Nothing Special   »   [go: up one dir, main page]

JP2021191198A - Power generating device - Google Patents

Power generating device Download PDF

Info

Publication number
JP2021191198A
JP2021191198A JP2020097605A JP2020097605A JP2021191198A JP 2021191198 A JP2021191198 A JP 2021191198A JP 2020097605 A JP2020097605 A JP 2020097605A JP 2020097605 A JP2020097605 A JP 2020097605A JP 2021191198 A JP2021191198 A JP 2021191198A
Authority
JP
Japan
Prior art keywords
magnet
power generation
yoke
generation device
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020097605A
Other languages
Japanese (ja)
Inventor
学 五閑
Manabu Gokan
淳也 田中
Junya Tanaka
佳子 高橋
Yoshiko Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020097605A priority Critical patent/JP2021191198A/en
Publication of JP2021191198A publication Critical patent/JP2021191198A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

To provide a power generating device capable of preventing a decrease in power generation efficiency and being fixed over a long period of time.SOLUTION: A power generating device 1 comprises: a vibration power generating device 2; a non-magnetic support member 31 including a support surface on which the vibration power generating device is arranged along a longitudinal direction; a mounting member 30 connected to both end parts in the longitudinal direction of the support member; and a first magnet 21, a second magnet 22, a third magnet 23, and a fourth magnet 24 arranged on a magnet mounting surface of the mounting member so as to be arranged in four locations around the vibration power generating device. The vibration power generating device comprises a first yoke 11, a second yoke 17 including a support member connection part 17A and an erection part 17B and connecting one end of the support member connection part and one end of the erection part in an L shape, a magnetostrictive element 10, a coil 12, a magnet 18 for power generation fixed to the second yoke, and a weight 14 fixed to the first yoke.SELECTED DRAWING: Figure 1A

Description

本発明は、例えば、無線センサーモジュールの電源として使用可能な発電装置に関する。 The present invention relates to, for example, a power generation device that can be used as a power source for a wireless sensor module.

近年、モノのインターネット(IoT)が、産業分野、防犯分野、防災分野、社会インフラ分野、医療分野、及び福祉分野などで多く利用されることが想定されている。IoTにおいては、人と機械、又は機械と機械との間で、センサーによって取得された温度、湿度、加速度、及び画像などの情報をインターネットなどの通信網を介して取得する。その際に重要となるコンポーネントは、センサー、電源、及び無線通信素子が一体となったモジュールから構成される無線センサーモジュールである。 In recent years, it is expected that the Internet of Things (IoT) will be widely used in the industrial field, crime prevention field, disaster prevention field, social infrastructure field, medical field, welfare field, and the like. In IoT, information such as temperature, humidity, acceleration, and images acquired by a sensor is acquired between a person and a machine or between a machine and a machine via a communication network such as the Internet. An important component at that time is a wireless sensor module composed of a module in which a sensor, a power supply, and a wireless communication element are integrated.

現在、無線センサーモジュールの電源には、使い切りの1次電池型や、充電が可能な2次電池型のボタン電池などが使用されている。無線センサーモジュールの電源が1次電池型の場合、電池が使い切りのため、電池の交換が必要となる。また、無線モジュールの電源が2次電池型の場合、電池への充電が必要となり、充電のための配線又は作業が必要となる。すなわち、電源として電池を使用する場合は、人手による定期的なメンテナンスが必要である。更に、無線センサーモジュールが壁の中へ埋め込まれる場合、又は機械の構成部材の間にある狭い隙間に配置される場合などにおいては、電池の交換又は充電作業などのメンテナンスができない場合がある。 Currently, a single-use primary battery type button battery or a rechargeable secondary battery type button battery is used as the power source for the wireless sensor module. If the power supply of the wireless sensor module is a primary battery type, the battery is used up and the battery needs to be replaced. Further, when the power source of the wireless module is a secondary battery type, it is necessary to charge the battery, and wiring or work for charging is required. That is, when a battery is used as a power source, regular manual maintenance is required. Further, when the wireless sensor module is embedded in the wall or arranged in a narrow gap between the constituent members of the machine, maintenance such as battery replacement or charging work may not be possible.

しかしながら、設置場所の環境で発生しているエネルギーであって、例えば、モーター、エンジン、又は橋梁などの構造物が発生する振動エネルギーから電力を発生させることで、エネルギー的に自立した無線センサーモジュールの電源となり得る。すなわち、振動エネルギーから電力を発生させることで、無線センサーモジュールが長期間又は半永久的にメンテナンスフリーに使用可能となる。また、配線レスであることから、例えば、すでに設置済みの機械、鉄道、又は橋梁などの構造物にも、振動エネルギーから発生する電力を使用する無線センサーモジュールを後付けで容易に設置することが可能である。 However, the energy generated in the environment of the installation site, for example, a wireless sensor module that is energetically self-sustaining by generating electric power from vibration energy generated by a structure such as a motor, an engine, or a bridge. Can be a power source. That is, by generating electric power from the vibration energy, the wireless sensor module can be used maintenance-free for a long period of time or semi-permanently. In addition, since it is wiring-less, it is possible to easily retrofit a wireless sensor module that uses electric power generated from vibration energy to, for example, a structure such as a machine, railroad, or bridge that has already been installed. Is.

このような環境で発生する振動エネルギーを利用する振動発電は、振動、衝撃、又は動きから電気エネルギーを取り出すことができる汎用性の高い発電方式である。
振動発電には、圧電方式、静電誘導方式、電磁誘導方式、磁歪方式などがある。例えば、圧電素子(ピエゾ素子)を使用した圧電方式は、素子の脆弱性により機械的な耐久性が低いという課題があり、電磁誘導方式では、可動部があるため小型化に課題がある。これらの中で、鉄系の磁歪材料を使用した磁歪方式は、磁歪素子が延性材料のため機械的特性、及び加工性に優れ、電気的にインピーダンスが低い。そのため、無線センサーモジュールの電源としての適用に有用である。この磁歪式振動発電は、磁歪素子に応力を加えることで、逆磁歪効果により発生する磁化(磁力線)が変化し、電磁誘導の法則により、磁歪素子の周囲に巻かれたコイルに起電力を発生させることで、機械エネルギーを電気エネルギーに変化する発電方式である。
Vibration power generation using vibration energy generated in such an environment is a highly versatile power generation method capable of extracting electric energy from vibration, impact, or movement.
Vibration power generation includes a piezoelectric method, an electrostatic induction method, an electromagnetic induction method, a magnetostrictive method, and the like. For example, the piezoelectric method using a piezoelectric element (piezo element) has a problem that mechanical durability is low due to the vulnerability of the element, and the electromagnetic induction method has a problem in miniaturization because it has a moving part. Among these, the magnetostrictive method using an iron-based magnetostrictive material has excellent mechanical properties and workability because the magnetostrictive element is a ductile material, and has low electrical impedance. Therefore, it is useful for application as a power source for a wireless sensor module. In this magnetostrictive vibration power generation, the magnetization (magnetic field line) generated by the magnetostrictive effect changes by applying stress to the magnetostrictive element, and an electromotive force is generated in the coil wound around the magnetostrictive element according to the law of electromagnetic induction. It is a power generation method that changes mechanical energy into electrical energy by making it.

特許文献1には、図11に示すように、磁歪式振動発電装置が開示されている。しかしながら、特許文献1の発電装置において、発電装置のフレームと振動源との接続方法は開示されていない。 Patent Document 1 discloses a magnetostrictive vibration power generation device as shown in FIG. However, in the power generation device of Patent Document 1, the connection method between the frame of the power generation device and the vibration source is not disclosed.

特許第6171992号公報Japanese Patent No. 6171992

橋梁などの構造物に対して無線センサーモジュールの電源として発電装置を後付けで設置するときに、例えばボルト及びナットなどの構造物を傷つける固定方法が、顧客の要望により、敬遠もしくは禁止されている場合がある。
この場合、発電装置を振動源となる構造物に磁石を使用して固定すれば取り付けが容易であるため、非常に有用である。しかしながら、前記従来技術における発電装置に固定用の磁石を適用すると、磁石の磁力が、磁歪式振動発電装置の磁気ループ(磁路)に干渉して発電効率を減少させる。また、永久磁石で磁歪式振動発電装置と構造物とを固定するとき、固定の方法により永久磁石の磁路が開いた磁路を構成する場合に、磁石の内部に自己滅磁力が発生するため、時間の経過とともに磁力が低下して、長期間の固定ができないという課題を有する。
When a power generation device is retrofitted to a structure such as a bridge as a power source for a wireless sensor module, for example, a fixing method that damages the structure such as bolts and nuts is avoided or prohibited at the request of the customer. There is.
In this case, it is very useful to fix the power generation device to the structure that is the vibration source by using a magnet because it is easy to attach. However, when a fixing magnet is applied to the power generation device in the prior art, the magnetic force of the magnet interferes with the magnetic loop (magnetic path) of the magnetic strain type vibration power generation device to reduce the power generation efficiency. In addition, when a magnetic strain type vibration power generator and a structure are fixed with a permanent magnet, a self-destructive magnetic force is generated inside the magnet when the magnetic path of the permanent magnet is opened by the fixing method. The magnetic force decreases with the passage of time, and there is a problem that the magnet cannot be fixed for a long period of time.

従って、本発明の目的は、前記問題を解決することにあって、発電効率の減少を防ぎつつ、長期間の固定をすることができる発電装置を提供することにある。 Therefore, an object of the present invention is to provide a power generation device capable of fixing for a long period of time while preventing a decrease in power generation efficiency in solving the above-mentioned problems.

前記目的を達成するために、本発明の1つの態様に係る発電装置は、
振動発電デバイスと、
非磁性体で構成され、前記振動発電デバイスが長手方向沿いに配置される支持面を有する支持部材と、
磁性体で構成され、前記支持部材の前記長手方向の両端部に連結される取付部材と、
前記振動発電デバイスの周囲の4か所に配置されるように前記取付部材の磁石取付面に配置される第1磁石、第2磁石、第3磁石、及び第4磁石と、
を備え、
前記振動発電デバイスは、
非磁性体で構成され、自由端部と、固定端部とを有する第1ヨークと、
磁性体で構成され、支持部材接続部と起立部とを有し、L字状に前記支持部材接続部の一端と前記起立部の一端とを連結する第2ヨークと、
磁性材料で構成される細長い板状の磁歪素子と、
前記磁歪素子の長手方向の軸回りの前記磁歪素子の周囲に、前記磁歪素子及び前記第1ヨークとの間に空間を設けて配置されるコイルと、
前記第2ヨークに固定される発電用磁石と、
前記第1ヨークに固定される錘と、
を有し、
前記第1ヨークは、前記第2ヨークの前記支持部材接続部と互いに対向して平行になるように配置され、
前記第1ヨークと前記第2ヨークとでU字状に形成されるように前記第1ヨークの前記固定端部と、前記第2ヨークの前記起立部とが連結され、
前記第2ヨークは、前記支持部材接続部で前記支持部材に接続され、
前記発電用磁石は、前記支持部材接続部の前記第1ヨークに対して互いに対向する面に固定され、
前記磁歪素子は、前記第1ヨークの前記固定端部側に接続され、
前記錘は、前記第1ヨークの自由端部側に固定され、
前記第1磁石及び前記第2磁石と、前記第3磁石及び前記第4磁石とは、それぞれ前記磁歪素子と、前記第2ヨークと、前記発電用磁石とで構成される閉鎖磁路と平行な磁路を形成し、且つ、前記第1磁石及び前記第3磁石と、前記第2磁石及び前記第4磁石とは、それぞれ前記閉鎖磁路と交差する磁路を形成するように配置され、
前記閉鎖磁路の長手方向沿いに対向する磁石同士は同極であり、前記閉鎖磁路の前記長手方向と交差する方向沿いに対向する磁石同士は異極である。
In order to achieve the above object, the power generation device according to one aspect of the present invention is
Vibration power generation device and
A support member composed of a non-magnetic material and having a support surface on which the vibration power generation device is arranged along the longitudinal direction,
A mounting member made of a magnetic material and connected to both ends of the support member in the longitudinal direction,
The first magnet, the second magnet, the third magnet, and the fourth magnet, which are arranged on the magnet mounting surface of the mounting member so as to be arranged at four places around the vibration power generation device,
Equipped with
The vibration power generation device is
A first yoke made of a non-magnetic material, having a free end and a fixed end,
A second yoke made of a magnetic material, having a support member connecting portion and an upright portion, and connecting one end of the support member connecting portion and one end of the upright portion in an L shape, and a second yoke.
An elongated plate-shaped magnetostrictive element made of magnetic material,
A coil arranged around the magnetostrictive element around the axis in the longitudinal direction of the magnetostrictive element with a space provided between the magnetostrictive element and the first yoke.
A magnet for power generation fixed to the second yoke and
The weight fixed to the first yoke and
Have,
The first yoke is arranged so as to face each other and be parallel to the support member connecting portion of the second yoke.
The fixed end portion of the first yoke and the upright portion of the second yoke are connected so as to be formed in a U shape by the first yoke and the second yoke.
The second yoke is connected to the support member at the support member connection portion, and is connected to the support member.
The power generation magnet is fixed to a surface of the support member connecting portion facing the first yoke.
The magnetostrictive element is connected to the fixed end side of the first yoke.
The weight is fixed to the free end side of the first yoke.
The first magnet and the second magnet, and the third magnet and the fourth magnet are parallel to a closed magnetic path composed of the magnetic strain element, the second yoke, and the power generation magnet, respectively. A magnetic path is formed, and the first magnet and the third magnet, and the second magnet and the fourth magnet are arranged so as to form a magnetic path intersecting the closed magnetic path, respectively.
The magnets facing each other along the longitudinal direction of the closed magnetic path have the same poles, and the magnets facing each other along the direction intersecting the longitudinal direction of the closed magnetic path have different poles.

本発明の前記態様によれば、発電装置を固定するための第1磁石、第2磁石、第3磁石、及び第4磁石の磁力が、振動発電デバイスにより生じる磁路に干渉せず、第1磁石、第2磁石、第3磁石、及び第4磁石が、開いた磁路ではなく、閉鎖された磁路(閉鎖磁路)を構成するので、発電装置の発電効率の減少を防ぎつつ、発電装置を長期間固定することができる。 According to the above aspect of the present invention, the magnetic forces of the first magnet, the second magnet, the third magnet, and the fourth magnet for fixing the power generation device do not interfere with the magnetic path generated by the vibration power generation device, and the first Since the magnet, the second magnet, the third magnet, and the fourth magnet form a closed magnetic path (closed magnetic path) instead of an open magnetic path, power generation is performed while preventing a decrease in the power generation efficiency of the power generation device. The device can be fixed for a long period of time.

本発明の第1実施形態に係る発電装置の概略構成を示す平面図。The plan view which shows the schematic structure of the power generation apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る発電装置の概略構成を示す正面図。The front view which shows the schematic structure of the power generation apparatus which concerns on 1st Embodiment of this invention. 第1実施形態の比較例として、図1Bに示す発電装置から支持部材を削除した場合に、振動発電デバイスにより生じる磁路が磁路分岐する様子を示す正面図。As a comparative example of the first embodiment, a front view showing how the magnetic path generated by the vibration power generation device branches when the support member is removed from the power generation device shown in FIG. 1B. 第1実施形態の別の比較例として、図1Bに示す発電装置のうち、第2磁石22の極性を逆にして配置した場合に、第1磁石21と、第2磁石22と、振動体20と、取付部材30とで構成される、閉鎖磁路と、振動発電デバイスで生じた閉鎖磁路とが磁力干渉する様子を示す正面図。As another comparative example of the first embodiment, in the power generation device shown in FIG. 1B, when the second magnet 22 is arranged in the opposite polarity, the first magnet 21, the second magnet 22, and the vibrating body 20 are arranged. The front view shows how the closed magnetic path composed of the mounting member 30 and the closed magnetic path generated by the vibration power generation device magnetically interfere with each other. 第1実施形態として、図1Bに示す発電装置1のように、第1磁石21の極性と第2磁石22の極性とが同じになるように配置した場合に、図3に示すような磁力干渉を防ぐ様子を示す正面図。As the first embodiment, when the polarity of the first magnet 21 and the polarity of the second magnet 22 are arranged to be the same as in the power generation device 1 shown in FIG. 1B, magnetic interference as shown in FIG. 3 Front view showing how to prevent. 図1Aに示す発電装置の第1〜第4磁石の自己減磁力を低減する磁路の方向を示す平面図。FIG. 3 is a plan view showing the direction of a magnetic path for reducing the self-demagnetizing force of the first to fourth magnets of the power generation device shown in FIG. 1A. 図1Aに示す発電装置の第1〜第4磁石の自己減磁力を低減する磁路の方向を示す正面図。The front view which shows the direction of the magnetic path which reduces the self-decaying force of the 1st to 4th magnets of the power generation apparatus shown in FIG. 1A. 本発明の第2実施形態に係る発電装置の概略構成を示す平面図。The plan view which shows the schematic structure of the power generation apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る発電装置の概略構成を示す正面図。The front view which shows the schematic structure of the power generation apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る発電装置の概略構成を示す左側面図。The left side view which shows the schematic structure of the power generation apparatus which concerns on 2nd Embodiment of this invention. 図7Aに示す発電装置の第1〜第6磁石の自己減磁力を低減する磁路の方向を示す平面図。FIG. 7A is a plan view showing the direction of the magnetic path for reducing the self-demagnetizing force of the first to sixth magnets of the power generation device shown in FIG. 7A. 図7Aに示す発電装置の第1〜第6磁石の自己減磁力を低減する磁路の方向を示す左側面図。The left side view which shows the direction of the magnetic path which reduces the self-decaying force of the 1st to 6th magnets of the power generation apparatus shown in FIG. 7A. 従来技術による発電装置の概略構成図。Schematic block diagram of a power generation device using conventional technology.

以下に、本発明に係る実施の形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.

(第1実施形態)
本発明の第1実施形態に係る発電装置1は、図1A及び図1Bに示すように、振動発電デバイス2と、第1磁石21と、第2磁石22と、第3磁石23と、第4磁石24と、取付部材30と、支持部材31とを少なくとも備える。発電装置1は、覆い部材32を更に備えることもできる。発電装置1は、非磁性体で構成される支持部材31と、磁性体で構成される取付部材30と、第1磁石21、第2磁石22、第3磁石23、及び第4磁石24とを介して、磁性体で構成される振動体20に取り付けられる。
(First Embodiment)
As shown in FIGS. 1A and 1B, the power generation device 1 according to the first embodiment of the present invention includes a vibration power generation device 2, a first magnet 21, a second magnet 22, a third magnet 23, and a fourth. It includes at least a magnet 24, a mounting member 30, and a support member 31. The power generation device 1 may further include a covering member 32. The power generation device 1 includes a support member 31 made of a non-magnetic material, a mounting member 30 made of a magnetic material, and a first magnet 21, a second magnet 22, a third magnet 23, and a fourth magnet 24. It is attached to the vibrating body 20 made of a magnetic material.

振動発電デバイス2は、磁歪素子10と、第1ヨーク11と、コイル12と、錘14と、第2ヨーク17と、発電用磁石18と、を有する。 The vibration power generation device 2 includes a magnetostrictive element 10, a first yoke 11, a coil 12, a weight 14, a second yoke 17, and a magnet 18 for power generation.

磁歪素子10は、磁性材料で構成される細長い板状の部材である。磁性材料としては、例えば、鉄−ガリウム系の合金、又は、鉄−コバルト系の合金を用いてもよいが、これらに限定されるものではない。また、磁性材料10は、結晶状態でもよいし、アモルファス状態でもよい。磁性材料10は、後述するコイル12の内径未満である幅と厚みとを有してコイル内に配置可能であり、コイル12の軸方向の長さであるコイル長以上の長さを有する。 The magnetostrictive element 10 is an elongated plate-shaped member made of a magnetic material. As the magnetic material, for example, an iron-gallium-based alloy or an iron-cobalt-based alloy may be used, but the magnetic material is not limited thereto. Further, the magnetic material 10 may be in a crystalline state or an amorphous state. The magnetic material 10 has a width and a thickness smaller than the inner diameter of the coil 12 described later and can be arranged in the coil, and has a length equal to or longer than the coil length which is the axial length of the coil 12.

第1ヨーク11は、非磁性体で構成される、真っ直ぐでかつ細長い平板状部材である。第1ヨーク11は、細長い部材の一端に配置された自由端部11Aと、自由端部11Aの反対側の細長い部材の他端に配置された固定端部11Bとを有する。自由端部11Aと固定端部11Bとの間で、且つ、固定端部11B側の表面(すなわち、図1Bでは上面)に、磁歪素子10が固定される。
このような構成によれば、後述するように第1ヨーク11の自由端部11Aに外力が作用して、外力により第1ヨーク11がたわむことで、磁歪素子10を伸張及び圧縮させることができる。
なお、以下では、一例として、磁歪素子10が固定された固定端部11B側の表面に対して垂直な方向を上下方向と定義して説明する。実際には、発電装置1の取り付け方向により、上下方向が変化する。
The first yoke 11 is a straight and elongated flat plate member made of a non-magnetic material. The first yoke 11 has a free end 11A disposed at one end of the elongated member and a fixed end 11B disposed at the other end of the elongated member opposite the free end 11A. The magnetostrictive element 10 is fixed between the free end portion 11A and the fixed end portion 11B and on the surface on the fixed end portion 11B side (that is, the upper surface in FIG. 1B).
According to such a configuration, as will be described later, an external force acts on the free end portion 11A of the first yoke 11, and the first yoke 11 is bent by the external force, so that the magnetostrictive element 10 can be expanded and compressed. ..
In the following, as an example, the direction perpendicular to the surface on the fixed end portion 11B side to which the magnetostrictive element 10 is fixed is defined as the vertical direction. Actually, the vertical direction changes depending on the mounting direction of the power generation device 1.

コイル12は、磁歪素子10の周囲に、磁歪素子10及び第1ヨーク11との間に空間を設けるように配置される。磁歪素子10及び第1ヨーク11とコイル12との間に設けられる空間は、例えば、0.1mm程度の隙間であってもよい。
このような構成によれば、後述するように第1ヨーク11の自由端部11Aに外力が作用して、外力により第1ヨーク11と磁歪素子10とがたわむときに、磁歪素子10とコイル12との接触を防ぐことができる。つまり、磁歪素子10がコイル12に干渉せず伸張及び圧縮する。
また、コイル12は、一例として、コイル12の軸方向長さの中心部が磁歪素子10の長手方向の中心部に対して互いに対向するように配置される。
このような構成によれば、電磁誘導により磁歪素子10内を通過する磁化の時間変化に比例して、誘導電流がコイル12に発生する。また、コイル12は、巻数を変更することにより電圧の大きさを調整することができる。なお、コイル12は、銅、又は、アルミニウムで構成されてもよい。
The coil 12 is arranged around the magnetostrictive element 10 so as to provide a space between the magnetostrictive element 10 and the first yoke 11. The space provided between the magnetostrictive element 10 and the first yoke 11 and the coil 12 may be, for example, a gap of about 0.1 mm.
According to such a configuration, as will be described later, when an external force acts on the free end portion 11A of the first yoke 11 and the first yoke 11 and the magnetostrictive element 10 bend due to the external force, the magnetostrictive element 10 and the coil 12 are used. It is possible to prevent contact with. That is, the magnetostrictive element 10 expands and compresses without interfering with the coil 12.
Further, as an example, the coil 12 is arranged so that the central portion of the axial length of the coil 12 faces the central portion in the longitudinal direction of the magnetostrictive element 10.
According to such a configuration, an induced current is generated in the coil 12 in proportion to the time change of the magnetization passing through the magnetostrictive element 10 by electromagnetic induction. Further, the coil 12 can adjust the magnitude of the voltage by changing the number of turns. The coil 12 may be made of copper or aluminum.

錘14は、非磁性体で構成される。図1A及び図1Bにおいて、錘14の形状は円柱体であるが、例えば、直方体など、その他の形状であってもよい。錘14は、第1ヨーク11の自由端部11Aに固定される。
このような振動発電デバイス2の構成によれば、第1ヨーク11の振動発電デバイス2の上下方向に外力が印加されたときに錘14の慣性力により第1ヨーク11と錘14とが振動し、第1ヨーク11に固定されている磁歪素子10が伸張及び圧縮を繰り返す。なお、錘14は、接着剤、又は、ボルトで第1ヨーク11に固定してもよい。
The weight 14 is made of a non-magnetic material. In FIGS. 1A and 1B, the shape of the weight 14 is a cylindrical body, but it may be another shape such as a rectangular parallelepiped. The weight 14 is fixed to the free end portion 11A of the first yoke 11.
According to such a configuration of the vibration power generation device 2, the first yoke 11 and the weight 14 vibrate due to the inertial force of the weight 14 when an external force is applied in the vertical direction of the vibration power generation device 2 of the first yoke 11. , The magnetic strain element 10 fixed to the first yoke 11 repeats stretching and compression. The weight 14 may be fixed to the first yoke 11 with an adhesive or bolts.

第2ヨーク17は、磁性体で構成される、屈曲した細長い平板状部材である。第2ヨーク17は、支持部材接続部17Aと、起立部17Bとを有する。第2ヨーク17は、支持部材接続部17Aの一端と起立部材17Bの一端とが連結されてL字状に形成される。また、第2ヨーク17の支持部材接続部17Aは、第1ヨーク11と互いに対向して平行に配置され、第2ヨーク17の起立部材17Bは、起立部材17Bの他端が第1ヨーク11の固定端と連結されて固定される。すなわち、第1ヨーク11と第2ヨーク17とは、互いに連結固定されることで、1つのU字状部材を一体に形成している。言い換えると、U字状部材のうち、非磁性体の部分が第1ヨーク11であり、磁性体の部分が第2ヨーク17である。 The second yoke 17 is a bent elongated flat plate-shaped member made of a magnetic material. The second yoke 17 has a support member connecting portion 17A and an upright portion 17B. The second yoke 17 is formed in an L shape by connecting one end of the support member connecting portion 17A and one end of the upright member 17B. Further, the support member connecting portion 17A of the second yoke 17 is arranged parallel to the first yoke 11 so as to face each other, and the upright member 17B of the second yoke 17 has the other end of the upright member 17B of the first yoke 11. It is connected and fixed to the fixed end. That is, the first yoke 11 and the second yoke 17 are connected and fixed to each other to integrally form one U-shaped member. In other words, in the U-shaped member, the non-magnetic part is the first yoke 11, and the magnetic part is the second yoke 17.

発電用磁石18は、第2ヨーク17が有する支持部材接続部17Aの、第1ヨーク11に対して互いに対向する面(すなわち、図1Bでは上面)に固定される。図1A及び図1Bにおいて、発電用磁石18の形状は直方体であるが、例えば、円柱体など、その他の形状であってもよい。なお、発電用磁石18は、ネオジウム系の永久磁石であってもよい。また、発電用磁石18は、磁歪素子10が発生させる磁束がコイル12の軸方向の全長を貫くように、磁歪素子10の長手方向の端部に対して互いに対向するように配置されてもよい。 The power generation magnet 18 is fixed to the surface of the support member connecting portion 17A of the second yoke 17 facing each other with respect to the first yoke 11 (that is, the upper surface in FIG. 1B). In FIGS. 1A and 1B, the shape of the power generation magnet 18 is a rectangular parallelepiped, but it may be another shape such as a cylindrical body. The power generation magnet 18 may be a neodymium-based permanent magnet. Further, the magnet for power generation 18 may be arranged so as to face each other with respect to the longitudinal end portion of the magnetostrictive element 10 so that the magnetic flux generated by the magnetostrictive element 10 penetrates the entire length in the axial direction of the coil 12. ..

支持部材31は、例えば、非磁性体の長方形の平板状部材で構成され、振動発電デバイス2が長手方向沿いに配置される支持面を有する。支持部材31は、長方形に限られるものではなく、支持部材接続部17Aよりも大きい形状であればよい。
取付部材30は、例えば、支持部材31を囲むように、磁性体の長方形の平板の枠状部材で構成される。よって、取付部材30で支持部材31を囲む結果、取付部材30と支持部材31とで1枚の長方形状の板状部材を構成している。取付部材30としては、1つの枠状部材に限定されるものではなく、少なくとも、支持部材31の長手方向の両端部に連結されるように2つの平板状部材で構成すればよい。
覆い部材32は、非磁性体の直方体の箱状の部材で構成され、振動発電デバイス2と支持部材31と、取付部材30とを覆うように、取付部材30に固定される。
The support member 31 is composed of, for example, a rectangular flat plate member made of a non-magnetic material, and has a support surface on which the vibration power generation device 2 is arranged along the longitudinal direction. The support member 31 is not limited to a rectangular shape, and may have a shape larger than that of the support member connection portion 17A.
The mounting member 30 is composed of, for example, a frame-shaped member of a rectangular flat plate made of a magnetic material so as to surround the support member 31. Therefore, as a result of surrounding the support member 31 with the mounting member 30, the mounting member 30 and the support member 31 form one rectangular plate-shaped member. The mounting member 30 is not limited to one frame-shaped member, and may be composed of at least two flat plate-shaped members so as to be connected to both ends in the longitudinal direction of the support member 31.
The covering member 32 is composed of a non-magnetic rectangular parallelepiped box-shaped member, and is fixed to the mounting member 30 so as to cover the vibration power generation device 2, the support member 31, and the mounting member 30.

発電装置1を固定するための第1磁石21と、第2磁石22と、第3磁石23と、第4磁石24とは、それぞれ永久磁石であって、振動発電デバイス2の周囲の4箇所に配置されるように、取付部材30の長方形の平板状の磁石取付面30Aの四隅に配置される。なお、これらの磁石21〜24は、非磁性体の支持部材31の領域には磁力によって吸着することができないため配置できないが、磁性体の取付部材30の磁石取付面30Aの領域であれば、磁石取付面30Aの四隅以外に配置してもよい。
磁石21〜24の形状は、4つとも同一形状であり、同一の高さである。磁石21〜24の形状は直方体であって、それぞれの磁石において互いに対向する面が平行である。なお、磁石21〜24は、例えば、円柱体などの他の形状であってもよい。
第1磁石21と第2磁石22とは、振動発電デバイス2の長手方向の中心又は重心を通る幅方向の軸を対称軸として配置される。また、第3磁石23と第4磁石24とは、第1磁石21と第2磁石22との配置と同様に、振動発電デバイス2の長手方向の中心又は重心を通る幅方向の軸を対称軸として配置される。
更に、第1磁石21と第3磁石23とは、振動発電デバイス2の長手方向の中心軸を対称軸として配置され、第2磁石22と第4磁石24とは、第1磁石21と第3磁石23との配置と同様に、振動発電デバイス2の長手方向の中心軸を対称軸として配置される。
つまり、第1磁石21と第2磁石22とは、磁歪素子10と、第1ヨーク11と、第2ヨーク17の起立部17Bと、第2ヨーク17の支持部材接続部17Aと、発電用磁石18とで構成される、閉鎖磁路50の長手方向と平行な方向で互いに対向する。同様に、第3磁石23と第4磁石24とは、閉鎖磁路50の長手方向と平行な方向で互いに対向する。また、第1磁石21と第3磁石23と、及び第2磁石22と第4磁石24とは、それぞれ閉鎖磁路50の長手方向と交差する方向、例えば、振動発電デバイス2の幅方向で互いに対向する。このように磁石21〜24を配置することで、振動体20に対して発電装置1をバランス良く固定支持することができる。
これらの磁石21〜24は、それぞれ、磁性体の取付部材30に固定され、磁性体の振動体20に固定される。具体的には、磁石21〜24は、それぞれの一端が、取付部材30が有する磁石取付面30Aに磁力で吸着することで固定され、それぞれの他端が、振動体20が有する磁石取付面20Aに磁力で吸着することで固定される。なお、第1磁石21と、第2磁石22と、第3磁石23と、第4磁石24とは、それぞれ、ネオジウム系の永久磁石であってもよい。
The first magnet 21, the second magnet 22, the third magnet 23, and the fourth magnet 24 for fixing the power generation device 1 are permanent magnets, respectively, and are located at four locations around the vibration power generation device 2. It is arranged at the four corners of the rectangular flat plate magnet mounting surface 30A of the mounting member 30 so as to be arranged. These magnets 21 to 24 cannot be arranged because they cannot be attracted to the region of the support member 31 of the non-magnetic material by magnetic force, but they can be arranged in the region of the magnet mounting surface 30A of the magnetic material mounting member 30. It may be arranged at other than the four corners of the magnet mounting surface 30A.
All four magnets 21 to 24 have the same shape and the same height. The shapes of the magnets 21 to 24 are rectangular parallelepipeds, and the surfaces of the magnets facing each other are parallel to each other. The magnets 21 to 24 may have other shapes such as a cylindrical body.
The first magnet 21 and the second magnet 22 are arranged with the axis in the width direction passing through the center in the longitudinal direction or the center of gravity of the vibration power generation device 2 as the axis of symmetry. Further, the third magnet 23 and the fourth magnet 24 have an axis of symmetry about the axis in the width direction passing through the center in the longitudinal direction or the center of gravity of the vibration power generation device 2, similar to the arrangement of the first magnet 21 and the second magnet 22. Is placed as.
Further, the first magnet 21 and the third magnet 23 are arranged with the central axis in the longitudinal direction of the vibration power generation device 2 as the axis of symmetry, and the second magnet 22 and the fourth magnet 24 are the first magnet 21 and the third magnet. Similar to the arrangement with the magnet 23, the central axis in the longitudinal direction of the vibration power generation device 2 is arranged as the axis of symmetry.
That is, the first magnet 21 and the second magnet 22 are the magnetostrictive element 10, the first yoke 11, the upright portion 17B of the second yoke 17, the support member connecting portion 17A of the second yoke 17, and the magnet for power generation. They face each other in a direction parallel to the longitudinal direction of the closed magnetic path 50 composed of 18. Similarly, the third magnet 23 and the fourth magnet 24 face each other in a direction parallel to the longitudinal direction of the closed magnetic path 50. Further, the first magnet 21, the third magnet 23, and the second magnet 22 and the fourth magnet 24 each intersect each other in the direction intersecting the longitudinal direction of the closed magnetic path 50, for example, the width direction of the vibration power generation device 2. opposite. By arranging the magnets 21 to 24 in this way, the power generation device 1 can be fixedly supported with respect to the vibrating body 20 in a well-balanced manner.
Each of these magnets 21 to 24 is fixed to the magnetic body mounting member 30 and fixed to the magnetic body vibrating body 20. Specifically, one end of each of the magnets 21 to 24 is fixed to the magnet mounting surface 30A of the mounting member 30 by magnetic force, and the other end of each is the magnet mounting surface 20A of the vibrating body 20. It is fixed by being attracted by magnetic force. The first magnet 21, the second magnet 22, the third magnet 23, and the fourth magnet 24 may be neodymium-based permanent magnets, respectively.

図2は、第1実施形態の比較例を示している。ここでは、図1Bに示す発電装置1から支持部材31を除去する代わりに、支持部材31が配置されていた部分にも取付部材30が配置されることになる。この比較例では、磁性体である取付部材30が支持部材を兼ねており、図2は、振動発電デバイス2により生じる磁路が分岐する様子を示す正面図である。具体的には、図2は、振動発電デバイス2が有する磁歪素子10と、第1ヨーク11と、第2ヨーク17の起立部17Bと、第2ヨーク17の支持部材接続部17Aと、発電用磁石18とで、閉鎖磁路50が構成される様子を示す。また、発電デバイス2が有する磁歪素子10と、第1ヨーク11と、第2ヨーク17の起立部17Bと、取付部材30と、発電用磁石18とで構成される、分岐磁路50Aが、分岐エリア40において閉鎖磁路50から分岐している様子を示す。このように、図2に示す比較例では、第2ヨーク17の支持部材接続部17Aを通る磁路と、取付部材30を通る磁路とに分岐することで、1つの磁路の場合と比べて磁気損失が生じ、発電効率が低下する。
そのため、第1実施形態では、振動発電デバイス2を非磁性体で構成される支持部材31に接続することで、磁路の分岐を防ぎ、発電装置1の発電効率の低下を防ぐことができる。
FIG. 2 shows a comparative example of the first embodiment. Here, instead of removing the support member 31 from the power generation device 1 shown in FIG. 1B, the mounting member 30 is also arranged in the portion where the support member 31 is arranged. In this comparative example, the mounting member 30 which is a magnetic material also serves as a support member, and FIG. 2 is a front view showing how the magnetic path generated by the vibration power generation device 2 branches. Specifically, FIG. 2 shows a magnetostrictive element 10 included in the vibration power generation device 2, a first yoke 11, an upright portion 17B of the second yoke 17, a support member connecting portion 17A of the second yoke 17, and power generation. The state in which the closed magnetic path 50 is formed by the magnet 18 is shown. Further, the branch magnetic path 50A composed of the magnetostrictive element 10 of the power generation device 2, the first yoke 11, the upright portion 17B of the second yoke 17, the mounting member 30, and the power generation magnet 18 is branched. The state of branching from the closed magnetic path 50 in the area 40 is shown. As described above, in the comparative example shown in FIG. 2, the magnetic path passing through the support member connecting portion 17A of the second yoke 17 and the magnetic path passing through the mounting member 30 are branched to compare with the case of one magnetic path. This causes magnetic loss and reduces power generation efficiency.
Therefore, in the first embodiment, by connecting the vibration power generation device 2 to the support member 31 made of a non-magnetic material, it is possible to prevent the magnetic path from branching and prevent the power generation efficiency of the power generation device 1 from deteriorating.

図3は第1実施形態の別の比較例として、図1Bに示す発電装置1のうち、第2磁石22の極性を逆にして配置した場合に、第1磁石21と、第2磁石22と、振動体20と、取付部材30とで構成される、閉鎖磁路51と、振動発電デバイス2で生じた閉鎖磁路50とが、磁力干渉する様子を示す正面図である。 FIG. 3 shows, as another comparative example of the first embodiment, the first magnet 21 and the second magnet 22 when the second magnet 22 is arranged in the opposite polarity in the power generation device 1 shown in FIG. 1B. It is a front view showing how the closed magnetic path 51 composed of the vibrating body 20, the mounting member 30, and the closed magnetic path 50 generated by the vibration power generation device 2 magnetically interfere with each other.

図3では、第1磁石21の磁石取付面30A側は、N極であり、第1磁石21の磁石取付面20A側は、S極である。一方、第2磁石22の磁石取付面30A側は、S極であり、第2磁石22の磁石取付面20A側は、N極である。このとき、第1磁石21のN極で生じた磁束が取付部材30を経由して、第2磁石22のS極に到達し、第2磁石22のN極から、磁性体である振動体20を経由して、第1磁石21のS極に到達する閉鎖磁路51が形成される。この磁路が、振動発電デバイス2の磁歪素子10と、第1ヨーク11と、第2ヨーク17の起立部17Bと、第2ヨーク17の支持部材接続部17Aと、発電用磁石18とで構成される閉鎖磁路50と干渉して、磁力干渉が発生するため、発電効率を減少させる。 In FIG. 3, the magnet mounting surface 30A side of the first magnet 21 is the N pole, and the magnet mounting surface 20A side of the first magnet 21 is the S pole. On the other hand, the magnet mounting surface 30A side of the second magnet 22 is the S pole, and the magnet mounting surface 20A side of the second magnet 22 is the N pole. At this time, the magnetic flux generated at the N pole of the first magnet 21 reaches the S pole of the second magnet 22 via the mounting member 30, and from the N pole of the second magnet 22, the vibrating body 20 which is a magnetic material. A closed magnetic path 51 that reaches the S pole of the first magnet 21 is formed via the above. This magnetic path is composed of a magnetic strain element 10 of the vibration power generation device 2, a first yoke 11, an upright portion 17B of the second yoke 17, a support member connecting portion 17A of the second yoke 17, and a magnet 18 for power generation. Since it interferes with the closed magnetic path 50 to generate magnetic interference, the power generation efficiency is reduced.

一方、図4は、第1実施形態として、図1Bに示す発電装置1のように、第1磁石21の極性と第2磁石22の極性とが同じになるように配置した場合に、図3に示すような磁力干渉を防ぐ様子を示す正面図である。 On the other hand, FIG. 4 shows the case where, as the first embodiment, the polarity of the first magnet 21 and the polarity of the second magnet 22 are arranged to be the same as in the power generation device 1 shown in FIG. 1B. It is a front view which shows how to prevent the magnetic force interference as shown in.

図4では、第1磁石21の磁石取付面30A側と第2磁石22の磁石取付面30A側とがN極で同極であり、第1磁石21の磁石取付面20A側と第2磁石22の磁石取付面20A側とがS極で同極である。このような構成によれば、第1磁石21のN極で生じた磁束と第2磁石22のN極で生じた磁束とが磁力干渉エリア41で打ち消し合う。つまり、図4に示すように、閉鎖磁路50の長手方向沿いに平行な方向において、第1磁石21のN極から磁力干渉エリア41の手前で折り返して第1磁石21のS極に到達する閉鎖磁路511が構成される。また、第2磁石22のN極から磁力干渉エリア41の手前で折り返して第2磁石22のS極に到達する閉鎖磁路522が構成される。その結果、磁力干渉エリア41を磁束が通過しないため、振動発電デバイス2への磁力干渉を防ぐことができる。 In FIG. 4, the magnet mounting surface 30A side of the first magnet 21 and the magnet mounting surface 30A side of the second magnet 22 are N poles and have the same pole, and the magnet mounting surface 20A side of the first magnet 21 and the second magnet 22. The magnet mounting surface 20A side of the above is the same pole as the S pole. According to such a configuration, the magnetic flux generated at the N pole of the first magnet 21 and the magnetic flux generated at the N pole of the second magnet 22 cancel each other out in the magnetic force interference area 41. That is, as shown in FIG. 4, in a direction parallel to the longitudinal direction of the closed magnetic path 50, the N pole of the first magnet 21 is folded back in front of the magnetic force interference area 41 to reach the S pole of the first magnet 21. A closed magnetic path 511 is configured. Further, a closed magnetic path 522 is configured which is folded back from the N pole of the second magnet 22 in front of the magnetic interference area 41 to reach the S pole of the second magnet 22. As a result, since the magnetic flux does not pass through the magnetic force interference area 41, it is possible to prevent the magnetic force interference with the vibration power generation device 2.

図5及び図6は、第1実施形態として、図1Aに示す発電装置が有する第1磁石21〜第4磁石24の自己減磁力を低減する磁路の方向を示す図である。 5 and 6 are views showing the direction of a magnetic path for reducing the self-demagnetizing force of the first magnets 21 to 4 magnets 24 included in the power generation device shown in FIG. 1A as the first embodiment.

第1磁石21と第2磁石22とを同極とすることで、振動発電デバイス2への磁力干渉を防ぐことができる。しかしながら、第1磁石21のN極から生じる磁束と第2磁石22のN極から生じる磁束とが、例えば、図4に示すように空気を通過して開いた磁路52を形成する。このとき、それぞれの磁石内部では自己減磁力が発生し、磁石の磁力を低下させる。そのため、磁石を使用する長期間の固定に悪影響を及ぼす恐れがある。 By making the first magnet 21 and the second magnet 22 have the same pole, it is possible to prevent magnetic interference with the vibration power generation device 2. However, the magnetic flux generated from the N pole of the first magnet 21 and the magnetic flux generated from the N pole of the second magnet 22 form, for example, an open magnetic path 52 through air as shown in FIG. At this time, a self-depleting magnetic force is generated inside each magnet, and the magnetic force of the magnet is reduced. Therefore, there is a risk of adversely affecting long-term fixation using magnets.

図5及び図6では、第1磁石21のN極と第2磁石22のN極とが、取付部材30の磁石取付面30Aと接続し、第1磁石21のS極と第2磁石22のS極とが、振動体20の磁石取付面20Aと接続している。また、第3磁石23のS極と第4磁石24のS極とが、取付部材30の磁石取付面30Aと接続し、第3磁石23のN極と第4磁石24のN極とが、振動体20の磁石取付面20Aと接続している。言い換えると、図5及び図6では、閉鎖磁路50の長手方向沿いに対向する第1磁石21と第2磁石22とが同極であり、閉鎖磁路50の長手方向と交差する方向、例えば、振動発電デバイス2の幅方向沿いに対向する第3磁石と第4磁石とが異極である。
このような構成によれば、第1磁石21のN極で生じた磁束が支持部材30を介して第3磁石23のS極に到達し、第3磁石23のN極から、磁性体である振動体20を経由して、第1磁石21のS極に到達する閉鎖磁路53が形成される。また、第2磁石22のN極で生じた磁束が支持部材30を介して第4磁石24のS極に到達し、第4磁石24のN極から、磁性体である振動体20を経由して、第2磁石22のS極に到達する閉鎖磁路54が形成される。閉鎖磁路54は、閉鎖磁路50の長手方向沿いの方向に、閉鎖磁路53に対して互いに対向するように形成される。これにより、磁石21〜24のそれぞれの磁石内部の自己減磁力を抑えて各磁石の磁力の低下を防ぎ、磁石による長期間の固定を可能にする。
また、磁石21〜24において互いに対向する面が平行であるため、磁束密度が均一になり、閉鎖磁路を形成しやすくなる。
In FIGS. 5 and 6, the N pole of the first magnet 21 and the N pole of the second magnet 22 are connected to the magnet mounting surface 30A of the mounting member 30, and the S pole of the first magnet 21 and the second magnet 22 are connected to each other. The S pole is connected to the magnet mounting surface 20A of the vibrating body 20. Further, the S pole of the third magnet 23 and the S pole of the fourth magnet 24 are connected to the magnet mounting surface 30A of the mounting member 30, and the N pole of the third magnet 23 and the N pole of the fourth magnet 24 are connected to each other. It is connected to the magnet mounting surface 20A of the vibrating body 20. In other words, in FIGS. 5 and 6, the first magnet 21 and the second magnet 22 facing each other along the longitudinal direction of the closed magnetic path 50 have the same poles and intersect the longitudinal direction of the closed magnetic path 50, for example. The third magnet and the fourth magnet facing each other along the width direction of the vibration power generation device 2 are different poles.
According to such a configuration, the magnetic flux generated at the N pole of the first magnet 21 reaches the S pole of the third magnet 23 via the support member 30, and is a magnetic material from the N pole of the third magnet 23. A closed magnetic path 53 that reaches the S pole of the first magnet 21 is formed via the vibrating body 20. Further, the magnetic flux generated at the N pole of the second magnet 22 reaches the S pole of the fourth magnet 24 via the support member 30, and from the N pole of the fourth magnet 24 via the vibrating body 20 which is a magnetic material. Therefore, a closed magnetic path 54 that reaches the S pole of the second magnet 22 is formed. The closed magnetic path 54 is formed so as to face each other with respect to the closed magnetic path 53 in the direction along the longitudinal direction of the closed magnetic path 50. As a result, the self-depleting magnetic force inside each of the magnets 21 to 24 is suppressed to prevent the magnetic force of each magnet from decreasing, and the magnets can be fixed for a long period of time.
Further, since the surfaces of the magnets 21 to 24 facing each other are parallel to each other, the magnetic flux density becomes uniform and it becomes easy to form a closed magnetic path.

次に、第1実施形態の発電装置1の発電動作について説明する。 Next, the power generation operation of the power generation device 1 of the first embodiment will be described.

振動体20は、磁性体で構成され、例えば、ビル又は橋梁などの構造物である。振動体20に対して、振動体20が有する磁石取付面20Aに磁力で吸着する第1磁石21、第2磁石22、第3磁石23、及び第4磁石24を介して、発電装置1が固定される。 The vibrating body 20 is made of a magnetic material and is, for example, a structure such as a building or a bridge. The power generation device 1 is fixed to the vibrating body 20 via the first magnet 21, the second magnet 22, the third magnet 23, and the fourth magnet 24 that are magnetically attracted to the magnet mounting surface 20A of the vibrating body 20. Will be done.

振動体20が外力により振動すると、振動体20に発生した振動は、第1磁石21と、第2磁石22と、第3磁石23と、第4磁石24とをそれぞれ介して、取付部材30に伝達される。取付部材30に伝達された振動は、支持部材31を介して振動発電デバイス2に伝達される。 When the vibrating body 20 vibrates due to an external force, the vibration generated in the vibrating body 20 is transmitted to the mounting member 30 via the first magnet 21, the second magnet 22, the third magnet 23, and the fourth magnet 24, respectively. Be transmitted. The vibration transmitted to the mounting member 30 is transmitted to the vibration power generation device 2 via the support member 31.

振動発電デバイス2に伝達された振動は、支持部材31に接続されている支持部材接続部17Aを介して第2ヨーク17に伝達され、第2ヨーク17に伝達された振動は、第2ヨーク17の起立部17Bに固定されている第1ヨーク11の固定端部11Bを介して、第1ヨーク11に伝達される。 The vibration transmitted to the vibration power generation device 2 is transmitted to the second yoke 17 via the support member connecting portion 17A connected to the support member 31, and the vibration transmitted to the second yoke 17 is transmitted to the second yoke 17. It is transmitted to the first yoke 11 via the fixed end portion 11B of the first yoke 11 fixed to the upright portion 17B of the above.

すなわち、取付部材30又は支持部材31の厚み方向(例えば、図1Bでは上下方向)と同方向(図1Bでは振動方向6)に振動体20が振動すると、上述の振動伝達の経路を介して、第1ヨーク11に、外力による振動方向6の方向の振動が伝達される。第1ヨーク11は、自由端部11Aに固定されている錘14に生じる慣性力により、錘14が配置されずに第1ヨーク11のみで振動する場合よりも振幅が増加する。
このような振動により、第1ヨーク11が伸張及び圧縮(言い換えれば、たわみ)を繰り返すことで、第1ヨーク11に固定されている磁歪素子10も伸張及び圧縮を繰り返す。
That is, when the vibrating body 20 vibrates in the same direction (vibration direction 6 in FIG. 1B) as the thickness direction of the mounting member 30 or the support member 31 (for example, the vertical direction in FIG. 1B), the vibrating body 20 vibrates via the above-mentioned vibration transmission path. Vibration in the vibration direction 6 due to an external force is transmitted to the first yoke 11. The amplitude of the first yoke 11 increases due to the inertial force generated in the weight 14 fixed to the free end portion 11A as compared with the case where the weight 14 is not arranged and vibrates only with the first yoke 11.
Due to such vibration, the first yoke 11 repeatedly expands and compresses (in other words, bends), so that the magnetostrictive element 10 fixed to the first yoke 11 also repeats expansion and compression.

磁歪素子10が伸張及び圧縮することで、磁歪素子10の磁化を変化させる逆磁歪効果が生じる。具体的には、磁歪素子10を長手方向に伸張させる引張力が生じると、磁歪素子10の磁化が増加し、磁歪素子10を長手方向に圧縮させる圧縮力が生じると、磁歪素子10の磁化が減少する。このような磁化の時間的変化により、コイル12に誘導電流が発生する。また、磁歪素子10と、第1ヨーク11と、錘14とがそれぞれ有する固有振動数の値が振動体20に発生した振動の振動周波数と一致すると、磁歪素子10と、第1ヨーク11と、錘14とが共振するため、連続発電をすることができる。なお、一致とは略一致を含む。 When the magnetostrictive element 10 expands and compresses, a reverse magnetostrictive effect that changes the magnetization of the magnetostrictive element 10 occurs. Specifically, when a tensile force that stretches the magnetostrictive element 10 in the longitudinal direction is generated, the magnetization of the magnetostrictive element 10 increases, and when a compressive force that compresses the magnetostrictive element 10 in the longitudinal direction is generated, the magnetization of the magnetostrictive element 10 is generated. Decrease. Due to such a temporal change in magnetization, an induced current is generated in the coil 12. Further, when the values of the natural frequencies of the magnetostrictive element 10, the first yoke 11, and the weight 14 match the vibration frequency of the vibration generated in the vibrating body 20, the magnetostrictive element 10, the first yoke 11, and the first yoke 11 Since it resonates with the weight 14, continuous power generation can be performed. It should be noted that the match includes a substantially match.

第1実施形態に係る発電装置1によれば、図1A及び図1Bに示すように、磁歪素子10と、第1ヨーク11と、第2ヨーク17の起立部17Bと、第2ヨーク17の支持部材接続部17Aと、発電用磁石18とを有する振動発電デバイス2を非磁性体の支持部材31に取り付けることで、発電装置1の発電効率の減少を防ぐことができる。具体的には、磁歪素子10と、第1ヨーク11と、第2ヨーク17の起立部17Bと、第2ヨーク17の支持部材接続部17Aと、発電用磁石18とで構成される閉鎖磁路50の分岐を、非磁性体の支持部材31が防ぐため、発電装置1の発電効率の減少を防ぐことができる。
また、第1磁石21と第2磁石22と、及び第3磁石23と第4磁石24とは、それぞれ閉鎖磁路50の長手方向と平行な方向で互いに対向することで、対向する磁石同士の磁束を打ち消し合い、閉鎖磁路50への干渉を防ぐ。そのため、発電装置1の発電効率の減少を防ぐことができる。
更に、第1磁石21と第3磁石23と、及び第2磁石22と第4磁石24とは、それぞれ閉鎖磁路50の長手方向と交差する方向、例えば、振動発電デバイス2の幅方向で互いに対向することで、それぞれの磁石内部の自己減磁力を抑えて磁力を長期間保持できるため、発電装置を長期間固定することができる。
According to the power generation device 1 according to the first embodiment, as shown in FIGS. 1A and 1B, the magnetostrictive element 10, the first yoke 11, the upright portion 17B of the second yoke 17, and the support of the second yoke 17 are supported. By attaching the vibration power generation device 2 having the member connecting portion 17A and the power generation magnet 18 to the non-magnetic support member 31, it is possible to prevent a decrease in the power generation efficiency of the power generation device 1. Specifically, a closed magnetic path composed of a magnetostrictive element 10, a first yoke 11, an upright portion 17B of the second yoke 17, a support member connecting portion 17A of the second yoke 17, and a magnet 18 for power generation. Since the non-magnetic support member 31 prevents the 50 branches, it is possible to prevent a decrease in the power generation efficiency of the power generation device 1.
Further, the first magnet 21, the second magnet 22, and the third magnet 23 and the fourth magnet 24 face each other in a direction parallel to the longitudinal direction of the closed magnetic path 50, so that the magnets facing each other are opposed to each other. The magnetic fluxes cancel each other out and prevent interference with the closed magnetic path 50. Therefore, it is possible to prevent a decrease in the power generation efficiency of the power generation device 1.
Further, the first magnet 21, the third magnet 23, and the second magnet 22 and the fourth magnet 24 each intersect in a direction intersecting the longitudinal direction of the closed magnetic path 50, for example, in the width direction of the vibration power generation device 2. By facing each other, the self-depleting force inside each magnet can be suppressed and the magnetic force can be maintained for a long period of time, so that the power generation device can be fixed for a long period of time.

(第2実施形態)
本発明の第2実施形態に係る発電装置1は、図7Aと図7Bと図8とに示すように、第5磁石25と第6磁石26とを備えている点で、第1実施形態と異なっている。また、第1磁石21と、第2磁石22と、第3磁石23と、第4磁石24とのそれぞれの磁石取付面30A側の極性は、いずれもN極で同極である点で、第1実施形態と異なっている。なお、第2実施形態では、第1実施形態と同一部分に同一参照番号を付して説明を省略し、第1実施形態と異なる点について説明する。
(Second Embodiment)
As shown in FIGS. 7A, 7B, and 8, the power generation device 1 according to the second embodiment of the present invention includes the fifth magnet 25 and the sixth magnet 26, and is the same as the first embodiment. It's different. Further, the polarities of the first magnet 21, the second magnet 22, the third magnet 23, and the fourth magnet 24 on the magnet mounting surface 30A side are all the same at the north pole. It is different from one embodiment. In the second embodiment, the same reference numbers are assigned to the same parts as those in the first embodiment, and the description thereof will be omitted, and the points different from those in the first embodiment will be described.

第5磁石25と、第6磁石26とは、それぞれ、磁石21〜24と同様の形状である。つまり、磁石21〜26の形状は、6つとも同一形状であり、同一の高さである。磁石21〜26の形状は直方体であって、それぞれの磁石において互いに対向する面が平行である。なお、磁石21〜26は、例えば、円柱体などの他の形状であってもよい。
第5磁石25と、第6磁石26とは、閉鎖磁路50の長手方向と平行な方向で互いに対向する。第5磁石25は、第1磁石21と第3磁石23との間に、閉鎖磁路50の長手方向と交差する方向、例えば、振動発電デバイス2の幅方向に一直線に配置され、第5磁石25のS極が取付部材30の磁石取付面30Aと接続している。また、第6磁石26は、第2磁石22と第4磁石24との間に、閉鎖磁路50の長手方向と交差する方向、例えば、振動発電デバイス2の幅方向に一直線に配置され、第6磁石26のS極が取付部材30の磁石取付面30Aと接続している。なお、第5磁石25は、第1磁石21と第3磁石23との間の中心に配置されてもよく、第6磁石26は、第2磁石22と第4磁石24との間の中心に配置されてもよい。
The fifth magnet 25 and the sixth magnet 26 have the same shape as the magnets 21 to 24, respectively. That is, the shapes of the magnets 21 to 26 are the same for all six magnets and have the same height. The shapes of the magnets 21 to 26 are rectangular parallelepipeds, and the surfaces of the magnets facing each other are parallel to each other. The magnets 21 to 26 may have other shapes such as a cylindrical body.
The fifth magnet 25 and the sixth magnet 26 face each other in a direction parallel to the longitudinal direction of the closed magnetic path 50. The fifth magnet 25 is arranged between the first magnet 21 and the third magnet 23 in a straight line in a direction intersecting the longitudinal direction of the closed magnetic path 50, for example, in the width direction of the vibration power generation device 2. The S pole of 25 is connected to the magnet mounting surface 30A of the mounting member 30. Further, the sixth magnet 26 is arranged between the second magnet 22 and the fourth magnet 24 in a straight line in a direction intersecting the longitudinal direction of the closed magnetic path 50, for example, in the width direction of the vibration power generation device 2. The S pole of the 6 magnet 26 is connected to the magnet mounting surface 30A of the mounting member 30. The fifth magnet 25 may be arranged at the center between the first magnet 21 and the third magnet 23, and the sixth magnet 26 may be arranged at the center between the second magnet 22 and the fourth magnet 24. It may be arranged.

このような構成によれば、図10に示すように、第5磁石25のN極で生じた磁束が、振動体20と、第1磁石21のS極と、第1磁石21のN極と、取付部材30とを順に介して、第5磁石25のS極に到達する。また、第5磁石25のN極で生じた磁束が、振動体20と、第3磁石23のS極と、第3磁石23のN極と、取付部材30とを順に介して、第5磁石25のS極に到達する。すなわち、図10に示すように、第5磁石25及び第1磁石21で閉鎖磁路551が構成され、第5磁石25及び第3磁石23で閉鎖磁路553が構成される。
また、図9に示すように、第5磁石25と第6磁石26とは、振動発電デバイス2の長手方向の中心又は重心を通る幅方向の軸を対称軸として配置される。そのため、第6磁石26及び第2磁石22で、振動発電デバイス2の長手方向沿いの方向で閉鎖磁路551に対して互いに対向する閉鎖磁路562が構成される。また、第6磁石26及び第4磁石24で、振動発電デバイス2の長手方向沿いの方向で閉鎖磁路553に対して互いに対向する閉鎖磁路564が構成される。
更に、磁石21〜26において互いに対向する面が平行であるため、磁束密度が均一になり、閉鎖磁路を形成しやすくなる。
その結果、磁石21〜26において開いた磁路ではなく、閉鎖された磁路が構成されるため、各磁石内部の自己減磁力を抑えて磁力の低下を防ぐことができ、磁石による長期間の固定を可能にする。また、磁石が6つ配置されているため、同様の磁石が4つ配置されている場合と比べて、磁力による固定力が増加する。
According to such a configuration, as shown in FIG. 10, the magnetic flux generated in the N pole of the fifth magnet 25 is the vibrating body 20, the S pole of the first magnet 21, and the N pole of the first magnet 21. The S pole of the fifth magnet 25 is reached through the mounting member 30 in order. Further, the magnetic flux generated at the N pole of the fifth magnet 25 passes through the vibrating body 20, the S pole of the third magnet 23, the N pole of the third magnet 23, and the mounting member 30 in order, and the fifth magnet. Reach 25 S poles. That is, as shown in FIG. 10, the fifth magnet 25 and the first magnet 21 form a closed magnetic path 551, and the fifth magnet 25 and the third magnet 23 form a closed magnetic path 553.
Further, as shown in FIG. 9, the fifth magnet 25 and the sixth magnet 26 are arranged with the axis in the width direction passing through the center in the longitudinal direction or the center of gravity of the vibration power generation device 2 as the axis of symmetry. Therefore, the sixth magnet 26 and the second magnet 22 form a closed magnetic path 562 facing each other with respect to the closed magnetic path 551 in the direction along the longitudinal direction of the vibration power generation device 2. Further, the sixth magnet 26 and the fourth magnet 24 form a closed magnetic path 564 facing each other with respect to the closed magnetic path 553 in the direction along the longitudinal direction of the vibration power generation device 2.
Further, since the surfaces of the magnets 21 to 26 facing each other are parallel to each other, the magnetic flux density becomes uniform and it becomes easy to form a closed magnetic path.
As a result, since the closed magnetic paths are formed instead of the open magnetic paths in the magnets 21 to 26, the self-depleting magnetic force inside each magnet can be suppressed and the decrease in the magnetic force can be prevented, and the magnets can be used for a long period of time. Allows fixation. Further, since six magnets are arranged, the fixing force due to the magnetic force increases as compared with the case where four similar magnets are arranged.

なお、前記様々な実施形態又は変形例のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。また、実施形態同士の組み合わせ又は実施例同士の組み合わせ又は実施形態と実施例との組み合わせが可能であると共に、異なる実施形態又は実施例の中の特徴同士の組み合わせも可能である。 By appropriately combining any of the various embodiments or modifications thereof, the effects of each can be achieved. Further, a combination of embodiments, a combination of examples, or a combination of an embodiment and an embodiment is possible, and a combination of features in different embodiments or examples is also possible.

本発明の前記態様に係る発電装置は、例えば、IoTにおいてキーコンポーネントである無線センサーモジュールなどの電源として適用可能である。 The power generation device according to the above aspect of the present invention can be applied as a power source for, for example, a wireless sensor module which is a key component in IoT.

1 発電装置
2 磁歪式振動発電デバイス
6 振動方向
10 磁歪素子
11 第1ヨーク
11A 自由端部
11B 固定端部
12 コイル
14 錘
17 第2ヨーク
17A 支持部材接続部
17B 起立部
18 発電用磁石
20 振動体
20A 磁石取付面
21 第1磁石
22 第2磁石
23 第3磁石
24 第4磁石
25 第5磁石
26 第6磁石
30 取付部材
30A 磁石取付面
31 支持部材
32 覆い部材
40 磁路の分岐エリア
41 固定用磁石による磁力干渉エリア
50 閉鎖磁路
50A 分岐磁路
51 閉鎖磁路
52 開いた磁路
53 閉鎖磁路
54 閉鎖磁路
511 閉鎖磁路
522 閉鎖磁路
551 閉鎖磁路
553 閉鎖磁路
562 閉鎖磁路
564 閉鎖磁路
100 従来例における発電装置
110 振動源
114 開口
120 自由端側
130 固定端側
131 固定ピン
140 錘
150 フレーム
160 発電部
161 磁歪素子
162 コイル
163 磁性部材
170 第1磁石
171 第2磁石
180 第1連結部材
181 第2連結部材
190 支柱
1 Power generation device 2 Magnetic strain type vibration power generation device 6 Vibration direction 10 Magnetic strain element 11 1st yoke 11A Free end 11B Fixed end 12 Coil 14 Weight 17 2nd yoke 17A Support member connection 17B Standing part 18 Power generation magnet 20 Vibrating body 20A Magnet mounting surface 21 1st magnet 22 2nd magnet 23 3rd magnet 24 4th magnet 25 5th magnet 26 6th magnet 30 Mounting member 30A Magnet mounting surface 31 Support member 32 Covering member 40 Magnetic path branch area 41 For fixing Magnetic interference area by magnet 50 Closed magnetic path 50A Branched magnetic path 51 Closed magnetic path 52 Open magnetic path 53 Closed magnetic path 54 Closed magnetic path 511 Closed magnetic path 522 Closed magnetic path 551 Closed magnetic path 552 Closed magnetic path 562 Closed magnetic path 564 Closed magnetic path 100 Power generation device 110 in the conventional example Vibration source 114 Opening 120 Free end side 130 Fixed end side 131 Fixed pin 140 Weight 150 Frame 160 Power generation unit 161 Magnetic strain element 162 Coil 163 Magnetic member 170 First magnet 171 Second magnet 180 1st connecting member 181 2nd connecting member 190 Strut

Claims (9)

振動発電デバイスと、
非磁性体で構成され、前記振動発電デバイスが長手方向沿いに配置される支持面を有する支持部材と、
磁性体で構成され、前記支持部材の前記長手方向の両端部に連結される取付部材と、
前記振動発電デバイスの周囲の4か所に配置されるように前記取付部材の磁石取付面に配置される第1磁石、第2磁石、第3磁石、及び第4磁石と、
を備え、
前記振動発電デバイスは、
非磁性体で構成され、自由端部と、固定端部とを有する第1ヨークと、
磁性体で構成され、支持部材接続部と起立部とを有し、L字状に前記支持部材接続部の一端と前記起立部の一端とを連結する第2ヨークと、
磁性材料で構成される細長い板状の磁歪素子と、
前記磁歪素子の長手方向の軸回りの前記磁歪素子の周囲に、前記磁歪素子及び前記第1ヨークとの間に空間を設けて配置されるコイルと、
前記第2ヨークに固定される発電用磁石と、
前記第1ヨークに固定される錘と、
を有し、
前記第1ヨークは、前記第2ヨークの前記支持部材接続部と互いに対向して平行になるように配置され、
前記第1ヨークと前記第2ヨークとでU字状に形成されるように前記第1ヨークの前記固定端部と、前記第2ヨークの前記起立部とが連結され、
前記第2ヨークは、前記支持部材接続部で前記支持部材に接続され、
前記発電用磁石は、前記支持部材接続部の前記第1ヨークに対して互いに対向する面に固定され、
前記磁歪素子は、前記第1ヨークの前記固定端部側に接続され、
前記錘は、前記第1ヨークの自由端部側に固定され、
前記第1磁石及び前記第2磁石と、前記第3磁石及び前記第4磁石とは、それぞれ前記磁歪素子と、前記第2ヨークと、前記発電用磁石とで構成される閉鎖磁路と平行な磁路を形成し、且つ、前記第1磁石及び前記第3磁石と、前記第2磁石及び前記第4磁石とは、それぞれ前記閉鎖磁路と交差する磁路を形成するように配置され、
前記閉鎖磁路の長手方向沿いに対向する磁石同士は同極であり、前記閉鎖磁路の前記長手方向と交差する方向沿いに対向する磁石同士は異極である、
発電装置。
Vibration power generation device and
A support member composed of a non-magnetic material and having a support surface on which the vibration power generation device is arranged along the longitudinal direction,
A mounting member made of a magnetic material and connected to both ends of the support member in the longitudinal direction,
The first magnet, the second magnet, the third magnet, and the fourth magnet, which are arranged on the magnet mounting surface of the mounting member so as to be arranged at four places around the vibration power generation device,
Equipped with
The vibration power generation device is
A first yoke made of a non-magnetic material, having a free end and a fixed end,
A second yoke made of a magnetic material, having a support member connecting portion and an upright portion, and connecting one end of the support member connecting portion and one end of the upright portion in an L shape, and a second yoke.
An elongated plate-shaped magnetostrictive element made of magnetic material,
A coil arranged around the magnetostrictive element around the axis in the longitudinal direction of the magnetostrictive element with a space provided between the magnetostrictive element and the first yoke.
A magnet for power generation fixed to the second yoke and
The weight fixed to the first yoke and
Have,
The first yoke is arranged so as to face each other and be parallel to the support member connecting portion of the second yoke.
The fixed end portion of the first yoke and the upright portion of the second yoke are connected so as to be formed in a U shape by the first yoke and the second yoke.
The second yoke is connected to the support member at the support member connection portion, and is connected to the support member.
The power generation magnet is fixed to a surface of the support member connecting portion facing the first yoke.
The magnetostrictive element is connected to the fixed end side of the first yoke.
The weight is fixed to the free end side of the first yoke.
The first magnet and the second magnet, and the third magnet and the fourth magnet are parallel to a closed magnetic path composed of the magnetic strain element, the second yoke, and the power generation magnet, respectively. A magnetic path is formed, and the first magnet and the third magnet, and the second magnet and the fourth magnet are arranged so as to form a magnetic path intersecting the closed magnetic path, respectively.
The magnets facing each other along the longitudinal direction of the closed magnetic path have the same poles, and the magnets facing each other along the direction intersecting the longitudinal direction of the closed magnetic path have different poles.
Power generator.
第5磁石と、第6磁石とを更に備え、
前記第5磁石は、前記第1磁石と前記第3磁石との間に、前記第1磁石、前記第5磁石、及び前記第3磁石が並ぶように配置され、
前記第6磁石は、前記第2磁石と前記第4磁石との間に、前記第2磁石、前記第6磁石、及び前記第4磁石が並ぶように配置され、
前記第5磁石と、前記第6磁石とは、前記閉鎖磁路の長手方向と平行な方向で互いに対向し、
前記第5磁石及び前記第1磁石と、前記第5磁石及び前記第3磁石と、前記第6磁石及び前記第2磁石と、前記第6磁石及び前記第4磁石とは、それぞれ前記閉鎖磁路と交差する磁路を形成するように配置され、
前記第5磁石と前記第6磁石とは、互いに同極で、且つ、前記第1磁石と、前記第2磁石と、前記第3磁石と、前記第4磁石とは異極であるように配置される、
請求項1に記載の発電装置。
Further equipped with a fifth magnet and a sixth magnet,
The fifth magnet is arranged so that the first magnet, the fifth magnet, and the third magnet are arranged between the first magnet and the third magnet.
The sixth magnet is arranged so that the second magnet, the sixth magnet, and the fourth magnet are arranged between the second magnet and the fourth magnet.
The fifth magnet and the sixth magnet face each other in a direction parallel to the longitudinal direction of the closed magnetic path.
The fifth magnet and the first magnet, the fifth magnet and the third magnet, the sixth magnet and the second magnet, and the sixth magnet and the fourth magnet are the closed magnetic paths, respectively. Arranged to form a magnetic path that intersects with
The fifth magnet and the sixth magnet are arranged so as to have the same pole as each other and the first magnet, the second magnet, the third magnet, and the fourth magnet have different poles. Be done,
The power generation device according to claim 1.
前記発電用磁石と、前記第1磁石と、前記第2磁石と、前記第3磁石と、前記第4磁石とは、それぞれ、ネオジウム系の永久磁石である、請求項1又は2に記載の発電装置。 The power generation according to claim 1 or 2, wherein the power generation magnet, the first magnet, the second magnet, the third magnet, and the fourth magnet are neodymium-based permanent magnets, respectively. Device. 前記第5磁石と前記第6磁石とは、それぞれ、ネオジウム系の永久磁石である、請求項2に記載の発電装置。 The power generation device according to claim 2, wherein the fifth magnet and the sixth magnet are neodymium-based permanent magnets, respectively. 前記発電用磁石は、前記磁歪素子の前記自由端部側の端部に対向するように配置される、請求項1〜4のいずれか1つに記載の発電装置。 The power generation device according to any one of claims 1 to 4, wherein the power generation magnet is arranged so as to face the end of the magnetostrictive element on the free end side. 前記磁歪素子は、前記コイルの軸方向の長さ以上の長さを前記軸方向に有する、請求項1〜5のいずれか1つに記載の発電装置。 The power generation device according to any one of claims 1 to 5, wherein the magnetostrictive element has a length equal to or longer than the axial length of the coil in the axial direction. 前記錘が非磁性体である、請求項1〜6のいずれか1つに記載の発電装置。 The power generation device according to any one of claims 1 to 6, wherein the weight is a non-magnetic material. 前記コイルは、銅で構成される、請求項1〜7のいずれか1つに記載の発電装置。 The power generation device according to any one of claims 1 to 7, wherein the coil is made of copper. 前記振動発電デバイスと前記支持部材とを覆うように配置され、前記支持部材に固定される覆い部材を更に備える、請求項1〜8のいずれか1つに記載の発電装置。 The power generation device according to any one of claims 1 to 8, further comprising a covering member arranged so as to cover the vibration power generation device and the support member and fixed to the support member.
JP2020097605A 2020-06-04 2020-06-04 Power generating device Pending JP2021191198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020097605A JP2021191198A (en) 2020-06-04 2020-06-04 Power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020097605A JP2021191198A (en) 2020-06-04 2020-06-04 Power generating device

Publications (1)

Publication Number Publication Date
JP2021191198A true JP2021191198A (en) 2021-12-13

Family

ID=78847740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020097605A Pending JP2021191198A (en) 2020-06-04 2020-06-04 Power generating device

Country Status (1)

Country Link
JP (1) JP2021191198A (en)

Similar Documents

Publication Publication Date Title
JP4905820B2 (en) Power generation element and power generation device including power generation element
US10291107B2 (en) Power generator, power generator set and power generation system
US9571011B2 (en) Power generating element and power generation device
JP5998879B2 (en) Power generator
JP2012039824A (en) Vibration generator
KR101172706B1 (en) Energy Harvester and Portable Electronic Device
JP2020078175A (en) Power generation device
US20100237719A1 (en) Electromagnetic vibratory generator for low freqency vibrations
JP2021191198A (en) Power generating device
JP2021141723A (en) Power generation device
US20220085271A1 (en) Power generation element and power generation apparatus
JP2015029377A (en) Vibration power generator utilizing magnetostrictor
JP6424485B2 (en) POWER GENERATOR AND ELECTRONIC DEVICE PROVIDED WITH THE SAME
JP2020065417A (en) Power generation device
KR101504867B1 (en) Active Energy Harvester
JP2021129479A (en) Power generator
JP2017184444A (en) Vibration generator
JP2019088112A (en) Power generator
JP6581816B2 (en) Vibration power generation apparatus, electronic device, and vibration power generation method
JP2020088933A (en) Power generation device
JP2021191054A (en) Power generation device
Lin et al. Design of a hybrid piezoelectric-electromagnetic vibration power generator
JP2021136734A (en) Power generator
JP2021191021A (en) Power generation device
Cohen et al. An energy harvesting mechanism travelling the human intestinal system