Nothing Special   »   [go: up one dir, main page]

JP2021158968A - Cell adhesiveness hydrophilic modification cell culture material - Google Patents

Cell adhesiveness hydrophilic modification cell culture material Download PDF

Info

Publication number
JP2021158968A
JP2021158968A JP2020063388A JP2020063388A JP2021158968A JP 2021158968 A JP2021158968 A JP 2021158968A JP 2020063388 A JP2020063388 A JP 2020063388A JP 2020063388 A JP2020063388 A JP 2020063388A JP 2021158968 A JP2021158968 A JP 2021158968A
Authority
JP
Japan
Prior art keywords
group
cell culture
copolymer
culture substrate
hydrophilic modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020063388A
Other languages
Japanese (ja)
Other versions
JP7323182B2 (en
Inventor
和起 行田
Kazuki Nameta
努 高野
Tsutomu Takano
昌克 小川
Masakatsu Ogawa
弓弦 伊藤
Yuzuru Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Asahi FR R&D Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Asahi FR R&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Asahi FR R&D Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2020063388A priority Critical patent/JP7323182B2/en
Publication of JP2021158968A publication Critical patent/JP2021158968A/en
Application granted granted Critical
Publication of JP7323182B2 publication Critical patent/JP7323182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】ゴム、樹脂、ガラスのような成形基材の表面に十分な親水性を簡便に付与でき、速やかに親水性が発現すると共に、水との接触角を十分に低く維持できるようにしつつ、タンパク質やポリペプチドをコーティングしなくとも細胞培養でき、長期間、大気中又は水中で保管・保存又は使用しても培養性能を維持でき、半年〜数年間もの長期にわたって親水性を担保できる細胞接着性の親水性改質細胞培養基材を提供する。【解決手段】細胞接着性の親水性改質細胞培養基材は、ゴム、樹脂、ガラスから選ばれる何れかの材質製の成形基材が、ベタイン構造を有する繰返単位及び活性官能基を有する繰返単位を含む共重合体で被覆されており、前記共重合体中のベタイン構造又は前記活性官能基が、前記成形基材上の表面官能基と反応、結合、又は吸着している。【選択図】なし[Problem] To easily impart sufficient hydrophilicity to the surface of a molding base material such as rubber, resin, or glass, rapidly develop the hydrophilicity, and maintain a sufficiently low contact angle with water. , cells can be cultured without coating with proteins or polypeptides, the culture performance can be maintained even when stored, preserved or used in the air or water for a long period of time, and the hydrophilicity can be secured for a long period of half a year to several years. A hydrophilically modified cell culture substrate is provided. A cell-adhesive, hydrophilic modified cell culture substrate has a repeating unit having a betaine structure and an active functional group in a molding substrate made of any material selected from rubber, resin, and glass. It is coated with a copolymer containing repeating units, and the betaine structure or the active functional groups in the copolymer react, bond or adsorb to the surface functional groups on the molding substrate. [Selection figure] None

Description

本発明は、成形基材表面に施された親水化処理効果を長時間持続することによって、細胞培養可能で細胞接着性を発現した親水性改質細胞培養基材に関するものである。 The present invention relates to a hydrophilic modified cell culture substrate which is capable of cell culture and exhibits cell adhesion by sustaining the effect of hydrophilization treatment applied to the surface of the molded substrate for a long time.

医薬品・農薬の研究開発や、飲食品の微生物検査、健康診断での菌・細胞の培養、生化学研究現場・医療現場での細胞培養、再生医療での組織培養などに、培地を有する培養基材が用いられる。 Culture medium-based culture medium for research and development of pharmaceuticals and pesticides, microbiological examination of foods and drinks, culture of bacteria and cells in health examinations, cell culture in biochemical research and medical sites, tissue culture in regenerative medicine, etc. The material is used.

これらの培養には、細胞培養プレート、細胞培養フラスコ、細胞培養ディッシュ、細胞培養チューブなど、様々な形状に成形された成形基材が用いられる。 For these cultures, molded substrates molded into various shapes such as cell culture plates, cell culture flasks, cell culture dishes, and cell culture tubes are used.

通常、成形基材の素材には、成形が容易で透明性が高いガラスの他、ポリスチレンやシリコーンなどの各種プラスチックが汎用されており、成形方法としては、圧縮成形や射出成形、押出成形、ブロー成形、真空成形、圧空成形、カレンダー成形などにより様々な形状に成形されている。 Generally, as the material of the molding base material, various plastics such as polystyrene and silicone are widely used in addition to glass which is easy to mold and has high transparency, and the molding method includes compression molding, injection molding, extrusion molding, and blow. It is molded into various shapes by molding, vacuum molding, pneumatic molding, calendar molding, etc.

細胞培養の形態は増殖状態の細胞に応じて、単一細胞または小さな細胞塊が培地に浮いている状態の浮遊培養系、細胞が容器等に接着している接着培養系の2つに大別される。 The form of cell culture is roughly divided into two types, a suspension culture system in which a single cell or a small cell mass is floating in a medium, and an adhesion culture system in which cells are adhered to a container, etc., depending on the proliferating cells. Will be done.

通常、ガラスやプラスチックで成形しただけの成形基材では、接着培養系の細胞培養が難しいため、細胞が播種される表面に、各素材に合った表面処理が必要になってくる。 Normally, it is difficult to culture cells in an adhesive culture system with a molded base material that is simply molded from glass or plastic, so that the surface on which cells are seeded needs to be surface-treated according to each material.

表面処理には、表面を親水化するための表面改質処理、または細胞外マトリックスタンパク質または細胞外マトリックスタンパク質を消化分解する等して生じる断片やポリリジンなどのポリペプチドでコーティングされる。ヒト子宮頸癌由来細胞であるHeLa細胞、チャイニーズハムスター肺由来線維芽細胞であるV79細胞のような株化細胞は、一般に表面を親水化された培養容器で細胞培養が可能となる。 The surface treatment is coated with a surface modification treatment for hydrophilizing the surface, or a fragment produced by digestion and decomposition of extracellular matrix protein or extracellular matrix protein, or a polypeptide such as polylysine. Established cells such as HeLa cells, which are human cervical cancer-derived cells, and V79 cells, which are Chinese hamster lung-derived fibroblasts, can generally be cultured in a culture vessel whose surface is hydrophilic.

細胞外マトリックスは、動物の各組織において細胞間隙など細胞外に存在する不溶性物質であり、コラーゲン、フィブロネクチン、ラミニン等の様々なタンパク質により構成される。細胞外マトリックスは、細胞によって作り出され細胞の足場となり、細胞の接着、分化、増殖、移動、機能維持に重要な役割を果たす生体成分である。 The extracellular matrix is an insoluble substance that exists outside cells such as intercellular spaces in each animal tissue, and is composed of various proteins such as collagen, fibronectin, and laminin. The extracellular matrix is a biological component produced by cells that serves as a scaffold for cells and plays an important role in cell adhesion, differentiation, proliferation, migration, and maintenance of function.

一般に細胞外マトリックスを構成するタンパク質のうちヒト由来のタンパク質は、培養容器をコーティングする目的のために十分な品質および十分な量を入手することが難しい。そのため通常、ヒト由来の細胞を培養するためであっても、培養容器をコーティングするための細胞外マトリックス由来のタンパク質としてウシやブタ等由来のタンパク質を用いる。しかし、再生医療における移植用の細胞培養や生体内における詳細な細胞機能研究のための細胞培養には、異種動物由来のタンパク質やポリペプチドを出来うる限り使用しないことが好ましい。 In general, among the proteins constituting the extracellular matrix, human-derived proteins are difficult to obtain in sufficient quality and sufficient quantity for the purpose of coating the culture vessel. Therefore, usually, even for culturing human-derived cells, a protein derived from bovine or porcine is used as a protein derived from extracellular matrix for coating a culture vessel. However, it is preferable not to use proteins and polypeptides derived from heterologous animals as much as possible in cell cultures for transplantation in regenerative medicine and cell cultures for detailed cell function studies in vivo.

再生医療における細胞移植、創薬産業における動物実験を代替するため臓器機能を再現するorgan−on−a−chip、生体内における環境における本来的な細胞の機能研究など、近年の細胞培養技術開発において、動物体内の臓器や組織により近い環境で培養をする技術が重要になっている。 In recent cell culture technology development, such as cell transplantation in regenerative medicine, organ-on-a-chip that reproduces organ functions to replace animal experiments in the drug discovery industry, and research on the original cell functions in the environment in vivo. , The technique of culturing in an environment closer to the organs and tissues in the animal body is becoming important.

シリコーンゴムからは、動物の様々な組織の硬度に近い培養容器を作ること、通気性の高い培養容器を作ること、心筋や血管腸管に近い高い伸展性を持つ培養容器を作ることが可能である。また、シリコーンゴムは、高圧滅菌に耐えられる耐久性を有する。このような種々の硬度、通気性、伸展性、耐久性を持つ培養容器をガラス素材およびポリスチレン素材のみから作ることは難しい。 From silicone rubber, it is possible to make a culture vessel that is close to the hardness of various tissues of animals, to make a culture vessel with high air permeability, and to make a culture vessel with high extensibility close to the myocardium and vascular intestinal tract. .. In addition, silicone rubber has durability that can withstand high-pressure sterilization. It is difficult to make a culture vessel having such various hardness, breathability, extensibility, and durability only from glass material and polystyrene material.

シリコーンゴムは、前記の理由で再生医療、創薬産業、基礎研究などの分野から注目されるが、シリコーンゴムは、その撥水撥油性の所為で親水性に乏しいためシリコーンゴムを基材とする培養容器に細胞を接着させることは難しい。通常、シリコーンゴムで成形された培養容器は、接着培養系の細胞培養を行うために、表面をコラーゲン等の細胞外マトリックスを構成するタンパク質やポリペプチドでコーティングして利用される。 Silicone rubber is attracting attention from fields such as regenerative medicine, drug discovery industry, and basic research for the above reasons, but silicone rubber is based on silicone rubber because of its water and oil repellency and poor hydrophilicity. It is difficult to attach cells to the culture vessel. Usually, a culture vessel formed of silicone rubber is used by coating the surface with a protein or polypeptide constituting an extracellular matrix such as collagen in order to carry out cell culture of an adhesive culture system.

再生医療における細胞移植のための細胞培養、創薬産業における動物実験を代替するため臓器機能を再現するorgan−on−a−chipのための細胞培養、生体内における詳細な細胞機能研究のための細胞培養等の研究開発において、動物体内の臓器や組織により近い環境で細胞培養を実現する技術が求められている。 Cell culture for cell transplantation in regenerative medicine, cell culture for organ-on-a-chip that reproduces organ function to replace animal experiments in the drug discovery industry, for detailed cell function research in vivo In research and development such as cell culture, there is a demand for a technique for realizing cell culture in an environment closer to the organs and tissues in the animal body.

このようなシリコーン製の成形基材に、親水性を付与するために、シリコーン成形基材への乾式処理や湿式処理、又は親水性化合物含有シリコーン原料組成物の硬化によるシリコーン基材形成処理、表面蒸着処理のような表面改質処理によって、シリコーン表面に親水性基を付与していた。 In order to impart hydrophilicity to such a silicone molded base material, a dry treatment or a wet treatment on the silicone molded base material, or a silicone base material forming treatment by curing a silicone raw material composition containing a hydrophilic compound, a surface A hydrophilic group was imparted to the silicone surface by a surface modification treatment such as a vapor deposition treatment.

これら表面改質処理のうち、乾式処理は、コロナ放電処理、プラズマ処理、紫外線処理、エキシマ処理などがあり、表面に水酸基などの親水性基を生成させて、親水性を付与するというものである。このような乾式処理は、比較的簡便である。しかし、乾式処理して得られた親水性化したシリコーン成形基材を大気中又は水中で保管・保存又は使用していると、シリコーン基材表面に折角生じさせた親水性基が経時的にシリコーンとりわけシリコーンゴムの内部に潜りこむようになり、親水性が3〜6箇月程度の比較的短期間で失われてしまう。 Among these surface modification treatments, the dry treatment includes corona discharge treatment, plasma treatment, ultraviolet treatment, excimer treatment, etc., and imparts hydrophilicity by generating hydrophilic groups such as hydroxyl groups on the surface. .. Such a dry process is relatively simple. However, when the hydrophilic silicone molded base material obtained by the dry treatment is stored, stored or used in the air or water, the hydrophilic groups generated on the surface of the silicone base material become silicone over time. In particular, it sneaks into the inside of the silicone rubber and loses its hydrophilicity in a relatively short period of about 3 to 6 months.

また、表面改質処理のうち、湿式処理は、親水性コーティング剤(例えば親水性シランカップリング剤)をシリコーン成形基材の表面官能基へ化学的に結合させて化学修飾して導入するというものである。このような湿式処理では、シリコーン成形基材表面の表面官能基が疎らにしか存在せず親水性コーティング剤の結合にムラができてしまったり、3〜6箇月程度親水性を保持できるが親水程度が然程高くなく水との接触角を30°程度にまでしか低下できなかったり、表面で結合した親水性コーティング剤分子が次第にシリコーン成形基材の表面から内部へ潜り込みシリコーン分子が露出し易くなって親水性が低下したり、シリコーンゴムに適用可能な親水性コーティング剤の種類が極めて少なかったりして、十分な親水性を発現し難い。また、この表面処理した面に支持体等を接合する際には、別途、接合のための表面処理や化学修飾を施さなければならず、折角の親水性を阻害してしまう。 Further, among the surface modification treatments, the wet treatment involves chemically binding a hydrophilic coating agent (for example, a hydrophilic silane coupling agent) to the surface functional group of the silicone molded base material, chemically modifying the surface functional group, and introducing the treatment. Is. In such a wet treatment, the surface functional groups on the surface of the silicone molded substrate are sparsely present, resulting in uneven bonding of the hydrophilic coating agent, and the hydrophilicity can be maintained for about 3 to 6 months, but the degree of hydrophilicity is high. However, it is not so high and the contact angle with water can be lowered only to about 30 °, and the hydrophilic coating agent molecules bonded on the surface gradually sneak into the inside from the surface of the silicone molded base material, and the silicone molecules are easily exposed. Therefore, it is difficult to develop sufficient hydrophilicity because the hydrophilicity is lowered or the types of hydrophilic coating agents applicable to silicone rubber are extremely small. Further, when joining a support or the like to this surface-treated surface, it is necessary to separately perform surface treatment or chemical modification for joining, which hinders the hydrophilicity of the folding angle.

別な湿式処理として、ベタイン構造を有するポリマー例えば側鎖にアミノ酸構造を有するポリ(メタ)アクリレート又は側鎖にスルホベタイン構造を有する(メタ)アクリルアミドをシリコーン成形基材表面へアニオン・カチオン同士乃至正負帯電基同士による化学吸着をさせて導入する表面改質処理もある。しかし、このような表面改質処理では、表面に物理吸着乃至化学吸着させただけであるので、折角均質に吸着されていても水、若しくは酸性試液又はアルカリ性試液との接触によって比較的速やかに流れ落ちてしまい、長期間の強い親水性発現ができない。 As another wet treatment, a polymer having a betaine structure, for example, a poly (meth) acrylate having an amino acid structure in the side chain or a (meth) acrylamide having a sulfobetaine structure in the side chain is applied to the surface of a silicone molded substrate with anions / cations or positive or negative. There is also a surface modification treatment in which the charging groups are chemically adsorbed and introduced. However, in such a surface modification treatment, since it is only physically or chemically adsorbed on the surface, even if it is uniformly adsorbed, it flows off relatively quickly due to contact with water, an acidic test solution, or an alkaline test solution. Therefore, strong hydrophilicity cannot be developed for a long period of time.

また、表面改質処理のうち、親水性化合物含有シリコーン原料組成物の硬化によるシリコーン基材形成処理として、液状乃至ミラブル状のシリコーン原材料に親水性化合物例えば親水性オイルを配合して硬化させシリコーン成形体を形成することにより、その表面に親水性添加剤を露出させて親水性を付与する素材改質処理がある。このような素材改質処理の例として、特許文献1に、(a)上面に所定の微細構造を有するマスターを準備するステップと、(b)前記マスターの微細構造形成面側に、PDMSプレポリマーと硬化剤とポリエーテル変性界面活性剤とからなる混合物を注入するステップと、(c)成型されたPDMS製シートの微細構造形成面側を酸素プラズマ処理するステップと、(d)前記PDMS製シートの微細構造形成面側にオルガノシラン溶液を塗布するステップとからなることを特徴とする恒久的親水性を有するPDMS製シートの製造方法が、開示されている。一般的に、素材改質処理では、親水程度が然程高くなく水との接触角を30°程度にまで低下できなかったり、水と接触したときに親水性を発現するのに10分間以上要したりするなど、十分な親水性を発現し難い。 In addition, among the surface modification treatments, as a silicone base material forming treatment by curing a hydrophilic compound-containing silicone raw material composition, a hydrophilic compound such as a hydrophilic oil is mixed with a liquid to mirable silicone raw material and cured to form a silicone. There is a material modification treatment in which a hydrophilic additive is exposed on the surface of the body to impart hydrophilicity by forming the body. As an example of such a material modification treatment, Patent Document 1 states that (a) a step of preparing a master having a predetermined microstructure on the upper surface and (b) a PDMS prepolymer on the microstructure forming surface side of the master. A step of injecting a mixture of a curing agent and a polyether-modified surfactant, (c) a step of treating the microstructure-forming surface side of the molded PDMS sheet with oxygen plasma, and (d) the PDMS sheet. A method for producing a PDMS-made sheet having permanent hydrophilicity, which comprises a step of applying an organosilane solution to the microstructure-forming surface side of the above, is disclosed. Generally, in the material modification treatment, the degree of hydrophilicity is not so high and the contact angle with water cannot be reduced to about 30 °, or it takes 10 minutes or more to develop hydrophilicity when in contact with water. It is difficult to develop sufficient hydrophilicity, such as.

また、表面改質処理のうち、表面蒸着処理は、シリカや酸化チタンを蒸着しシリコーン成形基材の表面のシリコーン分子を被覆して隠蔽するものであるが然程の親水性向上に寄与しない。 Further, among the surface modification treatments, the surface vapor deposition treatment is a treatment in which silica or titanium oxide is vapor-deposited and the silicone molecules on the surface of the silicone molded base material are coated and concealed, but it does not contribute to the improvement of hydrophilicity to some extent.

従来のようなシリコーン成形基材を親水化する方法では、コラーゲン等をコーティングしてさえ、長期間安定で十分な親水性を付与できない所為で、十分に細胞培養や細胞接着を行うことができなかった。 In the conventional method of hydrophilizing a silicone molded base material, even if it is coated with collagen or the like, it is not possible to sufficiently impart cell culture and cell adhesion because it is not possible to impart sufficient hydrophilicity for a long period of time. rice field.

表面改質処理したシリコーン成形基材上での細胞培養事例として、特許文献2に、シリコーン成形基材に電子線照射して親水化し細胞培養している。本技術ではシリコーン成形基材表面が凹型に変形するため単一細胞の培養に特化したものであり、一般的な細胞培養や顕微鏡観察には不向きと思われる。 As an example of cell culture on a surface-modified silicone-molded substrate, Patent Document 2 states that the silicone-molded substrate is hydrophilized by electron beam irradiation and cell-cultured. Since the surface of the silicone-molded substrate is deformed into a concave shape in this technology, it is specialized for single cell culture, and is not suitable for general cell culture and microscopic observation.

動物細胞培養用の基材という観点から、シリコーンゴムは細胞培養および細胞観察に有効と言われている透明性や通気性を有し、Organ−on−a−chip等で細胞が由来する組織に近い硬度を再現できる利点、伸展性により心筋や血管腸管の伸縮を再現できる利点がある。しかし、ガラスおよびプラスチックに対する数多くの優位性があるにも関わらず、上記の理由で、ガラス製およびプラスチック製の培養基材のような表面改質ができず、現状では、細胞外マトリックスタンパク質やポリペプチドのコーティングを十分に行わないとシリコーンゴム上で細胞培養を行うことができない。 From the viewpoint of a base material for culturing animal cells, silicone rubber has transparency and breathability, which is said to be effective for cell culturing and cell observation, and can be used in tissues from which cells are derived by organ-on-a-chip or the like. It has the advantage of being able to reproduce close hardness and the advantage of being able to reproduce the expansion and contraction of the myocardium and vascular intestinal tract due to its extensibility. However, despite its many advantages over glass and plastic, for the above reasons, surface modifications such as those made of glass and plastic culture media have not been possible, and at present, extracellular matrix proteins and polys are not available. Cell culture cannot be performed on silicone rubber unless the peptide is sufficiently coated.

特開2006−181407号公報Japanese Unexamined Patent Publication No. 2006-181407 特開2018−202352号公報Japanese Unexamined Patent Publication No. 2018-20352

本発明は前記の課題を解決するためになされたもので、シリコーンを含む各種のゴム・樹脂、ガラスから選ばれる成形基材の表面に十分な親水性を簡便に付与でき、速やかに親水性が発現すると共に、水との接触角を十分に低く維持できるようにしつつ、細胞外マトリックスタンパク質やポリペプチドをコーティングしなくとも細胞培養でき、長期間、大気中又は水中で保管・保存又は使用しても培養性能を維持でき、半年〜数年間もの長期にわたって親水性を担保できる細胞接着性の親水性改質細胞培養基材を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and it is possible to easily impart sufficient hydrophilicity to the surface of a molded base material selected from various rubbers / resins including silicone and glass, and the hydrophilicity can be quickly increased. It can be expressed and cell-cultured without coating with extracellular matrix proteins or polypeptides while maintaining a sufficiently low contact angle with water, and can be stored, stored or used in the air or water for a long period of time. It is an object of the present invention to provide a cell-adhesive hydrophilic modified cell culture substrate capable of maintaining culture performance and ensuring hydrophilicity for a long period of six months to several years.

組織培養、細胞培養において、コラーゲン、フィブロネクチン、ラミニンなどの細胞外マトリックス由来のタンパク質を培養容器の細胞接着面にあらかじめコートする方法は、細胞の容器への接着を向上させたり、体内の環境を再現するために一般に用いられる。細胞外マトリックス由来タンパク質をコートで細胞が接着しやすくなる利点がある一方で、これらタンパク質は細胞にとって異種動物からの外来物あるいは異物である場合が多い。そのため、再生医療で細胞移植のために培養される細胞に細胞外マトリックス由来タンパク質を使うことが好ましくないことがある。また、分泌タンパク質などの細胞機能の評価を培養細胞を使って行う際に細胞外マトリックス由来タンパク質コートやポリペプチドの使用が悪影響を及ぼす可能性が想定される。細胞外マトリックス由来タンパク質コートやポリペプチドをすることなく細胞培養を可能とする技術はこれらの問題を解決できる。 In tissue culture and cell culture, the method of precoating extracellular matrix-derived proteins such as collagen, fibronectin, and laminin on the cell adhesion surface of the culture vessel improves the adhesion of cells to the vessel and reproduces the internal environment. It is commonly used to do this. While the coat of extracellular matrix-derived proteins has the advantage of facilitating cell adhesion, these proteins are often foreign or foreign to cells from heterologous animals. Therefore, it may not be preferable to use extracellular matrix-derived proteins in cells cultured for cell transplantation in regenerative medicine. In addition, it is assumed that the use of extracellular matrix-derived protein coats and polypeptides may adversely affect the evaluation of cell functions such as secretory proteins using cultured cells. Techniques that enable cell culture without extracellular matrix-derived protein coatings or polypeptides can solve these problems.

前記の目的を達成するためになされた細胞接着性の親水性改質細胞培養基材は、ゴム、樹脂、ガラスから選ばれる何れかの材質製の成形基材が、ベタイン構造を有する繰返単位及び活性官能基を有する繰返単位を含む共重合体で被覆されており、前記共重合体中のベタイン構造又は前記活性官能基が、前記成形基材上の表面官能基と反応、結合、又は吸着していることを特徴とするというものである。 The cell-adhesive hydrophilic modified cell culture substrate made to achieve the above object is a repeating unit in which a molded substrate made of any material selected from rubber, resin, and glass has a betaine structure. And coated with a copolymer containing a repeating unit having an active functional group, the betaine structure in the copolymer or the active functional group reacts with, binds to, or reacts with a surface functional group on the molded substrate. It is characterized by being adsorbed.

この細胞接着性の親水性改質細胞培養基材は、細胞外マトリックスタンパク質及び/又はポリペプチドのコーティングを必要としないことを特徴とする。 This cell-adherent hydrophilic modified cell culture substrate is characterized by not requiring coating of extracellular matrix proteins and / or polypeptides.

この細胞接着性の親水性改質細胞培養基材は、例えば、前記共重合体中、前記繰返単位を繰り返している主鎖が、ポリ(メタ)アクリル骨格であるというものである。 In this cell-adhesive hydrophilic modified cell culture substrate, for example, in the copolymer, the main chain repeating the repeating unit is a poly (meth) acrylic skeleton.

この細胞接着性の親水性改質細胞培養基材は、前記共重合体中、前記ポリ(メタ)アクリル骨格が、ポリ(メタ)アクリルアミド共重合骨格、ポリ(メタ)アクリレート共重合骨格、又はポリ(メタ)アクリルアミド及びポリ(メタ)アクリレート共重合骨格であると好ましい。 In this cell-adhesive hydrophilic modified cell culture substrate, the poly (meth) acrylic skeleton in the copolymer is a poly (meth) acrylamide copolymer skeleton, a poly (meth) acrylate copolymer skeleton, or a poly. It is preferably a (meth) acrylamide and poly (meth) acrylate copolymer skeleton.

この細胞接着性の親水性改質細胞培養基材は、前記ベタイン構造が、カルボン酸基、スルホン酸基、及びリン酸基から選ばれるアニオン基と、アンモニウム基、スルホニウム基、及びホスホニウム基から選ばれるカチオン基とを有すると、一層好ましい。 In this cell-adhesive hydrophilic modified cell culture substrate, the betaine structure is selected from an anionic group selected from a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group, and an ammonium group, a sulfonium group, and a phosphonium group. It is more preferable to have a cationic group to be used.

この細胞接着性の親水性改質細胞培養基材は、前記ベタイン構造が、側鎖末端に前記アニオン基又は前記カチオン基を有すると、なお一層好ましい。 It is even more preferable that the betaine structure of the cell-adhesive hydrophilic modified cell culture substrate has the anion group or the cation group at the end of the side chain.

この細胞接着性の親水性改質細胞培養基材は、前記活性官能基が、アジド基、スルホ基、トリアルコキシシリル基、及び水酸基から選ばれる少なくとも何れかの官能基であるというものであってもよい。 In this cell-adhesive hydrophilic modified cell culture substrate, the active functional group is at least one functional group selected from an azido group, a sulfo group, a trialkoxysilyl group, and a hydroxyl group. May be good.

この細胞接着性の親水性改質細胞培養基材は、炭化水素芳香環基、非芳香族複素環基、芳香族複素環基、直鎖状、分岐鎖状及び/又は環状で飽和又は不飽和の炭化水素基、アミド基、及びエステル基から選ばれる少なくとも何れかのスペーサ基が、前記活性官能基を有しつつ、前記繰返単位に、結合しているというものであってもよい。 This cell-adhesive hydrophilic modified cell culture substrate is saturated or unsaturated with hydrocarbon aromatic ring groups, non-aromatic heterocyclic groups, aromatic heterocyclic groups, linear, branched chain and / or cyclic. At least one of the spacer groups selected from the hydrocarbon group, the amide group, and the ester group of the above may be bonded to the repeating unit while having the active functional group.

この細胞接着性の親水性改質細胞培養基材は、前記共重合体が、例えば下記化学式(1)又は(2)

Figure 2021158968
(式(1)及び(2)中、R及びRは水素原子又はメチル基であり、n1〜n4は2〜6の数である)で表されるもので前記ベタイン構造を有する繰返単位と、下記化学式(3)
Figure 2021158968
(式(3)中、Rは水素原子又はメチル基であり、n5は2〜6の数であり、n6は0〜1の数であり、Rは前記活性官能基である)で表されるもので活性官能基を有する繰返単位とのランダム共重合体、ブロック共重合体、交互共重合体、又はグラフト共重合体であるというものである。 In this cell-adhesive hydrophilic modified cell culture substrate, the copolymer is, for example, the following chemical formula (1) or (2).
Figure 2021158968
(In the formulas (1) and (2), R 1 and R 2 are hydrogen atoms or methyl groups, and n1 to n4 are numbers 2 to 6), and the repeat having the betaine structure. Unit and the following chemical formula (3)
Figure 2021158968
(In the formula (3), R 3 is a hydrogen atom or a methyl group, n5 is a number of 2 to 6, n6 is a number of 0 to 1, and R 4 is the active functional group). It is a random copolymer, a block copolymer, an alternating copolymer, or a graft copolymer with a repeating unit having an active functional group.

前記成形基材が、シリコーンゴム、フッ素ゴム、エチレン−プロピレン−ジエン三元共重合体ゴム、及びウレタンゴムから選ばれる前記ゴム製であることが好ましい。 It is preferable that the molded base material is made of the rubber selected from silicone rubber, fluororubber, ethylene-propylene-diene ternary copolymer rubber, and urethane rubber.

前記成形基材が、シリコーン樹脂、シクロオレフィン樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、及びアクリル樹脂から選ばれる前記樹脂製であることが好ましい。 It is preferable that the molded base material is made of the resin selected from silicone resin, cycloolefin resin, polycarbonate resin, polyethylene terephthalate resin, and acrylic resin.

前記成形基材が、石英ガラス、ホウケイ酸ガラス、及びソーダ石灰ガラスから選ばれる前記ガラス製であることが好ましい。 It is preferable that the molding base material is made of the glass selected from quartz glass, borosilicate glass, and soda-lime glass.

この細胞接着性の親水性改質細胞培養基材は、前記成形基材の表面が、コロナ放電処理表面、プラズマ処理表面、紫外線処理表面、エキシマ処理表面、及び/又はシランカップリング剤処理表面であることが好ましい In this cell-adhesive hydrophilic modified cell culture substrate, the surface of the molded substrate is a corona discharge-treated surface, a plasma-treated surface, an ultraviolet-treated surface, an excimer-treated surface, and / or a silane coupling agent-treated surface. Is preferable

この細胞接着性の親水性改質細胞培養基材は、例えば前記表面官能基が、水酸基、カルボキシル基、カルボニル基、アミノ基、アルコキシ基及びアルコキシシリル基から選ばれる少なくとも何れかであるというものである。 In this cell-adhesive hydrophilic modified cell culture substrate, for example, the surface functional group is at least one selected from a hydroxyl group, a carboxyl group, a carbonyl group, an amino group, an alkoxy group and an alkoxysilyl group. be.

この細胞接着性の親水性改質細胞培養基材は、前記ベタイン構造が前記表面官能基にイオン結合で結合し又は吸着しており、前記活性官能基がイオン結合又は共有結合で結合していることが好ましい。 In this cell-adhesive hydrophilic modified cell culture substrate, the betaine structure is bonded or adsorbed to the surface functional group by an ionic bond, and the active functional group is bonded by an ionic bond or a covalent bond. Is preferable.

この細胞接着性の親水性改質細胞培養基材は、前記成形基材が、ポリジメチルシロキサン骨格、ポリメチルフェニルシロキサン骨格、及びポリメチルハイドロジェンシロキサン骨格から選ばれる何れかを有するシリコーンゴム製又はシリコーン樹脂製であるというものである。 The cell-adhesive hydrophilic modified cell culture base material is made of silicone rubber or has a molded base material selected from a polydimethylsiloxane skeleton, a polymethylphenylsiloxane skeleton, and a polymethylhydrogensiloxane skeleton. It is made of silicone resin.

本発明の細胞接着性の親水性改質細胞培養基材は、側鎖にベタイン構造を有する繰返単位と側鎖に活性官能基を有する繰返単位とを有する共重合体で、ゴム、樹脂、ガラスから選ばれる材質製の成形基材が被覆されていることにより、成形基材の表面に十分な親水性が付与されている。 The cell-adhesive hydrophilic modified cell culture substrate of the present invention is a copolymer having a repeating unit having a betaine structure in the side chain and a repeating unit having an active functional group in the side chain, and is a rubber or resin. , By coating the molding base material made of a material selected from glass, sufficient hydrophilicity is imparted to the surface of the molding base material.

この細胞接着性の親水性改質細胞培養基材は、親水性と共に、共重合体の繰返単位の主鎖に細胞が接着するので、細胞を増殖させ易い。しかも、細胞外マトリックスタンパク質やポリペプチドによるコーティングを必要とせず、細胞を増殖させることができる。 This cell-adhesive hydrophilic modified cell culture substrate is hydrophilic and the cells adhere to the main chain of the repeating unit of the copolymer, so that the cells can easily proliferate. Moreover, cells can be proliferated without the need for coating with extracellular matrix proteins or polypeptides.

この細胞接着性の親水性改質細胞培養基材は、ベタイン構造に由来する分子内のカチオン構造とアニオン構造により、成形基材上の表面官能基に反応、結合、又は吸着とりわけ吸着をして細胞接着性の親水性改質細胞培養基材に付されると共に、強い親水性を発現する。一方、この細胞接着性の親水性改質細胞培養基材は、活性官能基が成形基材上で、反応、結合、又は吸着しているものと同種又は異種の別な表面官能基に反応、結合、又は吸着とりわけ反応又は結合していることにより、水、若しくは酸性試液又はアルカリ性試液との接触によっても流れ落ち難くなっていると共に、親水性を発現できる。 This cell-adhesive hydrophilic modified cell culture substrate reacts, binds, or adsorbs, especially adsorbs, to surface functional groups on the molded substrate due to the intramolecular cation and anion structures derived from the betaine structure. It is attached to a cell-adhesive hydrophilic modified cell culture substrate and exhibits strong hydrophilicity. On the other hand, this cell-adherent hydrophilic modified cell culture substrate reacts with another surface functional group of the same kind or different kind as the one in which the active functional group is reacted, bound, or adsorbed on the molded substrate. Bonding or adsorption In particular, by reacting or binding, it is difficult for the cells to run off even when they come into contact with water, an acidic test solution or an alkaline test solution, and hydrophilicity can be exhibited.

この細胞接着性の親水性改質細胞培養基材は、物理吸着乃至化学吸着好ましくは化学吸着のような所謂吸着型での結合性及び親水性付与と、反応又は結合好ましくは共有結合のような所謂結合型での結合性及び親水性付与とにより、従来技術のようなガラス製単独又はプラスチック製単独又はコラーゲン基質等コーティングによる問題点を解決して、十分な親水性発現と長期間安定な親水性維持とを発揮し、細胞外マトリックスタンパク質やポリペプチドによるコーティングを行うことなく細胞培養が可能であり、簡素で高品質であり、しかも簡便かつ安価に製造できる。 This cell-adhesive hydrophilic modified cell culture substrate is subjected to so-called adsorption-type binding and hydrophilicity such as physical adsorption or chemisorption, preferably chemical adsorption, and reaction or binding, preferably covalent bonding. By imparting bondability and hydrophilicity in the so-called binding type, the problems caused by coating with glass alone, plastic alone, collagen substrate, etc. as in the prior art can be solved, and sufficient hydrophilicity is exhibited and long-term stable hydrophilicity is achieved. It exhibits sexual maintenance, allows cell culture without coating with extracellular matrix proteins or polypeptides, is simple and of high quality, and can be manufactured easily and inexpensively.

また、この細胞接着性の親水性改質細胞培養基材は、ゴム、樹脂、ガラスから選ばれる材質製の成形基材の表面に速やかに親水性を発現するので、水、又は緩衝液、若しくは弱酸性、中性、弱アルカリ性の培養液、培地との接触の際に、所望の親水性を発現でき、その細胞培養性能、細胞接着性能を阻害しない。その親水性は、水との接触角を20°程度以下と十分に低いまま、半年〜数年維持し続けることができるものである。そのため、長期間、大気中又は水中で保管・保存又は使用しても親水性を損なわず、高い品質を維持して担保することができ、細胞培養に適している。 Further, since this cell-adhesive hydrophilic modified cell culture base material rapidly develops hydrophilicity on the surface of a molded base material made of a material selected from rubber, resin, and glass, water, a buffer, or a buffer solution, or Upon contact with a weakly acidic, neutral, or weakly alkaline culture medium or medium, the desired hydrophilicity can be exhibited, and the cell culture performance and cell adhesion performance are not impaired. Its hydrophilicity can be maintained for half a year to several years while the contact angle with water is sufficiently low, about 20 ° or less. Therefore, even if it is stored, stored or used in the air or water for a long period of time, the hydrophilicity is not impaired, high quality can be maintained and guaranteed, and it is suitable for cell culture.

さらに、この細胞接着性の親水性改質細胞培養基材は、細胞毒性が低く、タンパク質吸着を抑制するため、肝細胞、幹細胞、内皮細胞、iPS細胞、腫瘍細胞など、培養すべき各種細胞の接着を促進し、増殖を阻害し難いことが期待される。 Furthermore, this cell-adherent hydrophilic modified cell culture substrate has low cell toxicity and suppresses protein adsorption, so that various cells to be cultured such as hepatocytes, stem cells, endothelial cells, iPS cells, and tumor cells It is expected that it promotes adhesion and does not easily inhibit proliferation.

しかも、この細胞接着性の親水性改質細胞培養基材は、ゴム、樹脂、ガラスから選ばれる材質製の成形基材の表面に、均質で十分な親水性を簡便に付与でき、ロット間のばらつきが無く、再現性よく高い歩留まりで、大量処理、大量生産が可能である。 Moreover, this cell-adhesive hydrophilic modified cell culture base material can easily impart uniform and sufficient hydrophilicity to the surface of a molded base material made of a material selected from rubber, resin, and glass, and can be used between lots. Mass processing and mass production are possible with no variation and high yield with good reproducibility.

本発明を適用するシリコーン製親水性改質細胞培養基材でHeLa細胞を培養後の顕微鏡拡大写真(b)と、本発明を適用外のシリコーン製成形基材でHeLa細胞を培養後の顕微鏡拡大写真(a)である。Microscopic magnified photograph (b) after culturing HeLa cells on a silicone hydrophilic modified cell culture substrate to which the present invention is applied, and microscopic enlargement after culturing HeLa cells on a silicone molded substrate to which the present invention is not applied. It is a photograph (a).

以下、本発明を実施するための形態を詳細に説明するが、本発明の範囲はこれらの形態に限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail, but the scope of the present invention is not limited to these embodiments.

本発明の細胞接着性の親水性改質細胞培養基材は、ゴム、樹脂、ガラスから選ばれる材質製の成形基材を親水化した細胞接着性の親水性改質細胞培養基材である。この細胞接着性の親水性改質細胞培養基材は、成形基材上の表面官能基に反応、結合、又は吸着するベタイン構造としてアニオン基とカチオン基との両性イオンを側鎖に有する繰返単位と、成形基材上の表面官能基に反応、結合、又は吸着する活性官能基を側鎖に有する繰返単位とを有する共重合体で、成形基材が被覆されている。 The cell-adhesive hydrophilic modified cell culture base material of the present invention is a cell-adhesive hydrophilic modified cell culture base material obtained by hydrophilizing a molded base material made of a material selected from rubber, resin, and glass. This cell-adhesive hydrophilic modified cell culture substrate repeatedly has amphoteric ions of an anion group and a cation group in the side chain as a betaine structure that reacts with, binds to, or adsorbs a surface functional group on the molded substrate. The molded substrate is coated with a copolymer having a unit and a repeating unit having an active functional group in the side chain that reacts, binds to, or adsorbs to a surface functional group on the molded substrate.

この細胞接着性の親水性改質細胞培養基材は、ベタイン構造が、物理吸着乃至化学吸着好ましくは化学吸着のような所謂吸着型での結合性及び親水性を付与し、成形基材表面の表面官能基や共重合体が成形基材内部に潜り込むのを防いで結合性及び親水性を維持するというものである。また、この細胞接着性の親水性改質細胞培養基材は、活性官能基を介した反応又は結合好ましくは共有結合のような所謂結合型での結合性及び親水性を付与し、共重合体が成形基材内部に潜り込むのを防いで結合性及び親水性を維持し、共重合体の繰返構造の共重合主鎖に細胞が接着しそこを起点に増殖し、細胞外マトリックスタンパク質やポリペプチドによるコーティングが無くとも細胞増殖を阻害せず、細胞培養に適しているというものである。 In this cell-adhesive hydrophilic modified cell culture base material, the betaine structure imparts so-called adsorption-type binding and hydrophilicity such as physical adsorption or chemisorption, preferably chemical adsorption, and the surface of the molded base material. It prevents surface functional groups and copolymers from sneaking into the molded base material and maintains bondability and hydrophilicity. In addition, this cell-adhesive hydrophilic modified cell culture substrate imparts so-called binding property and hydrophilicity such as reaction or bond preferably covalent bond via an active functional group, and is a copolymer. Keeps binding and hydrophilicity by preventing cells from sneaking into the molded substrate, cells adhere to the copolymerized main chain of the repeating structure of the copolymer and proliferate from there, and extracellular matrix proteins and poly It does not inhibit cell proliferation even without coating with a peptide, and is suitable for cell culture.

従って、この細胞接着性の親水性改質細胞培養基材は、ベタイン構造と活性官能基とが成形基材上の表面官能基に反応、結合、又は吸着していることにより、ベタイン構造又は活性官能基の何れかしか有しないものよりも、共重合体と成形基材とが、強く相互作用している。それによって、共重合体が、水、若しくは酸性試液又はアルカリ性試液との接触によっても成形基材上から流れ落ち難く、強い親水性を発現していると共に、強い親水性を長期間発現し続けることができ、長期間に渡って細胞培養できるので、継代培養、形態形成、細胞分化などを行うことが期待される。 Therefore, this cell-adherent hydrophilic modified cell culture substrate has a betaine structure or activity due to the betaine structure and the active functional group reacting, binding, or adsorbing to the surface functional group on the molded substrate. The copolymer and the molded substrate interact more strongly than those having only one of the functional groups. As a result, the copolymer does not easily flow down from the molded substrate even when it comes into contact with water, an acidic test solution or an alkaline test solution, and exhibits strong hydrophilicity and continues to develop strong hydrophilicity for a long period of time. Since it can be cultured and cells can be cultured for a long period of time, it is expected that subculture, morphogenesis, cell differentiation, etc. will be performed.

共重合体中、繰返単位を繰り返している繰返主鎖は、例えばポリ(メタ)アクリル骨格である。ポリ(メタ)アクリル骨格は、ポリアクリル骨格とポリメタクリル骨格とを包含する。より具体的には、ポリ(メタ)アクリル骨格が、ポリ(メタ)アクリルアミド共重合骨格、ポリ(メタ)アクリレート共重合骨格、又はポリ(メタ)アクリルアミド及びポリ(メタ)アクリレート共重合骨格である。なかでも、共重合体は、ポリ(メタ)アクリルアミド共重合骨格を有するものであると、ゴム、樹脂、ガラスから選ばれる材質製の成形基材との親和性に優れ、しかも細胞との親和性がよいので、特に好ましい。 In the copolymer, the repeating main chain that repeats the repeating unit is, for example, a poly (meth) acrylic skeleton. The poly (meth) acrylic skeleton includes a polyacrylic skeleton and a polymethacrylic skeleton. More specifically, the poly (meth) acrylic skeleton is a poly (meth) acrylamide copolymer skeleton, a poly (meth) acrylate copolymer skeleton, or a poly (meth) acrylamide and poly (meth) acrylate copolymer skeleton. Among them, when the copolymer has a poly (meth) acrylamide copolymer skeleton, it has an excellent affinity with a molded base material made of a material selected from rubber, resin, and glass, and also has an affinity with cells. Is particularly preferable.

共重合体は、繰返単位の繰返形式に制限はなく、例えばこれら繰返単位のランダム共重合体、ブロック共重合体、交互共重合体、及びグラフト共重合体の何れでもよい。またその両性イオンを側鎖に有する繰返単位と、活性官能基を側鎖に有する繰返単位とのモル比に制限はないが、モル比で1:1が好ましい。 The copolymer is not limited in the repeating format of the repeating unit, and may be any of, for example, a random copolymer, a block copolymer, an alternating copolymer, and a graft copolymer of these repeating units. The molar ratio of the repeating unit having the zwitterion in the side chain and the repeating unit having the active functional group in the side chain is not limited, but a molar ratio of 1: 1 is preferable.

共重合体中、ベタイン構造を側鎖に有する繰返単位は、アニオン基とカチオン基とが成形基材上の表面官能基に、反応、結合、又は吸着、とりわけ成形基材上の水酸基のような極性基に互いの静電引力又はイオン引力によって物理吸着乃至化学吸着のような吸着をしている。 In the copolymer, the repeating unit having a betaine structure in the side chain is such that an anionic group and a cation group react, bond, or adsorb to a surface functional group on the molding substrate, particularly like a hydroxyl group on the molding substrate. Adsorption such as physical adsorption or chemical adsorption is performed on the polar groups by mutual electrostatic attraction or ion attraction.

ベタイン構造として、側鎖が、アニオン基とカチオン基との何れか一方を側鎖末端に有し、他方を側鎖中に有していてもよい。 As a betaine structure, the side chain may have either one of an anion group and a cation group at the end of the side chain and the other in the side chain.

ベタイン構造中、アニオン基は、側鎖末端にある場合、カルボン酸基(−COO基)、スルホン酸基(-SO 基)、リン酸基(−Ra1−PO−(ORa2)(ORa3);−Ra1−は側鎖の末端までの基、ORa2及びORa3は炭素数1〜6のアルコキシ基又はフェノキシ基又はOアニオンであって少なくとも何れかがOアニオン)から選ばれるアニオン基が挙げられ、側鎖中程にある場合、側鎖から分岐した置換カルボン酸基(−COO基)、側鎖から分岐した置換スルホン酸基(-SO 基)、リン酸基(−Rb1−PO−(ORb2)(ORa3); Rb1は側鎖の途中までの基、ORb2は側鎖の途中から末端までの基又はOアニオン、ORb3はOアニオン)から選ばれるアニオン基が挙げられる。 During betaine structure, the anionic group is, if the side chain terminal carboxylic acid group (-COO - group), a sulfonic acid group (-SO 3 - group), a phosphoric acid group (-R a1 -PO- (OR a2) (OR a3 ); -R a1 -is a group up to the end of the side chain, OR a2 and OR a3 are an alkoxy group or phenoxy group having 1 to 6 carbon atoms or an O - anion, and at least one of them is an O - anion) They include anionic groups selected from, when in the side chain middle, substituted carboxylic acid groups branched from the side chain (-COO - group), substituted sulfonic acid groups branched from the side-chain (-SO 3 - group), Phosphate group (-R b1- PO- (OR b2 ) (OR a3 ); R b1 is a group up to the middle of the side chain, OR b2 is a group from the middle to the end of the side chain or O - anion, OR b3 is Anion groups selected from O - anion) can be mentioned.

ベタイン構造中、カチオン基は、側鎖末端にある場合、1級乃至4級アンモニウム基のような有機アンモニウム基((−NH)、(−N(Rc1)H2)、(−N(Rc2)H)、(−N(Rc3));Rc2〜Rc3は炭素数1〜6のアルキル基又はフェニル基)、スルホニウム基好ましくは有機スルホニウム基((−S(Rc4));Rc4は炭素数1〜6のアルキル基又はフェニル基)、ホスホニウム基好ましくは四級ホスホニウム基((−P(Rc5));Rc5は炭素数1〜6のアルキル基又はフェニル基)から選ばれるカチオン基が挙げられ、側鎖中程にある場合、4級アンモニウム基のような有機アンモニウム基((−Rd1−N(Rd2)(Rd3));Rd2は側鎖の途中までの基、Rd2炭素数1〜6のアルキル基又はフェニル基、Rd3は側鎖の途中から末端までの基)、スルホニウム基(−Rd4−S(Rd5)−Rd6);Rc4は側鎖の途中までの基、Rd5炭素数1〜6のアルキル基又はフェニル基、Rd6は側鎖の途中から末端までの基)、ホスホニウム基(−Rd7−P(Rd8)−Rd9);Rd7は側鎖の途中までの基、Rd8は炭素数1〜6のアルキル基又はフェニル基、Rd9は側鎖の途中から末端までの基)から選ばれるカチオン基が挙げられる。 In the betaine structure, when the cation group is at the end of the side chain, an organic ammonium group such as a primary to quaternary ammonium group ((-NH 3 ) + , (-N (R c1 ) H 2 ) + , (-N (R c1) H 2) +, (- N (R c2 ) 2 H) + , (-N (R c3 ) 3 ) + ; R c2 to R c3 are alkyl or phenyl groups with 1 to 6 carbon atoms), sulfonium groups, preferably organic sulfonium groups ((--) S (R c4 ) 2 ) + ; R c4 is an alkyl group or phenyl group having 1 to 6 carbon atoms), a phosphonium group, preferably a quaternary phosphonium group ((-P (R c5 ) 3 ) + ; R c5 is a carbon number. An organic ammonium group ((-R d1 −N (R d2 )) 2 ((-R d1 −N (R d2)) 2 ( R d3)) +; R d2 represents a group having the halfway of the side chains, R d2 alkyl group or a phenyl group having 1 to 6 carbon atoms, groups in the middle of R d3 is the side chain to the end), a sulfonium group (-R d4- S + (R d5 ) -R d6 ); R c4 is a group up to the middle of the side chain, R d5 is an alkyl group or phenyl group having 1 to 6 carbon atoms, and R d6 is a group from the middle to the end of the side chain. ), Phosnium group (-R d7- P + (R d8 ) 2- R d9); R d7 is a group up to the middle of the side chain, R d8 is an alkyl group or phenyl group having 1 to 6 carbon atoms, and R d9 is. A cation group selected from the group from the middle to the end of the side chain) can be mentioned.

ベタイン構造は、成形基材の表面に露出した極性基である表面官能基、成形基材の表面がコロナ放電処理表面、プラズマ処理表面、紫外線処理表面、エキシマ処理表面、及び/又はシランカップリング剤処理表面であることにより生じている水酸基、水酸基、カルボキシル基、カルボニル基のような表面官能基、又は成形基材が有するアミノ基、アルコキシ基、アルコキシシリル基のような表面官能基と、反応、結合、又は吸着とりわけ表面官能基とベタイン構造との互いの静電引力又はイオン引力によって物理吸着乃至化学吸着のような吸着をして、成形基材の表面に強く相互作用している。 The betaine structure is a surface functional group that is a polar group exposed on the surface of the molded substrate, the surface of the molded substrate is a corona discharge-treated surface, a plasma-treated surface, an ultraviolet-treated surface, an excimer-treated surface, and / or a silane coupling agent. Reaction with surface functional groups such as hydroxyl groups, hydroxyl groups, carboxyl groups and carbonyl groups generated by the treated surface, or surface functional groups such as amino groups, alkoxy groups and alkoxysilyl groups possessed by the molding substrate. Bonding or adsorption In particular, adsorption such as physical adsorption or chemical adsorption is performed by mutual electrostatic attraction or ion attraction of the surface functional group and the betaine structure, and strongly interacts with the surface of the molded base material.

共重合体中、ベタイン構造を有する繰返単位は、好ましい一例として、前記化学式(1)又は(2)で表されるものが挙げられるが、より具体的には、下記化学式(4)〜(7)

Figure 2021158968
で表されるものが挙げられる。 In the copolymer, the repeating unit having a betaine structure includes those represented by the above chemical formulas (1) or (2) as a preferable example, and more specifically, the following chemical formulas (4) to (2). 7)
Figure 2021158968
The one represented by is mentioned.

また、共重合体中、活性官能基を側鎖に有する繰返単位は、成形基材上の表面官能基に、反応、結合、又は吸着、とりわけ共有結合によって結合している。 Further, in the copolymer, the repeating unit having an active functional group in the side chain is bonded to the surface functional group on the molded substrate by reaction, bond, or adsorption, particularly covalent bond.

活性官能基は、アジド基(−N)、スルホ基(−SO)、トリアルコキシシリル基(−Si(ORe1);ORe1は炭素数1〜6のアルキル基又はフェニル基)、水酸基(−OH)又は水酸基を生成する水酸基ブロック基例えば炭素数1〜6のアルコキシ基のような水酸基前駆基から選ばれる少なくとも何れかの官能基が挙げられる。 The active functional group is an azide group (-N 3 ), a sulfo group (-SO 3 ), a trialkoxysilyl group (-Si (OR e1 ) 3 ; OR e1 is an alkyl group or a phenyl group having 1 to 6 carbon atoms), Examples thereof include at least one functional group selected from a hydroxyl group precursor group such as a hydroxyl group (−OH) or a hydroxyl group forming a hydroxyl group, for example, an alkoxy group having 1 to 6 carbon atoms.

活性官能基のうち、アジド基(−N)は、例えば、紫外線又は光による分解によって又は熱分解によって窒素分子を放出してナイトレン基(−N:基)を生成し、成形基材上の表面官能基、若しくは成形基材の主成分やその他の硬化成分が有する不飽和基、アルキル基、フェニル基、又はアミノ基と反応して及び/又は環拡大して、反応又は結合することにより、共有結合を形成する。活性官能基のうち、トリアルコキシシリル基は、成形基材上の表面官能基例えば水酸基と縮合反応することにより、シリルエーテル結合である共有結合を形成する。活性官能基のうち、水酸基又は水酸基ブロック基は、成形基材上の表面官能基例えばシラノール基(−Si−OH)又はシロキシ基(−Si−ORf1基;Rf1は炭素数1〜6のアルキル基又はフェニル基)と縮合反応することにより、エーテル結合である共有結合を形成する。これらは、イオン結合を介して結合しているものであってもよい。 Of the active functional groups, the azide group (-N 3 ) releases nitrogen molecules by, for example, decomposition by ultraviolet rays or light or thermal decomposition to generate a nitrene group (-N: group) on the molded substrate. By reacting with a surface functional group or an unsaturated group, an alkyl group, a phenyl group, or an amino group contained in the main component or other curing component of the molding substrate and / or expanding the ring to react or bond. Form a covalent bond. Among the active functional groups, the trialkoxysilyl group forms a covalent bond which is a silyl ether bond by conducting a condensation reaction with a surface functional group such as a hydroxyl group on the molded substrate. Among the active functional groups, the hydroxyl group or the hydroxyl group blocking group is a surface functional group on the molded substrate, for example, a silanol group (-Si-OH) or a siloxy group (-Si-OR f1 group; R f1 has 1 to 6 carbon atoms. By condensing with an alkyl group or a phenyl group), a covalent bond which is an ether bond is formed. These may be those bonded via an ionic bond.

また、共重合体中の活性官能基を側鎖に有する繰返単位中、側鎖は、フェニル、ナフチルのような炭化水素芳香環基、ピペラジニル、ピレリジニル、ピロゾキジニル、モルフォリニルのような非芳香族複素環基、ピリジル、ピラゾリル、イミダゾリル、トリアゾリル、ピラジニル、トリアゾニルのような芳香族複素環基、メチル、エチル、ビニル、プロピル、イソプロピル、n−ブチル、イソブチル、tert−ブチル、シクロブチル、n−ペンチル、イソペンチル、ネオペンチル、シクロペンチル、n−へキシル、シクロヘキシルのような、若しくはベンジル又はフェネチルのような直鎖状、分岐鎖状及び/又は環状で飽和又は不飽和の炭化水素基、アミド基(−CO−N(Rg1)−;Rg1は炭素数1〜6のアルキル基又はフェニル基)、エステル基(−CO−O−)から選ばれる何れかの単一スペーサ基、またはそれらの少なくとも何れかを組み合わせた複合スペーサ基が、前記活性官能基を有しているものであってもよい。 Further, in the repeating unit having an active functional group in the copolymer in the side chain, the side chain is a hydrocarbon aromatic ring group such as phenyl or naphthyl, or a non-aromatic complex such as piperazinyl, pyreridinyl, pyrozoxinyl or morpholinyl. Aromatic heterocyclic groups such as ring groups, pyridyl, pyrazolyl, imidazolyl, triazolyl, pyrazinyl, triazonyl, methyl, ethyl, vinyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, cyclobutyl, n-pentyl, isopentyl. , Neopentyl, cyclopentyl, n-hexyl, cyclohexyl, or linear, branched chain and / or cyclically saturated or unsaturated hydrocarbon groups such as benzyl or phenethyl, amide groups (-CO-N). (R g1 )-; R g1 is an alkyl group or phenyl group having 1 to 6 carbon atoms), any single spacer group selected from an ester group (-CO-O-), or a combination of at least one of them. The composite spacer group may have the active functional group.

共重合体中の活性官能基は、成形基材の表面に露出した極性基である表面官能基、成形基材の表面がコロナ放電処理表面、プラズマ処理表面、紫外線処理表面、エキシマ処理表面、及び/又はシランカップリング剤処理表面であることにより生じている水酸基、水酸基、カルボキシル基、カルボニル基のような表面官能基、又は成形基材が有するアミノ基、アルコキシ基、アルコキシシリル基のような表面官能基と反応、結合、又は吸着とりわけ表面官能基と化学反応して共有結合を形成して、成形基材の表面に共重合体の分子を付している。 The active functional groups in the copolymer are surface functional groups that are polar groups exposed on the surface of the molded substrate, corona discharge-treated surfaces, plasma-treated surfaces, ultraviolet-treated surfaces, excima-treated surfaces, and the surface of the molded substrate. / Or a surface functional group such as a hydroxyl group, a hydroxyl group, a carboxyl group or a carbonyl group generated by the surface treated with a silane coupling agent, or a surface such as an amino group, an alkoxy group or an alkoxysilyl group contained in a molding base material. Reaction, bond, or adsorption with a functional group A covalent bond is formed by chemically reacting with a surface functional group in particular, and a copolymer molecule is attached to the surface of the molded substrate.

この共重合体の分子量及び分子量分布は特に限定されないが、下記化学式(9)の場合、分子量:30000以上、分子量分布は狭い高分子であることが好ましい。 The molecular weight and molecular weight distribution of this copolymer are not particularly limited, but in the case of the following chemical formula (9), it is preferable that the polymer has a molecular weight of 30,000 or more and a narrow molecular weight distribution.

なかでも、共重合体は、下記化学式(8)又は化学式(9)

Figure 2021158968
(式(8)及び(9)中、R〜Rは水素原子又はメチル基、m1及びm2並びにm3及びm4は、前記分子量と繰返単位の比を形成する任意の正数)で表されるものであることが好ましい。 Among them, the copolymer has the following chemical formula (8) or chemical formula (9).
Figure 2021158968
(In formulas (8) and (9), R 5 to R 8 are hydrogen atoms or methyl groups, and m1 and m2 and m3 and m4 are arbitrary positive numbers that form the ratio of the molecular weight to the repeating unit). It is preferable that the product is used.

成形基材が、ゴム、樹脂、ガラスであることが好ましい。さらに好ましくは弾性を有し又は軟質のシリコーンゴム製、又は硬質のシリコーン樹脂製であることが好ましい。ポリジメチルシロキサン骨格、ポリメチルフェニルシロキサン骨格、ポリメチルハイドロジェンシロキサン骨格から選ばれる何れかを有するものであると、入手が容易で製造し易いことから、好ましい。 The molded base material is preferably rubber, resin, or glass. More preferably, it is made of elastic or soft silicone rubber, or hard silicone resin. It is preferable that it has any of a polydimethylsiloxane skeleton, a polymethylphenylsiloxane skeleton, and a polymethylhydrogensiloxane skeleton because it is easily available and easy to manufacture.

細胞接着性の親水性改質細胞培養基材は、このような構成を有することにより、水接触角20°以下という優れた親水性を発現している。未処理の成形基材は、水接触角が約40〜108°であるが、細胞接着性の親水性改質細胞培養基材は、作製直後で水接触角が20°以下であり、室温やクリーンルームで、半年間〜1年間以上保存しても水接触角が20°以下であり高い親水性を維持できている。 The cell-adhesive hydrophilic modified cell culture substrate exhibits excellent hydrophilicity with a water contact angle of 20 ° or less by having such a structure. The untreated molded substrate has a water contact angle of about 40 to 108 °, whereas the cell-adherent hydrophilic modified cell culture substrate has a water contact angle of 20 ° or less immediately after preparation, and is at room temperature or lower. Even if it is stored in a clean room for half a year to one year or more, the water contact angle is 20 ° or less and high hydrophilicity can be maintained.

細胞接着性の親水性改質細胞培養基材は、ヒト子宮頸癌由来細胞であるHeLa細胞やチャイニーズハムスター肺由来線維芽細胞であるV79細胞に対して、低細胞毒性を確認した。また、アルブミンなどのタンパク質の吸着が半分未満となっているので、細胞培養容器に適している。 The cell-adhesive hydrophilic modified cell culture substrate was confirmed to have low cell toxicity to HeLa cells, which are cells derived from human cervical cancer, and V79 cells, which are fibroblasts derived from Chinese hamster lungs. In addition, since the adsorption of proteins such as albumin is less than half, it is suitable for cell culture vessels.

細胞接着性の親水性改質細胞培養基材は、親水性面にHeLa細胞が直接接着し増殖することが確認されており、細胞外マトリックスが不要な新規な細胞培養基材の開発、ひいては再生医療で有用なiPS細胞等への展開が期待される。 It has been confirmed that HeLa cells directly adhere to and proliferate on the hydrophilic surface of the cell-adhesive hydrophilic modified cell culture substrate, and the development and regeneration of a new cell culture substrate that does not require extracellular matrix. It is expected to be applied to iPS cells and the like that are useful in medicine.

細胞接着性の親水性改質細胞培養基材は、耐滅菌基材であるので、高圧水蒸気滅菌処理であるオートクレーブ滅菌、エチレンガスオキサイド滅菌、γ線滅菌、電子線滅菌などの各種滅菌条件に曝しても、高い親水性を維持できる。例えば121℃、2気圧で20分間のオートクレーブ滅菌では5箇月経過後でも水接触角が20°以下を維持でき、20〜50kGyの電子線滅菌やγ線滅菌では、6箇月以上保存後、水接触角が20°以下であり高い親水性を維持できる。従って、医療器具に用いる際に、滅菌処理を施しても、親水性による効果を十分に長期間発現できる。 Since the cell-adhesive hydrophilic modified cell culture substrate is a sterilization-resistant substrate, it is exposed to various sterilization conditions such as autoclave sterilization, ethylene gas oxide sterilization, γ-ray sterilization, and electron beam sterilization, which are high-pressure steam sterilization treatments. However, high hydrophilicity can be maintained. For example, in autoclave sterilization at 121 ° C and 2 atm for 20 minutes, the water contact angle can be maintained at 20 ° or less even after 5 months have passed. The angle is 20 ° or less and high hydrophilicity can be maintained. Therefore, when used in medical devices, even if sterilized, the effect of hydrophilicity can be exhibited for a sufficiently long period of time.

このような細胞接着性の親水性改質細胞培養基材は、以下のようにして作製することができる。 Such a cell-adhesive hydrophilic modified cell culture substrate can be prepared as follows.

先ず、化学式(1)で表される側鎖にベタイン構造を有する繰返単位と、化学式(3)で表される側鎖に活性官能基を有する繰返単位とを有する共重合体は、以下のようにして合成される。 First, the copolymer having a repeating unit having a betaine structure in the side chain represented by the chemical formula (1) and a repeating unit having an active functional group in the side chain represented by the chemical formula (3) is described below. It is synthesized as follows.

より具体的には、前記化学式(8)又は(9)で表される共重合体を例に説明する。ジメチルアミノプロピルメタクリルアミドにプロパンサルトンを反応させ、化学式(1)で表されるような繰返単位を形成するためのベタイン構造含有コモノマーを合成する。 More specifically, the copolymer represented by the chemical formula (8) or (9) will be described as an example. Propanesalton is reacted with dimethylaminopropylmethacrylamide to synthesize a betaine structure-containing comonomer for forming a repeating unit as represented by the chemical formula (1).

4−アミノ安息香酸のアミノ基をジアゾ化後にアジド化し酸クロライドにしてから、ピぺリジンのアミノ基の一方を保護基で保護したモノ保護ピぺリジンと反応させてアミド化し、その後、保護基を外し、モノ−p−アジ化安息香酸ピペラジンアミドを得る。メタクリル酸クロライドと6−アミノカプロン酸とをアミド化し、さらに前記モノ−p−アジ化安息香酸ピペラジンアミドの遊離アミノ基とアミド化して、化学式(2)で表されるような繰返単位を形成するための活性官能基含有コモノマーを合成する。 The amino group of 4-aminobenzoic acid is diazotized and then azide to acid chloride, and then one of the amino groups of piperidine is reacted with monoprotected piperidine protected by a protecting group to amidate, and then the protective group. To obtain the mono-p-azilated benzoate piperazinamide. Chloride methacrylate and 6-aminocaproic acid are amidated and further amidated with the free amino group of the mono-p-azilated benzoic acid piperazinamide to form a repeating unit as represented by the chemical formula (2). To synthesize an active functional group-containing comonomer for this purpose.

又は、メタクリル酸クロライドと前記モノ−p−アジ化安息香酸ピペラジンアミドの遊離アミノ基とアミド化して、化学式(2)で表されるような繰返単位を形成するための別な活性官能基含有コモノマーを合成する。 Alternatively, it contains another active functional group for amidating methacrylic acid chloride with the free amino group of the mono-p-azinate benzoic acid piperazine amide to form a repeating unit as represented by the chemical formula (2). Synthesize comonomer.

化学式(1)で表されるような繰返単位となるベタイン構造含有コモノマーと、化学式(3)で表されるような繰返単位となる活性官能基含有コモノマーとを、共重合させると、前記化学式(8)又は(9)で表される共重合体が得られる。 When a betaine structure-containing comonomer as a repeating unit as represented by the chemical formula (1) and an active functional group-containing comonomer as a repeating unit as represented by the chemical formula (3) are copolymerized, the above-mentioned A copolymer represented by the chemical formula (8) or (9) can be obtained.

なお、炭素数等が異なる別なコモノマー、例えば化学式(1)又は(2)で表される繰返単位を形成するためのベタイン構造含有コモノマー若しくは化学式(3)で表されるような繰返単位となる活性官能基含有コモノマーは、始発物質を調整すれば同様にして合成できる。 It should be noted that another comonomer having a different number of carbon atoms, for example, a betaine structure-containing comonomer for forming a repeating unit represented by the chemical formula (1) or (2) or a repeating unit represented by the chemical formula (3). The active functional group-containing comonomer can be synthesized in the same manner by adjusting the starting material.

共重合体は、水、アルコールやアセトンのような水溶性有機媒体、塩化メチレンやクロロホルムやエーテルのような水不溶性有機媒体などの各種媒体で希釈して使用してもよく、共重合体濃度が0.001〜10wt%のときに高い親水性を発揮することができ、さらに好ましくは0.01〜1.0wt%であると好ましい。 The copolymer may be diluted with water, a water-soluble organic medium such as alcohol or acetone, or a water-insoluble organic medium such as methylene chloride, chloroform or ether, and the copolymer concentration may be high. High hydrophilicity can be exhibited when the content is 0.001 to 10 wt%, and more preferably 0.01 to 1.0 wt%.

ゴム、樹脂、ガラスから選ばれる材質製の成形基材を、コロナ放電処理、プラズマ処理、紫外線処理、エキシマ処理、及び/又はシランカップリング剤処理し好ましくはエキシマ処理して、成形基材表面に元々存するものの他に新たに表面官能基を生成させる。また、マスキングなどを用いることで、前記成形基材表面の一部に表面官能基を生成させることも可能であり、選択的に親水化を発現させることができる。 A molded base material made of a material selected from rubber, resin, and glass is subjected to corona discharge treatment, plasma treatment, ultraviolet treatment, excimer treatment, and / or silane coupling agent treatment, preferably excimer treatment, on the surface of the molded base material. In addition to the original one, a new surface functional group is generated. Further, by using masking or the like, it is possible to generate a surface functional group on a part of the surface of the molded base material, and it is possible to selectively develop hydrophilicity.

その後、共重合体液を、噴霧、塗布、浸漬などの方法で、付し、必要に応じて媒体を揮発などの方法で除去し、共重合体が付された成形基材とする。この段階では、成形基材表面の表面官能基に、共重合体のベタイン構造が静電的な相互作用をして、共重合体が、物理吸着乃至化学吸着のような吸着されていることによって、強固に付されつつ、親水性を発現している。 Then, the copolymer liquid is applied by a method such as spraying, coating, or dipping, and if necessary, the medium is removed by a method such as volatilization to obtain a molded base material to which the copolymer is attached. At this stage, the betaine structure of the copolymer electrostatically interacts with the surface functional groups on the surface of the molded substrate, and the copolymer is adsorbed by physical adsorption or chemisorption. , While being firmly attached, it exhibits hydrophilicity.

次いで、共重合体が付された共重合体のベタイン構造を、紫外線又は光照射処理好ましくは波長220〜410nm、積算光量は任意の紫外線を照射することにより、アジド基が分解してナイトレン基を生じ、不飽和基、アルキル基、フェニル基、アミノ基と反応して及び/又は環拡大して、成形基材上の表面官能基、若しくは成形基材の主成分やその他の硬化性分が有する不飽和基、アルキル基、フェニル基、又はアミノ基と反応して及び/又は環拡大して、反応又は結合することにより、共有結合を形成し、共重合体が、化学結合によって強固に付されつつ、親水性を発現している。 Next, the betaine structure of the copolymer to which the copolymer is attached is irradiated with ultraviolet rays or light irradiation treatment, preferably with a wavelength of 220 to 410 nm, and the integrated light amount is arbitrary ultraviolet rays, whereby the azide group is decomposed to form a nitrene group. It occurs and reacts with unsaturated groups, alkyl groups, phenyl groups, amino groups and / or expands the ring to have surface functional groups on the molded substrate, or the main components of the molded substrate and other curable components. By reacting with an unsaturated group, an alkyl group, a phenyl group, or an amino group and / or expanding the ring to react or bond, a covalent bond is formed, and the copolymer is firmly attached by a chemical bond. At the same time, it exhibits hydrophilicity.

このようにして、細胞接着性の親水性改質細胞培養基材が得られる。 In this way, a cell-adhesive hydrophilic modified cell culture substrate is obtained.

なお、活性官能基がアジド基である例を示したが、活性官能基が、スルホ基、トリアルコキシシリル基、若しくは水酸基又は水酸基ブロック基であって、成形基材上の表面官能基であるシラノール基やシロキシ基と縮合反応して、エーテル結合である共有結合を形成し、共重合体が、化学結合によって強固に付されつつ、親水性を発現していてもよい。 Although an example in which the active functional group is an azide group is shown, the active functional group is a sulfo group, a trialkoxysilyl group, a hydroxyl group or a hydroxyl group block group, and silanol which is a surface functional group on a molded substrate. A covalent bond, which is an ether bond, may be formed by a condensation reaction with a group or a siloxy group, and the copolymer may be strongly attached by a chemical bond while exhibiting hydrophilicity.

細胞接着性の親水性改質細胞培養基材は、親水性を発現する用途に用いられる。例えば、生体の水分と馴染みやすいように血管カテーテルなどの医療器具や、細胞培養容器、マイクロ流路チップなどに用いられる。 Cell-adhesive hydrophilic modified cell culture substrates are used for applications that exhibit hydrophilicity. For example, it is used for medical instruments such as vascular catheters, cell culture containers, microchannel chips, etc. so as to be easily compatible with the water content of the living body.

以下、本発明を適用する細胞接着性の親水性改質細胞培養基材の実施例、及び本発明を適用外の比較例を、対比しながら説明する。 Hereinafter, examples of a cell-adhesive hydrophilic modified cell culture substrate to which the present invention is applied and comparative examples to which the present invention is not applied will be described while comparing them.

先ず、本発明を適用する細胞接着性の親水性改質細胞培養基材を作製するために用いられるベタイン構造含有繰返単位と活性官能基含有繰返単位とを有する共重合体を調製した。 First, a copolymer having a betaine structure-containing repeating unit and an active functional group-containing repeating unit used for preparing a cell-adhesive hydrophilic modified cell culture substrate to which the present invention is applied was prepared.

(合成例1:共重合体[化学式(9)]の合成)
(1-1) メタクリルアミドプロピルスルホベタインの合成

Figure 2021158968
三口フラスコ(300ml)にジメチルアミノプロピルメタクリルアミド1.70g(10mmol)と脱水アセトン120mlを入れ、室温で撹拌した。1,3−プロパンサルトン1.83g(15mmol)の脱水アセトン溶液20mlを滴下し、室温で48時間撹拌した。アセトンを留去し、得られた固体にアセトン20mlを加えて洗浄した。得られた固体をメタノールに溶かし、ヒドロキノンを加えて溶媒を留去し、固体を取り出して減圧乾燥したところ、収率98%で無色固体のメタクリルアミドプロピルスルホベタインが得られ、m/z:293(M+H)であり、その構造が支持された。 (Synthesis Example 1: Synthesis of Copolymer [Chemical Formula (9)])
(1-1) Synthesis of methacrylamide propyl sulfobetaine
Figure 2021158968
1.70 g (10 mmol) of dimethylaminopropylmethacrylamide and 120 ml of dehydrated acetone were placed in a three-necked flask (300 ml), and the mixture was stirred at room temperature. 20 ml of a dehydrated acetone solution of 1.83 g (15 mmol) of 1,3-propanesaltone was added dropwise, and the mixture was stirred at room temperature for 48 hours. Acetone was distilled off, and 20 ml of acetone was added to the obtained solid for washing. The obtained solid was dissolved in methanol, hydroquinone was added to distill off the solvent, and the solid was taken out and dried under reduced pressure to obtain methacrylamidepropylsulfobetaine as a colorless solid in a yield of 98%, m / z: 293. (M + H + ), and its structure was supported.

(1-2) メタクリルアミドピペラジンフェニルアジドモノマーの合成
(1-2(i)) モノBocピペラジンの合成

Figure 2021158968
三口フラスコ(300ml)にピペラジン12.9g(150mmol)、水酸化ナトリウム1.20g(30mmol)、ジオキサン75ml、水75mlを入れ、0℃で撹拌した。ジ−t−ブチルジカーボネート6.54g(30mmol)のジオキサン溶液50mlを滴下し、さらに室温で12時間撹拌した。反応液を5wt%炭酸ナトリウム水溶液200mlに注ぎ、クロロホルム200mLで抽出した。クロロホルム、ジオキサン、及び未反応ピペラジンを留去し、減圧乾燥したところ、無色固体のモノBocピペラジンを粗収率80%で得ることができ、そのまま次の反応に用いた。 (1-2) Synthesis of methacrylamide piperazine phenyl azide monomer
(1-2 (i)) Synthesis of mono-Boc piperazine
Figure 2021158968
12.9 g (150 mmol) of piperazine, 1.20 g (30 mmol) of sodium hydroxide, 75 ml of dioxane and 75 ml of water were placed in a three-necked flask (300 ml), and the mixture was stirred at 0 ° C. 50 ml of a dioxane solution of 6.54 g (30 mmol) of di-t-butyl dicarbonate was added dropwise, and the mixture was further stirred at room temperature for 12 hours. The reaction solution was poured into 200 ml of a 5 wt% sodium carbonate aqueous solution and extracted with 200 mL of chloroform. Chloroform, dioxane, and unreacted piperazine were distilled off and dried under reduced pressure to obtain a colorless solid monoBoc piperazine with a crude yield of 80%, which was used as it was in the next reaction.

(1-2(ii)) p−アジ化安息香酸の合成

Figure 2021158968
三口フラスコ(1L)に4−アミノ安息香酸6.86g(50mmol)、エタノール500ml、濃塩酸250mlを入れ、0℃で撹拌した。亜硝酸ナトリウム5.18g(75mmol)の水溶液100mlを滴下し、0℃で1時間撹拌してジアゾニウム塩溶液を調整した。三口フラスコ(2L)にアジ化ナトリウム32.5g(500mmol)、エタノール250ml、水250mlを入れ、0℃で撹拌した。この溶液に調整したジアゾニウム塩溶液を滴下し、室温で24時間撹拌した。エタノールを留去した反応液をクロロホルム500mlで二回抽出した。クロロホルム、エタノールを留去し、減圧乾燥したところ、淡黄色固体のp−アジ化安息香酸を粗収率100%で得ることができ、そのまま次の反応に用いた。 (1-2 (ii)) Synthesis of p-azinate benzoic acid
Figure 2021158968
6.86 g (50 mmol) of 4-aminobenzoic acid, 500 ml of ethanol, and 250 ml of concentrated hydrochloric acid were placed in a three-necked flask (1 L), and the mixture was stirred at 0 ° C. 100 ml of an aqueous solution of 5.18 g (75 mmol) of sodium nitrite was added dropwise, and the mixture was stirred at 0 ° C. for 1 hour to prepare a diazonium salt solution. 32.5 g (500 mmol) of sodium azide, 250 ml of ethanol and 250 ml of water were placed in a three-necked flask (2 L), and the mixture was stirred at 0 ° C. The prepared diazonium salt solution was added dropwise to this solution, and the mixture was stirred at room temperature for 24 hours. The reaction solution from which ethanol was distilled off was extracted twice with 500 ml of chloroform. Chloroform and ethanol were distilled off and dried under reduced pressure to obtain a pale yellow solid p-azilated benzoic acid in a crude yield of 100%, which was used as it was in the next reaction.

(1-2(iii)) p−アジ化安息香酸クロライドの合成

Figure 2021158968
ナスフラスコ(500ml)に粗アジ化安息香酸3.26g(20mmol)、オキザリルクロライド5.08g(40mmol)、ベンゼン300mLを入れ、室温で撹拌した。DMF4滴を加え、室温で6時間撹拌した。ベンゼン、オキザリルクロライドを留去し、減圧乾燥したところ、褐色液体のp−アジ化安息香酸クロライドを粗収率100%で得ることができ、そのまま次の反応に用いた。 (1-2 (iii)) Synthesis of p-azidated benzoic acid chloride
Figure 2021158968
3.26 g (20 mmol) of crude azinated benzoic acid, 5.08 g (40 mmol) of oxalyl chloride, and 300 mL of benzene were placed in an eggplant flask (500 ml), and the mixture was stirred at room temperature. 4 drops of DMF were added and the mixture was stirred at room temperature for 6 hours. When benzene and oxalyl chloride were distilled off and dried under reduced pressure, p-azilated benzoic acid chloride in a brown liquid could be obtained in a crude yield of 100%, and was used as it was in the next reaction.

(1-2(iv)) p−アジ化安息香酸Bocピペラジンアミドの合成

Figure 2021158968
三口フラスコ(500ml)に粗モノBocピペラジン4.95g(90%、24mmol)、トリエチルアミン6.06g(60mmol)、THF300mlを入れ、0℃で撹拌した。粗アジ化安息香酸クロライド3.63g(20mmol)のTHF溶液50mlを滴下し、さらに室温で12時間撹拌した。THFを留去し、得られた残渣を5wt%塩酸200mlに注ぎ、クロロホルム200mlで抽出した。クロロホルムを留去し、残渣をゲル浸透クロマトグラフィー(GPC)にて精製したところ、淡褐色固体のp−アジ化安息香酸Bocピペラジンアミドを収率97%で得た。 (1-2 (iv)) Synthesis of p-azinate benzoic acid Boc piperazine amide
Figure 2021158968
4.95 g (90%, 24 mmol) of crude monoBoc piperazine, 6.06 g (60 mmol) of triethylamine, and 300 ml of THF were placed in a three-necked flask (500 ml), and the mixture was stirred at 0 ° C. 50 ml of a THF solution of 3.63 g (20 mmol) of crude azide benzoic acid chloride was added dropwise, and the mixture was further stirred at room temperature for 12 hours. THF was distilled off, and the obtained residue was poured into 200 ml of 5 wt% hydrochloric acid and extracted with 200 ml of chloroform. After distilling off chloroform and purifying the residue by gel permeation chromatography (GPC), a light brown solid p-azinate benzoic acid Boc piperazine amide was obtained in a yield of 97%.

(1-2(v)) モノ−p−アジ化安息香酸ピペラジンアミドの合成

Figure 2021158968
ナスフラスコ(200ml)にアジ化安息香酸Bocピペラジンアミド3.31g(10mmol)を入れ、0℃で撹拌した。トリフルオロ酢酸20mlを加え、室温で30分撹拌した。トリフルオロ酢酸を留去し、得られた残渣に5wt%炭酸ナトリウム水溶液100mlを注ぎ、クロロホルム100mlで二回抽出した。クロロホルムと副成したピペラジンとを留去し、減圧乾燥したところ、褐色固体のモノ−p−アジ化安息香酸ピペラジンアミドを粗収率90%で得ることができ、そのまま次の反応に用いた。 (1-2 (v)) Synthesis of mono-p-azidated benzoic acid piperazine amide
Figure 2021158968
3.31 g (10 mmol) of Boc piperazine amide azide benzoic acid was placed in an eggplant flask (200 ml), and the mixture was stirred at 0 ° C. 20 ml of trifluoroacetic acid was added, and the mixture was stirred at room temperature for 30 minutes. Trifluoroacetic acid was distilled off, 100 ml of a 5 wt% sodium carbonate aqueous solution was poured into the obtained residue, and the mixture was extracted twice with 100 ml of chloroform. Chloroform and piperazine as a by-product were distilled off and dried under reduced pressure to obtain a brown solid mono-p-azinate benzoic acid piperazine amide in a crude yield of 90%, which was used as it was in the next reaction.

(1-2(vi)) メタクリルアミドピペラジン−p−フェニルアジドアミドモノマーの合成

Figure 2021158968
三口フラスコ(100ml)にメタクリルアミドプロピルスルホベタイン1.46g(5mmol)、トリエチルアミン1.01g(10mmol)、THF60mlを入れ、0℃で撹拌した。メタクリル酸クロライド627mg(6mmol)のTHF溶液15mlを滴下し、さらに室温で12時間撹拌した。THFを留去し、得られた残渣を5wt%炭酸ナトリウム水溶液100mlに注ぎ、クロロホルム100mlで抽出した。クロロホルムを留去し、再結晶(ヘキサン:クロロホルム=25:5mL)すると、タール状不純物が除去でき、淡褐色固体のメタクリルアミドピペラジン−p−フェニルアジドアミドモノマーが、収率54%で得られた。 (1-2 (vi)) Synthesis of methacrylamide piperazine-p-phenyl azide amide monomer
Figure 2021158968
1.46 g (5 mmol) of methacrylamide propyl sulfobetaine, 1.01 g (10 mmol) of triethylamine, and 60 ml of THF were placed in a three-necked flask (100 ml), and the mixture was stirred at 0 ° C. 15 ml of a THF solution of 627 mg (6 mmol) of methacrylic acid chloride was added dropwise, and the mixture was further stirred at room temperature for 12 hours. THF was distilled off, and the obtained residue was poured into 100 ml of a 5 wt% sodium carbonate aqueous solution and extracted with 100 ml of chloroform. Chloroform was distilled off and recrystallized (hexane: chloroform = 25: 5 mL) to remove tar-like impurities, and a light brown solid methacrylamide piperazine-p-phenyl azide amide monomer was obtained in a yield of 54%. ..

(1-3) 共重合体[化学式(9)]への共重合

Figure 2021158968
ナスフラスコ(100ml)にメタクリルアミドプロピルスルホベタイン1.46g(5mmol)、メタクリルアミドピペラジン−p−フェニルアジドアミドモノマー15.0mg(0.05mmol)、過硫酸アンモニウム11.4mg、水5mlを入れ、アルミホイルで蓋をして均一溶液にした。70℃のウォーターバスにナスフラスコを1時間浸けて重合させた。反応液に水5mlを加えて撹拌し、溶液をメタノール50mlに注いだ。生成した沈殿物を集め、メタノールで洗浄し、減圧乾燥したところ、淡黄色固体のランダム共重合体[化学式(9)]が、収率92%で得られ、GPCで測定したところ数平均分子量92000であり、その構造が支持された。 (1-3) Copolymerization with copolymer [Chemical formula (9)]
Figure 2021158968
Put 1.46 g (5 mmol) of methacrylamide propyl sulfobetaine, 15.0 mg (0.05 mmol) of methacrylamide piperazine-p-phenyl azideamide monomer, 11.4 mg of ammonium persulfate, and 5 ml of water in an eggplant flask (100 ml), and aluminum foil. It was covered with and made into a uniform solution. The eggplant flask was immersed in a water bath at 70 ° C. for 1 hour for polymerization. 5 ml of water was added to the reaction mixture, the mixture was stirred, and the solution was poured into 50 ml of methanol. When the produced precipitate was collected, washed with methanol and dried under reduced pressure, a pale yellow solid random copolymer [chemical formula (9)] was obtained in a yield of 92%, and the number average molecular weight was 92000 as measured by GPC. And its structure was supported.

(実施例1)
合成例1で調製した共重合体[化学式(9)]を用いて、各種基材に親水性改質処理を行った。基材は架橋済みシリコーンゴムシートを用いた。共重合体[化学式(9)]を0.1wt%水溶液に調製して使用した。基材を所定条件でプラズマ処理又はエキシマ処理した後、0.1wt%共重合体水溶液に室温で10分間浸せきした。その後、基材を取り出した後に紫外線を照射して親水性改質細胞培養基材を得た。
(Example 1)
Using the copolymer [Chemical Formula (9)] prepared in Synthesis Example 1, various substrates were subjected to hydrophilic modification treatment. A crosslinked silicone rubber sheet was used as the base material. A copolymer [chemical formula (9)] was prepared and used in a 0.1 wt% aqueous solution. The base material was subjected to plasma treatment or excimer treatment under predetermined conditions, and then immersed in a 0.1 wt% copolymer aqueous solution at room temperature for 10 minutes. Then, after taking out the substrate, it was irradiated with ultraviolet rays to obtain a hydrophilic modified cell culture substrate.

(実施例2)
基材にポリカーボネート(三菱ガス化学社製:ユーピロン・フィルムFE−2000)を用いたこと以外は、実施例1と同様にして、親水性改質細胞培養基材を得た。
(Example 2)
A hydrophilic modified cell culture substrate was obtained in the same manner as in Example 1 except that polycarbonate (manufactured by Mitsubishi Gas Chemical Company, Ltd .: Iupiron Film FE-2000) was used as the substrate.

(実施例3)
基材にソーダ石灰ガラス(松波硝子工業社製:S9213)を用いたこと以外は、実施例1と同様にして、親水性改質細胞培養基材を得た。
(Example 3)
A hydrophilic modified cell culture substrate was obtained in the same manner as in Example 1 except that soda-lime glass (manufactured by Matsunami Glass Industry Co., Ltd .: S9213) was used as the substrate.

(比較例1)
数平均分子量(i)95000又は(ii)253000のホスホリルコリン高分子を用いたこと以外は、実施例1と同様にして、親水性改質細胞培養基材を作製した。
(Comparative Example 1)
A hydrophilic modified cell culture substrate was prepared in the same manner as in Example 1 except that a phosphorylcholine polymer having a number average molecular weight of (i) 95000 or (ii) 253000 was used.

(接触角の測定)
得られた親水性改質細胞培養基材の水の接触角にて親水性の評価を行った。得られた親水性改質細胞培養基材に水1滴を滴下して10秒後に、接触角測定器自動接触角計(協和界面科学社製;DM−501)で水との接触角を、一試験片につき5〜7点測定し、その平均値を求めた。結果を表1に示した。
(Measurement of contact angle)
The hydrophilicity of the obtained hydrophilic modified cell culture substrate was evaluated by the contact angle of water. One drop of water was dropped onto the obtained hydrophilic modified cell culture substrate, and 10 seconds later, the contact angle with water was measured with an automatic contact angle meter (manufactured by Kyowa Interface Science Co., Ltd .; DM-501). Five to seven points were measured for each test piece, and the average value was calculated. The results are shown in Table 1.

Figure 2021158968
Figure 2021158968

表1から明らかな通り、親水性改質処理を行うことで接触角の減少が見られ、親水性が改質されたことがわかった。また、実施例1、2、3から、基材の種類に関係なく親水性が改質されたことがわかった。 As is clear from Table 1, the contact angle was reduced by performing the hydrophilic modification treatment, and it was found that the hydrophilicity was modified. Further, from Examples 1, 2 and 3, it was found that the hydrophilicity was modified regardless of the type of the base material.

次に、実施例1の親水性改質細胞培養基材にて細胞に関する試験を実施した。比較として比較例1も同様に試験した。得られた結果をまとめて表2に示した。 Next, a test on cells was carried out on the hydrophilic modified cell culture substrate of Example 1. As a comparison, Comparative Example 1 was also tested in the same manner. The results obtained are summarized in Table 2.

(細胞毒性試験)
ISO 10993−5:2009, Biological evaluation of medical devices - Part 5: Tests for in vitro cytotoxicityに従い、親水性改質細胞培養基材の細胞毒性試験(抽出法によるコロニー形成法)を行った。細胞はV79細胞とHeLa細胞を用いた。
(Cytotoxicity test)
According to ISO 10993-5: 2009, Biological evaluation of medical devices --Part 5: Tests for in vitro cytotoxicity, cytotoxicity test (colony forming method by extraction method) of hydrophilic modified cell culture substrate was performed. As cells, V79 cells and HeLa cells were used.

(細胞培養試験)
親水性改質細胞培養基材の細胞培養試験を実施した。まず、ポリスチレン製ディッシュに親水性改質細胞培養基材を固定し、ディッシュ内に培養液を分注した。その後、親水性改質細胞培養基材表面にHeLa細胞を播種し、炭酸ガスインキュベータを用いて、温度:37℃、CO2濃度5%環境にて3日間培養を行った。図1に実施例1の親水性改質細胞培養基材でHeLa細胞を培養後の顕微鏡拡大写真(b)と、本発明を適用外のシリコーン製成形基材でHeLa細胞を培養後の顕微鏡拡大写真(a)により示した。
(Cell culture test)
A cell culture test of a hydrophilic modified cell culture substrate was carried out. First, a hydrophilic modified cell culture substrate was fixed on a polystyrene dish, and the culture solution was dispensed into the dish. Then, HeLa cells were seeded on the surface of the hydrophilic modified cell culture substrate, and cultured in a carbon dioxide incubator at a temperature of 37 ° C. and a CO 2 concentration of 5% for 3 days. FIG. 1 shows a microscopic magnified photograph (b) after culturing HeLa cells on the hydrophilic modified cell culture substrate of Example 1 and a microscopic enlargement after culturing HeLa cells on a silicone molded substrate to which the present invention is not applied. It is shown by the photograph (a).

Figure 2021158968
Figure 2021158968

表2、図1から明らかな通り、実施例1、比較例1ともに細胞毒性はないことが確認できた。細胞培養では、実施例1では細胞の増殖が確認できたのに対し、比較例では増殖は確認できなかった。この要因として、一般的には細胞培養時に、基板上に細胞接着に必須となる細胞外マトリックスを形成する必要がある。そのため、比較例1は細胞培養できなったことが考えられる。それに対し、実施例1では同様に細胞外マトリックスを形成していなかったものの細胞培養が可能だった。このことから本発明は細胞外マトリックスタンパク質やポリペプチドをコーティングすることなく細胞培養が可能であることが確認できた。 As is clear from Table 2 and FIG. 1, it was confirmed that neither Example 1 nor Comparative Example 1 had cytotoxicity. In cell culture, cell proliferation could be confirmed in Example 1, whereas proliferation could not be confirmed in Comparative Example. As a factor for this, it is generally necessary to form an extracellular matrix on the substrate, which is essential for cell adhesion, during cell culture. Therefore, it is considered that the cell culture of Comparative Example 1 could not be performed. On the other hand, in Example 1, although the extracellular matrix was not formed in the same manner, cell culture was possible. From this, it was confirmed that the present invention enables cell culture without coating with extracellular matrix protein or polypeptide.

次に得られた親水性改質細胞培養基材に対して以下の各種滅菌処理を行い、各種滅菌処理への耐性を確認した。試験は実施例1にて実施した。得られた結果をまとめて表3に示した。 Next, the obtained hydrophilic modified cell culture substrate was subjected to the following various sterilization treatments, and resistance to various sterilization treatments was confirmed. The test was carried out in Example 1. The results obtained are summarized in Table 3.

(オートクレーブ滅菌試験)
オートクレーブ滅菌処理は、高圧蒸気滅菌器(サクラ精機社製:ASV−2402)にて121℃、2気圧で20分間行い、その後、水の接触角を測定した。また、長期保管性の確認のため、滅菌処理した親水性改質細胞培養基材をシャーレに入れて、室温、湿度60%環境下にて6箇月保管し、その後、水の接触角を測定した。
(Autoclave sterilization test)
The autoclave sterilization treatment was carried out in a high-pressure steam sterilizer (manufactured by Sakura Seiki Co., Ltd .: ASV-2402) at 121 ° C. and 2 atm for 20 minutes, and then the contact angle of water was measured. In addition, in order to confirm long-term storage, the sterilized hydrophilic modified cell culture substrate was placed in a petri dish and stored for 6 months in an environment of room temperature and humidity of 60%, and then the contact angle of water was measured. ..

(γ線・電子線照射滅菌試験)
親水性改質細胞培養基材にγ線及び電子線照射を行い、放射線耐性を確認した。親水性改質細胞培養基材を放射線発生装置にて20〜50kGyで放射線照射を行った。その後、水との接触角を測定した。また、長期保管性の確認のため、滅菌処理した親水性改質細胞培養基材をシャーレに入れて、室温、湿度60%環境下にて6箇月保管し、その後、水の接触角を測定した。
(Gamma ray / electron beam irradiation sterilization test)
Radiation resistance was confirmed by irradiating the hydrophilic modified cell culture substrate with γ-rays and electron beams. The hydrophilic modified cell culture substrate was irradiated with a radiation generator at 20 to 50 kGy. Then, the contact angle with water was measured. In addition, in order to confirm long-term storage, the sterilized hydrophilic modified cell culture substrate was placed in a petri dish and stored for 6 months in an environment of room temperature and humidity of 60%, and then the contact angle of water was measured. ..

Figure 2021158968
Figure 2021158968

表3から明らかな通り、各試験の前後により若干の接触角の上昇が見られたが、親水性は維持できていた。また、6箇月間経過後でも同様に、若干の接触角の上昇が見られたが親水性が維持できていた。このことから本発明は各種滅菌処理に対して耐性があり、長期にわたって親水性が維持できることが確認できた。 As is clear from Table 3, the contact angle increased slightly before and after each test, but the hydrophilicity could be maintained. In addition, even after 6 months had passed, a slight increase in the contact angle was observed, but the hydrophilicity could be maintained. From this, it was confirmed that the present invention is resistant to various sterilization treatments and can maintain hydrophilicity for a long period of time.

次に、実施例1の親水性改質細胞培養基材にてのタンパク質に関する試験を実施した。得られた結果を表4に示した。 Next, a test on a protein on the hydrophilic modified cell culture substrate of Example 1 was carried out. The results obtained are shown in Table 4.

(タンパク質の吸着評価)
親水性改質細胞培養基材のタンパク質吸着試験を実施した。30×30cmの親水性改質細胞培養基材をアルブミン溶液に2時間浸漬した。浸漬後、親水性改質細胞培養基材を取り出し、Cy3色素標識カルボン酸にて蛍光標識を行い、リン酸緩衝生理食塩水(PBS)にて低分子成分を洗浄して試験片を作製した。得られた試験片を分光光度計にて蛍光強度を測定し、積算した容積でアルブミン吸着度合いを算出した。比較のため未処理のシリコーンゴムシートでも同様の試験を行った。
(Evaluation of protein adsorption)
A protein adsorption test of a hydrophilic modified cell culture substrate was carried out. A 30 × 30 cm hydrophilic modified cell culture substrate was immersed in albumin solution for 2 hours. After immersion, the hydrophilic modified cell culture substrate was taken out, fluorescently labeled with Cy3 dye-labeled carboxylic acid, and the low molecular weight components were washed with phosphate buffered saline (PBS) to prepare a test piece. The fluorescence intensity of the obtained test piece was measured with a spectrophotometer, and the degree of albumin adsorption was calculated from the integrated volume. A similar test was performed on an untreated silicone rubber sheet for comparison.

Figure 2021158968
Figure 2021158968

表4から明らかな通り、タンパク質の吸着は、未処理のシリコーンゴムシートではアルブミン吸着容積が2.5×10であったのに対し、実施例1ではアルブミン吸着容積が1.2×10であり、比較例1の約半分の吸着容積であった。このことから本発明はタンパク質の吸着量を減少させることが可能であることが確認できた。 Table 4 As is apparent from the adsorption of protein, whereas in the silicone rubber sheet of raw albumin adsorption capacity was 2.5 × 10 5, Example 1, the albumin adsorption capacity is 1.2 × 10 5 It was about half the adsorption volume of Comparative Example 1. From this, it was confirmed that the present invention can reduce the amount of protein adsorbed.

以上の結果から、本発明は、成形基材の表面に十分な親水性を簡便に付与でき、速やかに親水性が発現すると共に、水との接触角を十分に低く維持できるようにしつつ、細胞外マトリックスやポリペプチドをコーティングしなくとも細胞培養でき、長期間、大気中又は水中で保管・保存又は使用しても培養性能を維持でき、長期にわたって親水性を担保できる細胞接着性の親水性改質細胞培養基材として活用できることが確認された。 From the above results, the present invention can easily impart sufficient hydrophilicity to the surface of the molded substrate, rapidly develop hydrophilicity, and maintain the contact angle with water at a sufficiently low cell. Cell culture can be performed without coating with an outer matrix or polypeptide, culture performance can be maintained even when stored, stored or used in the air or water for a long period of time, and cell-adhesive hydrophilicity modification that can ensure hydrophilicity for a long period of time. It was confirmed that it can be used as a substrate for culturing cells.

本発明の細胞接着性の親水性改質細胞培養基材は、親水性を発現したまま長期間維持を必要とする血管カテーテルなどの医療器具や、細胞培養容器、マイクロ流路チップ、organ−on−a−chipなどに用いられる。 The cell-adhesive hydrophilic modified cell culture substrate of the present invention includes medical instruments such as vascular catheters that require long-term maintenance while exhibiting hydrophilicity, cell culture vessels, microchannel chips, organ-on. It is used for -a-chip and the like.

Claims (16)

ゴム、樹脂、ガラスから選ばれる何れかの材質製の成形基材が、ベタイン構造を有する繰返単位及び活性官能基を有する繰返単位を含む共重合体で被覆されており、前記共重合体中のベタイン構造又は前記活性官能基が、前記成形基材上の表面官能基と反応、結合、又は吸着していることを特徴とする細胞接着性の親水性改質細胞培養基材。 A molded base material made of any material selected from rubber, resin, and glass is coated with a copolymer containing a repeating unit having a betaine structure and a repeating unit having an active functional group, and the copolymer. A cell-adhesive hydrophilic modified cell culture substrate, characterized in that the betaine structure inside or the active functional group reacts with, binds to, or adsorbs a surface functional group on the molded substrate. タンパク質及び/又はポリペプチドで基材の表面をコーティングすることなく細胞培養が可能であることを特徴とする請求項1に記載の細胞接着性の親水性改質細胞培養基材。 The cell-adhesive hydrophilic modified cell culture substrate according to claim 1, wherein cell culture is possible without coating the surface of the substrate with a protein and / or polypeptide. 前記共重合体中、前記繰返単位を繰り返している主鎖が、ポリ(メタ)アクリル骨格であることを特徴とする請求項1〜2の何れかに記載の細胞接着性の親水性改質細胞培養基材。 The cell-adhesive hydrophilic modification according to any one of claims 1 and 2, wherein in the copolymer, the main chain repeating the repeating unit is a poly (meth) acrylic skeleton. Cell culture substrate. 前記共重合体中、前記ポリ(メタ)アクリル骨格が、ポリ(メタ)アクリルアミド共重合骨格、ポリ(メタ)アクリレート共重合骨格、又はポリ(メタ)アクリルアミド及びポリ(メタ)アクリレート共重合骨格であることを特徴とする請求項3に記載の細胞接着性の親水性改質細胞培養基材。 In the copolymer, the poly (meth) acrylic skeleton is a poly (meth) acrylamide copolymer skeleton, a poly (meth) acrylate copolymer skeleton, or a poly (meth) acrylamide and poly (meth) acrylate copolymer skeleton. The cell-adhesive hydrophilic modified cell culture substrate according to claim 3, characterized in that. 前記ベタイン構造が、カルボン酸基、スルホン酸基、及びリン酸基から選ばれるアニオン基と、アンモニウム基、スルホニウム基、及びホスホニウム基から選ばれるカチオン基とを有することを特徴とする請求項1〜4の何れかに記載の細胞接着性の親水性改質細胞培養基材。 Claims 1 to 1, wherein the betaine structure has an anion group selected from a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group, and a cation group selected from an ammonium group, a sulfonium group, and a phosphonium group. 4. The cell-adhesive hydrophilic modified cell culture substrate according to any one of 4. 前記ベタイン構造が、側鎖末端に前記アニオン基又は前記カチオン基を有することを特徴とする請求項5に記載の細胞接着性の親水性改質細胞培養基材。 The cell-adhesive hydrophilic modified cell culture substrate according to claim 5, wherein the betaine structure has the anion group or the cation group at the end of the side chain. 前記活性官能基が、アジド基、スルホ基、トリアルコキシシリル基、及び水酸基から選ばれる少なくとも何れかの官能基であることを特徴とする請求項1〜6の何れかに記載の細胞接着性の親水性改質細胞培養基材。 The cell adhesion according to any one of claims 1 to 6, wherein the active functional group is at least one functional group selected from an azide group, a sulfo group, a trialkoxysilyl group, and a hydroxyl group. Hydrophilic modified cell culture substrate. 炭化水素芳香環基、非芳香族複素環基、芳香族複素環基、直鎖状、分岐鎖状及び/又は環状で飽和又は不飽和の炭化水素基、アミド基、及びエステル基から選ばれる少なくとも何れかのスペーサ基が、前記活性官能基を有しつつ、前記繰返単位に、結合していることを特徴とする請求項1〜7の何れかに記載の細胞接着性の親水性改質細胞培養基材。 At least selected from hydrocarbon aromatic ring groups, non-aromatic heterocyclic groups, aromatic heterocyclic groups, linear, branched chain and / or cyclically saturated or unsaturated hydrocarbon groups, amide groups, and ester groups. The cell-adhesive hydrophilic modification according to any one of claims 1 to 7, wherein any of the spacer groups has the active functional group and is bound to the repeating unit. Cell culture substrate. 前記共重合体が、下記化学式(1)又は(2)
Figure 2021158968
(式(1)及び(2)中、R及びRは水素原子又はメチル基であり、n1〜n4は2〜6の数である)で表されるもので前記ベタイン構造を有する繰返単位と、下記化学式(3)
Figure 2021158968
(式(3)中、Rは水素原子又はメチル基であり、n5は2〜6の数であり、n6は0〜1の数であり、Rは前記活性官能基である)で表されるもので活性官能基を有する繰返単位とのランダム共重合体、ブロック共重合体、交互共重合体、又はグラフト共重合体であることを特徴とする請求項1〜8の何れかに記載の細胞接着性の親水性改質細胞培養基材。
The copolymer has the following chemical formula (1) or (2).
Figure 2021158968
(In the formulas (1) and (2), R 1 and R 2 are hydrogen atoms or methyl groups, and n1 to n4 are numbers 2 to 6), and the repeat having the betaine structure. Unit and the following chemical formula (3)
Figure 2021158968
(In the formula (3), R 3 is a hydrogen atom or a methyl group, n5 is a number of 2 to 6, n6 is a number of 0 to 1, and R 4 is the active functional group). One of claims 1 to 8, wherein the copolymer is a random copolymer, a block copolymer, an alternating copolymer, or a graft copolymer with a repeating unit having an active functional group. The cell-adhesive hydrophilic modified cell culture substrate according to the description.
前記成形基材が、シリコーンゴム、フッ素ゴム、エチレン−プロピレン−ジエン三元共重合体ゴム、及びウレタンゴムから選ばれる前記ゴム製であることを特徴とする請求項1〜9の何れかに記載の親水性改質細胞培養基材。 The invention according to any one of claims 1 to 9, wherein the molded base material is made of the rubber selected from silicone rubber, fluorine rubber, ethylene-propylene-diene ternary copolymer rubber, and urethane rubber. Hydrophilic modified cell culture substrate. 前記成形基材が、シリコーン樹脂、シクロオレフィン樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、及びアクリル樹脂から選ばれる前記樹脂製であることを特徴とする請求項1〜9の何れかに記載の親水性改質細胞培養基材。 The hydrophilic modification according to any one of claims 1 to 9, wherein the molded base material is made of the resin selected from a silicone resin, a cycloolefin resin, a polycarbonate resin, a polyethylene terephthalate resin, and an acrylic resin. Plastic cell culture substrate. 前記成形基材が、石英ガラス、ホウケイ酸ガラス、及びソーダ石灰ガラスから選ばれる前記ガラス製であることを特徴とする請求項1〜9の何れかに記載の親水性改質細胞培養基材。 The hydrophilic modified cell culture substrate according to any one of claims 1 to 9, wherein the molded substrate is made of the glass selected from quartz glass, borosilicate glass, and soda-lime glass. 前記成形基材の表面が、コロナ放電処理表面、プラズマ処理表面、紫外線処理表面、エキシマ処理表面、及び/又はシランカップリング剤処理表面であることを特徴とする請求項1〜12の何れかに記載の細胞接着性の親水性改質細胞培養基材。 One of claims 1 to 12, wherein the surface of the molded substrate is a corona discharge-treated surface, a plasma-treated surface, an ultraviolet-treated surface, an excimer-treated surface, and / or a silane coupling agent-treated surface. The cell-adhesive hydrophilic modified cell culture substrate according to the description. 前記表面官能基が、水酸基、カルボキシル基、カルボニル基、アミノ基、アルコキシ基、及びアルコキシシリル基から選ばれる少なくとも何れかであることを特徴とする請求項1〜13の何れかに記載の細胞接着性の親水性改質細胞培養基材。 The cell adhesion according to any one of claims 1 to 13, wherein the surface functional group is at least one selected from a hydroxyl group, a carboxyl group, a carbonyl group, an amino group, an alkoxy group, and an alkoxysilyl group. Sexual hydrophilic modified cell culture substrate. 前記ベタイン構造が前記表面官能基にイオン結合で結合し又は吸着しており、前記活性官能基がイオン結合又は共有結合で結合していることを特徴とする請求項1〜14の何れかに記載の細胞接着性の親水性改質細胞培養基材。 The invention according to any one of claims 1 to 14, wherein the betaine structure is bonded or adsorbed to the surface functional group by an ionic bond, and the active functional group is bonded by an ionic bond or a covalent bond. Cell-adhesive hydrophilic modified cell culture substrate. 前記成形基材が、ポリジメチルシロキサン骨格、ポリメチルフェニルシロキサン骨格、及びポリメチルハイドロジェンシロキサン骨格から選ばれる何れかを有するシリコーンゴム製又はシリコーン樹脂製であることを特徴とする請求項1〜15の何れかに記載の細胞接着性の親水性改質細胞培養基材。 Claims 1 to 15 wherein the molded base material is made of a silicone rubber or a silicone resin having any one selected from a polydimethylsiloxane skeleton, a polymethylphenylsiloxane skeleton, and a polymethylhydrogensiloxane skeleton. The cell-adhesive hydrophilic modified cell culture substrate according to any one of.
JP2020063388A 2020-03-31 2020-03-31 Hydrophilic modified cell culture substratum with cell adhesion Active JP7323182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020063388A JP7323182B2 (en) 2020-03-31 2020-03-31 Hydrophilic modified cell culture substratum with cell adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020063388A JP7323182B2 (en) 2020-03-31 2020-03-31 Hydrophilic modified cell culture substratum with cell adhesion

Publications (2)

Publication Number Publication Date
JP2021158968A true JP2021158968A (en) 2021-10-11
JP7323182B2 JP7323182B2 (en) 2023-08-08

Family

ID=78001493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020063388A Active JP7323182B2 (en) 2020-03-31 2020-03-31 Hydrophilic modified cell culture substratum with cell adhesion

Country Status (1)

Country Link
JP (1) JP7323182B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118406632A (en) * 2024-07-02 2024-07-30 成都艾名迈德医学检验实验室有限公司 Modified coating liquid, low-adsorption culture plate and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029731A1 (en) * 2010-08-31 2012-03-08 大阪有機化学工業株式会社 Method for manufacturing cell culture substrate
WO2016159153A1 (en) * 2015-03-31 2016-10-06 東ソー株式会社 Base member for cell culturing use, method for producing same, and cell culturing method using same
WO2017022815A1 (en) * 2015-08-04 2017-02-09 Jsr株式会社 Polymer composition, article, medical device, article production method, and cell cluster production method
JP2021161208A (en) * 2020-03-31 2021-10-11 株式会社朝日Fr研究所 Hydrophilicity-modified substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029731A1 (en) * 2010-08-31 2012-03-08 大阪有機化学工業株式会社 Method for manufacturing cell culture substrate
WO2016159153A1 (en) * 2015-03-31 2016-10-06 東ソー株式会社 Base member for cell culturing use, method for producing same, and cell culturing method using same
WO2017022815A1 (en) * 2015-08-04 2017-02-09 Jsr株式会社 Polymer composition, article, medical device, article production method, and cell cluster production method
JP2021161208A (en) * 2020-03-31 2021-10-11 株式会社朝日Fr研究所 Hydrophilicity-modified substrate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ARKIVOC, vol. part ii, JPN7023002397, 2018, pages 330 - 343, ISSN: 0005091758 *
JOURNAL OF OLEO SCIENCE, vol. 66(7), JPN7023002396, 2017, pages 699 - 704, ISSN: 0005091757 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118406632A (en) * 2024-07-02 2024-07-30 成都艾名迈德医学检验实验室有限公司 Modified coating liquid, low-adsorption culture plate and preparation method thereof

Also Published As

Publication number Publication date
JP7323182B2 (en) 2023-08-08

Similar Documents

Publication Publication Date Title
Merrett et al. Adhesion of corneal epithelial cells to cell adhesion peptide modified pHEMA surfaces
JP5880181B2 (en) Organic inorganic composite hydrogel
JP6995112B2 (en) Method for culturing cells and method for producing a cell-supporting complex
JP5162784B2 (en) Cell culture substrate, method for producing the same, and cell culture method
US20150104812A1 (en) Micro-engineered hydrogels
JP7305190B2 (en) Hydrophilic modified base material
Park et al. Enhancement of the adhesion of fibroblasts by peptide containing an Arg-Gly-Asp sequence with poly (ethylene glycol) into a thermo-reversible hydrogel as a synthetic extracellular matrix
CN110114454A (en) Cell culture substrate
Liu et al. Cell attachment and detachment on micropattern-immobilized poly (N-isopropylacrylamide) with gelatin
JP7323182B2 (en) Hydrophilic modified cell culture substratum with cell adhesion
US7267982B2 (en) Carrier for cell culture
CN113336795A (en) Choline phosphoric acid monomer and polymer and application thereof
US20230036162A1 (en) Cell culture substrates, methods and uses thereof
CN101735096B (en) Betaine ester derivative, organic silicon material, preparation method and application thereof
JP2007020444A (en) Cell culture device and method for producing the same
US9492842B2 (en) Cell culture membrane, cell culture substrate, and method for manufacturing cell culture substrate
Yamazoe et al. Changes in cell adhesiveness and physicochemical properties of cross-linked albumin films after ultraviolet irradiation
JP2022042061A (en) Peptide-modified polymer and method for using the same are provided
JPH08317785A (en) Immobilization of saccharide chain and cell culture abase using the same
WO2023282273A1 (en) Cell culture method
JP2006055157A (en) Cell culture device and method for producing the same
WO2023022181A1 (en) Hydrogel and sterilized dry hydrogel-forming article
JP2023178108A (en) Cell culture substrate
EP3925990A1 (en) Method for producing polymer compatible with biomaterials
WO2024175790A1 (en) Cell attachment polymer conjugate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20211105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220819

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230511

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230720

R150 Certificate of patent or registration of utility model

Ref document number: 7323182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150