Nothing Special   »   [go: up one dir, main page]

JP2021156660A - Measurement device and measurement method - Google Patents

Measurement device and measurement method Download PDF

Info

Publication number
JP2021156660A
JP2021156660A JP2020055360A JP2020055360A JP2021156660A JP 2021156660 A JP2021156660 A JP 2021156660A JP 2020055360 A JP2020055360 A JP 2020055360A JP 2020055360 A JP2020055360 A JP 2020055360A JP 2021156660 A JP2021156660 A JP 2021156660A
Authority
JP
Japan
Prior art keywords
fine particles
light
measuring device
received
doppler spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020055360A
Other languages
Japanese (ja)
Other versions
JP7405414B2 (en
Inventor
栄一 吉川
Eiichi Yoshikawa
栄一 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2020055360A priority Critical patent/JP7405414B2/en
Publication of JP2021156660A publication Critical patent/JP2021156660A/en
Application granted granted Critical
Publication of JP7405414B2 publication Critical patent/JP7405414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To enable a measurement of the number of particles or a size thereof existing in a prescribed area without affecting a measurement object, and what is more, to enable the measurement even if the prescribed area is remote.SOLUTION: A measurement device 1 comprises: a measurement unit 10 that radiates a prescribed area where a plurality of particles exist with transmission light comprised of pulse-like laser light, receives scattering light from each particle with respect to the transmitted light as reception light, and obtains a reception signal on the basis of the transmission light and received light; and a calculation unit 20 that obtains a Doppler spectrum on the basis of the reception signal obtained by the measurement unit 10, and calculates the number of particles and/or a size thereof existing in the prescribed area on the basis of a reception signal of each particle coming up on the obtained Doppler spectrum. The measurement unit 10 radiates transmission light comprised of laser light with a pulse length and a wavelength each having values enabling a speed of each particle to be discriminated on the basis of reception signal of each particle coming on the obtained Doppler spectrum.SELECTED DRAWING: Figure 1

Description

本発明は、遠隔領域の微粒子の数密度を計測するのに好適な計測装置及び計測方法に関する。 The present invention relates to a measuring device and a measuring method suitable for measuring the number density of fine particles in a remote region.

パーティクルカウンタとは、気中もしくは液中に存在する微粒子の数密度(気体もしくは液体の単位体積当たりに存在する微粒子の大きさと数)を計測する測定器である(非特許文献1参照)。パーティクルカウンタは、クリーンルーム内の清浄度をモニタすることや、市街地の大気汚染度をモニタすることなど、様々な用途に活用されている。パーティクルカウンタの測定は、単位体積の気体もしくは液体を装置測定部内に吸入し、吸入した気体もしくは液体に対してレーザ光を照射し、微粒子による光の散乱吸収量を計測することである。微粒子による光の散乱量や吸収量は、レーザ光の波長と粒子径の比に依存することが知られており、この既知の依存関係に基づいて、微粒子の数密度を算出することができる。 The particle counter is a measuring instrument that measures the number density of fine particles existing in the air or liquid (the size and number of fine particles present per unit volume of gas or liquid) (see Non-Patent Document 1). The particle counter is used for various purposes such as monitoring the cleanliness in a clean room and monitoring the air pollution level in an urban area. The measurement of the particle counter is to suck a unit volume of gas or liquid into the measuring unit of the apparatus, irradiate the sucked gas or liquid with laser light, and measure the amount of scattered and absorbed light by the fine particles. It is known that the amount of light scattered and absorbed by the fine particles depends on the ratio of the wavelength of the laser light to the particle size, and the number density of the fine particles can be calculated based on this known dependency.

クリーンルームなど局所的な微粒子の数密度をモニタするためには、従来のパーティクルカウンタを用いれば十分であると考えられている。 In order to monitor the number density of local fine particles such as in a clean room, it is considered sufficient to use a conventional particle counter.

なお、本発明に関連する技術として非特許文献2、3がある。 In addition, there are non-patent documents 2 and 3 as a technique related to the present invention.

https://www.rion.co.jp/product/docs/10.pdfhttps://www.rion.co.jp/product/docs/10.pdf 'Wind ranging and velocimetry with low peak power and long-duration modulated laser' Eiichi Yoshikawa and Tomoo Ushio, Vol. 25, No. 8 | 17 Apr 2017 | OPTICS EXPRESS 8845'Wind ranging and velocimetry with low peak power and long-duration modulated laser' Eiichi Yoshikawa and Tomoo Ushio, Vol. 25, No. 8 | 17 Apr 2017 | OPTICS EXPRESS 8845 van de Hulst, "Light Scattering by Small Particles," Dover.van de Hulst, "Light Scattering by Small Particles," Dover.

しかしながら、従来のパーティクルカウンタは、気体もしくは液体を吸入するために、観測対象である微粒子(の密度など)に影響を与えてしまう。つまり、吸入の仕方が計測結果に影響する可能性がある。また大気の全体的な汚染度を知るためには、従来のパーティクルカウンタのようなその場観測や、その場観測を多地点で行うことでは、十分であるとは言えない。 However, since the conventional particle counter inhales gas or liquid, it affects the fine particles (density, etc.) to be observed. That is, the method of inhalation may affect the measurement result. In addition, in-situ observations such as conventional particle counters and in-situ observations at multiple points are not sufficient to know the overall degree of pollution of the atmosphere.

以上のような事情に鑑み、本発明の目的は、所定の領域に存在する微粒子の数や大きさを計測対象に影響を与えずに計測することができ、しかも所定の領域が遠隔にある場合であっても計測することができる計測装置及び計測方法を提供することにある。 In view of the above circumstances, an object of the present invention is a case where the number and size of fine particles existing in a predetermined region can be measured without affecting the measurement target, and the predetermined region is remote. It is an object of the present invention to provide a measuring device and a measuring method capable of measuring even if it is.

上記目的を達成するため、本発明に係る計測装置は、パルス状のレーザ光からなる送信光を複数の微粒子が存在する所定の領域に放射し、前記送信光に対する各前記微粒子の散乱光を受信光として受信し、前記送信光と前記受信光に基づき受信信号を得る計測部と、前記計測部で得られた受信信号に基づきドップラスペクトルを得て、前記得られたドップラスペクトル上に現れる各前記微粒子の受信信号に基づいて、前記所定の領域の前記微粒子の数及び/又は大きさを算出する演算部とを具備し、前記計測部は、前記ドップラスペクトル各前記微粒子の受信信号に基づき各前記微粒子の速度が峻別できる値のパルス長及び波長のレーザ光からなる前記送信光を放射する。 In order to achieve the above object, the measuring device according to the present invention emits transmitted light composed of pulsed laser light to a predetermined region where a plurality of fine particles exist, and receives scattered light of each of the fine particles with respect to the transmitted light. A measuring unit that receives as light and obtains a received signal based on the transmitted light and the received light, and a Doppler spectrum obtained based on the received signal obtained by the measuring unit, and each of the above appearing on the obtained Doppler spectrum. A calculation unit for calculating the number and / or size of the fine particles in the predetermined region based on the received signal of the fine particles is provided, and the measuring unit includes each of the above based on the received signal of each of the fine particles in the Doppler spectrum. The transmitted light composed of laser light having a pulse length and a wavelength that can distinguish the velocities of the fine particles is emitted.

本発明では、計測部がドップラスペクトル上に現れる各微粒子の受信信号に基づき各微粒子の速度が峻別できる値のパルス長及び波長のレーザ光からなる送信光を放射するように構成し、演算部がドップラスペクトル上に現れる峻別可能な各微粒子の受信信号の数を算出することで、所定の領域に存在する微粒子の数、さらには数密度も算出することができる。また、本発明では、演算部がドップラスペクトル上に現れる峻別可能な各微粒子の受信信号の大きさから、所定の領域の各微粒子の大きさを算出することができる。これにより、所定の領域に存在する微粒子の数や大きさを計測対象に影響を与えずに計測することができ、しかも所定の領域が遠隔にある場合であっても計測することができる。本発明では、レーザ光が届く限りにおいては、気中ばかりでなく液中にある所定の領域の微粒子の計測が可能である。 In the present invention, the measuring unit is configured to emit transmitted light consisting of laser light having a pulse length and wavelength that can distinguish the velocity of each particle based on the received signal of each particle appearing on the Doppler spectrum, and the calculation unit By calculating the number of received signals of each distinguishable fine particle appearing on the Doppler spectrum, the number of fine particles existing in a predetermined region and the number density can also be calculated. Further, in the present invention, the size of each fine particle in a predetermined region can be calculated from the size of the received signal of each fine particle that can be distinguished by the calculation unit appearing on the Doppler spectrum. As a result, the number and size of fine particles existing in a predetermined region can be measured without affecting the measurement target, and even when the predetermined region is remote, the measurement can be performed. In the present invention, as long as the laser beam reaches, it is possible to measure fine particles in a predetermined region not only in the air but also in the liquid.

本発明の一形態に係る計測装置では、前記計測部は、前記ドップラスペクトル上に現れる、速度幅を有する各前記微粒子の受信信号がドップラスペクトル上で重ならない値のパルス長及び波長のレーザ光からなる前記送信光を放射する。 In the measuring device according to one embodiment of the present invention, the measuring unit is based on the laser beam having a pulse length and wavelength at which the received signals of the fine particles having a velocity range appearing on the Doppler spectrum do not overlap on the Doppler spectrum. The transmitted light is emitted.

本発明の一形態に係る計測装置では、前記演算部は、前記計測部で得られた受信信号に対して、参照信号を元に、ドップラスペクトログラム処理を行うことによって、レンジごとにドップラスペクトルを得て、前記得られた各ドップラスペクトル上に現れる各レンジビンの各前記微粒子の受信信号に基づき前記所定の領域に存在する前記微粒子の数及び/又は大きさの空間分布を算出する。ここで、参照信号とは、送信信号f(t)とした場合、

Figure 2021156660
と表すことができる。ここで、tは時間、jは虚数単位、fdはドップラ周波数偏移である。fdの値は予め任意に決定することができ、参照信号に上記の関数を用いた場合、ドップラ周波数偏移fdを有する信号を取り出すことができる。 In the measuring device according to one embodiment of the present invention, the calculation unit obtains a Doppler spectrum for each range by performing Doppler spectrogram processing on the received signal obtained by the measuring unit based on the reference signal. Then, the spatial distribution of the number and / or size of the fine particles existing in the predetermined region is calculated based on the reception signal of the fine particles of each range bin appearing on each of the obtained Doppler spectra. Here, when the reference signal is the transmission signal f (t),
Figure 2021156660
It can be expressed as. Here, t is time, j is an imaginary unit, and fd is Doppler frequency shift. The value of fd can be arbitrarily determined in advance, and when the above function is used as the reference signal, a signal having a Doppler frequency deviation fd can be extracted.

本発明の一形態に係る計測装置では、前記計測部は、複数波長の前記パルス状のレーザ光を用いて前記複数波長に対する複数の前記受信信号を得て、前記演算部は、前記計測部で得られた複数の受信信号に基づき複数のドップラスペクトルを得て、前記得られた各ドップラスペクトル上に現れるそれぞれの各前記微粒子の受信信号に基づいて、前記所定の領域に存在する前記微粒子の数及び/又は大きさを算出する。異なる二つの波長による観測データは互いに独立であるので、観測誤差の影響を減らし、一つの波長による観測より高精度で、前記所定の領域に存在する前記微粒子の数及び/又は大きさを算出することができる。加えて、微粒子による散乱特性は微粒子の大きさや種類に依存しており、各波長において固有であるため(非特許文献3参照)、前記所定の領域に存在する前記微粒子の種類を判別することができる。基本的には、各波長における散乱強度(ドップラスペクトルに現れる受信信号強度から換算できる)を、微粒子の大きさや種類に変換できる。二つの波長を用いた精度向上と微粒子の種類の判別は、波長の選択によっては両立しない場合があることに注意されたい。
本発明の一形態に係る計測装置は、前記計測部が、前記所定の領域に存在するかを判別したい微粒子に対してラマン散乱を起こす波長のレーザ光からなる前記送信光を放射するものであり、前記演算部が、前記計測部で計測された受信光に基づきラマン散乱の有無を判別する判別部をさらに具備する。
本発明の一形態に係る計測装置は、遠隔の気中又は液中に存在する微粒子の数密度又は数密度と種類を計測する。
本発明の一形態に係る計測装置は、レーザを用いて遠隔の気中又は液中に存在する微粒子の数密度又は数密度と種類を計測する。
本発明の一形態に係る計測装置は、コヒーレントレーザを用いて遠隔の気中又は液中に存在する微粒子の数密度又は数密度と種類を計測する。
本発明の一形態に係る計測装置は、コヒーレントレーザを用いてドップラスペクトル上で粒子を分離して遠隔の気中又は液中に存在する微粒子の数密度又は数密度と種類を計測する。
本発明の一形態に係る計測装置は、さらに、遠隔の気中又は液中に存在する微粒子の数密度又は数密度と種類の、空間分布を計測する。
本発明の一形態に係る計測方法は、パルス状のレーザ光からなる送信光を所定の領域に放射し、前記送信光に対する前記所定の領域の各微粒子の散乱光を受信光として受信し、前記送信光と前記受信光に基づき受信信号を得て、前記得られた受信信号に基づきドップラスペクトルを得て、前記ドップラスペクトル上に現れる各前記微粒子の受信信号に基づき前記所定の領域に存在する前記微粒子の数及び/又は大きさを算出する計測方法であって、前記ドップラスペクトル上に現れる各前記微粒子の受信信号に基づき各前記微粒子の速度が峻別できる値のパルス長及び波長のレーザ光からなる前記送信光を放射する。
In the measuring device according to one embodiment of the present invention, the measuring unit obtains a plurality of received signals for the plurality of wavelengths by using the pulsed laser light having a plurality of wavelengths, and the calculation unit is the measuring unit. A plurality of Doppler spectra are obtained based on the obtained plurality of received signals, and the number of the fine particles present in the predetermined region based on the received signals of the respective fine particles appearing on each of the obtained Doppler spectra. And / or calculate the size. Since the observation data at two different wavelengths are independent of each other, the influence of observation error is reduced, and the number and / or size of the fine particles existing in the predetermined region is calculated with higher accuracy than the observation at one wavelength. be able to. In addition, since the scattering characteristics of the fine particles depend on the size and type of the fine particles and are unique at each wavelength (see Non-Patent Document 3), it is possible to determine the type of the fine particles existing in the predetermined region. can. Basically, the scattering intensity at each wavelength (which can be converted from the received signal intensity appearing in the Doppler spectrum) can be converted into the size and type of fine particles. It should be noted that the accuracy improvement using the two wavelengths and the discrimination of the type of fine particles may not be compatible depending on the wavelength selection.
In the measuring device according to one embodiment of the present invention, the measuring unit emits the transmitted light composed of laser light having a wavelength that causes Raman scattering with respect to the fine particles for which it is desired to determine whether or not they are present in the predetermined region. The calculation unit further includes a discrimination unit that determines the presence or absence of Raman scattering based on the received light measured by the measurement unit.
The measuring device according to one embodiment of the present invention measures the number density or the number density and the type of fine particles existing in a remote air or liquid.
The measuring device according to one embodiment of the present invention uses a laser to measure the number density or the number density and type of fine particles existing in a remote air or liquid.
The measuring device according to one embodiment of the present invention uses a coherent laser to measure the number density or the number density and type of fine particles existing in a remote air or liquid.
The measuring device according to one embodiment of the present invention separates particles on a Doppler spectrum using a coherent laser and measures the number density or the number density and type of fine particles existing in a remote air or liquid.
The measuring device according to one embodiment of the present invention further measures the spatial distribution of the number density or the number density and type of fine particles present in a remote air or liquid.
In the measurement method according to one embodiment of the present invention, transmission light composed of pulsed laser light is emitted to a predetermined region, and scattered light of each fine particle in the predetermined region with respect to the transmission light is received as reception light. A reception signal is obtained based on the transmission light and the reception light, a Doppler spectrum is obtained based on the obtained reception signal, and the above-mentioned existing in the predetermined region based on the reception signal of each of the fine particles appearing on the Doppler spectrum. It is a measurement method for calculating the number and / or size of fine particles, and consists of laser light having a pulse length and wavelength that can distinguish the velocity of each fine particle based on the received signal of each fine particle appearing on the Doppler spectrum. The transmitted light is emitted.

本発明によれば、所定の領域に存在する微粒子の数や大きさ、種類を計測対象に影響を与えずに計測することができ、しかも所定の領域が遠隔にある場合であっても計測することができる。 According to the present invention, the number, size, and type of fine particles existing in a predetermined region can be measured without affecting the measurement target, and even when the predetermined region is remote, the measurement can be performed. be able to.

本発明の一実施形態に係る計測装置の構成を示すブロック図である。It is a block diagram which shows the structure of the measuring apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る計測装置による測定方法を説明するための図である。It is a figure for demonstrating the measuring method by the measuring apparatus which concerns on one Embodiment of this invention. 一般ライダ方式と対比して本発明に係る微粒子の数密度計測の概要を説明するための概説図である。It is a schematic diagram for demonstrating the outline of the number density measurement of the fine particles which concerns on this invention as compared with the general rider method.

以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る計測装置の構成を示すブロック図である。
図1に示すように、計測装置1は、計測部10と、演算部20と、表示器30とを有する。
FIG. 1 is a block diagram showing a configuration of a measuring device according to an embodiment of the present invention.
As shown in FIG. 1, the measuring device 1 includes a measuring unit 10, a calculation unit 20, and a display 30.

計測装置1は、図2に示すように、パルス状のレーザ光からなる送信光を典型的には遠隔にある計測対象である所定の領域2に放射し、放射したレーザ光の反射光である所定の領域2に存在する複数の微粒子の散乱光を受信光として受信し、受信光を用いて微粒子の数などを算出するための受信信号を出力する。 As shown in FIG. 2, the measuring device 1 radiates transmitted light composed of pulsed laser light to a predetermined region 2 which is typically a remote measurement target, and is reflected light of the emitted laser light. The scattered light of a plurality of fine particles existing in a predetermined region 2 is received as received light, and a received signal for calculating the number of fine particles or the like is output using the received light.

計測部10は、後述するドップラスペクトル処理を通して各微粒子の受信信号が峻別できる値のパルス長及び波長のレーザ光からなる送信光を放射する。 The measuring unit 10 emits transmitted light composed of laser light having a pulse length and wavelength that can distinguish the received signal of each fine particle through Doppler spectrum processing described later.

上記の演算部20は、ドップラスペクトル処理を通して、各微粒子の受信信号を峻別し、受信信号の数や大きさから、微粒子の数密度などを算出する。 The calculation unit 20 distinguishes the received signal of each fine particle through Doppler spectrum processing, and calculates the number density of the fine particles from the number and size of the received signals.

計測部10は、光発振器11と、光カプラ12と、光変調器13と、光増幅器18と、光サーキュレータ14と、光学系15と、光カプラ16と、光受信器17、任意信号発生器19とを有する。 The measuring unit 10 includes an optical oscillator 11, an optical coupler 12, an optical modulator 13, an optical amplifier 18, an optical circulator 14, an optical system 15, an optical coupler 16, an optical receiver 17, and an arbitrary signal generator. Has 19 and.

光発振器11は典型的にはコヒーレントレーザであるレーザ光を発振する光発振器であり、光カプラ12に接続され、発振したレーザ光を光カプラ12に出力する。例えば、光発振器11には半導体レーザ、固体レーザなどが用いられる。 The optical oscillator 11 is an optical oscillator that oscillates a laser beam, which is typically a coherent laser, and is connected to an optical coupler 12 to output the oscillated laser beam to the optical coupler 12. For example, a semiconductor laser, a solid-state laser, or the like is used for the optical oscillator 11.

光カプラ12は光発振器11により発振されたレーザ光を送信光とローカル光に分配して、その送信光を光変調器13に出力するとともに、そのローカル光を光受信器17に出力する。ローカル光とは、光カプラ12を介して光受信器17につながる経路を通る光を表し、送信光とは、光カプラ12から光変調器13及び光増幅器18を介して光学系15につながる経路を通る光を表す。光カプラ12は、光発振器11、光変調器13及び光カプラ16に接続され、ローカル光を光カプラ16に出力し、送信光を光変調器13に出力する。例えば、光カプラ12には、溶融ファイバカプラ、誘電体多層膜フィルタを用いたフィルタ型カプラなどが用いられる。 The optical coupler 12 distributes the laser light oscillated by the optical oscillator 11 into the transmission light and the local light, outputs the transmitted light to the light modulator 13, and outputs the local light to the optical receiver 17. The local light represents light passing through a path connected to the optical receiver 17 via the optical coupler 12, and the transmitted light is a path connected from the optical coupler 12 to the optical system 15 via the light modulator 13 and the optical amplifier 18. Represents the light that passes through. The optical coupler 12 is connected to an optical oscillator 11, an optical modulator 13, and an optical coupler 16, and outputs local light to the optical coupler 16 and outputs transmitted light to the optical modulator 13. For example, as the optical coupler 12, a molten fiber coupler, a filter type coupler using a dielectric multilayer filter, or the like is used.

任意信号発生器19は任意の変調信号を発生する。ここで変調とは、パルス変調、振幅変調、周波数変調、位相変調を含む。 The arbitrary signal generator 19 generates an arbitrary modulated signal. Here, the modulation includes pulse modulation, amplitude modulation, frequency modulation, and phase modulation.

光変調器13は任意信号発生器19からの変調信号を用いて光カプラ12が出力した送信光を変調させる。光変調器13は、送信光に対しパルス変調、振幅変調、周波数変調、位相変調などを施す。光変調器13は、光増幅器18を介して光サーキュレータ14に接続される。光変調器13は、例えばAOM(Acousto−Optic Modulator)などの光学変調器で構成されており、光カプラ12から出力された送信光をパルス変調することで、パルスを出力する。
光増幅器18は、光変調器13から出力されたパルス(レーザ光)を増幅する。
The light modulator 13 modulates the transmitted light output by the optical coupler 12 using the modulated signal from the arbitrary signal generator 19. The light modulator 13 performs pulse modulation, amplitude modulation, frequency modulation, phase modulation, and the like on the transmitted light. The light modulator 13 is connected to the optical circulator 14 via an optical amplifier 18. The optical modulator 13 is composed of, for example, an optical modulator such as an AOM (Acousto-Optic Modulator), and outputs a pulse by pulse-modulating the transmitted light output from the optical coupler 12.
The optical amplifier 18 amplifies the pulse (laser light) output from the light modulator 13.

光サーキュレータ14は光増幅器18から出力されたパルスを光学系15に出力する一方、光学系15により受信されたパルスの反射光である受信光を光カプラ16に出力する。例えば、光サーキュレータ14には、波長板とビームスプリッタを用いて構成されるサーキュレータなどで、空間伝搬型、ファイバ結合型のものが用いられる。 The optical circulator 14 outputs the pulse output from the optical amplifier 18 to the optical system 15, while outputting the received light, which is the reflected light of the pulse received by the optical system 15, to the optical coupler 16. For example, as the optical circulator 14, a space propagation type or a fiber coupling type is used, such as a circulator configured by using a wave plate and a beam splitter.

光学系15は光サーキュレータ14から出力されたパルスを大気に放射した後、計測対象である所定の領域2に反射されて戻ってきたパルスの反射光を受信する。光学系15は、光サーキュレータ14に接続される。光学系15には例えば光学望遠鏡が用いられる。 The optical system 15 radiates the pulse output from the optical circulator 14 to the atmosphere, and then receives the reflected light of the pulse reflected back in the predetermined region 2 to be measured. The optical system 15 is connected to the optical circulator 14. For example, an optical telescope is used for the optical system 15.

光カプラ16は、光カプラ12から出力されたローカル光と光サーキュレータ14から出力された受信光を合波し、光信号を光受信器17に出力する。例えば、光カプラ16には、溶融ファイバカプラ、誘電体多層膜フィルタを用いたフィルタ型カプラなどが用いられる。 The optical coupler 16 combines the local light output from the optical coupler 12 with the received light output from the optical circulator 14 and outputs an optical signal to the optical receiver 17. For example, as the optical coupler 16, a molten fiber coupler, a filter type coupler using a dielectric multilayer filter, or the like is used.

光受信器17は光カプラ12から出力されたローカル光と光サーキュレータ14から出力された受信光をカプラにて合波し、そのローカル光の周波数と受信光の周波数とを足し合わせた周波数を有する合波光を電気信号に変換する。当該光受信器17は例えばバランスドレシーバにより構成され、上記光カプラ12から出力された合波光を電気信号に変換し、その電気信号を受信信号として演算部20に出力する。 The optical receiver 17 has a frequency obtained by combining the local light output from the optical coupler 12 and the received light output from the optical circulator 14 with the coupler and adding the frequency of the local light and the frequency of the received light. Converts combined light into an electrical signal. The optical receiver 17 is composed of, for example, a balanced receiver, converts the combined light output from the optical coupler 12 into an electric signal, and outputs the electric signal as a reception signal to the calculation unit 20.

演算部20は、計測部10で得られた受信信号を基づきドップラスペクトルを得て、得られたドップラスペクトル上に現れる各微粒子の受信信号に基づいて、所定の領域2の微粒子の数密度などを算出する。 The calculation unit 20 obtains a Doppler spectrum based on the received signal obtained by the measuring unit 10, and based on the received signal of each fine particle appearing on the obtained Doppler spectrum, determines the number density of fine particles in a predetermined region 2 and the like. calculate.

演算部20は、A/D変換部21と、ドップラスペクトル処理部22とを有する。 The calculation unit 20 includes an A / D conversion unit 21 and a Doppler spectrum processing unit 22.

A/D変換部21は、光受信器17から出力された受信信号としての受信電気信号をデジタル信号に変換し、その信号をドップラスペクトル処理部22に出力する。 The A / D conversion unit 21 converts the received electrical signal as a reception signal output from the optical receiver 17 into a digital signal, and outputs the signal to the Doppler spectrum processing unit 22.

ドップラスペクトル処理部22は、フーリエ変換処理を施すことによってドップラスペクトルを得て、ドップラスペクトル上に現れる各微粒子の受信信号の数を計数することで、所定の領域2に存在する微粒子の数、さらには数密度も算出し、またドップラスペクトル上に現れる各微粒子の受信信号の大きさから各微粒子の大きさを算出する。 The Doppler spectrum processing unit 22 obtains a Doppler spectrum by performing a Fourier transform process, and counts the number of received signals of each fine particle appearing on the Doppler spectrum to increase the number of fine particles existing in a predetermined region 2 and further. Also calculates the number density, and calculates the size of each fine particle from the size of the received signal of each fine particle appearing on the Doppler spectrum.

表示器30は、演算部20による演算結果である計測結果を画面上に表示する。 The display 30 displays the measurement result, which is the calculation result by the calculation unit 20, on the screen.

本実施形態に係る計測装置1では、上記の数密度などを求めるために、従来の一般ライダ方式とは異なる新ライダ方式を採用した。この点を一般ライダ方式と対比しながら新ライダ方式を説明する。その概説図を図3に示す。 In the measuring device 1 according to the present embodiment, a new rider method different from the conventional general rider method is adopted in order to obtain the above number density and the like. The new rider method will be described while comparing this point with the general rider method. The outline diagram is shown in FIG.

一般ライダ方式は、コヒーレントな光パルスを空中に放射し、放射光に対する微粒子の散乱光を受信する。散乱光は放射光がドップラ周波数偏移したものであり、ドップラ周波数偏移は微粒子のライダに対する相対速度に対応する。受信信号から、任意の遅延時間・時間幅の信号を取り出し、フーリエ変換を施すことで、ドップラスペクトルを得ることができる。遅延時間は計測する距離に、時間幅は計測する体積に対応し、またドップラスペクトルとは、その距離・体積における、各微粒子の受信信号強度の速度に関する分布である(図3(a)参照)。ドップラスペクトル上において、微粒子一つの受信信号は一定の速度幅を持つため、複数の微粒子の受信信号が重なり合って現れる。一般に、重なり合った微粒子一つ一つの受信信号を分離することはできず、微粒子全体の平均的速度を求めることを行う。微粒子の平均的な速度は風速と一致している。 The general rider method radiates a coherent light pulse into the air and receives scattered light of fine particles with respect to the synchrotron radiation. The scattered light is the synchrotron radiation shifted in Doppler frequency, and the Doppler frequency shift corresponds to the relative velocity of the fine particles with respect to the rider. A Doppler spectrum can be obtained by extracting a signal with an arbitrary delay time and time width from the received signal and performing a Fourier transform. The delay time corresponds to the measured distance, the time width corresponds to the measured volume, and the Doppler spectrum is the distribution regarding the velocity of the received signal intensity of each fine particle at that distance / volume (see FIG. 3 (a)). .. Since the received signal of one fine particle has a constant velocity range on the Doppler spectrum, the received signals of a plurality of fine particles appear overlapping. In general, it is not possible to separate the received signal of each of the overlapping fine particles, and the average speed of the entire fine particles is obtained. The average velocity of the particles is consistent with the wind speed.

一般ライダ方式が単一周波数の短時間光パルスを用いるのに対し、新ライダ方式は変調した長時間光パルス(十分な長時間パルスは、連続波に相当する。)を用いる。非特許文献2に記載の本発明者らの研究によって、ドップラスペクトルに現れる微粒子一つの受信信号の幅Δvは、以下の式に従いパルス長に反比例することが分かった。
Δv=cλ/2T
ここで、cは光速、λはレーザの波長、Tはパルス長である。微粒子一つ一つはわずかな速度差を有するため、パルス長を十分に大きくして受信信号の速度幅を小さくすることで、それぞれの微粒子の受信信号を分離する(重なり合わなくする)ことが可能である。その結果、各微粒子はドップラスペクトル上で独立なピークを持って現れることになり(図3(b)参照)、それぞれの受信信号の強度と数から、微粒子の大きさと数を求めることができる。
While the general rider method uses a short-time optical pulse of a single frequency, the new rider method uses a modulated long-time optical pulse (a sufficient long-time pulse corresponds to a continuous wave). According to the research by the present inventors described in Non-Patent Document 2, it was found that the width Δv of the received signal of one fine particle appearing in the Doppler spectrum is inversely proportional to the pulse length according to the following equation.
Δv = cλ / 2T
Here, c is the speed of light, λ is the wavelength of the laser, and T is the pulse length. Since each fine particle has a slight speed difference, the received signals of each fine particle can be separated (non-overlapping) by sufficiently increasing the pulse length and reducing the speed width of the received signal. It is possible. As a result, each fine particle appears with an independent peak on the Doppler spectrum (see FIG. 3B), and the size and number of fine particles can be obtained from the intensity and number of each received signal.

本実施形態に係る計測装置1は、新ライダ方式を採用する。すなわち、計測部10は、ドップラスペクトル上に現れる、速度幅Δvを有する各微粒子の受信信号(図3(b)の符号sで示す。)がドップラスペクトル上で重ならない値のパルス長T及び波長λのレーザ光からなる送信光を放射する。つまり、送信光として、速度幅Δvが微粒子の速度差に対して十分に小さくなるよう、レーザ光の波長λとパルス長Tを選択する。例えば、1500nmの赤外レーザ光を用いたライダで、パルス長500μsecの光パルスを使用した場合、ドップラスペクトル上に現れる微粒子一つの受信信号の理論的な速度幅は0.0075m/secとなる。 The measuring device 1 according to the present embodiment adopts a new rider method. That is, the measuring unit 10 has a pulse length T and a wavelength at which the received signals (indicated by the reference numerals s in FIG. 3B) of the fine particles having a velocity width Δv appearing on the Doppler spectrum do not overlap on the Doppler spectrum. It emits transmitted light consisting of λ laser light. That is, the wavelength λ of the laser light and the pulse length T are selected as the transmitted light so that the velocity width Δv becomes sufficiently small with respect to the velocity difference of the fine particles. For example, when a rider using an infrared laser beam of 1500 nm uses an optical pulse having a pulse length of 500 μsec, the theoretical velocity width of the received signal of one fine particle appearing on the Doppler spectrum is 0.0075 m / sec.

従来のパーティクルカウンタは、気体もしくは液体を吸入するために、計測対象である微粒子(の密度など)に影響を与えてしまうおそれがあった。これに対して、本実施形態に係る計測装置1では、計測対象である微粒子に対してはレーザ光を照射するだけなので、計測対象に影響を与えずに計測することができる。また、例えば大気の全体的な汚染度を知るためには、従来のパーティクルカウンタのようなその場観測や、その場観測を多地点で行うことでは十分であるとは言えなかった。これに対して、本実施形態に係る計測装置1では、ライダによる計測であるので、遠隔にある場合であっても計測でき、大気の全体的な汚染度などを簡単に計測することができる。これにより、PM2.5や黄砂などの大気汚染の計測がより正確になることが期待でき、汚染度検証のための標準的な方法として活用される可能性がある。また汚染物質の移流など知見が得られる可能性もあるなど、地球環境計測を通して経済的に広い波及効果が生まれることが期待できる。 Since the conventional particle counter inhales gas or liquid, there is a possibility that the fine particles (density, etc.) to be measured may be affected. On the other hand, in the measuring device 1 according to the present embodiment, since the fine particles to be measured are only irradiated with the laser beam, the measurement can be performed without affecting the measurement target. Further, for example, in order to know the overall degree of pollution of the atmosphere, it cannot be said that in-situ observation like a conventional particle counter or in-situ observation is performed at multiple points. On the other hand, in the measuring device 1 according to the present embodiment, since the measurement is performed by the rider, the measurement can be performed even when the distance is remote, and the overall degree of pollution of the atmosphere can be easily measured. This is expected to make the measurement of air pollution such as PM2.5 and yellow sand more accurate, and may be utilized as a standard method for pollution degree verification. In addition, it is expected that a wide economic ripple effect will be produced through global environmental measurement, such as the possibility of obtaining knowledge such as advection of pollutants.

以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made.

例えば、演算部20は、計測部10で得られた受信信号に基づきレンジビンごとのドップラスペクトルを得て、得られた各ドップラスペクトル上に現れる各レンジビンの各微粒子の受信信号に基づき所定の領域2に存在する微粒子の数及び/又は大きさの空間分布を算出するように構成してもよい。 For example, the calculation unit 20 obtains a Doppler spectrum for each range bin based on the reception signal obtained by the measurement unit 10, and determines a predetermined region 2 based on the reception signal of each fine particle of each range bin appearing on each obtained Doppler spectrum. It may be configured to calculate the spatial distribution of the number and / or size of fine particles present in.

また、複数波長のレーザ光をそれぞれの波長において新ライダ方式の計測を行うことで、波長間の散乱光の違いを利用することができる。これは、計測部10においては光学系15を共用し、各波長に対してそれぞれ計測部10の光学系15以外の他の構成を有し、演算部20では各波長の受信信号に対してそれぞれドップラスペクトル処理を実行する。さらに演算部20は、複数波長によって得られた複数のドップラスペクトルにおいて、等しい速度を有する受信信号は同一の粒子であると判断し、波長間の受信信号強度の違いなどから、粒子の種類を判別する処理を行う。 Further, by measuring the laser light of a plurality of wavelengths at each wavelength by the new rider method, it is possible to utilize the difference in the scattered light between the wavelengths. This is because the measurement unit 10 shares the optical system 15 and has other configurations other than the optical system 15 of the measurement unit 10 for each wavelength, and the calculation unit 20 for each wavelength received signal. Perform Doppler spectrum processing. Further, the calculation unit 20 determines that the received signals having the same velocity are the same particles in the plurality of Doppler spectra obtained by the plurality of wavelengths, and determines the type of the particles from the difference in the received signal intensity between the wavelengths and the like. Perform the processing to be performed.

さらに、特定の微粒子に対して特定の波長のレーザを用いラマン散乱を発生させることでも、微粒子の数密度計測と微粒子の種類の判別が同時に可能になる。この場合に、計測部10は、所定の領域2に存在するかを判別したい微粒子に対してラマン散乱を起こす波長のレーザ光からなる送信光を放射するに構成し、演算部20は、ラマン散乱を起こす波長において得られた受信信号に対しドップラスペクトル処理を実行する。得られたドップラスペクトルには、ラマン散乱を発生した粒子からの受信信号のみが現れる。演算部20は、ドップラスペクトル上の受信信号の数から、微粒子の数密度を算出しても良い。さらには、特定の微粒子に対してラマン散乱を発生させる波長と、そうでない波長を同時に用いて、複数波長において新ライダ方式の計測を行っても良い。これにより、特定の微粒子の数密度を計測する精度はより向上する。 Further, by generating Raman scattering for specific fine particles using a laser having a specific wavelength, it is possible to measure the number density of the fine particles and determine the type of the fine particles at the same time. In this case, the measurement unit 10 is configured to emit transmitted light composed of laser light having a wavelength that causes Raman scattering to the fine particles for which it is desired to determine whether or not they are present in the predetermined region 2, and the calculation unit 20 is configured to emit Raman scattering. Doppler spectrum processing is performed on the received signal obtained at the wavelength at which the above occurs. In the obtained Doppler spectrum, only the received signal from the particle that generated Raman scattering appears. The calculation unit 20 may calculate the number density of the fine particles from the number of received signals on the Doppler spectrum. Furthermore, the new rider method measurement may be performed at a plurality of wavelengths by simultaneously using a wavelength that causes Raman scattering for specific fine particles and a wavelength that does not. As a result, the accuracy of measuring the number density of specific fine particles is further improved.

また、本発明に係る計測装置は、例えば計測部における光学系が方位角又は/及び仰角に走査する機構を設けることで、より広範囲の微粒子計測を負担なく実施することが可能となる。 Further, the measuring device according to the present invention can perform a wider range of fine particle measurement without burden by providing, for example, a mechanism in which the optical system in the measuring unit scans at an azimuth angle and / or an elevation angle.

さらにまた、本発明に係る計測装置は、大気汚染の計測だけでなく、煙突の粉塵のように人の手が届かないような領域での微粒子計測にも用いることができる。その他、本発明に係る計測装置は、気象観測などの用途にも用いることが可能である。 Furthermore, the measuring device according to the present invention can be used not only for measuring air pollution but also for measuring fine particles in a region such as chimney dust that cannot be reached by humans. In addition, the measuring device according to the present invention can also be used for applications such as meteorological observation.

1 :計測装置
2 :領域
10 :計測部
11 :光発振器
12 :光カプラ
13 :光変調器
14 :光サーキュレータ
15 :光学系
16 :光カプラ
17 :光受信器
18 :光増幅器
19 :任意信号発生器
20 :演算部
21 :A/D変換部
22 :スペクトログラム処理部
30 :表示器
1: Measuring device 2: Area 10: Measuring unit 11: Optical oscillator 12: Optical coupler 13: Optical modulator 14: Optical circulator 15: Optical system 16: Optical coupler 17: Optical receiver 18: Optical amplifier 19: Arbitrary signal generation Unit 20: Calculation unit 21: A / D conversion unit 22: Spectrogram processing unit 30: Display

Claims (11)

パルス状のレーザ光からなる送信光を複数の微粒子が存在する所定の領域に放射し、前記送信光に対する各前記微粒子の散乱光を受信光として受信し、前記送信光と前記受信光に基づき受信信号を得る計測部と、
前記計測部で得られた受信信号に基づきドップラスペクトルを得て、前記得られたドップラスペクトル上に現れる各前記微粒子の受信信号に基づいて、前記所定の領域の前記微粒子の数及び/又は大きさを算出する演算部とを具備し、
前記計測部は、前記ドップラスペクトル上に現れる各前記微粒子の受信信号に基づき各前記微粒子の速度が峻別できる値のパルス長及び波長のレーザ光からなる前記送信光を放射する
計測装置。
Transmitted light composed of pulsed laser light is radiated to a predetermined region where a plurality of fine particles are present, scattered light of each of the fine particles with respect to the transmitted light is received as received light, and received based on the transmitted light and the received light. The measuring unit that obtains the signal and
A Doppler spectrum is obtained based on the received signal obtained by the measuring unit, and the number and / or size of the fine particles in the predetermined region is obtained based on the received signal of each of the fine particles appearing on the obtained Doppler spectrum. It is equipped with a calculation unit that calculates
The measuring unit is a measuring device that emits the transmitted light composed of a laser beam having a pulse length and a wavelength at which the velocity of each fine particle can be distinguished based on a received signal of each fine particle appearing on the Doppler spectrum.
請求項1に記載の計測装置であって、
前記計測部は、前記ドップラスペクトル上に現れる、速度幅を有する各前記微粒子の受信信号がドップラスペクトル上で重ならない値の前記パルス長及び波長のレーザ光からなる前記送信光を放射する
計測装置。
The measuring device according to claim 1.
The measuring unit is a measuring device that emits the transmitted light composed of a laser beam having a pulse length and a wavelength at which the received signals of the fine particles having a velocity width appearing on the Doppler spectrum do not overlap on the Doppler spectrum.
請求項1又は2のうちいずれか1項に記載の計測装置であって、
前記演算部は、前記計測部で得られた受信信号に対して、参照信号を元に、レンジごとにドップラスペクトルを得て、前記得られた各ドップラスペクトル上に現れる各レンジビンの各前記微粒子の受信信号に基づき前記所定の領域に存在する前記微粒子の数及び/又は大きさの空間分布を算出する
計測装置。
The measuring device according to any one of claims 1 or 2.
The calculation unit obtains a Doppler spectrum for each range based on the reference signal with respect to the received signal obtained by the measurement unit, and each of the fine particles of each range bin appearing on each of the obtained Doppler spectra. A measuring device that calculates the spatial distribution of the number and / or size of the fine particles existing in the predetermined region based on the received signal.
請求項1から3のうちいずれか1項に記載の計測装置であって、
前記計測部は、複数波長の前記パルス状のレーザ光を用いて前記複数波長に対する複数の前記受信信号を得て、
前記演算部は、前記計測部で得られた複数の受信信号を基づき複数のドップラスペクトルを得て、前記得られた各ドップラスペクトル上に現れるそれぞれの各前記微粒子の受信信号に基づいて、前記所定の領域に存在する前記微粒子の数及び/又は大きさを算出し、及び前記微粒子の粒子の種類を判別する
計測装置。
The measuring device according to any one of claims 1 to 3.
The measuring unit obtains a plurality of received signals for the plurality of wavelengths by using the pulsed laser light having a plurality of wavelengths, and obtains the plurality of received signals for the plurality of wavelengths.
The calculation unit obtains a plurality of Doppler spectra based on the plurality of received signals obtained by the measuring unit, and the predetermined one is based on the received signals of the respective fine particles appearing on the obtained Doppler spectra. A measuring device that calculates the number and / or size of the fine particles existing in the region and determines the type of the fine particles.
請求項1から4のうちいずれか1項に記載の計測装置であって、
前記計測部は、前記所定の領域に存在するかを判別したい微粒子に対してラマン散乱を起こす値の波長のレーザ光からなる前記送信光を放射するものであり、
前記演算部は、前記計測部で計測された受信光に基づきラマン散乱の有無を判別する判別部をさらに具備する
計測装置。
The measuring device according to any one of claims 1 to 4.
The measuring unit emits the transmitted light composed of laser light having a wavelength that causes Raman scattering with respect to the fine particles for which it is desired to determine whether or not they are present in the predetermined region.
The calculation unit is a measuring device further including a discriminating unit that determines the presence or absence of Raman scattering based on the received light measured by the measuring unit.
遠隔の気中又は液中に存在する微粒子の数密度又は数密度と種類を計測する計測装置。 A measuring device that measures the number density or the number density and type of fine particles existing in a remote air or liquid. 請求項6に記載の計測装置であって、
レーザを用いて遠隔の気中又は液中に存在する微粒子の数密度又は数密度と種類を計測する
計測装置。
The measuring device according to claim 6.
A measuring device that uses a laser to measure the number density or number density and type of fine particles present in a remote air or liquid.
請求項7に記載の計測装置であって、
コヒーレントレーザを用いて遠隔の気中又は液中に存在する微粒子の数密度又は数密度と種類を計測する
計測装置。
The measuring device according to claim 7.
A measuring device that uses a coherent laser to measure the number density or number density and type of fine particles present in a remote air or liquid.
請求項8に記載の計測装置であって、
コヒーレントレーザを用いてドップラスペクトル上で粒子を分離して遠隔の気中又は液中に存在する微粒子の数密度又は数密度と種類を計測する
計測装置。
The measuring device according to claim 8.
A measuring device that separates particles on a Doppler spectrum using a coherent laser and measures the number density or number density and type of fine particles present in a remote air or liquid.
請求項6乃至9に記載の計測装置であって、さらに、
遠隔の気中又は液中に存在する微粒子の数密度又は数密度と種類の、空間分布を計測する
計測装置。
The measuring device according to claims 6 to 9, further
A measuring device that measures the spatial distribution of the number density or number density and type of fine particles present in a remote air or liquid.
パルス状のレーザ光からなる送信光を所定の領域に放射し、
前記送信光に対する前記所定の領域の各微粒子の散乱光を受信光として受信し、
前記送信光と前記受信光に基づき受信信号を得て、
前記得られた受信信号に基づきドップラスペクトルを得て、
前記ドップラスペクトル上に現れる各前記微粒子の受信信号に基づき前記所定の領域に存在する前記微粒子の数及び/又は大きさを算出する計測方法であって、
前記ドップラスペクトル上に現れる各前記微粒子の受信信号に基づき各前記微粒子の速度が峻別できる値のパルス長及び波長のレーザ光からなる前記送信光を放射する
計測方法。
Transmitted light consisting of pulsed laser light is radiated to a predetermined area,
The scattered light of each fine particle in the predetermined region with respect to the transmitted light is received as the received light, and the light is received.
Obtaining a received signal based on the transmitted light and the received light,
A Doppler spectrum was obtained based on the obtained received signal.
A measurement method for calculating the number and / or size of the fine particles existing in the predetermined region based on the received signal of the fine particles appearing on the Doppler spectrum.
A measuring method for emitting the transmitted light composed of a laser beam having a pulse length and a wavelength at which the velocity of each fine particle can be distinguished based on a received signal of each fine particle appearing on the Doppler spectrum.
JP2020055360A 2020-03-26 2020-03-26 Measuring device and method Active JP7405414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020055360A JP7405414B2 (en) 2020-03-26 2020-03-26 Measuring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020055360A JP7405414B2 (en) 2020-03-26 2020-03-26 Measuring device and method

Publications (2)

Publication Number Publication Date
JP2021156660A true JP2021156660A (en) 2021-10-07
JP7405414B2 JP7405414B2 (en) 2023-12-26

Family

ID=77918052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020055360A Active JP7405414B2 (en) 2020-03-26 2020-03-26 Measuring device and method

Country Status (1)

Country Link
JP (1) JP7405414B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171384A (en) * 1998-09-29 2000-06-23 Horiba Ltd Particle diameter distribution measuring device and particle diameter distribution measuring method
JP2009276246A (en) * 2008-05-15 2009-11-26 Mitsubishi Electric Corp Radar device
WO2016208013A1 (en) * 2015-06-24 2016-12-29 国立研究開発法人国立環境研究所 Lidar system and measurement method
WO2017069250A1 (en) * 2015-10-23 2017-04-27 株式会社堀場製作所 Particle analysis device and particle analysis method
JP2017198514A (en) * 2016-04-27 2017-11-02 国立研究開発法人宇宙航空研究開発機構 Measuring device and signal processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171384A (en) * 1998-09-29 2000-06-23 Horiba Ltd Particle diameter distribution measuring device and particle diameter distribution measuring method
JP2009276246A (en) * 2008-05-15 2009-11-26 Mitsubishi Electric Corp Radar device
WO2016208013A1 (en) * 2015-06-24 2016-12-29 国立研究開発法人国立環境研究所 Lidar system and measurement method
WO2017069250A1 (en) * 2015-10-23 2017-04-27 株式会社堀場製作所 Particle analysis device and particle analysis method
JP2017198514A (en) * 2016-04-27 2017-11-02 国立研究開発法人宇宙航空研究開発機構 Measuring device and signal processing method

Also Published As

Publication number Publication date
JP7405414B2 (en) 2023-12-26

Similar Documents

Publication Publication Date Title
US9709594B1 (en) Velocity measuring system
CN109143263B (en) Mixed type wind measurement laser radar
CN103946716B (en) Laser radar apparatus
CN107064554B (en) Method for measuring wind speed
US9188677B2 (en) Imaging doppler lidar for wind turbine wake profiling
US11243307B2 (en) Method for processing a signal from a coherent lidar in order to reduce noise and related lidar system
WO2017175297A1 (en) Laser radar device
Rodrigo et al. Field performance of an all-semiconductor laser coherent Doppler lidar
US6731570B1 (en) Sound detection
CN104007445A (en) All-fiber laser radar aerosol detecting device
JP6429325B2 (en) Brillouin scattering measuring apparatus and Brillouin scattering measuring method
WO2014167175A1 (en) Laser doppler velocimeter with edge filter demodulation
Eberhard et al. Dual-frequency Doppler-lidar method of wind measurement
JP2021156660A (en) Measurement device and measurement method
CN115267828A (en) Laser radar wind measurement method and system based on differential correlation pulse
JP7284652B2 (en) Measuring device and method
TUDOR et al. LiDAR sensors used for improving safety of electronic-controlled vehicles
JPS58166281A (en) Continuous output rider for pseudo random modulation
RU121379U1 (en) DEVICE FOR REMOTE WIND SPEED MEASUREMENT
Shinohara et al. Optical system design and experimental evaluation of a coherent Doppler wind Lidar system for the predictive control of wind turbine
Cho et al. Implementation of a sound measurement system based on an optical method for the primary free-field microphone calibration and the realisation of the acoustic Pascal
JP3874749B2 (en) Target sound detection method and apparatus
Piper et al. Sensing sound pressure in an anechoic chamber using backscattered laser light
CN115902922B (en) Doppler laser radar based on electric frequency domain differential frequency discrimination and measuring method thereof
Barnhart et al. Investigation of Doppler Lidar for Velocity Measurements in Wind Tunnels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230105

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231207

R150 Certificate of patent or registration of utility model

Ref document number: 7405414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150