JP2021186761A - 学習モデル生成装置、推測装置および散気量制御装置 - Google Patents
学習モデル生成装置、推測装置および散気量制御装置 Download PDFInfo
- Publication number
- JP2021186761A JP2021186761A JP2020095365A JP2020095365A JP2021186761A JP 2021186761 A JP2021186761 A JP 2021186761A JP 2020095365 A JP2020095365 A JP 2020095365A JP 2020095365 A JP2020095365 A JP 2020095365A JP 2021186761 A JP2021186761 A JP 2021186761A
- Authority
- JP
- Japan
- Prior art keywords
- input data
- learning model
- membrane filtration
- unit
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009792 diffusion process Methods 0.000 title abstract description 8
- 239000012528 membrane Substances 0.000 claims abstract description 187
- 238000005374 membrane filtration Methods 0.000 claims abstract description 165
- 238000000926 separation method Methods 0.000 claims abstract description 165
- 238000010801 machine learning Methods 0.000 claims abstract description 13
- 230000002159 abnormal effect Effects 0.000 claims description 47
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 33
- 230000005856 abnormality Effects 0.000 claims description 7
- 239000006185 dispersion Substances 0.000 claims description 3
- 239000012466 permeate Substances 0.000 claims 2
- 238000000034 method Methods 0.000 description 69
- 230000008569 process Effects 0.000 description 62
- 238000004364 calculation method Methods 0.000 description 46
- 238000004088 simulation Methods 0.000 description 29
- 238000012545 processing Methods 0.000 description 20
- 238000005406 washing Methods 0.000 description 18
- 238000000611 regression analysis Methods 0.000 description 16
- 230000008859 change Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 13
- 239000000126 substance Substances 0.000 description 11
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 8
- 239000003814 drug Substances 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000032683 aging Effects 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000005273 aeration Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- 238000001728 nano-filtration Methods 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 238000013450 outlier detection Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000007621 cluster analysis Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/008—Control or steering systems not provided for elsewhere in subclass C02F
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/20—Accessories; Auxiliary operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/22—Controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/14—Pressure control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/16—Flow or flux control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/70—Control means using a programmable logic controller [PLC] or a computer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/70—Control means using a programmable logic controller [PLC] or a computer
- B01D2313/701—Control means using a programmable logic controller [PLC] or a computer comprising a software program or a logic diagram
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2315/00—Details relating to the membrane module operation
- B01D2315/06—Submerged-type; Immersion type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/18—Use of gases
- B01D2321/185—Aeration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/40—Automatic control of cleaning processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/442—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/005—Processes using a programmable logic controller [PLC]
- C02F2209/006—Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/40—Liquid flow rate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Computational Linguistics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Feedback Control In General (AREA)
Abstract
Description
<分離膜の状態推測システムの概要>
図1は、本実施形態に係る分離膜の状態推測システム100の概要を示す図である。状態推測システム100は、機械学習により生成される学習モデルを用いて膜ろ過運転に用いられる分離膜93の状態を推測したうえで、推測結果に応じて分離膜93へ供給する散気量を制御するシステムである。分離膜93の「状態」とは、どの程度汚染されている状態にあるかを意味する。正常な状態とは、汚染度が低く、膜間差圧が急上昇する現象が当面は発生し難い状態である。
膜分離装置90は、被処理水中に対し分離膜を用いたろ過を行い、分離膜を透過した処理水を得る膜ろ過運転を行う装置である。当該処理水は、ろ過により不純物質が除去された被処理水と表現することもできる。
運転データ取得装置4は、各種センサ等を用いて、膜ろ過運転中に計測される運転データを取得する。本実施形態に係る運転データは、少なくとも、膜ろ過圧および散気量を含み、さらに好ましくは、膜ろ過流量を含む。膜ろ過圧は、例えば、分離膜93とろ過ポンプ97との間のろ過水配管96に配置された圧力計から取得される。散気量は、散気装置95が供給する空気量であり散気装置95から直接取得される。膜ろ過流量は、例えば、ろ過水配管96に配置された流量計から取得される。運転データ取得装置4は、取得した運転データを入力データ算出装置5へ送信する。
入力データ算出装置5は、受信した運転データから、学習モデル生成装置1および推測装置2へ入力するための入力データを導出する。入力データは、運転データの特徴量を表すデータであり、運転データそのものである場合と、運転データに演算を施して得られる場合とがある。そして、学習モデルを生成するフェーズでは、入力データ算出装置5は、算出した入力データを学習モデル生成装置1へ直接送信するか、または、入力データを格納するための記憶装置7へ送信する。一方、分離膜93の状態を推測するフェーズでは、入力データ算出装置5は、算出した入力データを推測装置2へ送信する。なお、入力データの詳細については後述する。
学習モデル生成装置1は、受信した入力データを入力とした機械学習により、分離膜93の状態を推測するための学習モデルを生成し、記憶装置3に記憶する。学習モデル生成の詳細については後述する。
記憶装置3は、学習モデル生成装置1が生成した学習モデルを記憶する。なお、記憶装置3は、学習モデル以外のプログラムやデータを記憶してもよい。
推測装置2は、記憶装置3に記憶された学習モデルにアクセスし、当該学習モデルを用いて、入力データ算出装置5から受信した入力データから、分離膜93の状態を推測する。分離膜93の状態推測の詳細については後述する。
散気量制御装置8は、推測装置2による推測結果に応じて散気装置95の散気量のレベル(以下、単に「散気量レベル」と表記する)を決定し、決定した散気量レベルで散気するように散気装置95を制御する。一例として、散気量制御装置8は、推測装置2による推測結果が「正常」である場合は散気量レベルを現在値より下げ、一方、推測装置2による推測結果が「異常」である場合は散気量レベルを現在値より上げる。
図2は、膜分離装置90が実行する膜ろ過運転中に計測される膜ろ過圧の経時変化を示す図である。図2を用いて、膜ろ過運転のサイクル(以下では、「単位期間」と表記することがある)について説明する。膜ろ過運転のサイクルは、膜ろ過運転を実行する運転期間(例えば約5分)と、当該運転期間に続く、膜ろ過運転を実行しない休止期間(例えば約1分)とから成る。膜ろ過運転は、このサイクルが繰り返されて成る間欠運転である。
図3は、学習モデル生成装置1および推測装置2の要部構成の一例を示すブロック図である。
入力データ取得部11は、入力データ算出装置5から直接に入力データを取得するか、または、入力データ算出装置5が算出した入力データを格納している記憶装置7から入力データを取得する。そして、入力データ取得部11は、取得した入力データを教師データ生成部12へ出力する。
図4は、運転データから導出される入力データの一具体例を示す図である。入力データ算出装置5は、運転データである膜ろ過圧から、一例として、膜ろ過圧の最大値、膜ろ過圧の最小値、膜ろ過圧の標準偏差値、膜ろ過圧の平均値、膜間差圧、膜間差圧の変動速度、膜間差圧の変動量、および膜間差圧の変動率を算出する。
教師データ生成部12は、入力データと、当該入力データに対する分離膜93の状態を示すラベルとが対応付けられた教師データを生成する。そして、教師データ生成部12は、生成した教師データを学習部13へ出力する。
図3に戻り、学習部13について説明する。学習部13は、教師データ生成部12が生成した教師データを入力とした機械学習により、分離膜93の状態を推測するための学習モデル31を生成する。学習部13は、生成した学習モデル31を記憶装置3に格納する。学習部13は、教師データ生成部12から取得した複数の教師データを用い、ニューラルネットワーク(NN:Neural Network)などの既知のアルゴリズムにより学習モデル31を生成する。これにより、入力データを入力すると、将来の分離膜93の状態が正常となる確率(または、異常となる確率)を出力する学習モデル31が生成される。
推測装置2は制御部20を備えている。制御部20は、推測装置2の各部を統括して制御するものであり、一例として、プロセッサおよびメモリにより実現される。この例において、プロセッサは、ストレージ(不図示)にアクセスし、ストレージに格納されているプログラム(不図示)をメモリにロードし、当該プログラムに含まれる一連の命令を実行する。これにより、制御部20の各部が構成される。
入力データ取得部21は、入力データ算出装置5から入力データを取得し、アクセス部22へ出力する。当該入力データは、直近の膜ろ過運転において計測された運転データから導出されたものであることが好ましい。
アクセス部22は、記憶装置3に記憶された学習モデル31にアクセスする。アクセス部22は、推測部23を含む。
図7は、学習モデル生成装置1が実行する学習モデル生成処理の流れの一例を示すフローチャートである。なお、図7に示す学習モデル生成処理は、新たに学習モデル31を生成する処理であり、学習モデル31を更新する処理ではない。この例では、上述した、(第1条件)変動速度が第1所定値未満であること、(第2条件)膜間差圧が第2所定値未満であること、の両方を充足するとき、分離膜93の状態が正常であるものとする。また、入力データとラベルとの対応付けを自動で行うものとする。
図8は、学習モデル生成装置1が実行する学習モデル更新処理の流れの一例を示すフローチャートである。図8に示す学習モデル更新処理は、図7に示す学習モデル生成処理により学習モデル31が生成された後、膜ろ過運転の実行により新たに取得した入力データに基づき、学習モデル31を更新する処理である。なお、この例においても、上述した、(第1条件)変動速度が第1所定値未満であること、(第2条件)膜間差圧が第2所定値未満であること、の両方を充足するとき、分離膜93の状態が正常であるものとする。また、入力データとラベルとの対応付けを自動で行うものとする。
図9は、推測装置2が実行する推測処理および散気量制御装置8が実行する散気量制御処理の流れの一例を示すフローチャートである。
以上のように、本実施形態に係る学習モデル生成装置1は、膜ろ過運転中に計測される運転データから導出される入力データを取得する入力データ取得部11を備える。また、学習モデル生成装置1は、当該入力データを入力とした機械学習により、将来の分離膜93の状態を推測するための学習モデル31を生成する学習部13を備える。
上述したとおり、ラベルは、正常ラベルおよび異常ラベルの2種類に限られず、「正常と異常との中間状態」を示すラベル(以下、「中間ラベル」と表記する)を含んでいてもよい。「中間状態」とは、「正常」と言い切れる状態ではなく、かつ、「異常」と言い切れる状態でもない状態のことを意味する。
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
以降、学習モデル生成装置1が備える部材と同名の部材については、相違点のみを説明する。学習モデル生成装置1Aは制御部10Aを備えている。制御部10Aは、入力データ取得部11および学習部13Aを含む。
以降、推測装置2が備える部材と同名の部材については、相違点のみを説明する。推測装置2Aは制御部20Aを備えている。制御部20Aは、入力データ取得部21、およびアクセス部22Aを含む。アクセス部22Aは、記憶装置3Aに記憶された学習モデル31Aにアクセスする。アクセス部22Aは推測部23Aを含む。
図12は、学習モデル生成装置1Aが実行する、学習モデル生成処理の流れの一例を示すフローチャートである。なお、図12に示す学習モデル生成処理は、新たに学習モデル31Aを生成する処理である。
図13は、推測装置2Aが実行する推測処理および散気量制御装置8が実行する散気量制御処理の流れの一例を示すフローチャートである。
本実施形態に係る学習モデル生成装置1Aによれば、学習部13Aは、教師なし学習により、学習結果として、正常クラスタおよび異常クラスタを含む学習モデル31Aを生成する。これにより、十分な教師データを用意することができない状況においても、簡易に学習モデルを生成することができる。そのため、学習モデル生成装置1Aによる学習および推測装置2Aによる推測は、学習モデル生成装置1による学習および推測装置2による推測の代替として、または、その前段として実行することができる。
学習モデル31Aは、学習結果として正常クラスタのみを作成し、いわゆる外れ値検出を行うものであってもよい。この例の場合、学習モデル31Aは、入力された入力データと、正常クラスタ内の代表点(例えば重心)との距離を特定する。そして、学習モデル31Aは、当該距離が所定値以上である場合は入力データが外れ値であることを出力し、所定値未満である場合は入力データが正常値である(外れ値でない)ことを出力する。そして、外れ値が出力されたとき、推測部23Aは分離膜93の状態が異常になると推測し、正常値が出力されたとき、推測部23Aは分離膜93の状態が正常になると推測すればよい。なお、外れ値検出のアルゴリズムとしては、局所外れ値因子法(LOF)、1クラスサポートベクターマシン(OC−SVM)等を用いればよい。
本発明の参考形態について、以下に説明する。なお、説明の便宜上、実施形態1、2にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
回帰モデル生成装置6は制御部60を備えている。制御部60は、入力データ取得部61、対応付け部62および回帰モデル生成部63を含む。
以降、推測装置2が備える部材と同名の部材については、相違点のみを説明する。推測装置2Bは制御部20Bを含む。制御部20Bは、入力データ取得部21、アクセス部22B、およびコスト算出部24を含む。
図16は、推測装置2Bが実行する推測処理および散気量制御装置8が実行する散気量制御処理の流れの一例を示すフローチャートである。
膜間差圧の急上昇が起こる可能性を低減した状態を維持しながら膜ろ過運転を行うことは、コスト削減や省エネルギーにつながらない場合がある。この問題に対し、本参考形態に係る推測装置2Bによれば、散気にかかるエネルギーコストと、薬洗コストとが適切なものとなるときの散気装置95の動作条件を特定することができる。例えば、適切なタイミングで薬洗を行うことで、散気にかかるエネルギーコストを抑えることができ、結果として運転コストを抑えることが可能になる。つまり、推測装置2Bによれば、膜ろ過運転にかかるトータルコストを最適化することができる。
上述では、入力データを変更してシミュレーションデータS2〜SMを生成するにあたり、変更対象となるデータが散気量関連データであるものとして説明したが、これに限定されるものではなく、入力データのうち制御可能なものであればよい。例えば、膜ろ過運転における膜ろ過流量が制御可能である場合、平均膜ろ過流量および積算膜ろ過流量を変更してもよい。
入力データは、膜ろ過圧から算出される、最大膜ろ過圧、最小膜ろ過圧、膜ろ過圧の標準偏差値、平均膜ろ過圧、膜間差圧、膜間差圧の変動速度、膜間差圧の変動量、および膜間差圧の変動率のうち、少なくともいずれかを含んでいればよい。また、入力データは、散気量から算出される平均散気量および積算散気量のうち、少なくともいずれかを含んでいればよい。
学習モデル生成装置1、1A、推測装置2、2A、2Bおよび回帰モデル生成装置6の制御ブロック(制御部10、10A、20、20A、20B、60)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
2、2A 推測装置
8 散気量制御装置
11 入力データ取得部
12 教師データ生成部
13、13A 学習部
21 入力データ取得部
22、22A アクセス部
23、23A 推測部
31、31A 学習モデル
90 膜分離装置
92 被処理水
93 分離膜
95 散気装置
Claims (21)
- 被処理水中に浸漬して配置された分離膜と、前記分離膜の膜面散気を行う散気装置とを備え、前記散気装置により前記膜面散気を行いながら前記分離膜を透過した処理水を得る膜分離装置にて行われる膜ろ過運転中に計測される、膜ろ過圧および散気量を含む運転データから導出される入力データを取得する入力データ取得部と、
前記取得された入力データを入力とした機械学習により、前記分離膜の状態を推測するための学習モデルを生成する学習部と、を備える学習モデル生成装置。 - 前記膜ろ過運転は、間欠運転であり、
前記膜ろ過圧から導出される前記入力データは、運転期間と当該運転期間に続く休止期間とから成る単位期間における、膜ろ過圧の最大値、膜ろ過圧の最小値、膜ろ過圧の標準偏差値、膜ろ過圧の平均値、および、膜間差圧、並びに、前記単位期間以前の所定期間における、膜間差圧の変動速度、膜間差圧の変動量、および、膜間差圧の変動率、の少なくともいずれかを含み、
前記散気量から導出される前記入力データは、前記単位期間における前記散気量の平均値、および、前記所定期間における前記散気量の積算値、の少なくともいずれかを含む、請求項1に記載の学習モデル生成装置。 - 前記運転データは、さらに、前記膜ろ過運転中に計測された膜ろ過流量を含む、請求項1または2に記載の学習モデル生成装置。
- 前記膜ろ過運転は、間欠運転であり、
前記膜ろ過流量から導出される前記入力データは、運転期間と当該運転期間に続く休止期間とから成る単位期間における膜ろ過流量の平均値、および、前記単位期間以前の所定期間における前記膜ろ過流量の積算値、の少なくともいずれかを含む、請求項3に記載の学習モデル生成装置。 - 前記入力データと、当該入力データに対する前記分離膜の状態を示すラベルとが対応付けられた教師データを生成する教師データ生成部をさらに備え、
前記学習部は、前記生成された教師データを用いた教師あり学習により前記学習モデルを生成する、請求項1から4のいずれか1項に記載の学習モデル生成装置。 - 前記ラベルは、前記分離膜の状態が正常となる場合の前記入力データに対応付けられる正常ラベル、および、前記分離膜の状態が異常となる場合の前記入力データに対応付けられる異常ラベルを含む、請求項5に記載の学習モデル生成装置。
- 前記ラベルは、前記分離膜の状態が正常と異常との中間状態となる場合の前記入力データに対応付けられる中間ラベルをさらに含む、請求項6に記載の学習モデル生成装置。
- 前記学習部は、教師なし学習により、学習結果としてクラスタを含む前記学習モデルを生成する、請求項1から4のいずれか1項に記載の学習モデル生成装置。
- 前記学習部は、前記学習モデルを用いて前記分離膜の状態を推測したときに前記学習モデルに入力されたデータを取得し、該取得したデータを入力とした機械学習により前記学習モデルを更新する、請求項1から8のいずれか1項に記載の学習モデル生成装置。
- 被処理水中に浸漬して配置された分離膜と、前記分離膜の膜面散気を行う散気装置とを備え、前記散気装置により前記膜面散気を行いながら前記分離膜を透過した処理水を得る膜分離装置にて行われる膜ろ過運転中に計測される、膜ろ過圧および散気量を含む運転データに基づき機械学習により生成された、前記分離膜の状態を推測するための学習モデルにアクセスするアクセス部と、
前記膜ろ過運転中に計測された前記運転データから導出される入力データを取得する入力データ取得部と、
前記アクセスした学習モデルを用いて、前記取得された入力データから、前記分離膜の状態を推測する推測部と、を備える推測装置。 - 前記膜ろ過運転は、間欠運転であり、
前記入力データ取得部は、運転期間と当該運転期間に続く休止期間とから成る単位期間毎に前記運転データから導出された前記入力データを取得し、
前記推測部は、前記単位期間毎に、前記取得された入力データから前記状態を推測する、請求項10に記載の推測装置。 - 前記膜ろ過運転は、間欠運転であり、
前記膜ろ過圧から導出される前記入力データは、運転期間と当該運転期間に続く休止期間とから成る単位期間における、膜ろ過圧の最大値、膜ろ過圧の最小値、膜ろ過圧の標準偏差値、膜ろ過圧の平均値、および、膜間差圧、並びに、前記単位期間以前の所定期間における、膜間差圧の変動速度、膜間差圧の変動量、および、膜間差圧の変動率、の少なくともいずれかを含み、
前記散気量から導出される前記入力データは、前記単位期間における前記散気量の平均値、および、前記所定期間における前記散気量の積算値、の少なくともいずれかを含む、請求項10または11に記載の推測装置。 - 前記運転データは、さらに、前記膜ろ過運転中に計測された膜ろ過流量を含む、請求項10から12のいずれか1項に記載の推測装置。
- 前記膜ろ過運転は、間欠運転であり、
前記膜ろ過流量から導出される前記入力データは、運転期間と当該運転期間に続く休止期間とから成る単位期間における膜ろ過流量の平均値、および、前記単位期間以前の所定期間における前記膜ろ過流量の積算値、の少なくともいずれかを含む、請求項13に記載の推測装置。 - 前記学習モデルは、前記分離膜の状態を示すラベルを含む教師データを用いた教師あり学習により生成される、請求項10から14のいずれか1項に記載の推測装置。
- 前記ラベルは、前記分離膜の状態が正常となることを示すラベル、および、前記分離膜の状態が異常となることを示すラベルを含む、請求項15に記載の推測装置。
- 前記ラベルは、前記分離膜の状態が正常と異常との中間状態となることを示すラベルをさらに含む、請求項16に記載の推測装置。
- 前記学習モデルは、教師なし学習により生成される、学習結果としてクラスタを含む学習モデルである、請求項10から14のいずれか1項に記載の推測装置。
- 前記学習モデルの出力値は、外れ値か否かであり、
前記推測部は、
前記出力値が外れ値であるとき、前記分離膜の状態は異常になると推測し、
前記出力値が外れ値でないとき、前記分離膜の状態は正常になると推測する、請求項18に記載の推測装置。 - 請求項10から19のいずれか1項に記載の推測装置が推測した前記状態に応じて前記散気量のレベルを決定し、該決定したレベルで散気するように前記散気装置を制御する、散気量制御装置。
- 前記推測装置が推測した前記状態と、自装置が直近に決定したレベルとに応じて、前記散気量の今回のレベルを決定する、請求項20に記載の散気量制御装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020095365A JP7583535B2 (ja) | 2020-06-01 | 学習モデル生成装置 | |
EP21817187.4A EP4160324A4 (en) | 2020-06-01 | 2021-06-01 | LEARNING MODEL GENERATION DEVICE, DEDUCTION DEVICE AND VENTILATION QUANTITY CONTROL DEVICE |
US17/927,555 US20230214714A1 (en) | 2020-06-01 | 2021-06-01 | Learning model generating device, inferring device, and aeration amount control device |
CA3179569A CA3179569A1 (en) | 2020-06-01 | 2021-06-01 | Learning model generating device, inferring device, and aeration amount control device |
PCT/JP2021/020800 WO2021246393A1 (ja) | 2020-06-01 | 2021-06-01 | 学習モデル生成装置、推測装置および散気量制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020095365A JP7583535B2 (ja) | 2020-06-01 | 学習モデル生成装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021186761A true JP2021186761A (ja) | 2021-12-13 |
JP7583535B2 JP7583535B2 (ja) | 2024-11-14 |
Family
ID=
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7276412B1 (ja) | 2021-12-07 | 2023-05-18 | 栗田工業株式会社 | 水処理情報システム |
JP7354477B1 (ja) * | 2021-12-23 | 2023-10-02 | 千代田化工建設株式会社 | プログラム、情報処理装置、及び方法 |
WO2024122570A1 (ja) * | 2022-12-09 | 2024-06-13 | 株式会社クボタ | 膜洗浄風量制御システム、膜洗浄風量制御方法および膜洗浄風量制御プログラム |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7276412B1 (ja) | 2021-12-07 | 2023-05-18 | 栗田工業株式会社 | 水処理情報システム |
JP2023084184A (ja) * | 2021-12-07 | 2023-06-19 | 栗田工業株式会社 | 水処理情報システム |
JP7354477B1 (ja) * | 2021-12-23 | 2023-10-02 | 千代田化工建設株式会社 | プログラム、情報処理装置、及び方法 |
WO2024122570A1 (ja) * | 2022-12-09 | 2024-06-13 | 株式会社クボタ | 膜洗浄風量制御システム、膜洗浄風量制御方法および膜洗浄風量制御プログラム |
Also Published As
Publication number | Publication date |
---|---|
US20230214714A1 (en) | 2023-07-06 |
EP4160324A4 (en) | 2024-07-03 |
EP4160324A1 (en) | 2023-04-05 |
CA3179569A1 (en) | 2021-12-09 |
WO2021246393A1 (ja) | 2021-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ferrero et al. | Automatic control systems for submerged membrane bioreactors: A state-of-the-art review | |
EP3336425B1 (en) | Water quality management device, water treatment system, water quality management method, and water treatment system optimization program | |
JP6659404B2 (ja) | 排水処理制御装置及び排水処理システム | |
JPH08126882A (ja) | 造水プラントの運転制御装置 | |
CN109205781A (zh) | 控制系统及控制方法 | |
JP6661426B2 (ja) | プロセス診断装置、プロセス診断方法及びコンピュータプログラム | |
Ferrero et al. | Automatic control system for energy optimization in membrane bioreactors | |
CN112340930A (zh) | 控制系统以及控制方法 | |
JP6523854B2 (ja) | 最適制御装置、最適制御方法、コンピュータプログラム及び最適制御システム | |
CN111447988B (zh) | 水处理设施的管理装置、清洗药液订购系统、订购方法及药液清洗计划制定方法 | |
JP2013161336A (ja) | 監視対象量予測方法及び監視対象量予測装置 | |
WO2021246393A1 (ja) | 学習モデル生成装置、推測装置および散気量制御装置 | |
WO2022138189A1 (ja) | 膜間差圧推測装置および散気量制御装置 | |
JP7583535B2 (ja) | 学習モデル生成装置 | |
US11790325B2 (en) | Operation support device and operation support method | |
JP7378972B2 (ja) | 膜処理制御システム及び膜処理制御方法 | |
JP7331737B2 (ja) | 水処理施設の運転支援装置 | |
WO2017006988A1 (ja) | 排水処理制御装置及び排水処理システム | |
JP2002062927A (ja) | 排水処理プロセスシミュレータ | |
JP2010088988A (ja) | 曝気槽制御方法および装置 | |
JP7214576B2 (ja) | 洗浄風量制御システム及び洗浄風量制御装置 | |
JP5034337B2 (ja) | 膜ろ過装置の運転条件の決定方法、およびそれを用いた膜ろ過装置の運転方法 | |
JP2021109139A (ja) | 情報処理装置、情報処理方法及びプログラム | |
CN114585591B (zh) | 水处理装置设计支援装置以及水处理装置设计支援方法 | |
CN117534180A (zh) | 一种膜分离部件智能维护系统和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240313 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20240528 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240827 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20240827 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20240917 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20241029 |