Nothing Special   »   [go: up one dir, main page]

JP2021152361A - Aspirator - Google Patents

Aspirator Download PDF

Info

Publication number
JP2021152361A
JP2021152361A JP2020154591A JP2020154591A JP2021152361A JP 2021152361 A JP2021152361 A JP 2021152361A JP 2020154591 A JP2020154591 A JP 2020154591A JP 2020154591 A JP2020154591 A JP 2020154591A JP 2021152361 A JP2021152361 A JP 2021152361A
Authority
JP
Japan
Prior art keywords
water
nozzle
flow path
flow
aspirator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020154591A
Other languages
Japanese (ja)
Inventor
秀幸 西澤
Hideyuki Nishizawa
秀幸 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishizawa Lab Co Ltd
Original Assignee
Nishizawa Lab Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishizawa Lab Co Ltd filed Critical Nishizawa Lab Co Ltd
Publication of JP2021152361A publication Critical patent/JP2021152361A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Use In Laboratory Experiments (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

To provide an aspirator capable of saving water without any loss in intake flow rate.SOLUTION: A flow passage 41 has its flow passage area made constant from an upstream end 42 to a downstream end 43 to impart resistance to a swirl water current flowing in the flow passage 41, so even when water fed to a nozzle 11 is reduced in amount, a decrease in pressure of the swirl water current flowing in the flow passage 41 can be suppressed. This may suppress the formation of a succession of air bubbles. Consequently, linkage between outside air and a pressure reduction chamber 33 through the succession of air bubbles formed in the swirl water current flowing in the flow passage 41 is blocked. As a result, the outside air is deterred from being introduced into the pressure reduction chamber 33 from the flow passage 41, and the intake air flow of an aspirator 1 can be increased, so that the aspirator 1 can save water without any loss in intake air flow.SELECTED DRAWING: Figure 1

Description

本発明は、ノズル内に発生させた旋転水流を高速で噴射して真空を生起させるアスピレータに関する。 The present invention relates to an ejector that injects a rotating water flow generated in a nozzle at a high speed to generate a vacuum.

アスピレータは、ノズル内に発生させた旋転水流を噴射口から高速で噴射して噴流内に真空を生起させる理化学機器である。例えば、特許文献1に記載されたアスピレータは、羽根によって旋転力を付与された水が、ノズル内を旋回しながら進み噴射口から高速で噴射される。 An ejector is a physics and chemistry device that injects a rotating water flow generated in a nozzle from an injection port at a high speed to generate a vacuum in the jet. For example, in the aspirator described in Patent Document 1, water to which a rotational force is applied by blades travels while swirling in a nozzle and is ejected from an injection port at high speed.

実全昭59−005800号公報Jitsuzensho 59-005800

一般に、アスピレータは、ノズルの噴射口の孔径(流路面積)と使用水量(給水量)とが相関し、ノズルの噴射口の孔径を小径化して使用水量を減らすことで節水化することができる。しかし、アスピレータは、ノズルの噴射口を単純に小径化すると、吸引流量(排気流量)が減少して能力が低下する。 In general, an ejector can save water by correlating the hole diameter (flow path area) of the nozzle injection port and the amount of water used (water supply amount), and reducing the diameter of the nozzle injection port to reduce the amount of water used. .. However, if the diameter of the injection port of the nozzle is simply reduced, the capacity of the aspirator will decrease due to the decrease in suction flow rate (exhaust flow rate).

本発明は、吸引流量を損失することなく節水化することが可能なアスピレータを提供することを課題とする。 An object of the present invention is to provide an ejector capable of saving water without losing the suction flow rate.

本発明のアスピレータは、水道から給水されるノズルと、前記ノズルの下流側に設けられる放水管と、前記ノズルの下流側端部の外周に設けられる減圧室と、を備え、前記ノズル内に発生させた旋転水流を前記ノズルの下流側端部の噴射口から高速で噴射して真空を生起させるアスピレータであって、前記放水管には、上流端が前記減圧室に開口すると共に下流端が外部に開口する流路が設けられ、前記流路は、前記上流端から前記下流端まで流路面積が一定であることを特徴とする。 The aspirator of the present invention includes a nozzle supplied from water, a water discharge pipe provided on the downstream side of the nozzle, and a vacuum chamber provided on the outer periphery of the downstream end of the nozzle, and is generated in the nozzle. An aspirator that injects the swirled water flow from the injection port at the downstream end of the nozzle at high speed to generate a vacuum. The water discharge pipe has an upstream end that opens into the decompression chamber and a downstream end that is external. The flow path is provided, and the flow path area is constant from the upstream end to the downstream end.

本発明によれば、吸引流量を損失することなく、アスピレータを節水化することができる。 According to the present invention, the aspirator can be water-saving without losing the suction flow rate.

本実施形態に係るアスピレータの断面図である。It is sectional drawing of the aspirator which concerns on this embodiment.

本発明の一実施形態を添付した図を参照して説明する。
図1に、本実施形態に係るアスピレータ1の断面図を示す。アスピレータ1は、水道(図示省略)から給水されるノズル11と、ノズル11の下流側に設けられる放水管31と、を有する。ノズル11には、下流の噴射口13へ向かって流路面積が漸次減少するテーパ状の流路3が設けられる。ノズル11の上流側端部の外周には、ホース(図示省略)が接続される接続部15が設けられる。接続部15には、ホースへの挿入を容易にするテーパ部16が設けられる。テーパ部16は、外径が上流端の給水口12へ向かって縮径される。また、接続部15には、ホースの抜けを防止するタケノコ部17が設けられる。
This will be described with reference to the figure to which one embodiment of the present invention is attached.
FIG. 1 shows a cross-sectional view of the ejector 1 according to the present embodiment. The aspirator 1 has a nozzle 11 to which water is supplied from a water pipe (not shown), and a water discharge pipe 31 provided on the downstream side of the nozzle 11. The nozzle 11 is provided with a tapered flow path 3 in which the flow path area gradually decreases toward the downstream injection port 13. A connecting portion 15 to which a hose (not shown) is connected is provided on the outer periphery of the upstream end portion of the nozzle 11. The connecting portion 15 is provided with a tapered portion 16 that facilitates insertion into the hose. The outer diameter of the tapered portion 16 is reduced toward the water supply port 12 at the upstream end. Further, the connecting portion 15 is provided with a bamboo shoot portion 17 for preventing the hose from coming off.

ノズル11の給水口12には、旋転羽根5が設けられる。旋転羽根5は、軸の周囲に設けられる複数枚(図1に「2枚」のみ表示)の羽根6を有する。旋転羽根5は、羽根6の外周を給水口12に圧入してノズル11に装着される。羽根6は、周方向に一定の間隔をあけて配置される。隣接する羽根6間の対向面は、旋転羽根5の軸平面に対して一定の傾斜角で傾斜する。隣接する羽根6,6間には、通過する水に旋転力を作用させる複数本(図1に「1本」のみ表示)の旋転流路7が設けられる。 A rotating blade 5 is provided at the water supply port 12 of the nozzle 11. The rotating blade 5 has a plurality of blades 6 (only "2 blades" are shown in FIG. 1) provided around the shaft. The rotating blade 5 is mounted on the nozzle 11 by press-fitting the outer periphery of the blade 6 into the water supply port 12. The blades 6 are arranged at regular intervals in the circumferential direction. The facing surfaces between the adjacent blades 6 are inclined at a constant inclination angle with respect to the axial plane of the rotating blade 5. Between the adjacent blades 6 and 6, a plurality of rotating flow paths 7 (only "1" is shown in FIG. 1) for applying a rotating force to the passing water are provided.

放水管31の上流側端部には、ノズル11と吸気管21とが接続される接続部32が設けられる。接続部32は、上流端が開口する有底円筒形に形成される。接続部32の内側には、減圧室33が設けられる。減圧室33は、ノズル11の下流側端部19(噴射口13)の外周に形成される。ノズル11の下流側端面20と、放水管31の接続部32(減圧室33)の底面34との間には、一定の隙間が設けられる。放水管31の接続部32の円筒形の側壁には、連通路35を介して減圧室33に連通される接続口36が設けられる。接続口36には、吸気管21の一端側(図1における左側)が接続(圧入)される。吸気管21の流路22には、一端側(減圧室33側)から他端側(外部)への流体の流れを阻止する逆止弁23が設けられる。 A connecting portion 32 for connecting the nozzle 11 and the intake pipe 21 is provided at the upstream end of the water discharge pipe 31. The connecting portion 32 is formed in a bottomed cylindrical shape with an opening at the upstream end. A pressure reducing chamber 33 is provided inside the connecting portion 32. The decompression chamber 33 is formed on the outer periphery of the downstream end portion 19 (injection port 13) of the nozzle 11. A certain gap is provided between the downstream end surface 20 of the nozzle 11 and the bottom surface 34 of the connecting portion 32 (decompression chamber 33) of the water discharge pipe 31. A connecting port 36 that communicates with the decompression chamber 33 via a communication passage 35 is provided on the cylindrical side wall of the connecting portion 32 of the water discharge pipe 31. One end side (left side in FIG. 1) of the intake pipe 21 is connected (press-fitted) to the connection port 36. The flow path 22 of the intake pipe 21 is provided with a check valve 23 that blocks the flow of fluid from one end side (pressure reducing chamber 33 side) to the other end side (outside).

放水管31は、接続部32の下流端からアスピレータ1の軸線方向(図1における「下方向」)へ延びる放水部37を有する。放水部37には、アスピレータ1の軸線と同軸の流路41が設けられる。流路41は、上流端42が減圧室33に開口すると共に下流端43(放水口)が外部に開口する。流路41は、円形の断面を有して上流端42から下流端43まで流路面積が一定である。なお、本実施形態では、流路41の直径(流路径)は、ノズル11の噴射口13の口径に対して、0.2から0.4mmまでの範囲で大きく設定される。 The water discharge pipe 31 has a water discharge portion 37 extending from the downstream end of the connection portion 32 in the axial direction of the ejector 1 (“downward” in FIG. 1). The water discharge portion 37 is provided with a flow path 41 coaxial with the axis of the aspirator 1. In the flow path 41, the upstream end 42 opens to the decompression chamber 33 and the downstream end 43 (water discharge port) opens to the outside. The flow path 41 has a circular cross section, and the flow path area is constant from the upstream end 42 to the downstream end 43. In the present embodiment, the diameter of the flow path 41 (flow path diameter) is set large in the range of 0.2 to 0.4 mm with respect to the diameter of the injection port 13 of the nozzle 11.

次に、アスピレータ1の作用を説明する。
水道等の配水設備からホース(図示省略)を介して供給された水は、旋転羽根5を通過することで旋転力が付与されて旋転水流となって流路3を流下する。旋転水流は、流路面積が漸次減少する流路3を流下して加速されることで、高速の旋転水流となって噴射口13から噴射される。このとき、噴流、即ち、噴射口13から噴射された水の内側に真空(負圧)が発生し、噴流内に発生した真空によって減圧室33が減圧される。これにより、減圧室33と吸気管21内の流路22との間に差圧が生じて逆止弁23が開弁されて、外気が流路22を介して減圧室33に引き込まれる。
Next, the operation of the aspirator 1 will be described.
Water supplied from a water distribution facility such as a water supply via a hose (not shown) passes through a rotating blade 5 to apply a rotating force to become a rotating water flow and flows down the flow path 3. The rotating water flow is accelerated by flowing down the flow path 3 whose channel area gradually decreases, so that it becomes a high-speed rotating water flow and is injected from the injection port 13. At this time, a vacuum (negative pressure) is generated inside the jet, that is, the water jetted from the injection port 13, and the vacuum chamber 33 is depressurized by the vacuum generated in the jet. As a result, a differential pressure is generated between the pressure reducing chamber 33 and the flow path 22 in the intake pipe 21, the check valve 23 is opened, and the outside air is drawn into the pressure reducing chamber 33 via the flow path 22.

ここで、従来のアスピレータ(特許文献1参照)では、流路41を流れる旋転水流をより小さい水路抵抗で流下させて旋転水流の流速を高めるため、流路41の上流側に、流路面積を漸次増加させた拡径部を設けていた。これにより、従来のアスピレータでは、ノズル11から噴射された旋転水流が、旋転による遠心力によって流路を径方向へ拡がるようにして回転しながら流下するので、流路41の内側(拡径部の中心部)を流れる旋転水流の圧力が流路41の外側を流れる旋転水流の圧力よりも低くなる。その結果、流路41の内側を流れる旋転水流(含気水流)に含まれる気泡が膨張して、流路41の軸線近傍に気泡の連なりが形成されることになる。 Here, in the conventional aspirator (see Patent Document 1), in order to increase the flow velocity of the rotating water flow by causing the rotating water flow flowing through the flow path 41 to flow down with a smaller water channel resistance, the flow path area is set on the upstream side of the flow path 41. An enlarged diameter portion that was gradually increased was provided. As a result, in the conventional aspirator, the rotating water flow injected from the nozzle 11 flows down while rotating so as to expand the flow path in the radial direction due to the centrifugal force due to the rotation. The pressure of the rotating water flow flowing through the central portion) becomes lower than the pressure of the rotating water flow flowing outside the flow path 41. As a result, the bubbles contained in the rotating water flow (aerated water flow) flowing inside the flow path 41 expand, and a series of bubbles is formed in the vicinity of the axis of the flow path 41.

このように、従来のアスピレータでは、流路41の内側を流れる旋転水流に形成された気泡の連なりが、流路41の下流端43(放水口)と減圧室33とを連通させてしまい、当該気泡の連なりを介して減圧室33に外気が導入されてアスピレータの吸引流量(排気流量)を低下させることになっていた。 As described above, in the conventional vacuum ejector, a series of bubbles formed in the rotating water flow flowing inside the flow path 41 causes the downstream end 43 (water discharge port) of the flow path 41 and the decompression chamber 33 to communicate with each other. The outside air was introduced into the decompression chamber 33 through a series of bubbles to reduce the suction flow rate (exhaust flow rate) of the ejector.

そこで、本実施形態では、放水部37の流路面積を上流端42から下流端43まで一定にすることで、流路41を流れる旋転水流に抵抗を付与した。本実施形態によれば、流路41を流れる旋転水流の圧力を増大して、従来のアスピレータで問題となっていた流路41の内側(中心部)を流れる旋転水流に気泡の連なりが形成されるのを抑止することが可能であり、当該気泡の連なりを介した外気と減圧室33との連通を遮断することができる。その結果、流路41から減圧室33へ外気が導入されてしまうことが抑止されるので、アスピレータ1の吸引流量を増加させる、延いては、吸引流量を損失することなくアスピレータ1を節水化することができる。 Therefore, in the present embodiment, the flow path area of the water discharge portion 37 is made constant from the upstream end 42 to the downstream end 43 to impart resistance to the rotating water flow flowing through the flow path 41. According to this embodiment, the pressure of the rotating water flow flowing through the flow path 41 is increased, and a chain of bubbles is formed in the rotating water flow flowing inside (central part) of the flow path 41, which has been a problem with conventional vacuum ejectors. It is possible to prevent the bubbles from flowing, and it is possible to block the communication between the outside air and the decompression chamber 33 through the chain of bubbles. As a result, the introduction of outside air from the flow path 41 into the decompression chamber 33 is suppressed, so that the suction flow rate of the aspirator 1 is increased, and the aspirator 1 is saved without losing the suction flow rate. be able to.

なお、本出願人がした実験によれば、ノズル11の噴射口13の孔径が2.6mmのアスピレータ1の吸引流量を従来のアスピレータに対して60%増加させることができた。
また、本実施形態は、流路41を流れる旋転水流の圧力低下に起因して、流路41を流れる旋転水流に気泡の連なりが形成されるのを抑止できるように、流路41の流路面積と全長とを適宜設定することで実施することができる。
According to the experiment conducted by the applicant, the suction flow rate of the ejector 1 having a hole diameter of the injection port 13 of the nozzle 11 of 2.6 mm could be increased by 60% as compared with the conventional ejector.
Further, in the present embodiment, the flow path of the flow path 41 can be prevented from forming a series of bubbles in the rotating water flow flowing through the flow path 41 due to the pressure drop of the rotating water flow flowing through the flow path 41. It can be carried out by appropriately setting the area and the total length.

1 アスピレータ、11 ノズル、13 噴射口、31 放水管、41 流路、42 上流端、43 下流端 1 Aspirator, 11 nozzles, 13 injection port, 31 water discharge pipe, 41 flow path, 42 upstream end, 43 downstream end

Claims (1)

水道から給水されるノズルと、前記ノズルの下流側に設けられる放水管と、前記ノズルの下流側端部の外周に設けられる減圧室と、を備え、前記ノズル内に発生させた旋転水流を前記ノズルの下流側端部の噴射口から高速で噴射して真空を生起させるアスピレータであって、
前記放水管には、上流端が前記減圧室に開口すると共に下流端が外部に開口する流路が設けられ、
前記流路は、前記上流端から前記下流端まで流路面積が一定であることを特徴とするアスピレータ。
The nozzle provided with water supplied from the tap, a water discharge pipe provided on the downstream side of the nozzle, and a decompression chamber provided on the outer periphery of the downstream end of the nozzle, and the rotating water flow generated in the nozzle is described. It is an ejector that injects at high speed from the injection port at the downstream end of the nozzle to generate a vacuum.
The water discharge pipe is provided with a flow path in which the upstream end opens into the decompression chamber and the downstream end opens to the outside.
The flow path is an aspirator characterized in that the flow path area is constant from the upstream end to the downstream end.
JP2020154591A 2020-03-19 2020-09-15 Aspirator Pending JP2021152361A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020049369 2020-03-19
JP2020049369 2020-03-19

Publications (1)

Publication Number Publication Date
JP2021152361A true JP2021152361A (en) 2021-09-30

Family

ID=77886446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020154591A Pending JP2021152361A (en) 2020-03-19 2020-09-15 Aspirator

Country Status (1)

Country Link
JP (1) JP2021152361A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042716A1 (en) 2021-09-17 2023-03-23 三井化学株式会社 Production method for (meth)acrylamide compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684035U (en) * 1979-11-29 1981-07-07
JPS595800U (en) * 1982-07-02 1984-01-14 ヤマト科学株式会社 Aspirator
JPH08109900A (en) * 1994-10-11 1996-04-30 Ito Tekko Kk Water-jet pump
JPH11222890A (en) * 1998-02-06 1999-08-17 Tougou:Kk Faucet device for city water
JPH11257299A (en) * 1998-03-13 1999-09-21 Daikin Ind Ltd Ejector for air bleeding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684035U (en) * 1979-11-29 1981-07-07
JPS595800U (en) * 1982-07-02 1984-01-14 ヤマト科学株式会社 Aspirator
JPH08109900A (en) * 1994-10-11 1996-04-30 Ito Tekko Kk Water-jet pump
JPH11222890A (en) * 1998-02-06 1999-08-17 Tougou:Kk Faucet device for city water
JPH11257299A (en) * 1998-03-13 1999-09-21 Daikin Ind Ltd Ejector for air bleeding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042716A1 (en) 2021-09-17 2023-03-23 三井化学株式会社 Production method for (meth)acrylamide compound

Similar Documents

Publication Publication Date Title
US4487553A (en) Jet pump
US9447796B2 (en) Annular jet pump
EP1166883A2 (en) Cleaning nozzle and cleaning apparatus
US9228741B2 (en) Liquid fuel swirler
JPH0821400A (en) Jet stream pump
CN111207414A (en) Strong rotational flow centrifugal reflux type nozzle
KR100879504B1 (en) Fluid Spray Nozzle
WO2019162649A1 (en) Jet pump apparatus
JP2021152361A (en) Aspirator
KR101850783B1 (en) Tip injection device for the improvement of performance and operation stability of air-compressor
JP2001295800A (en) Ejector type vacuum generator
CN110695859A (en) Nozzle with self-mixing flow function
KR102649754B1 (en) jet pump
US11399916B2 (en) Mixing chamber and handpiece
JP2021038716A (en) Aspirator
JP6511009B2 (en) Nozzle device
JP2020070783A (en) Ejector
JP2002011383A (en) Jet nozzle
JP7342558B2 (en) ejector
JPS63319030A (en) Ejector
US20130256425A1 (en) Self cleaning eductor
JP7155897B2 (en) Ejector
US20190032679A1 (en) Ejector, ejector production method, and method for setting outlet flow path of diffuser
JP2006334585A (en) Steam cleaning auxiliary agent ejector nozzle
JP7490945B2 (en) Ejector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210804

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221012