。
第4ピン、第6ピンは5V直流電圧(DC5VB)の端子とされる。
第12ピン、第14ピン、第24ピン、第26ピン、第28ピン、第30ピンは12V直流電圧(DC12VB)の端子とされる。
第11ピン、第17ピン、第35ピン、第37ピンは未使用である。
なお、シリアルデータ信号P_S_IN_DATAはLED接続基板700から演出制御基板30に送信するシリアルデータであり、クロック信号P_S_IN_CLK、ロード信号P_S_IN_LOADは、シリアルデータ信号P_S_IN_DATAの送信のために演出制御基板30から供給される信号である。
シリアルデータ信号P_S_OUT_DATAはクロック信号P_S_OUT_CLKとともに演出制御基板30から送信されてくるシリアルデータである。
シリアルデータ信号M_S_OUT_DATAはクロック信号M_S_OUT_CLKとともに演出制御基板30から送信されてくるシリアルデータである。
第1ピンはモータ駆動信号MOT6-/2、第2ピンはモータ駆動信号MOT6-/1、第5ピンはモータ駆動信号MOT6-2、第6ピンはモータ駆動信号MOT6-1の各端子としてアサインされている。
第1ピンはモータ駆動信号MOT7-/2、第2ピンはモータ駆動信号MOT7-/1、第5ピンはモータ駆動信号MOT7-2、第6ピンはモータ駆動信号MOT7-1の各端子としてアサインされている。
このコネクタCN2Jの第2ピンには例えば下奥可動物右位置検出スイッチ121(図10参照)の検出信号であるセンス信号SENSv0が入力される。センス信号SENSv0については、抵抗R5Jを介して5V直流電圧(DC5V)によりプルアップされている。
このコネクタCN4Jの第2ピンには例えば、下奥可動物左位置検出スイッチ125(図10参照)の検出信号であるセンス信号SENSv1が入力される。センス信号SENSv1については、抵抗R29Jを介して5V直流電圧(DC5V)によりプルアップされている。
このコネクタCN12Jの第2ピンには例えば、下奥可動物上位置検出スイッチ120(図10参照)の検出信号であるセンス信号SENSv9が入力される。センス信号SENSv9については、抵抗R31Jを介して5V直流電圧(DC5V)によりプルアップされている。
第1ピンはヒューズF6Jを介して12V直流電圧(DC12VB)が印加される端子、第2ピンはヒューズF9Jを介して5V直流電圧(DC5V)が印加される端子、第3ピン、第4ピン、第5ピンは12Vモータ駆動電圧(MOT12V)が印加される端子である。
第9ピン、第13ピン、第17ピン、第21ピン、第25ピン、第27ピン、第29ピン、第30ピン、第31ピン、第32ピンはグランドに接続される。
第14ピンはモータ駆動信号MOT2-/2、第16ピンはモータ駆動信号MOT2-/1、第18ピンはモータ駆動信号MOT2-2、第20ピンはモータ駆動信号MOT2-1の各端子としてアサインされている。
第22ピンはモータ駆動信号MOT3-/2、第24ピンはモータ駆動信号MOT3-/1、第26ピンはモータ駆動信号MOT3-2、第28ピンはモータ駆動信号MOT3-1の各端子としてアサインされている。
センス信号SENSv2は例えば図10の上可動物位置検出スイッチ132の検出信号、センス信号SENSv3は例えば上可動物左位置検出スイッチ130の検出信号、センス信号SENSv4は例えば左可動物位置検出スイッチ134の検出信号である。
第2ピンはクロック信号CLK_Eの端子、第3ピンはデータ信号DATA_Eの端子である。
第1ピン、第15ピン、第16ピンはグランドに接続される。
第14ピンはセンス信号SENSv7の端子とされている。センス信号SENSv7は例えば図10の下前可動物位置検出スイッチ123の検出信号である。
第2ピン、第8ピン、第10ピン、第12ピンは発光駆動電流13-B7、13-R8、13-G8、13-B8の端子である。
第2ピンはクロック信号CLK_Dの端子、第3ピンはデータ信号DATA_Dの端子である。
第8ピン、第7ピン、第6ピン、第5ピンは発光駆動電流13-B7、13-R8、13-G8、13-B8の端子である。
第14ピンはセンス信号SENSv8の端子とされている。センス信号SENSv8は例えば図10の振り分け位置検出スイッチ122の検出信号である。
第7ピン、第13ピン、第14ピン、第19ピン、第20ピンはグランドに接続される。
第6ピンと第8ピンはモータ駆動信号MOT5-/2、第10ピンと第12ピンはモータ駆動信号MOT5-/1、第16ピンと第18ピンはモータ駆動信号MOT5-2、第22ピンと第24ピンはモータ駆動信号MOT5-1の各端子とされる。この場合、駆動するモータが高トルクのモータとされており18Vモータ駆動電圧(MOT18VB)で駆動する。そして消費電力が多いためモータ駆動信号MOT5-/2、MOT5-/1、MOT5-2、MOT5-1は、それぞれ2本のピン/線路を用いるようにしている。
第21ピンはセンス信号SENSv6の端子、第23ピンはセンス信号SENSv5の端子とされている。センス信号SENSv6は例えば図10の下奥可動物下左位置検出スイッチ128の検出信号、センス信号SENSv5は例えば下奥可動物下右位置検出スイッチ127の検出信号である。
LED接続基板700には、ICとして、先に図13で説明したバッファ回路402と同様の8回路入りシュミットトリガバッファである図36のバッファ回路703、704や、トリプルバッファゲートである図39のバッファ回路705、図41のバッファ回路707,708が搭載される。
これらに対する電源電圧としては、図36に示したように、コネクタCN1Jからの5V直流電圧(DC5VB)に基づく5V直流電圧(DC5V)が用いられる。
さらにモータドライバ714、715,716が搭載され、これらに対する電源電圧としては、18Vモータ駆動電圧(MOT18VA)と12V直流電圧(DC12VS)を用いている。
18V直流電圧Voutが印加される第1ピン、第2ピン、第4ピンに対し、ヒューズF3Jを介してショットキーバリアダイオードD7Jのアノード側が接続されている。ショットキーバリアダイオードD7Jのカソード側とグランドの間には、抵抗R7J、コンデンサC17J、C18Jが並列に接続される。この構成により18Vモータ駆動電圧(MOT18VA)が取り出される。
また同じく18V直流電圧Voutが印加される第1ピン、第2ピン、第4ピンに対し、ヒューズF4Jを介してショットキーバリアダイオードD9Jのアノード側が接続されている。ショットキーバリアダイオードD9Jのカソード側とグランドの間には、抵抗R8J、コンデンサC20J、C21Jが並列に接続される。この構成により18Vモータ駆動電圧(MOT18VB)が取り出される。
また同じく18V直流電圧Voutが印加される第1ピン、第2ピン、第4ピンに対し、ヒューズF5Jを介してショットキーバリアダイオードD11Jのアノード側が接続されている。ショットキーバリアダイオードD11Jのカソード側とグランドの間には、抵抗R9J、コンデンサC23J、C24Jが並列に接続される。この構成により18VLED駆動電圧(LED18V)が取り出される。
図36のコネクタCN1Jには、演出制御基板30から、クロック信号P_S_OUT_CLK、シリアルデータ信号P_S_OUT_DATAが送信されてくる。これらは、LED接続基板700よりも下流の動作制御に用いられる信号である。
そしてバッファ回路703のY5端子、Y7端子から出力され、クロック信号CLK_A、シリアルデータ信号DATA_Aとして示すように図40のバッファ回路706に入力されてバッファ処理される。そしてコネクタCN7Jから、クロック信号CLK_E、シリアルデータ信号DATA_Eとして示すように下流側に送信される。
さらにクロック信号CLK_A、シリアルデータ信号DATA_Aは、図41のバッファ回路707にも入力されてバッファ処理され、コネクタCN9Jから、クロック信号CLK_D、シリアルデータ信号DATA_Dとして下流側に送信される。
さらにクロック信号CLK_A、シリアルデータ信号DATA_Aは、図41のバッファ回路708にも入力されてバッファ処理され、コネクタCN8Jから、クロック信号CLK_C、シリアルデータ信号DATA_Cとして下流側の盤裏左中継基板720に送信される。
これらはモータ駆動のための制御に用いられる。
これらの信号はバッファ回路704のA7端子、A1端子、A3端子、A5端子に入力されて信号補償される。そしてチップ抵抗RA4Jを介して、図37のモータドライバ710〜716にそれぞれ入力される。
即ちモータドライバ710〜716のそれぞれにおいて、リセット信号RESET_MはRESET端子に、ラッチ信号LATCH_MはLATCH端子に、クロック信号CLK_MはSCLK端子に、シリアルデータ信号DATA_MはSDIN端子に、それぞれ入力される。
即ちモータドライバ710は、コネクタCN10Jから出力するモータ駆動信号MOT1-/2、MOT1-/1、MOT1-2、MOT1-1を生成する。
モータドライバ711は、コネクタCN10Jから出力するモータ駆動信号MOT2-/2、MOT2-/1、MOT2-2、MOT2-1を生成する。
モータドライバ712は、コネクタCN10Jから出力するモータ駆動信号MOT3-/1、MOT3-2、MOT3-1を生成する。
モータドライバ713は、コネクタCN11Jから出力するモータ駆動信号MOT4-/2、MOT4-/1、MOT4-2、MOT4-1を生成する。
即ちモータドライバ714は、コネクタCN8Jから出力するモータ駆動信号MOT5-/2、MOT5-/1、MOT5-2、MOT5-1を生成する。
モータドライバ715は、コネクタCN5Jから出力するモータ駆動信号MOT6-/2、MOT6-/1、MOT6-2、MOT6-1を生成する。
モータドライバ716は、コネクタCN6Jから出力するモータ駆動信号MOT7-/2、MOT7-/1、MOT7-2、MOT7-1を生成する。
クロック信号P_S_IN_CLK、ロード信号P_S_IN_LOADは、バッファ回路703のA3端子、A2端子に入力されて信号補償される。そしてバッファ回路703のY3端子、Y2端子からチップ抵抗RA1Jを介してP/S変換回路701,702のCK端子、CLR/LOAD端子に入力される。
P/S変換回路701,702には、P/S CONT端子に5V直流電圧(DC5V)が印加されることとでP/S CONT端子=Hとされ、Q/D1端子〜Q/D8端子の8端子はパラレル入力とされる。そしてP/S変換回路701,702は、クロック信号P_S_IN_CLK、ロード信号P_S_IN_LOADに応じてパラレル−シリアル変換を行う。
またP/S変換回路701のQ/D2端子には、図38のコネクタCN12Jからのセンス信号SENSv9が入力される。
Q/D3端子〜Q/D7端子の入力はグランドレベル「0」(Lレベル)、Q/D8端子は5Vレベル「1」(Hレベル)とされている。
P/S変換回路702は以上のパラレル入力をシリアルデータ(シリアルデータ信号SDT5)に変換してQ8C端子から出力する。このシリアルデータ信号SDT5はP/S変換回路702のSI端子に入力される。
センス信号SENSv2〜SENSv7は、それぞれ抵抗R24J、R2J、チップ抵抗RA3Jを介して5V直流電圧(DC5V)によりプルアップされている。
・下流側から入力されるセンス信号SENSv0〜SENSv9をシリアルデータ化し、バッファ回路703を介してコネクタCN1Jから上流側にシリアルデータ信号P_S_IN_DATAとして送信する。
・演出制御基板30から送信されてくる、クロック信号P_S_OUT_CLK、シリアルデータ信号P_S_OUT_DATAを、バッファ回路703、及びバッファ回路(705,706,707,708のいずれか)を介して下流側に転送する。
・コネクタCN3Jにより18V直流電圧Voutを受け取り、18V系の動作電源(高輝度LEDや高トルクモータの動作電源)としている。
・12V直流電圧(DC12VB)、5V直流電圧(DC5V)、12Vモータ駆動電圧(MOT12V)、18Vモータ駆動電圧(MOT18V)、18VLED駆動電圧(LED18V)を下流側に動作電源電圧として供給している。
また図示の通りタップTP1J、TP2J・・・が設けられ所要箇所との接続に用いられる。
また図示を省略しているが、直流5Vや直流12Vの電源ラインとグランドの間には適宜、電源ノイズ低減等のためのコンデンサが配置されている。
盤裏左中継基板720の構成を図42に示す。盤裏左中継基板720にはコネクタCN1K、CN2Kが搭載される。
従って、このコネクタCN1Kは“1”〜“24”の数字を付したように第1ピンから第24ピンまでの24端子構成であり、端子のアサインは上述のコネクタCN8Jと同様となる。
このコネクタCN1Bは“1”〜“22”の数字を付したように第1ピンから第22ピンまでの22端子構成である。
第6ピンは5V直流電圧(DC5V)の端子とされる。
第8ピン、第9ピンは12V直流電圧(DC12VB)の端子とされる。
第11ピン、第12ピン、第13ピン、第14ピンは18Vモータ駆動電圧(MOT18VB)の端子とされる。
第15ピンと第16ピンはモータ駆動信号MOT5-/2、第17ピンと第18ピンはモータ駆動信号MOT5-/1、第19ピンと第20ピンはモータ駆動信号MOT5-2、第21ピンと第22ピンはモータ駆動信号MOT5-1の各端子とされる。
第2ピンはセンス信号SENSv6の端子、第1ピンはセンス信号SENSv5の端子とされている。
装飾基板740を、図43を用いて説明する。
装飾基板740には、コネクタCN1L、CN2L、CN3L、CN4L、CN5L、CN6Lが搭載される。
従って、このコネクタCN1Lは“1”〜“22”の数字を付したように第1ピンから第22ピンまでの22端子構成であり、端子のアサインは上述のコネクタCN2Kと同様となる。
なお、コネクタCN1K〜CN6Kのハウジングにおける導体点P1,P2はグランドに接続されている。
第1ピンは12V直流電圧(DC12VB)、第3ピンはグランドの端子とされる。第2ピンは、接続された位置検出スイッチからのセンス信号SENSv5の入力端子となる。
第1ピンは12V直流電圧(DC12VB)、第3ピンはグランドの端子とされる。第2ピンは、接続された位置検出スイッチからのセンス信号SENSv6の入力端子となる。
第4ピン、第5ピン、第7ピン、第8ピン、第10ピン、第11ピンはグランドに接続される。
第6ピンはクロック信号CLK_Cの端子、第9ピンはデータ信号DATA_Cの端子である。
コネクタCN4Lは伝送線路H23としてフレキシブルケーブル(例えばフレキシブルフラットケーブル)が接続されるが、フレキシブルケーブルは定格電流が小さいため、電源端子及びグランド端子の本数を、コネクタCN1Lよりも多くしている。
第3ピン、第4ピンは18Vモータ駆動電圧(MOT18V)が印加される端子である。
第1ピンはモータ駆動信号MOT5-/2、第2ピンはモータ駆動信号MOT5-/1、第5ピンはモータ駆動信号MOT5-2、第6ピンはモータ駆動信号MOT5-1の各端子とされる。
第1ピン、第2ピンは12V直流電圧(DC12VB)が印加される端子である。
第3ピン〜第24ピンは、発光駆動電流09-R1、09-G1、09-B1・・・09-R8、09-G8までの22系統の発光駆動電流端子とされる。
上流の盤裏左中継基板720からコネクタCN1Lに供給されるクロック信号CLK_C、データ信号DATA_Cは、バッファ回路741に入力され、バッファ処理される。そしてコネクタCN4Lに送られ、下流の中継基板760に送信される。
LEDドライバ742は、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR7、LEDG7、LEDR8、LEDG8を用いて22系統のLED発光駆動を行う。
これら出力端子LEDR1、LEDG1、LEDB1・・・LEDR7、LEDG7、LEDR8、LEDG8は、コネクタCN6Lの第3ピン〜第24ピンに接続され、不図示の可動物のLED基板における22系統のLED回路に対して発光駆動電流(09-R1、09-G1、09-B1・・・09-R6、09-G6、09-B6)を流す構成とされる。
・上流から送信されてくる、クロック信号CLK_C、データ信号DATA_Cを、バッファ回路703を介して下流側に転送する。
・クロック信号CLK、データ信号DATAは、LEDドライバ742でも用いる。LEDドライバ742により他のLED基板の発光部の発光駆動を行う。
・12V直流電圧(DC12VB)や18Vモータ駆動電圧(MOT18VB)を下流側に動作電源電圧として供給している。
また図示の通りタップTP1L、TP2Lが設けられ所要箇所との接続に用いられる。
中継基板760の構成を図44に示す。中継基板760にはコネクタCN1M、CN2M、CN3Mが搭載される。
従って、このコネクタCN1Mは“1”〜“14”の数字を付したように第1ピンから第14ピンまでの14端子構成であり、端子のアサインは上述のコネクタCN4Lと同様となる。
第4ピン、第6ピンはグランド端子とされる。
第5ピンは5V直流電圧(DC5V)の端子とされる。
第1ピンは12V直流電圧(DC12VB)の端子とされる。
第2ピンはクロック信号CLKの端子、第3ピンはデータ信号DATAの端子である。
このコネクタCN1Bは“1”〜“6”の数字を付したように第1ピンから第6ピンまでの6端子構成である。
第4ピン、第6ピンはグランド端子とされる。
第5ピンは5V直流電圧(DC5V)の端子とされる。
第1ピンは12V直流電圧(DC12VB)の端子とされる。
第2ピンはクロック信号CLKの端子、第3ピンはデータ信号DATAの端子である。
またクロック信号CLK_C、データ信号DATA_Cは、バッファ回路761のA5端子、A6端子にも入力され、信号補償される。そしてY5端子、Y6端子から出力され、コネクタCN3Mによりクロック信号CLK、データ信号DATAとして下流のLED基板780に送信される。
LED基板780の構成を図45に示す。LED基板780にはコネクタCN1N、CN2Nが搭載される。
従って、このコネクタCN1Nは“1”〜“6”の数字を付したように第1ピンから第6ピンまでの6端子構成であり、端子のアサインは上述のコネクタCN3Mと同様となる。
第1ピンは12V直流電圧(DC12VB)の端子とされる。
第4ピンはグランド端子とされる。
第2ピンはクロック信号CLKの端子、第3ピンはデータ信号DATAの端子である。
上流の中継基板760からコネクタCN1Nに供給されるクロック信号CLK、データ信号DATAは、バッファ回路781に入力され、バッファ処理される。そしてコネクタCN2Nに送られ、下流のLED基板790に送信される。
LEDドライバ782は、発光駆動電流の出力端子LEDR1、LEDG1、LEDB1・・・LEDR7、LEDG7、LEDB7、LEDR8を用いて22系統のLED発光駆動を行う。
これら出力端子LEDR1、LEDG1、LEDB1・・・LEDR7、LEDG7、LEDB7、LEDR8は、発光部783として形成された22系統のLED回路のそれぞれに接続され、発光駆動電流(03-R1、03-G1、03-B1・・・03-G7、03-B7、03-R8)を流す。
発光部783の各系統のLED回路は、それぞれ図示のとおり、2又は3つのLED(LED1,LED2・・・)の直列接続と抵抗素子により構成されている。各系統のLED回路は並列とされ、それぞれアノード側に12V直流電圧(DC12VB)が印加される。
・上流から送信されてくるクロック信号CLK、データ信号DATAを、バッファ回路781を介して下流側に転送する。
・クロック信号CLK、データ信号DATAは、LEDドライバ782でも用いて発光部783の発光駆動を行う。
・12V直流電圧(DC12VB)を下流側に動作電源電圧として供給している。
また図示の通りタップTP1N、TP2Nが設けられ所要箇所との接続に用いられる。
そしてLED基板790にはLEDドライバとLEDが搭載されるがバッファ回路は搭載されていない。このためコネクタCN2NからLED基板790には12V直流電圧(DC12VB)だけ供給され、5V直流電圧(DC5V)は供給されない。即ち5V直流電圧(DC5V)は、演出制御基板30からの5V直流電圧(DC5VB)に基づいて(図36のコネクタCN1Jの第6ピン参照)、バッファ回路が設けられているLED基板780まで供給される構成となっている。
盤裏下中継基板800の構成を図46に示す。盤裏下中継基板800にはコネクタCN1Q、CN2Q、CN3Q、CN4Qが搭載される。
従って、このコネクタCN1Qは“1”〜“16”の数字を付したように第1ピンから第16ピンまでの16端子構成であり、端子のアサインは上述のコネクタCN11Jと同様となる。
第3ピン、第4ピンは12Vモータ駆動電圧(MOT12V)が印加される端子である。
第1ピンはモータ駆動信号MOT4-/2、第2ピンはモータ駆動信号MOT4-/1、第5ピンはモータ駆動信号MOT4-2、第6ピンはモータ駆動信号MOT4-1の各端子とされる。
このコネクタCN3Qは“1”〜“10”の数字を付したように第1ピンから第10ピンまでの10端子構成である。
第1ピンから第6ピンは12V直流電圧(DC12VB)の端子とされる。
第7ピン、第8ピン、第9ピン、第10ピンは発光駆動電流13-B7、13-R8、13-G8、13-B8の端子である。
このコネクタCN3Qは伝送線路H31としてフレキシブルケーブル(例えばフレキシブルフラットケーブル)が接続され、定格電流が小さいため、他のコネクタよりも電源端子の本数を多くしている。例えばコネクタCN3Qの12V直流電圧(DC12VB)のための端子数(6本)は、コネクタCN1Qの12V直流電圧(DC12VB)の端子数(2本)より多い。
第1ピンは12V直流電圧(DC12VB)、第3ピンはグランドの端子とされる。第2ピンは、接続された位置検出スイッチからのセンス信号SENSv7の入力端子となる。
コネクタCN1Qでは12V直流電圧(DC12VB)を第4ピン、第6ピンの2端子で入力しているが、コネクタCN3Qでは第1ピンから第6ピンの6端子で12V直流電圧(DC12VB)を下流に送信している。結果として上流に対する端子数(コネクタCN1Qの端子数)より、下流に対する端子数(コネクタCN2Q、CN3Q、CN4Qの端子数総計)が増えている。
装飾基板820を、図47を用いて説明する。
装飾基板820には、コネクタCN1Sが搭載される。
コネクタCN1Sは、図46の盤裏下中継基板800のコネクタCN3Qとの間を接続する伝送線路H31の伝送線路端が接続される。
従って、このコネクタCN1Sは“1”〜“10”の数字を付したように第1ピンから第10ピンまでの10端子構成であり、端子のアサインは上述のコネクタCN3Qと同様となる。
この装飾基板820は不図示の可動体内に配置され、可動体部分のLED発光を行う基板とされている。
以下、ここまで説明してきた遊技機1の構成のうちで注目すべき構成について順次説明していく。
実施の形態の遊技機1は次の(構成A1−1)を有する。
(構成A1−1)
遊技機1は、内枠2(枠部材)と、内枠2に対して開閉可能に設けられた扉6(扉部材)と、扉6に取り付けられた複数の検出手段と、扉6に取り付けられた第1基板とを備え、前記第1基板は、前記複数の検出手段のそれぞれの検出信号をシリアルデータ信号に変換して他の基板に送信する構成とされている。
検出信号とは、センス信号SENS0〜SENS14やセンス信号SENS_A、SENS_B、SENS_C、センス信号SENSv0〜SENSv9等であり、従って複数の検出手段とは、これらのセンス信号を発生する各デバイスである。具体的には位置検出スイッチ等のスイッチ、演出ボタン13や十字キー15a、決定ボタン15b等の演出用操作手段、タッチセンサ等のセンサなどである。
またこれにより扉6に多数のセンサ、スイッチ等を設けても配線数が膨大になることを防止できる。換言すれば、最も遊技者に近い扉6に演出手段や検出手段を豊富に配置しながら配線構成を複雑化しないことができる。
これにより、伝送線路H8の配線数を少なくすることができる。特に前枠LED接続基板500は、サイドユニット右上LED基板600からのシリアルデータ信号とセンス信号SENS8、SENS9、SENS11、SENS14とをまとめ、さらにセンス信号SENS0〜SENS7をまとめてシリアルデータ化しているので、配線数低減効果は大きい。
これにより伝送線路H9、H10の配線数を少なくすることができる。
これにより伝送線路H20の配線数を少なくすることができる。
(構成A1−2)
シリアルデータ信号を送信する他の基板は、内枠2(枠部材)に取り付けられている基板である。
前枠LED接続基板500と内枠LED中継基板400は、図5のように扉6が開放された状態で伝送線路H8により電気的に接続されている。
この場合に、前枠LED接続基板500が上述のようにシリアルデータ化を行うことで、扉6の開閉部分の配線を接続するハーネス(伝送線路H8)において、大量の検出信号を少ない配線数で伝送できることになる。これにより可動部分での配線が過剰になることを避けることができる。また配線数を少なくすることで、ハーネスの柔軟性を向上させたり、耐久性、信頼性を向上させたりすることも容易となり、可動部分での好適な配線を実現しやすい。
(構成A2−1)
遊技機1は、内枠2(枠部材)と、内枠2に対して開閉可能に設けられた扉6(扉部材)と、扉6の上部領域に取り付けられた複数の第1の検出手段と、扉6の上部領域に取り付けられた第1基板と、扉6において前記第1基板よりも下方に取り付けられた第2基板とを備え、前記第1基板は、前記複数の検出手段のそれぞれの検出信号をシリアルデータ信号に変換して前記第2基板に向けて送信する構成とされている。
・第1基板:サイドユニット右上LED基板600
・第2基板:前枠LED接続基板500
なお、「第2基板に向けて送信する」とは、第2基板に直接送信すること、他の基板を介して第2基板に送信することの両方を含む。
図10にフォトカプラPC1F、PC2F、PC3Fを示したが、これらはサイドユニット右下可動物モータ103によって可動される可動物の動作状態を判定するためのセンサとされている。
さらに、「扉6の左部」として、扉6の左右方向の中央のラインより左部分という意味とし、その場合の扉6の左部の複数の検出手段の検出信号を、左部にある基板においてまとめてシリアルデータ化する構成を考えることもできる。
さらに、「扉6の右部」として、扉6の左右方向の中央のラインより右部分という意味とし、その場合の扉6の右部の複数の検出手段の検出信号を、右部にある基板においてまとめてシリアルデータ化する構成を考えることもできる。
(構成A2−2)
遊技機1は、内枠2(枠部材)に取り付けられた第3基板と、扉6(扉部材)において前記第1の検出手段よりも下方に取り付けられた1又は複数の第2の検出手段を備え、前記第2基板は、前記第2の検出手段の検出信号と前記第1基板からのシリアルデータ信号をまとめてシリアルデータ信号に変換して、前記第3基板に向けて送信する構成とされている。
・第1基板:サイドユニット右上LED基板600
・第2基板:前枠LED接続基板500
・第3基板:内枠LED中継基板400
と考えることができる。
つまり、第1基板に相当する例としてサイドユニット右上LED基板600がシリアルデータ化を行うことに加え、第2基板に相当する前枠LED接続基板500でもさらにシリアルデータ化を行い、内枠LED中継基板400に送信する構成である。
これらの検出手段は、上述のセンス信号SENS1X、SENS2X、SENS_A、SENS_B、SENS_Cを生成する検出手段よりも下方に配置されている。
センス信号SENS8は例えば演出ボタン13内の押しボタンセンサにより生成される検出信号である。
センス信号SENS9は例えば演出ボタン13内の回転原点センサにより生成される検出信号である。
センス信号SENS11は例えば演出ボタン13内の回転演出ライトセンサにより生成される検出信号である。
従って、扉の上部領域に存在するセンサ、スイッチ、ボタン等の各種の検出手段による複数の検出信号をサイドユニット右上LED基板600でまとめ、さらにそれらより下方の検出手段の検出信号を、サイドユニット右上LED基板600より下方に配置された前枠LED接続基板500でまとめていることになる。
またこれによって、扉の開閉部分の配線を接続するハーネス(伝送線路H8)において、大量の検出信号を少ない配線数で伝送できる。
これにより扉6に多数の検出手段を搭載した場合でも、可動部分での配線としての信頼性を高めることができる。
例えば前枠LED接続基板500は、1つのセンス信号を、サイドユニット右上LED基板600からのシリアルデータ信号S_IN_DATAxとまとめてシリアルデータ化し、それを演出制御基板30へのシリアルデータ信号S_IN_DATAとして出力する構成も考えられる。
(構成A2−3)
前記第2基板は、前記第1基板からのシリアルデータ信号についてバッファ処理を行う第1のバッファ回路と、前記第1のバッファ回路から出力されるシリアルデータ信号と前記第2の検出手段の検出信号とをまとめてシリアルデータ信号に変換する変換手段と、前記変換手段で得られるシリアルデータ信号についてバッファ処理を行う第2のバッファ回路と、前記第2のバッファ回路から出力されるシリアルデータ信号を前記第3基板に向けて送信する出力手段と、を備える。
・第1のバッファ回路:図17,図22に示すバッファ回路502
・第2のバッファ回路:図18,図22に示すバッファ回路513。
・出力手段:図15に示すコネクタCN2C
・変換手段:図18に示すはP/S変換回路505及びP/S変換回路506を含む回路部分
以上により、安定したデータを確保した上でシリアルデータ化を行うとともに、演出制御基板30に送るシリアルデータの信号品質を維持することができる。
(構成A3−1)
遊技機1は、内枠2(枠部材)と、内枠2に対して開閉可能に設けられた扉6(扉部材)と、扉6に交換可能に取り付けられた装飾ユニットと、前記装飾ユニットに取り付けられた複数の第1の検出手段と、前記装飾ユニットに取り付けられた第1基板と、扉6において前記装飾ユニット外となる部分に取り付けられた第2基板とを備え、前記第1基板は、前記複数の第1の検出手段のそれぞれの検出信号をシリアルデータ信号に変換して前記第2基板に向けて送信する構成とされている。
第1基板に相当する例としてはサイドユニット右上LED基板600を、また第2基板に相当する例としては前枠LED接続基板500を、それぞれ挙げることができる。
前枠LED接続基板500が扉6に設けられるが、サイドユニット10内ではない。
第1基板であるサイドユニット右上LED基板600は、第2基板である前枠LED接続基板500に向けて(中継基板550を介して)、シリアルデータ信号S_IN_DATAxを送信している。なお、もちろん中継基板550が存在しないで直接送信する構成としてもよい。
センス信号SENS_A、SENS_B、SENS_Cを生成する検出手段とは、図10、図30に示したフォトカプラPC1F、PC2F、PC3Fである。
センス信号SENS1Xを生成する検出手段とは、図30のコネクタCN4Fに接続される、サイドユニット右下可動物位置検出スイッチ102(図10参照)である。
センス信号SENS2Xを生成する検出手段とは、図25のコネクタCN7Eに接続されるサイドユニットデバイス101(図10参照)である
これらフォトカプラPC1F、PC2F、PC3F、サイドユニット右下可動物位置検出スイッチ102、サイドユニットデバイス101はサイドユニット10内に設けられている。
この場合に、サイドユニット10内に配置されるサイドユニット右上LED基板600(第1基板)は、サイドユニット10のスイッチ、ボタン、センサ等の各種の第1の検出手段による複数のセンス信号SENS_A、SENS_B、SENS_C、SENS1X、SENS2Xをシリアルデータ信号S_IN_DATAxに変換し、中継基板550を介して扉6の前枠LED接続基板500に向けて出力する。これにより伝送線路H10、H9としてのハーネスにおいて配線数を効果的に少なくすることができる。特に伝送線路H9はサイドユニット10の交換時に離間する部分のハーネスであるため、配線数を少なくし、配線をシンプルにできることは構成上望ましい。
またこれによりサイドユニット10に多数のセンサ、スイッチ等を設けても配線数が膨大になることを防止できる。サイドユニット10において演出動作やそれに応じた各種の検出動作を行う構成としても、配線数が過剰にならないようにすることができる。
例えば演出ボタン13は扉6に取り付けられる装飾ユニットとして構成される。この演出ボタンユニット内の複数の検出手段の検出信号について、内部の例えばボタンLED基板660でシリアルデータ化し、演出ボタンユニット外の基板(例えばボタンLED接続基板640や前枠LED接続基板500)に向けて送信する構成も考えられる。
(構成A3−2)
扉6(扉部材)において前記装飾ユニット外となる部分に取り付けられた1又は複数の第2の検出手段を備え、前記第2基板は、前記第2の検出手段の検出信号と前記第1基板からのシリアルデータ信号をまとめてシリアルデータ信号に変換して、内枠2(枠部材)に取り付けられている第3基板に向けて送信する構成とされている。
第2の検出手段としては、センス信号SENS0〜SENS7、SENS8、SENS9、SENS11、SENS14を生成するスイッチ等の検出手段を挙げることができる。即ち、十字キー15a決定ボタン15b、演出ボタン13等の操作検出スイッチ、演出ボタン13内の回転原点センサ、演出ボタン13内の回転演出ライトセンサ、発射操作ハンドル15に設けられるタッチセンサなどが第2の検出手段となる。
サイドユニット右上LED基板600と前枠LED接続基板500で連続的に扉6内の検出信号をシリアルデータ化することで、扉6から内枠2側に送信するための配線数を抑えることができる。
特に扉6の開閉部分の配線を接続するハーネス(伝送線路H8:図5参照)において、大量の検出信号を少ない配線数で伝送できる。これにより可動部分での配線としての信頼性を高めることができる。
実施の形態の遊技機1は次の(構成B1)を有する。
(構成B1)
遊技機1は、第1基板と、第1伝送線路により前記第1基板と接続されて第1電源電圧の供給を受ける第2基板と、第2伝送線路により前記第2基板と接続されて前記第1電源電圧の供給を受ける第3基板と、を備え、前記第2伝送線路において前記第1電源電圧の伝送に用いる線路数が、前記第1伝送線路における前記第1電源電圧の供給のための線路数よりも多くされている。
(具体例1)
・第1基板:電源基板300
・第2基板:内枠LED中継基板400
・第3基板:前枠LED接続基板500
・第1伝送線路:伝送線路H3
・第2伝送線路:伝送線路H8
・第1電源電圧:12V直流電圧(DC12VB)
なお、伝送線路H3は6本の線路により構成されているが、残り3本はグランドとして用いている。
コネクタCN1Cにより、それぞれ1本の線路で12V直流電圧(DC12VB)、5V直流電圧(DC5VB)を下流に伝送している(図16参照)。
コネクタCN3Cにより、伝送線路H9により中継基板550(さらにサイドユニット右上LED基板600)に対して、3本の線路で12V直流電圧(DC12VB)を伝送し、1本の線路で5V直流電圧(DC5VB)を伝送している(図17参照)。
コネクタCN4Cにより、1本の線路で12V直流電圧(DC12VB)を下流に伝送している(図16参照)。
また前枠LED接続基板500では、上述のようにモータ電圧生成部520(図15参照)により12V直流電圧(DC12VB)を用いて12Vモータ駆動電圧(MOT12V)を生成し、伝送線路H15によりボタンLED接続基板640に供給している。
なお各図では、基板に装着した状態で上方から伝送線路端を差し込むトップ型の例を示しているが、横方向から伝送線路端を差し込むサイド型のものを用いてもよい。
・ピン数:28
・平面横サイズS1:30.0mm
・平面縦サイズS2:8.3mm
・高さサイズS3:9.6mm
・定格電流:3A
・定格電圧:250V
・端子ピッチ:2mm
・コンタクト径:0.7mm
・ピン数:30
・平面横サイズS1:26.2mm
・平面縦サイズS2:7.4mm
・高さサイズS3:5.55mm
・定格電流:2A
・定格電圧:100V
・端子ピッチ:1.5mm
・コンタクト径:0.65mm
・ピン数:6
・平面横サイズS1:17.5mm
・平面縦サイズS2:6.4mm
・高さサイズS3:8.8mm
・定格電流:3A
・定格電圧:250V
・端子ピッチ:2.5mm
・コンタクト径:0.9mm
なお、コンタクト径は、雄型コネクタの場合はピン端子径、雌型コネクタの場合は対応するピン端子径とする。
これに対して本実施の形態では、特にコネクタCN2Bと伝送線路H8において12V直流電圧(DC12VB)について4ピン、4線路を適用している。これにより1つのピンに対する電流負担を軽減させ、上記のように小型で定格電流の小さいコネクタCN2Bの採用を可能としている。小型のコネクタを採用できることで、内枠LED中継基板400において、基板上のレイアウト余裕の拡大、設計の自由度の向上、或いは基板の小型化に有効となる。
(具体例2)
・第1基板:LED接続基板700
・第2基板:盤裏下中継基板800
・第3基板:装飾基板820
・第1伝送線路:伝送線路H30
・第2伝送線路:伝送線路H31
・第1電源電圧:12V直流電圧(DC12VB)
下流側での伝送線路H31の方が、上流側の伝送線路H30よりも12V直流電圧(DC12VB)用いる線路数を多くしていることで、下流側のコネクタを小型化したい場合に有利な構成となる。
なお各図では、基板に装着した状態で横方向から伝送線路端を差し込むサイド型の例を示しているが、上方から伝送線路端を差し込むトップ型のものを用いてもよい。
・ピン数:16
・平面横サイズS1:10.2mm
・平面縦サイズS2:5.1mm
・高さサイズS3:6.1mm
・定格電流:1.0A
・定格電圧:50V
・端子ピッチ:1mm
・ピン数:10
・平面横サイズS1:10.9mm
・平面縦サイズS2:4.5mm
・高さサイズS3:2.0mm
・定格電流:0.5A
・定格電圧:50V
・端子ピッチ:0.5mm
即ち、コネクタCN3Q及び伝送線路H31で、12V直流電圧(DC12VB)について4ピン、4線路を用いていることにより1つのピンに対する電流負担を軽減させ、上記のように小型で定格電流の小さいコネクタCN3Qの採用を可能としている。小型のコネクタを採用できることで、盤裏下中継基板800において、基板上のレイアウト余裕の拡大、設計の自由度の向上、或いは基板の小型化に有効となる。
(構成B2)
遊技機1は、内枠2(枠部材)と、内枠2に対して開閉可能に設けられた扉6(扉部材)と、内枠2に取り付けられる第1基板と、内枠2に取り付けられ、第1伝送線路により前記第1基板と接続されて第1電源電圧の供給を受ける第2基板と、扉6に取り付けられ、第2伝送線路により前記第2基板と接続されて前記第1電源電圧の供給を受ける第3基板と、を備え、前記第2伝送線路において前記第1電源電圧の伝送に用いる線路数が、前記第1伝送線路における前記第1電源電圧の供給のための線路数よりも多くされている。
そして、伝送線路H8の両端を接続するコネクタCN2BとコネクタCN2Cは、共に図50の仕様のものを用いている。上述のとおり、比較的小型のコネクタである。
コネクタCN2B、CN2Cは開閉空間に表出することが、伝送線路H8に無理な力を加えない点で望ましい。するとコネクタCN2B、CN2Cは、そのサイズが大きいと、コネクタCN2B、CN2Cを載置した基板の配置だけでなく、周辺部品の配置などについても制限を受けやすいし、扉6の開閉時に無用な出っ張りを形成してしまいやすい。コネクタ接続部分は電気的には脆弱な部位となるため、出っ張って外圧を受けやすい構造は避けたい。すると余計に設計自由度が制限される。
(構成B3)
遊技機1は、第1基板と、第1伝送線路により前記第1基板と接続されて第1電源電圧の供給を受ける第2基板と、前記第1基板及び前記第2基板よりも基板面積が小さいものとされ、第2伝送線路により前記第2基板と接続されて前記第1電源電圧の供給を受ける第3基板と、を備え、前記第2伝送線路において前記第1電源電圧の伝送に用いる線路数が、前記第1伝送線路における前記第1電源電圧の供給のための線路数よりも多くされている。
図8に前枠LED接続基板500を、また図9に内枠LED中継基板400と電源基板300を示した。図8と図9は同じ縮尺で記載しているため、比較してわかるように、前枠LED接続基板500は、内枠LED中継基板400及び電源基板300よりも基板面積(基板表面のマウント面の面積)が小さい。
即ち前枠LED接続基板500は、電子部品の配置余裕が比較的小さいものとなる。
また扉6の下部は、センサ、モータ、演出ボタンユニットなどが密集する傾向にあり、配置する基板や部品は少しでも小型の方が望ましい。その点でも本構成は有利となる。
もちろんコネクタCN2Cが小型のコネクタを採用できることは、部品がマウントされた状態の基板の高さサイズS3も、低く抑えることができる。
また電子部品をマウントした状態での高さを含めて、配置に必要な空間容積が、第3基板は第1,第2基板より小さいものとしてもよい。
(構成B4)
遊技機1は、第1基板と、第1伝送線路により前記第1基板と接続されて第1電源電圧の供給を受ける第2基板と、可動体の内部に配置され、第2伝送線路により前記第2基板と接続されて前記第1電源電圧の供給を受ける第3基板と、を備え、前記第2伝送線路において前記第1電源電圧の伝送に用いる線路数が、前記第1伝送線路における前記第1電源電圧の供給のための線路数よりも多くされている。
また従って伝送線路H31は、可動部分を電気的に連結する部材となる。
これによりコネクタCN1Sは、可動体内の基板に搭載するものとして好適となる。可動体に搭載する装飾基板820は小型であることが望ましく、従って搭載する部品、特に専有面積が広いコネクタは小型のものが望ましいためである。
従って(構成B4)により、可動体に搭載する装飾基板820を適切な基板サイズとすることができる。
またコネクタCN1Sを小型化できることで、LEDの搭載自由度も増し、演出のための発光位置の設計にも適している。
(構成B5)
遊技機1は、第1基板と、第1伝送線路により前記第1基板と接続されて第1電源電圧の供給を受ける第2基板と、第2伝送線路により前記第2基板と接続されて前記第1電源電圧の供給を受ける第3基板と、を備え、前記第2伝送線路において前記第1電源電圧の伝送に用いる線路数が、前記第1伝送線路における前記第1電源電圧の供給のための線路数よりも多くされているとともに、前記第2伝送線路はフレキシブルケーブルにより形成されている。
特にこの場合、第2基板である盤裏下中継基板800と第3基板である装飾基板820を接続する伝送線路H31には、フレキシブルケーブルを用いている。
図47のコネクタCN1Sのアサインからわかるように、伝送線路H31のフレキシブルケーブルでは、12V直流電圧(DC12VB)と発光駆動電流13-B7、13-R8、13-G8、13-B8のみを伝送している。
また、装飾基板740と可動体役物に取り付けられている中継基板760とを接続する伝送線路H23もフレキシブルケーブルを用いている。伝送線路H23では、図43のコネクタCN4Lのピンのアサインからわかるように、12V直流電圧(DC12VB)、5V直流電圧(DC5V)、クロック信号CLK_C、データ信号DATA_Cを伝送する。
もちろん、装飾基板820が可動部材に配置されるものであり、伝送線路H31は所定のストローク範囲での動きが生ずるものであるため、フレキシブルケーブルを採用することが好適となる。
そこで、盤裏下中継基板800において伝送線路H30からコネクタCN1Qにより2本の線路により受けた12V直流電圧(DC12VB)を、コネクタCN3Q及び伝送線路H31では、5本の線路を用いて装飾基板820に供給している。これによりフレキシブルケーブルを用いても十分な電力供給を行い、装飾基板820において適切なLED発光を実現する。
また、装飾基板740において伝送線路H22からコネクタCN1Lにより2本の線路により受けた12V直流電圧(DC12VB)を、コネクタCN4L及び伝送線路H23では、3本の線路を用いて中継基板760に供給している。また同じくコネクタCN1Lにより1本の線路により受けた5V直流電圧(DC5V)を、コネクタCN4L及び伝送線路H23では、3本の線路を用いて中継基板760に供給している。これによりフレキシブルケーブルを用いても中継基板760以降に十分な電力供給を行っている。
なお図43,図44からわかるように、伝送線路H23では、クロック信号CLK_C、データ信号DATA_Cは1本の線路で伝送している。つまりフレキシブルケーブルを用いる場合、電源供給は通常のハーネスと比べて線路数を多くするが、クロックや制御データの信号は1本で行うようにしている。
(構成B6−1)
遊技機1は、第1基板と、第1伝送線路により前記第1基板と接続されて第1電源電圧の供給を受ける第2基板と、第2伝送線路により前記第2基板と接続されて前記第1電源電圧の供給を受ける第3基板と、を備え、前記第2伝送線路において前記第1電源電圧の伝送に用いる線路数が、前記第1伝送線路における前記第1電源電圧の供給のための線路数よりも多くされており、前記第2基板は、前記第1電源電圧を用いて第2電源電圧を生成し、前記第3基板は、前記第2伝送線路により、前記第2電源電圧の供給も受ける構成とされている。
第2電源電圧の例は、5V直流電圧(DC5VB)とすることができる。
この5V直流電圧(DC5VB)は、図13のコネクタCN2Bから伝送線路H8により前枠LED接続基板500に供給される。
即ち、電源基板300から内枠LED中継基板400で5V直流電圧(DC5VB)の伝送を不要とでき、さらに、扉6の基板毎に、12V直流電圧(DC12VB)から5V直流電圧(DC5VB)を生成する構成を採るという必要もなくなる。
(構成B6−2)
前記第2基板にはバッファ回路が搭載されており、前記バッファ回路の電源電圧として前記第2電源電圧が用いられる。
バッファ回路402,403は当該内枠LED中継基板400の5V生成部410で生成した5V直流電圧(DC5VB)を電源電圧として使用して動作する。
換言すれば、内枠LED中継基板400以降の下流で5V直流電圧(DC5VB)を用いるため、その5V直流電圧(DC5VB)の使用範囲内で最も上流となる基板で5V直流電圧(DC5VB)を生成する。そして当該電源電圧を使用する下流側の基板に対して、5V直流電圧(DC5VB)を伝送していく構成を採っている。
なお各図では「5V直流電圧(DC5V)」と表記している箇所もあるが、回路構成上明らかなように5V直流電圧(DC5V)も、内枠LED中継基板400で生成された5V直流電圧(DC5VB)である。
一方、ボタンLED基板660では5V電源を用いないため、5V直流電圧(DC5V)は供給されていない(図34参照)。
即ち、上流から下流にかけて、5V直流電圧(DC5VB)を使用する基板の範囲で5V直流電圧(DC5VB)を行き渡らせる構成となる。従って内枠LED中継基板400より上流側の使用しない基板では、5V直流電圧(DC5VB)を生成したり、中継したりする必要がない。もちろん扉6の基板毎に、12V直流電圧(DC12VB)から5V直流電圧(DC5VB)を生成する構成を採るという必要もない。
実施の形態の遊技機1は次の(構成C1)を有する。
(構成C1)
遊技機1は、第1基板と、第1伝送線路により前記第1基板と接続される第2基板と、第2伝送線路により前記第2基板と接続される第3基板と、を備え、前記第2基板において前記第1伝送線路を接続する第1コネクタと、前記第2基板において前記第2伝送線路を接続する第2コネクタは、異なる種類別のコネクタとされている。
(具体例3)
・第1基板:電源基板300
・第2基板:内枠LED中継基板400
・第3基板:前枠LED接続基板500
・第1伝送線路:伝送線路H3
・第2伝送線路:伝送線路H8
・第1コネクタ:コネクタCN1B
・第2コネクタ:コネクタCN2B
即ち、上流から下流にかけて電気的に接続される電源基板300、内枠LED中継基板400、前枠LED接続基板500において、内枠LED中継基板400では上流側のコネクタCN1Bと下流側のコネクタCN2Bの種類が異なることで、下流側の基板の小型化も実現でき、下流側での基板等の部品配置に有利となる。
・中継基板550(上流側のコネクタCN1Dと下流側のコネクタCN2D)
・サイドユニット右上LED基板600(上流側のコネクタCN1Eと他の下流側のコネクタ)
・サイドユニット右下LED基板620(上流側のコネクタCN3Fと他の下流側のコネクタ)
・ボタンLED接続基板640(上流側のコネクタCN1Gと他の下流側のコネクタ)
・LED接続基板700(上流側のコネクタCN1Jと他の下流側のコネクタ)
・装飾基板740(上流側のコネクタCN1Lと他の下流側のコネクタ)
・中継基板760(上流側のコネクタCN1Mと他の下流側のコネクタ)
・LED基板780(上流側のコネクタCN1Nと下流側のコネクタCN2N)
・盤裏下中継基板800(上流側のコネクタCN1Qと他の下流側のコネクタ)
これらの各例でも下流側に小型のコネクタを用いることで、下流側での基板等の部品配置に有利となるようにすることができる。
(構成C2)
遊技機1は、第1基板と、第1伝送線路により前記第1基板と接続される第2基板と、第2伝送線路により前記第2基板と接続される第3基板と、を備え、前記第2基板において前記第1伝送線路を接続する第1コネクタよりも、前記第2基板において前記第2伝送線路を接続する第2コネクタの方がピン数が多いコネクタとされている。
この場合、下流側でピン数が多くなるのは、上述のように12V直流電圧(DC12VB)にアサインするピンを増やしていることや、5V直流電圧(DC5VB)の伝送を開始することが主な原因となっている。
ピン数を増やすことは、1つのピンに対する電流負担を下げることになり、これによりコネクタCN2BをコネクタCN1Bより小型化できるものである。例えば定格電流の低いものが採用できる。
従って下流側の基板のサイズの小型化に有利であり、上記(構成C1)の場合と同様の効果を得ることができる。
(構成C3)
遊技機1は、第1基板と、第1伝送線路により前記第1基板と接続される第2基板と、第2伝送線路により前記第2基板と接続される第3基板と、を備え、前記第2基板において前記第1伝送線路を接続する第1コネクタよりも、前記第2基板において前記第2伝送線路を接続する第2コネクタの方が、定格電流が小さいコネクタとされている。
即ち下流側のコネクタCN2Bは定格電流の小さい小型のものを採用している。従って下流側の基板のサイズの小型化に有利であり、上記(構成C1)の場合と同様の効果を得ることができる。
なお定格電流の小さいコネクタを用いるためには、上述のように12V直流電圧(DC12VB)をより多数の線路で伝送することなど行っている。
(構成C4−1)
遊技機1は、第1基板と、第1伝送線路により前記第1基板と接続される第2基板と、第2伝送線路により前記第2基板と接続される第3基板と、を備え、前記第2基板において前記第1伝送線路を接続する第1コネクタよりも、前記第2基板において前記第2伝送線路を接続する第2コネクタの方が、端子ピッチが狭いコネクタとされている。
即ち下流側のコネクタCN2Bは端子ピッチの狭い小型のものを採用している。従って下流側の基板のサイズの小型化に有利であり、上記(構成C1)の場合と同様の効果を得ることができる。
なお端子ピッチの狭い小型のコネクタを用いるためには、上述のように12V直流電圧(DC12VB)をより多数の線路で伝送することなど行っている。
(構成C4−2)
前記第2基板において前記第1伝送線路を接続する第1コネクタよりも、前記第2基板において前記第2伝送線路を接続する第2コネクタの方がコンタクト径が小さい。
即ち下流側のコネクタCN2Bは端子ピッチが狭くかつコンタクト径が小さい小型のものを採用している。従って下流側の基板のサイズの小型化に有利であり、上記(構成C1)の場合と同様の効果を得ることができる。
(構成C5)
遊技機1は、第1基板と、第1伝送線路により前記第1基板と接続される第2基板と、第2伝送線路により前記第2基板と接続される第3基板と、を備え、前記第2基板において前記第1伝送線路を接続する第1コネクタよりも、前記第2基板において前記第2伝送線路を接続する第2コネクタの方がハウジングのサイズが小さいコネクタとされている。
即ち下流側のコネクタCN2Bは端子ピッチの狭い小型のものを採用している。従って下流側の基板のサイズの小型化に有利であり、上記(構成C1)の場合と同様の効果を得ることができる。
実施の形態の遊技機1は次の(構成D1−1)を有する。
(構成D1−1)
遊技機1は、第1基板と、第1伝送線路により前記第1基板と接続されて演出手段の駆動制御のための信号を受ける第2基板と、第2伝送線路により前記第2基板と接続されて演出手段の駆動制御のための信号を受ける第3基板と、を備え、前記第1基板と前記第2基板の間の距離よりも、前記第1基板と前記第3基板の間の距離の方が短く、前記第3基板は前記第2基板より基板面の面積が小さくされている。
(具体例4)
・第1基板:中継基板550
・第2基板:サイドユニット右上LED基板600
・第3基板:サイドユニット上LED基板630
・第1伝送線路:伝送線路H10
・第2伝送線路:伝送線路H12
中継基板550のコネクタCN2Dに接続された伝送線路H10としてのハーネスは扉6の上端部から右上角部に沿ってサイドユニット10に取り付けられたサイドユニット右上LED基板600のコネクタCN1Eに達する経路とされる。
サイドユニット右上LED基板600のコネクタCN2Eに接続された伝送線路H12としてのハーネスは伝送線路H10の経路を戻るように進んでサイドユニット上LED基板630のコネクタCN1Tに達する経路とされる。
まず、中継基板550とサイドユニット上LED基板630は前後方向に重なるような位置関係(サイドユニット上LED基板630が手前側(遊技者側))となっている。
中継基板550とサイドユニット右上LED基板600は、扉6の上端部近傍と右側端部近傍という離れた位置にある。
明らかに、中継基板550とサイドユニット右上LED基板600の間の距離よりも、中継基板550とサイドユニット上LED基板630の間の距離の方が短い。
下流側の基板になるほど、基板面積を小さくしたいという要望がある。下流側ほど、基板の配置位置がモータ、センサ、可動体部品などに近接し易いという事情があり、またLEDを搭載するなどして遊技者側となる遊技機1の前面に近くなるため、大きな面積の基板となることは不利や不都合が生じやすいためである。例えば基板配置により可動物の動作の制限や、装飾の制限が生じたりする。
上記(構成D1−1)では、サイドユニット上LED基板630の面積をサイドユニット右上LED基板600より小さくしていることで、下流側の基板の事情に合わせた構成となっている。これにより配置設計やデザインの自由度の向上をもたらす。
(構成D1−2)
前記第1配線の配線経路上となる位置に前記第3基板が取り付けられている
このような配線経路設定は、サイドユニット上LED基板630の小型化に非常に有効である。
さらにサイドユニット右上LED基板600には、上述のコネクタCN4Eに接続されるサイドユニット右下可動物モータ104、コネクタCN5Eに接続されるサイドユニット右上可動物ソレノイド105、コネクタCN6Eに接続されるブロア106、コネクタCN7Eに接続されるサイドユニットデバイス101におけるセンサなどがある。
そこでこのサイドユニット10内の基点となる基板としての役割を、比較的面積を確保できる枠の右上角部の基板に負わせるようにする。つまりサイドユニット右上LED基板600である。枠の角部は、略円形の遊技面を想定すると、面積の大きい基板を配置し易い。また右上角部は、サイドユニット10の略中央でもある。
このような構成では、まずサイドユニット10内の各部への総配線長を短くできる。各部とは、サイドユニット上LED基板630、サイドユニット右下LED基板620、サイドユニット右下可動物モータ104、サイドユニット右上可動物ソレノイド105、ブロア106、サイドユニットデバイス101などである。
仮に中継基板550に近いサイドユニット上LED基板630を基点とすることを考える。中継基板550との位置関係からは、その方が一見望ましいようにも見える。しかし、中継基板550に近いサイドユニット上LED基板630を基点として各部に配線すると、サイドユニット上LED基板630から上記各部に対して並列に配線が形成される状態となる。すると、例えば扉6の右上角部あたりで何本も配線が重複するとともに、結果として総配線長が長くなる。また配線する線材数が増えることで、線材の収納に困難となる。
サイドユニット右上LED基板600を基点とし、結果として伝送線路H12のように行き/帰りの経路が重複する部分が生じる状態とすることで、逆に総配線長を短くでき、また配線線材の集中も緩和されることになる。
これらのことからサイドユニット上LED基板630の小型化を促進でき、それによって下流側の基板として適切で、設計の自由度など、上述した効果を促進できる。
(構成D2−1)
遊技機1は、第1基板と、第1伝送線路により前記第1基板と接続されて演出手段の駆動制御のための信号を受ける第2基板と、第2伝送線路により前記第2基板と接続されて演出手段の駆動制御のための信号を受ける第3基板と、を備え、前記第1基板と前記第2基板の間の距離よりも、前記第1基板と前記第3基板の間の距離の方が短く、前記第3基板は前記第2基板より搭載する電気部品の数が少なくされている。
なお中継基板550(第1基板)とサイドユニット右上LED基板600(第2基板)の間の距離よりも、中継基板550(第1基板)とサイドユニット上LED基板630(第3基板)の間の距離の方が短いことは上述のとおりである。
従ってサイドユニット右上LED基板600については発光部612のLED(図27参照)となり、サイドユニット上LED基板630については632のLED(図32参照)となる。
これにより、サイドユニット上LED基板630は、基板面積を小さくすることができる。従って、下流側の基板の小型化や、それによる設計やデザインの自由度の向上という(構成D1−1)で述べた効果が得られる。
(構成D2−2)
前記第1配線の配線経路上となる位置に前記第3基板が取り付けられている
これにより、上記(構成D1−2)で述べた効果が得られる。
(構成D2−3)
前記第3基板は前記第2基板より基板面の面積が小さくされている
これにより、上記(構成D1−1)で述べた効果が得られる。
(構成D3−1)
遊技機1は、第1基板と、第1伝送線路により前記第1基板と接続されて演出手段の駆動制御のための信号を受ける第2基板と、第2伝送線路により前記第2基板と接続されて演出手段の駆動制御のための信号を受ける第3基板と、を備え、前記第1基板と前記第2基板の間の距離よりも、前記第1基板と前記第3基板の間の距離の方が短く、前記第3基板は前記第2基板より搭載回路における消費電力が少なくされている。
なお中継基板550(第1基板)とサイドユニット右上LED基板600(第2基板)の間の距離よりも、中継基板550(第1基板)とサイドユニット上LED基板630(第3基板)の間の距離の方が短いことは上述のとおりである。
回路構成を比較すれば、発光部612と発光部632のLEDの数の差と、搭載するLEDドライバ数の差により、サイドユニット右上LED基板600の方が、消費電流が多いことは明らかである。
換言すれば、サイドユニット上LED基板630は消費電力を少なくする回路構成を採用するようにする。これによりサイドユニット上LED基板630は、基板面積を小さくすることができる。従って、下流側の基板の小型化や、それによる設計やデザインの自由度の向上という(構成D1−1)で述べた効果が得られる。
(構成D4−1)
遊技機1は、第1基板と、第1伝送線路により前記第1基板と接続されて演出手段の駆動制御のための信号を受ける第2基板と、第2伝送線路により前記第2基板と接続されて演出手段の駆動制御のための信号を受ける第3基板と、を備え、前記第1基板と前記第2基板の間の距離よりも、前記第1基板と前記第3基板の間の距離の方が短く、前記第1伝送線路で伝送される演出手段の駆動制御のための信号のうちにモータ駆動制御の信号が含まれ、前記第2伝送線路で伝送される演出手段の駆動制御のための信号のうちにモータ駆動制御の信号が含まれていない。
なお中継基板550(第1基板)とサイドユニット右上LED基板600(第2基板)の間の距離よりも、中継基板550(第1基板)とサイドユニット上LED基板630(第3基板)の間の距離の方が短いことは上述のとおりである。
これは、第2基板であるサイドユニット右上LED基板600(もしくはサイドユニット上LED基板630以外の下流の基板)がモータドライバを有し、一方、第3基板であるサイドユニット上LED基板630はモータドライバを有していないことを意味する。
モータ駆動には比較的大電流を用いる。また3相駆動、4相駆動などのモータ駆動の事情により線路数も多く必要になる。このためモータドライバを有する基板は小型化が難しい。
逆に言えば、サイドユニット上LED基板630はモータドライバを搭載する基板ではないものとすることで、小型化を促進し、最下流の基板として小型化をし易くしている。そして小型化により、上記(構成D1−1)で述べた効果が得られる。
(構成D3−2)
前記第1配線の配線経路上となる位置に前記第3基板が取り付けられている
これにより、上記(構成D1−2)で述べた効果が得られる。
実施の形態の遊技機1は次の(構成E1)を有する。
(構成E1)
遊技機1は、第1基板と、第1伝送線路により前記第1基板と接続されて第1電源電圧の供給を受ける第2基板と、第2伝送線路により前記第2基板と接続されて前記第1電源電圧の供給を受ける第3基板と、を備え、前記第3基板は前記第2基板より基板面の面積が小さくされ、前記第2伝送線路において前記第1電源電圧の伝送に用いる線路数が、前記第1伝送線路における前記第1電源電圧の供給のための線路数よりも少なくされている。
(具体例5)
・第1基板:中継基板550
・第2基板:サイドユニット右上LED基板600
・第3基板:サイドユニット上LED基板630
・第1伝送線路:伝送線路H10
・第2伝送線路:伝送線路H12
・第1電源電圧:12V直流電圧(DC12VB)
一方、図26のコネクタCN2E及び図32のコネクタCN1Tのアサインからわかるように、伝送線路H12では12V直流電圧(DC12VB)について1本の線路を使用している。
このように下流側で基板面積を小さくしたいときや小さくせざるを得ないときに(構成E1)は有効となる。
(構成E2−1)
遊技機1は、第1基板と、第1伝送線路により前記第1基板と接続されて第1電源電圧の供給を受ける第2基板と、第2伝送線路により前記第2基板と接続されて前記第1電源電圧の供給を受ける第3基板と、を備え、前記第3基板は前記第2基板より搭載する電気部品の数が少なくされ、前記第2伝送線路において前記第1電源電圧の伝送に用いる線路数が、前記第1伝送線路における前記第1電源電圧の供給のための線路数よりも少なくされている。
なお電気部品とは、全ての電気部品と考えてもよいが、より望ましくは、第1電源電圧である12V直流電圧(DC12VB)系の電源電圧に基づく電力消費が生ずる全部又は主な電気部品とする。
従って具体的にはサイドユニット右上LED基板600については、LEDドライバ605,606、モータドライバ608,609、発光部612のLED等(図27,図28参照)となる。
またサイドユニット上LED基板630については、LEDドライバ631、発光部632のLED等(図32参照)となる。
そこで線路数を少なくし、下流側の基板でのコネクタの小型化を実現し、比較的基板面積の小さい基板にマウントすることに有利な構成としている。
(構成E2−2)
前記第3基板は前記第2基板より基板面の面積が小さくされている。
(構成E3)
遊技機1は、第1基板と、第1伝送線路により前記第1基板と接続されて第1電源電圧の供給を受ける第2基板と、第2伝送線路により前記第2基板と接続されて前記第1電源電圧の供給を受ける第3基板と、を備え、前記第3基板は前記第2基板より搭載回路における消費電力が少なくされ、前記第2伝送線路において前記第1電源電圧の伝送に用いる線路数が、前記第1伝送線路における前記第1電源電圧の供給のための線路数よりも少なくされている。
上述のようにサイドユニット右上LED基板600は、サイドユニット上LED基板630よりも部品点数が多く、サイドユニット上LED基板630よりも消費電流が大きい。
回路構成を比較すれば、発光部612と発光部632のLEDの数の差と、搭載するLEDドライバ数の差により、サイドユニット右上LED基板600の方が、消費電流が多いことは明らかである。
そこで線路数を少なくし、下流側の基板でのコネクタの小型化を実現し、比較的基板面積の小さい基板にマウントすることに有利な構成としている。
(構成E4)
遊技機1は、第1基板と、第1伝送線路により前記第1基板と接続されて第1電源電圧の供給を受ける第2基板と、第2伝送線路により前記第2基板と接続されて前記第1電源電圧の供給を受ける第3基板と、を備え、前記第1伝送線路で伝送される演出手段の駆動制御のための信号のうちにモータ駆動制御の信号が含まれ、前記第2伝送線路で伝送される演出手段の駆動制御のための信号のうちにモータ駆動制御の信号が含まれておらず、前記第2伝送線路において前記第1電源電圧の伝送に用いる線路数が、前記第1伝送線路における前記第1電源電圧の供給のための線路数よりも少なくされている。
伝送線路H10で伝送され、第2の基板であるサイドユニット右上LED基板600が受ける演出手段の駆動制御のための信号とは、例えば、図24に示すイネーブル信号ENABLE_L、クロック信号CLK_P、リセット信号RESET_Pである。これらの信号は、図24〜図29で詳述したように、LEDドライバ605(図27)の制御に用いられたり、LEDドライバ606及びモータドライバ608、609(図28)の制御に用いられたりする。即ちLED発光やモータ駆動制御の信号が含まれている。
モータ駆動には比較的大電流を用いる。また3相駆動、4相駆動などのモータ駆動の事情により線路数も多く必要になる。もしサイドユニット上LED基板630がモータドライバを搭載するものであったり、或いは個々のモータを中継する基板であったりすると、伝送線路H12において12V直流電圧(DC12VB)の伝送に用いる線路数が多く必要になる。
本例の場合、サイドユニット上LED基板630に対してモータ駆動制御の信号を伝送しない。つまりサイドユニット右上LED基板600にモータ駆動の機能を持たせない。これによりサイドユニット上LED基板630における回路の簡易化やコネクタの小型化を実現し、最下流で比較的前方に配置されるサイドユニット上LED基板630の小型化を促進できるようにしている。
実施の形態の遊技機1は次の(構成F1)を有する。
(構成F1)
遊技機1は、内枠2(枠部材)と、内枠2に対して開閉可能に設けられた扉6(扉部材)と、内枠2に対して交換可能に取り付けられた遊技盤3(交換部材)と、遊技盤3に取り付けられる演出制御基板30と、内枠2に取り付けられる電源基板300と、を備え、内枠2もしくは扉6に設けられる演出手段の駆動制御のための信号は演出制御基板30から出力し、内枠2もしくは扉6に設けられる演出手段の駆動のための電源電圧は電源基板300から遊技盤3を経由せずに供給するようにしている。
・演出手段:扉6に設けられるLED、モータ、ブロア等。もし内枠2にLED等が設けられる場合はそれも含む。
・演出手段の駆動制御のための信号:図13の内枠LED中継基板400に入力されるクリア信号CLR_L、CLR_M、クロック信号CLK_L、CLK_M、データ信号DATA_L、DATA_M、イネーブル信号ENABLE_L、ENABLE_M。
・演出手段の駆動のための電源電圧:12V直流電圧(DC12VB)。
また電源基板300からの12V直流電圧(DC12V)や、それに基づく電圧が、内枠LED中継基板400を起点として下流の扉6の各基板に供給され、各LEDやモータの動作の電源電圧とされる。
つまり扉6の演出手段は、図11に示した伝送線路H6、H7により演出制御基板30から供給された駆動信号に応じて、伝送線路H3で供給された電源電圧を用いて動作する構成とされている。
特に電源基板300と同じく内枠2に配置される内枠LED中継基板400を介して、駆動信号と電源電圧をまとめて扉6の前枠LED接続基板500に送ることで、配線効率をよくしている。扉6への電源配線についていえば、無駄な遊技盤3への回り込みを解消できていることにもなる。
(構成F2)
遊技機1は、内枠2(枠部材)と、内枠2に対して開閉可能に設けられた扉6(扉部材)と、内枠2に対して交換可能に取り付けられた遊技盤3(交換部材)と、遊技盤3に取り付けられる演出制御基板30と、内枠2に取り付けられる電源基板300と、を備え、内枠2もしくは扉6に設けられる演出手段の駆動制御のための信号は演出制御基板30から出力し、内枠2もしくは扉6に設けられる演出手段の駆動のための電源電圧は電源基板300から遊技盤3を経由せずに供給し、遊技盤3に設けられる演出手段の駆動制御のための信号は演出制御基板30から出力し、遊技盤3に設けられる演出手段の駆動のための電源電圧は演出制御基板30から供給する。
遊技盤3に設けられる演出手段とは、図11の遊技盤3における各基板によって駆動されるLED、モータ等である。
また遊技盤3に設けられる演出手段の駆動のための電源電圧とは、図36のコネクタCN1Jに供給される5V直流電圧(DC5V)、12V直流電圧(DC12VB)、35V直流電圧(DC35V)である。
加えて、遊技盤3の演出手段に対する配線の効率化が実現される。即ち演出制御基板30が遊技盤3に設けられることから、演出制御基板30で電源電圧と駆動制御のための信号をまとめて伝送線路H20によりLED接続基板700に送るようにすることで、余分な電源配線を解消できる。これにより遊技盤3内の配線を効率良く行うことができる。
(構成F3)
遊技機1は、内枠2(枠部材)と、内枠2に対して開閉可能に設けられた扉6(扉部材)と、内枠2に対して交換可能に取り付けられた遊技盤3(交換部材)と、遊技盤3に取り付けられる演出制御基板30と、内枠2に取り付けられる電源基板300と、内枠2に取り付けられる第1基板と、を備え、前記第1基板は、内枠2もしくは扉6に設けられる演出手段の駆動制御のための信号は演出制御基板30から入力するとともに、前記演出手段の駆動のための電源電圧を電源基板300から遊技盤3を経由せずに入力し、前記演出手段の駆動制御のための信号と前記演出手段の駆動のための電源電圧を該第1基板に配置された一のコネクタを介して出力するようにされている。
・演出手段:扉6に設けられるLED、モータ、ブロア等。もし内枠2にLED等が設けられる場合はそれも含む。
・第1基板:内枠LED中継基板400
・演出手段の駆動制御のための信号:図13の内枠LED中継基板400に入力されるクリア信号CLR_L、CLR_M、クロック信号CLK_L、CLK_M、データ信号DATA_L、DATA_M、イネーブル信号ENABLE_L、ENABLE_M。
・演出手段の駆動のための電源電圧:12V直流電圧(DC12VB)。
・コネクタ:図13のコネクタCN2B。
なお、図13、図14に示したように、内枠LED中継基板400は上流側と接続するのは2つのコネクタCN1B、CN4Bを用いている。
コネクタCN1Bは遊技盤3との間での配線に用い、コネクタCN4Bは内枠2内での配線に用いている。従って、別のコネクタを用いることが好適となる。この場合に、下流側の前枠LED接続基板500に対しては1つのコネクタCN2Bでまとめて伝送するという意味で、上記の配線効率の向上が実現される。
実施の形態の遊技機1はさらに以下の各種の構成を有する。
サイドユニット右上LED基板600は、供給される12V直流電圧(DC12VB)を、LED発光駆動とモータ駆動の両方に用いている。
この際に、図29に示したように、12V直流電圧(DC12VB)から12Vモータ駆動電圧(MOT12V)と12V直流電圧(DC12VS)を生成している。この12Vモータ駆動電圧(MOT12V)と12V直流電圧(DC12VS)はダイオードD7E、ショットキーバリアダイオードD8Eにより12V直流電圧(DC12VB)に影響を与えないようにされる。
一方図27のようにLEDドライバ605では12V直流電圧(DC12VB)を用い発光部612の発光駆動を行う。
このように12V直流電圧(DC12VB)はLEDとLEDドライバ用の電源電圧である。
12Vモータ駆動電圧(MOT12V)はモータ駆動用の電源電圧である。
12V直流電圧(DC12VS)はモータドライバ用の電源電圧である。
これらのように用途別に12V電源系を分けることで相互に影響を及ぼすことを回避している。例えば従来、LED電源電圧をそのままモータドライバに用いることで、モータドライバが故障することもあった。そこで、このような事態を回避するために用途別に電源系を分けている。
図46の盤裏下中継基板800への伝送線路H30(コネクタCN1Q)は、電源配線としての線路数が4本、グランドの線路数が3本である。この場合、電源電圧は、12V直流電圧(DC12VB)とモータ駆動電圧(MOT12V)である。
これは複数種類の電源電圧は、それぞれの消費電流を満たす本数で供給するが、グランドは合計の消費電流分の本数でよいことによる。
12V直流電圧(DC12VB)で1.3A、モータ駆動電圧(MOT12V)で1.6Aを消費するなら、それぞれ2本の線路数が必要となる。このため2本ずつで4本としている。
ところがこの場合、グランドは合計の2.9A分でよいため、グランド用の線路数は3本でよいことになる。
これにより電源供給に要する線路数を削減していることになる。
また基板間の配線数を削減し、コネクタCNの端子数を削減することによるコストダウンや省スペース化も実現する。
LED基板780は、コネクタCN1Nにより上流の中継基板760から電源電圧として5V直流電圧(DC5V)と、12V直流電圧(DC12VB)を受けている。
そしてバッファ回路781の電源として5V直流電圧(DC5V)を用い、LEDドライバ782の電源として12V直流電圧(DC12VB)を用いている。
下流側のLED基板790(図11参照)に対してはコネクタCN2Nから12V直流電圧(DC12VB)を出力している。
これにより、電源供給の効率化が図られる。
図13の内枠LED中継基板400は、扉6の各基板に演出制御基板30からの演出制御のための信号を出力するが、スピーカ46に対する信号も含まれている。
またコネクタCN2Bの第19ピンから第26ピンもスピーカ用の信号である。
これにより、伝送線路H7、コネクタCN1B、コネクタCN2B、伝送線路H8の系統で、スピーカ信号、つまり音声信号と、演出制御のための上記の信号、つまり高周波信号との線路間にグランドを設けていることになる。
これにより、シールド効果が得られるようにし、演出制御のための高周波信号により発生する高周波ノイズが音声信号に影響を与えることを低減できるようにしている。
しかもこれにより、演出制御のための信号とスピーカ信号を同じ配線で伝送できるようにしていることになり、配線効率を向上させている。
可動体に接続するハーネスは、繰り返し可動させても折れにくいフレキシブルケーブルか、通常よりも柔らかい線材を使う場合が多い。
柔らかい線材は、普通の線材と比較して、耐久性が高い、値段が高い、流せる電流はほぼ同じという特徴がある。一方、フレキシブルケーブルは、値段が高い、流せる電流が少ないという特徴がある。
可動体の構造上ハーネスの撓みが大きく、撓みの方向などをコントロールしたいときにフレキシブルケーブルを使うようにしている。柔らかい線材は、撓みをコントロールし難いためである。
図16のコネクタCN1C、CN4Cについて述べる。
前枠LED接続基板500の下流にはコネクタCN1C、CN4Cに接続される2つのLED基板(不図示のLED基板とハンドル内LED基板)が存在する。この場合に、2つのLED基板の一方はLEDドライバを搭載している。上述のように前枠LED接続基板500は、コネクタCN1Cから一方のLED基板のLEDドライバにLED制御のための信号を送信しつつ、当該LEDドライバからのLED発光駆動電流(17-R6、17-G6、17-B6、17-R7、17-G7、17B-7)を受け取り、コネクタCN4Cから他方のLED基板に送信している。
また共通の制御信号で発光制御するため、第1基板から第2基板にのみ駆動制御信号を送ればよく、配線効率がよい。
また第1基板で中継することで、第2基板と第3基板の間のハーネスが不要となる。
図26に示すクロック信号CLK_A、データ信号DATA_A、リセット信号RESET_Aのバッファ604による分岐構成として、次の構成を有する。
また分岐および出力前バッファ処理を1つのバッファ回路604の入力端子を利用して行うことで、構成の効率化が実現される。
図25のクロック信号CLK_P、データ信号DATA_P、リセット信号RESET_Pをバッファ回路601でバッファ処理した上で分岐する構成として次の構成を有する。
この場合に、上流からの発光駆動制御信号を、バッファ回路601でバッファ処理してから第1基板用と下流の第2基板用に分岐して、さらにバッファ回路604で分岐し、バッファ処理後にコネクタCN2E、CN3Eから下流の基板に送信されるようにしている。
なお図28に示すように、発光駆動制御信号を更に他のLEDドライバ606にも供給し、そのLEDドライバ606はモータ駆動信号の生成を行うようにしている。
図36,図39,図40,図41に示したように、LED接続基板700では、演出制御基板30から送信されてくる、クロック信号P_S_OUT_CLK(クロック信号CLK_P)とシリアルデータ信号P_S_OUT_DATA(シリアルデータ信号DATA_P)を、バッファ回路703、及びバッファ回路(705,706,707,708のいずれか)を介して下流側に転送する。
このクロック信号CLK_A、シリアルデータ信号DATA_Aは、図40のバッファ回路706でバッファ処理され、コネクタCN7Jからクロック信号CLK_E、シリアルデータ信号DATA_Eとして出力される。
またクロック信号CLK_A、シリアルデータ信号DATA_Aは、図39のバッファ回路705でバッファ処理され、コネクタCN10Jからクロック信号CLK_B、シリアルデータ信号DATA_Bとして出力される。
またクロック信号CLK_A、シリアルデータ信号DATA_Aは、図41のバッファ回路707でバッファ処理され、コネクタCN9Jからクロック信号CLK_D、シリアルデータ信号DATA_Dとして出力される。
またクロック信号CLK_A、シリアルデータ信号DATA_Aは、図41のバッファ回路708でバッファ処理され、コネクタCN8Jからクロック信号CLK_C、シリアルデータ信号DATA_Cとして出力される。
このように入力信号を複数系統に分岐して出力する際に、入力段階と、複数系統の各出力段階でバッファ処理することで、安定した信号伝送が実現される。
またそれ以外に実施の形態で説明した構成や動作を組み合わせることも可能である。
回胴型遊技機の場合も、枠部材と、枠部材に対して開閉可能に設けられた扉部材と、枠部材に対して交換可能に取り付けられた交換部材を有する。
例えば回胴型遊技機では、枠部材に相当する構成としての枠筐体、扉部材に相当する構成としての扉、交換部材に相当する構成としてのリールユニットを有することになる。例えば枠筐体は回胴型遊技機の本体を構成し、リールユニットは枠筐体に対して直接又は板金等を介してネジ止めなどにより取り付けられるため、交換可能である。扉は、枠筐体に対して開閉可能に取り付けられている。
このような回胴型遊技機においても、各実施の形態で説明したような基板構成、回路構成、コネクタ構成、電源構成等を採用できる。
2 内枠
3 遊技盤
4 外枠
6 扉
10 サイドユニット
13 演出ボタン
15a 十字キー
15b 決定ボタン
20 主制御基板
30 演出制御基板
300 電源基板
400 内枠LED中継基板
500 前枠LED接続基板
501,502,503,504,507,508,512,513,601,604,607,703,704,705,706,707,708,741,761,781 バッファ回路
505,506,602,603,701,702 P/S変換回路
509,605,606,621,631,661,663,742,782 LEDドライバ
510,511,608,609,710,711,712,713,714,715,716 モータドライバ
550 中継基板
600 サイドユニット右上LED基板
620 サイドユニット右下LED基板
630 サイドユニット上LED基板
640 ボタンLED接続基板
660 ボタンLED基板
700 LED接続基板
720 盤裏左中継基板
740 装飾基板
760 中継基板
780,790 LED基板
800 盤裏下中継基板
820 装飾基板
840 枠LED中継基板
Claims (1)
- 第1基板と、
第1伝送線路により前記第1基板と接続されて第1電源電圧の供給を受ける第2基板と、
第2伝送線路により前記第2基板と接続されて前記第1電源電圧の供給を受ける第3基板と、
を備え、
前記第3基板は前記第2基板より基板面の面積が小さくされ、
前記第2伝送線路において前記第1電源電圧の伝送に用いる線路数が、前記第1伝送線路における前記第1電源電圧の供給のための線路数よりも少なくされている
遊技機。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020008339A JP7356920B2 (ja) | 2020-01-22 | 2020-01-22 | 遊技機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020008339A JP7356920B2 (ja) | 2020-01-22 | 2020-01-22 | 遊技機 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2021115080A true JP2021115080A (ja) | 2021-08-10 |
JP2021115080A5 JP2021115080A5 (ja) | 2023-01-06 |
JP7356920B2 JP7356920B2 (ja) | 2023-10-05 |
Family
ID=77175461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020008339A Active JP7356920B2 (ja) | 2020-01-22 | 2020-01-22 | 遊技機 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7356920B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021115078A (ja) | 2020-01-22 | 2021-08-10 | 株式会社藤商事 | 遊技機 |
JP7365249B2 (ja) | 2020-01-22 | 2023-10-19 | 株式会社藤商事 | 遊技機 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1094655A (ja) * | 1996-09-24 | 1998-04-14 | Daiichi Shokai Co Ltd | パチンコ機 |
JP2017093883A (ja) * | 2015-11-26 | 2017-06-01 | 株式会社藤商事 | 遊技機 |
JP2019097993A (ja) * | 2017-12-05 | 2019-06-24 | 株式会社サンセイアールアンドディ | 遊技機 |
JP6603853B1 (ja) * | 2018-07-23 | 2019-11-13 | 株式会社大一商会 | 遊技機 |
-
2020
- 2020-01-22 JP JP2020008339A patent/JP7356920B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1094655A (ja) * | 1996-09-24 | 1998-04-14 | Daiichi Shokai Co Ltd | パチンコ機 |
JP2017093883A (ja) * | 2015-11-26 | 2017-06-01 | 株式会社藤商事 | 遊技機 |
JP2019097993A (ja) * | 2017-12-05 | 2019-06-24 | 株式会社サンセイアールアンドディ | 遊技機 |
JP6603853B1 (ja) * | 2018-07-23 | 2019-11-13 | 株式会社大一商会 | 遊技機 |
Also Published As
Publication number | Publication date |
---|---|
JP7356920B2 (ja) | 2023-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2021115080A (ja) | 遊技機 | |
JP2021119853A (ja) | 遊技機 | |
JP2021159686A (ja) | 遊技機 | |
JP7097921B2 (ja) | 遊技機 | |
JP2021159687A (ja) | 遊技機 | |
JP7078655B2 (ja) | 遊技機 | |
JP7096847B2 (ja) | 遊技機 | |
JP7096849B2 (ja) | 遊技機 | |
JP7096848B2 (ja) | 遊技機 | |
JP7080265B2 (ja) | 遊技機 | |
JP7202516B2 (ja) | 遊技機 | |
JP7126326B2 (ja) | 遊技機 | |
JP2021115077A (ja) | 遊技機 | |
JP2021115081A (ja) | 遊技機 | |
JP2021115078A (ja) | 遊技機 | |
JP2021115076A (ja) | 遊技機 | |
JP2021115079A (ja) | 遊技機 | |
JP2021119845A (ja) | 遊技機 | |
JP2021119854A (ja) | 遊技機 | |
JP2021119841A (ja) | 遊技機 | |
JP2021119843A (ja) | 遊技機 | |
JP2021119844A (ja) | 遊技機 | |
JP2021119847A (ja) | 遊技機 | |
JP2021119852A (ja) | 遊技機 | |
JP2021119842A (ja) | 遊技機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221219 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221219 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20221219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230718 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230810 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230912 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230925 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7356920 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |