Nothing Special   »   [go: up one dir, main page]

JP2021144138A - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP2021144138A
JP2021144138A JP2020042619A JP2020042619A JP2021144138A JP 2021144138 A JP2021144138 A JP 2021144138A JP 2020042619 A JP2020042619 A JP 2020042619A JP 2020042619 A JP2020042619 A JP 2020042619A JP 2021144138 A JP2021144138 A JP 2021144138A
Authority
JP
Japan
Prior art keywords
light
imaging
polarization
optical system
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020042619A
Other languages
Japanese (ja)
Inventor
雅未 吉田
Masami Yoshida
雅未 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020042619A priority Critical patent/JP2021144138A/en
Publication of JP2021144138A publication Critical patent/JP2021144138A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Studio Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Blocking Light For Cameras (AREA)
  • Accessories Of Cameras (AREA)

Abstract

To reduce illumination light as unnecessary light incident on an imaging element when performing illumination and imaging of a subject through a common optical system.SOLUTION: An imaging device 4 includes: an imaging element 11 for picking up imaging light incident on an imaging optical system 9 from a subject; light source systems 6 and 7 for emitting first polarized light serving as illumination light irradiated to the subject through the imaging optical system; and a polarization separation element 8 that directs the illumination light to the imaging optical system and directs the imaging light from the imaging optical system to the imaging element by reflecting one of the first polarized light and second polarized light serving as imaging light of which polarization direction is different from that of the polarized light and transmitting the other; and a polarization element 10 that is arranged between the polarization separation element and the imaging element and blocks the first polarized light by transmitting the second polarized light.SELECTED DRAWING: Figure 2

Description

本発明は、被写体の照明と撮像とを共通の光学系を通して行う撮像装置に関する。 The present invention relates to an imaging device that illuminates a subject and captures images through a common optical system.

被写体の照明と撮像とを共通の光学系(撮像光学系)を通して行うことで、被写体側における撮像領域に対する照明領域とのずれを小さくすることができる。 By performing the illumination and imaging of the subject through a common optical system (imaging optical system), it is possible to reduce the deviation from the illumination region with respect to the imaging region on the subject side.

外部からの光を撮像素子に導く撮像光学系を通して外部に光を出射させる撮像装置としては、特許文献1や特許文献2に開示されたものがある。特許文献1,2の撮像装置は、撮像光学系を通した撮像により記録した被写体画像を表示素子に表示し、該表示素子からの画像光を同じ撮像光学系を通してスクリーンに投射するプロジェクタ機能を有する。撮像光学系と撮像素子および表示素子との間には、光路を分離する光路分離素子が設けられている。 As an imaging device that emits light to the outside through an imaging optical system that guides light from the outside to an imaging element, there are those disclosed in Patent Document 1 and Patent Document 2. The imaging devices of Patent Documents 1 and 2 have a projector function of displaying a subject image recorded by imaging through an imaging optical system on a display element and projecting image light from the display element onto a screen through the same imaging optical system. .. An optical path separation element for separating an optical path is provided between the image pickup optical system and the image pickup element and the display element.

特開2004−040817号公報Japanese Unexamined Patent Publication No. 2004-040817 特開2012−222695号公報Japanese Unexamined Patent Publication No. 2012-222695

しかしながら、特許文献1の撮像装置では、撮像素子と光路分離素子との間に偏光素子が配置されていない。このため、この撮像装置の構成を利用して被写体の照明と撮像とを同時に行うと、光路分離素子の特性により照明光のうち光路分離素子から撮像光学系に向かわなかった不要光が撮像素子に入射するおそれがある。また特許文献2の撮像装置では、撮像素子と光路分離素子との間に表示素子からの画像光を遮る遮光部材を設けているが、この遮光部材を含む構成を利用して被写体の照明と撮像とを同時に行おうとしても、照明光だけでなく被写体からの撮像光まで遮光部材によって遮られて撮像を行えない。 However, in the image pickup apparatus of Patent Document 1, a polarizing element is not arranged between the image pickup element and the optical path separation element. Therefore, when the subject is illuminated and imaged at the same time by using the configuration of this image pickup device, unnecessary light that does not go from the optical path separation element to the image pickup optical system among the illumination light due to the characteristics of the optical path separation element becomes the image pickup element. There is a risk of incident. Further, in the image pickup apparatus of Patent Document 2, a light-shielding member that blocks image light from the display element is provided between the image pickup element and the optical path separation element, and the subject is illuminated and imaged by using the configuration including the light-shielding member. Even if the above is performed at the same time, not only the illumination light but also the image pickup light from the subject is blocked by the light-shielding member and the image pickup cannot be performed.

本発明は、撮像光学系を通して被写体の照明と撮像とを行う場合に撮像素子に入射する不要光としての照明光を減少させることが可能な撮像装置を提供する。 The present invention provides an imaging device capable of reducing illumination light as unnecessary light incident on an imaging element when illuminating and imaging a subject through an imaging optical system.

本発明の一側面としての撮像装置は、被写体から撮像光学系に入射した撮像光を撮像する撮像素子と、上記撮像光学系を通して被写体に照射される照明光となる第1の偏光光を出射させる光源系と、第1の偏光光および該第1の偏光光とは偏光方向が異なる撮像光としての第2の偏光光のうち一方を反射して他方を透過させることにより、照明光を撮像光学系に向かわせ、撮像光学系からの撮像光を撮像素子に向かわせる偏光分離素子と、該偏光分離素子と撮像素子との間に配置され、第2の偏光光を透過させ、第1の偏光光を遮る偏光素子とを有することを特徴とする。なお、上記撮像装置とこれを回転させる回転ユニットとを有するカメラシステムも、本発明の他の一側面を構成する。 The image pickup apparatus as one aspect of the present invention emits an image pickup element that captures the image pickup light incident on the image pickup optical system from the subject and a first polarized light that is the illumination light emitted to the subject through the image pickup optical system. The illumination light is imaged by reflecting one of the light source system and the second polarized light as the imaging light whose polarization directions are different from those of the first polarized light and the first polarized light and transmitting the other. A polarization separation element that directs the imaging light from the imaging optical system toward the system and is arranged between the polarization separation element and the imaging element to transmit the second polarized light and to transmit the first polarization. It is characterized by having a polarizing element that blocks light. A camera system including the image pickup device and a rotation unit for rotating the image pickup device also constitutes another aspect of the present invention.

本発明によれば、照明光のうち撮像素子に入射する不要光を減少させつつ、撮像光学系を通して被写体の照明と撮像とを行うことができる。 According to the present invention, it is possible to illuminate and image a subject through an imaging optical system while reducing unnecessary light incident on the imaging element among the illumination lights.

実施例1の撮像装置を備えた監視カメラの構成を示す分解斜視図。The exploded perspective view which shows the structure of the surveillance camera provided with the image pickup apparatus of Example 1. FIG. 実施例1の撮像装置の構成を示すブロック図。The block diagram which shows the structure of the image pickup apparatus of Example 1. FIG. 従来および実施例1の撮像装置の偏光ビームスプリッタ内での反射光路を示す図。The figure which shows the reflected light path in the polarization beam splitter of the conventional and Example 1 image pickup apparatus. 実施例1および実施例2の撮像装置の分解斜視図。It is an exploded perspective view of the image pickup apparatus of Example 1 and Example 2. 実施例2の撮像装置の構成を示すブロック図。The block diagram which shows the structure of the image pickup apparatus of Example 2. FIG.

以下、本発明の実施例について図面を参照しながら説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings.

図1は、本発明の実施例1である撮像装置4を含む監視カメラシステムの構成を示している。撮像装置4は、回転ユニットとしてのパンチルトローテーションユニット5により保持される。パンチルトローテーションユニット5は、撮像装置4をパン、チルトおよびローテーション方向に回転させて撮像装置4の撮像方向を変更する。撮像装置4は、パンチルトローテーションユニット5に保持リング2と複数のビス1により取り付けられるドームカバー3により覆われる。 FIG. 1 shows the configuration of a surveillance camera system including the image pickup apparatus 4 according to the first embodiment of the present invention. The image pickup device 4 is held by a pan-tilt rotation unit 5 as a rotation unit. The pan-tilt rotation unit 5 changes the imaging direction of the imaging device 4 by rotating the imaging device 4 in the pan, tilt, and rotation directions. The image pickup device 4 is covered with a dome cover 3 attached to the pan-tilt rotation unit 5 by a holding ring 2 and a plurality of screws 1.

図2は、本実施例の撮像装置4の構成を示す。撮像装置4は、撮像光学系9、撮像素子11、光源6、偏光ビームスプリッタ8、第1の偏光素子7および第2の偏光素子10を有する。 FIG. 2 shows the configuration of the image pickup apparatus 4 of this embodiment. The image pickup apparatus 4 includes an image pickup optical system 9, an image pickup element 11, a light source 6, a polarization beam splitter 8, a first polarization element 7, and a second polarization element 10.

撮像光学系9は、被写体側から順に、固定レンズ12、第1のズームレンズ13、絞り19、第2のズームレンズ14およびフォーカスレンズ15を有する。第1および第2のズームレンズ13,14は、撮像光学系9の光軸方向に移動して変倍(ズーミング)を行う。第1のズームレンズ13は第1のズームモータ16により駆動され、第2のズームレンズ14は第2のズームモータ17により駆動される。 The imaging optical system 9 has a fixed lens 12, a first zoom lens 13, an aperture 19, a second zoom lens 14, and a focus lens 15 in this order from the subject side. The first and second zoom lenses 13 and 14 move in the optical axis direction of the imaging optical system 9 to perform zooming. The first zoom lens 13 is driven by the first zoom motor 16, and the second zoom lens 14 is driven by the second zoom motor 17.

絞り19は、その開口径を変化させて光量を調節する。絞り19は、絞り駆動部20により駆動される。フォーカスレンズ15は、光軸方向に移動してフォーカシングを行う。フォーカスレンズ15は、フォーカスモータ18により駆動される。第1のズームモータ16、第2のズームモータ17、絞り駆動部20およびフォーカスモータ18は、不図示のネットワーク(LANやインターネット等)を介して外部コントローラとしてのパーソナルコンピュータ(PC)23から指示を受けたカメラ制御部22によって制御される。なお、撮像光学系9は、撮像装置4に対して交換(着脱)可能であってもよい。 The aperture 19 adjusts the amount of light by changing its aperture diameter. The diaphragm 19 is driven by the diaphragm drive unit 20. The focus lens 15 moves in the optical axis direction to perform focusing. The focus lens 15 is driven by the focus motor 18. The first zoom motor 16, the second zoom motor 17, the aperture drive unit 20, and the focus motor 18 are instructed by a personal computer (PC) 23 as an external controller via a network (LAN, Internet, etc.) (not shown). It is controlled by the received camera control unit 22. The imaging optical system 9 may be interchangeable (detachable) with respect to the imaging device 4.

撮像素子11は、CCDセンサやCMOSセンサ等の光電変換素子により構成され、不図示の被写体から撮像光学系9に入射した撮像光により形成される被写体像を撮像(光電変換)する。撮像素子11からの撮像信号は、カメラ制御部22に入力される。カメラ制御部22は、アナログ信号としての撮像信号をデジタル信号に変換し、該デジタル信号に各種画像処理を行って画像データを生成する。画像データは、上記ネットワークを介してPC23に送信され、該PC23においてモニタに表示されたり記録されたりする。 The image pickup element 11 is composed of photoelectric conversion elements such as a CCD sensor and a CMOS sensor, and captures (photoelectrically converts) a subject image formed by the imaging light incident on the imaging optical system 9 from a subject (not shown). The image pickup signal from the image pickup device 11 is input to the camera control unit 22. The camera control unit 22 converts an imaging signal as an analog signal into a digital signal, and performs various image processing on the digital signal to generate image data. The image data is transmitted to the PC 23 via the network, and is displayed or recorded on the monitor on the PC 23.

光源6は、LED等の発光素子を有し、照明光を出射する。光源6の点灯/消灯および発光量は、カメラ制御部22からの指示を受けた照明制御部21により制御される。光源6から出射される照明光は、白色光や単色光等の可視光源でもよいし、赤外光であってもよい。 The light source 6 has a light emitting element such as an LED and emits illumination light. The lighting / extinguishing of the light source 6 and the amount of light emitted are controlled by the lighting control unit 21 that receives an instruction from the camera control unit 22. The illumination light emitted from the light source 6 may be a visible light source such as white light or monochromatic light, or may be infrared light.

撮像光学系9と撮像素子11および光源6との間の光路上には、光路分離面としての偏光分離面を有する偏光ビームスプリッタ8が配置されている。偏光ビームスプリッタ8と光源6との間には第1の偏光素子7が配置され、偏光ビームスプリッタ8と撮像素子11との間には第2の偏光素子10が配置されている。 A polarization beam splitter 8 having a polarization separation surface as an optical path separation surface is arranged on an optical path between the image pickup optical system 9, the image pickup element 11, and the light source 6. A first polarizing element 7 is arranged between the polarizing beam splitter 8 and the light source 6, and a second polarizing element 10 is arranged between the polarizing beam splitter 8 and the image sensor 11.

第1の偏光素子7は、光源6からの照明光としての無偏光光をS偏光に変換する偏光変換素子である。偏光変換素子は、無偏光光のうちS偏光をそのまま出射させ、S偏光とは偏光方向が異なるP偏光の偏光方向を位相板により回転させてS偏光として出射させる。光源6と第1の偏光素子(偏光変換素子)7により光源系LSが構成される。 The first polarizing element 7 is a polarization conversion element that converts unpolarized light as illumination light from the light source 6 into S-polarized light. The polarization conversion element emits S-polarized light of unpolarized light as it is, and rotates the polarization direction of P-polarized light, which has a different polarization direction from S-polarized light, by a phase plate to emit it as S-polarized light. The light source system LS is composed of the light source 6 and the first polarizing element (polarization conversion element) 7.

なお、光源6がレーザ素子のように直線偏光を発する場合は、第1の偏光素子7を設けなくてもよく、この場合は光源6により光源ユニットが構成される。 When the light source 6 emits linearly polarized light like a laser element, it is not necessary to provide the first polarizing element 7. In this case, the light source 6 constitutes the light source unit.

偏光分離素子としての偏光ビームスプリッタ8は、プレート状またはフィルム状の透光性基板(平行平板)上にワイヤグリッド構造、金属蒸着膜または誘電体膜等により偏光分離面を設けたプレート型偏光ビームスプリッタである。偏光ビームスプリッタ(偏光分離面)8は、第1の偏光光(直線偏光)としてのS偏光を反射し、第2の偏光光(直線偏光)としてのP偏光を透過させる特性を有する。 The polarization beam splitter 8 as a polarization separation element is a plate-type polarization beam in which a polarization separation surface is provided on a plate-shaped or film-like translucent substrate (parallel flat plate) by a wire grid structure, a metal vapor deposition film, a dielectric film, or the like. It is a splitter. The polarized beam splitter (polarized light separation surface) 8 has a property of reflecting S-polarized light as the first polarized light (linearly polarized light) and transmitting P-polarized light as the second polarized light (linearly polarized light).

第2の偏光素子10は、P偏光を透過させ、S偏光を反射または吸収して透過させない(遮る)特性を有する偏光板である。すなわち、第2の偏光素子10は、第1の偏光素子7と偏光軸の方向が互いに直交するように配置されている。 The second polarizing element 10 is a polarizing plate having a property of transmitting P-polarized light and reflecting or absorbing S-polarized light and not transmitting (blocking) the S-polarized light. That is, the second polarizing element 10 is arranged so that the directions of the first polarizing element 7 and the polarization axis are orthogonal to each other.

被写体側の撮像領域から撮像光学系9に入射して該撮像光学系9を通過した無偏光光としての撮像光のうちP偏光は、偏光ビームスプリッタ8を透過し、さらに第2の偏光素子10を透過して撮像素子11に到達する。これにより、P偏光としての撮像光が形成する被写体像が撮像される。 Of the imaging light as unpolarized light that has entered the imaging optical system 9 from the imaging region on the subject side and passed through the imaging optical system 9, P-polarized light passes through the polarizing beam splitter 8 and further, the second polarizing element 10. And reaches the image pickup element 11. As a result, the subject image formed by the imaging light as P-polarized light is imaged.

一方、光源6から出射して第1の偏光素子7を透過したS偏光としての照明光は、偏光ビームスプリッタ8で反射され、撮像光学系9を通過して被写体側の照明領域に照射される。このように偏光ビームスプリッタ8は、撮像光学系9からの撮像光を透過させて撮像素子11に向かわせ、第1の偏光素子7からの照明光を反射して撮像光学系9に向かわせる。言い換えれば、偏光ビームスプリッタ8は、該偏光ビームスプリッタ8と撮像素子11との間の撮像光の光路と偏光ビームスプリッタ8と光源6との間の照明光の光路とを分離する。 On the other hand, the illumination light as S-polarized light emitted from the light source 6 and transmitted through the first polarizing element 7 is reflected by the polarization beam splitter 8 and passes through the imaging optical system 9 to irradiate the illumination region on the subject side. .. In this way, the polarizing beam splitter 8 transmits the imaging light from the imaging optical system 9 and directs it toward the imaging element 11, and reflects the illumination light from the first polarizing element 7 and directs it toward the imaging optical system 9. In other words, the polarizing beam splitter 8 separates the optical path of the imaging light between the polarizing beam splitter 8 and the imaging element 11 and the optical path of the illumination light between the polarizing beam splitter 8 and the light source 6.

本実施例の撮像装置4は、被写体を照明しながら該被写体の撮像を行うモードを有する。このモードにおいて、撮像光と照明光が共通の光学系である撮像光学系9を通過するため、撮像領域と照明領域とのずれ(パララクス)が少ない。すなわち、照明領域の位置と大きさを撮像領域の位置と大きさに合わせることができる。さらに撮像光学系9のズーム倍率を変化させた場合でも撮像領域の大きさの変化に伴って照明領域の大きさが変化し、パララクスが少ない。被写体において拡散反射した照明光(つまりは撮像光)は、第2の偏光素子10を透過するP偏光成分を含むため、撮像素子11に到達できる。このため、被写体の照明と撮像とを同時に行うことが可能である。 The image pickup apparatus 4 of this embodiment has a mode in which the subject is imaged while illuminating the subject. In this mode, since the imaging light and the illumination light pass through the imaging optical system 9 which is a common optical system, there is little deviation (paralux) between the imaging region and the illumination region. That is, the position and size of the illumination area can be adjusted to the position and size of the imaging area. Further, even when the zoom magnification of the image pickup optical system 9 is changed, the size of the illumination area changes according to the change in the size of the image pickup area, and the paralux is small. Since the illumination light diffusely reflected by the subject (that is, the image pickup light) contains the P polarization component transmitted through the second polarizing element 10, it can reach the image pickup element 11. Therefore, it is possible to simultaneously illuminate and image the subject.

ここで、第1の偏光素子7が必ずしも無偏光光を完全に(100%)S偏光に変換せず、数%だけ無偏光光のまま出射させる場合がある。また偏光ビームスプリッタ8の偏光分離面が必ずしもS偏光を100%反射せず、数%のS偏光の漏れ光を透過させる場合がある。このとき、偏光ビームスプリッタ8を透過したS偏光としての不要光が直接または撮像装置4の内部で反射して第2の偏光素子10および撮像素子11に向かう。しかし、本実施例では、このような不要なS偏光を第2の偏光素子10により遮って撮像素子11に到達しないようにすることができる。 Here, the first polarizing element 7 does not necessarily completely convert unpolarized light into (100%) S-polarized light, and may emit only a few percent of the unpolarized light as unpolarized light. Further, the polarization splitting surface of the polarization beam splitter 8 does not necessarily reflect 100% of S-polarized light, and may transmit leaked light of several% of S-polarized light. At this time, unnecessary light as S-polarized light transmitted through the polarizing beam splitter 8 is reflected directly or inside the image pickup device 4 and directed toward the second polarization element 10 and the image pickup device 11. However, in this embodiment, such unnecessary S-polarized light can be blocked by the second polarizing element 10 so as not to reach the image sensor 11.

なお、第2の偏光素子10においてS偏光を透過させない又は遮るとは、S偏光を完全に(100%)透過させない又は遮断する場合だけでなく、ほとんど(例えば95%以上)は透過させずにごく一部(例えば5%以下)のみを透過させる場合も含む。 It should be noted that the term "not transmitting or blocking S-polarized light" in the second polarizing element 10 is not limited to the case of completely (100%) not transmitting or blocking S-polarized light, but also almost (for example, 95% or more) without transmitting. It also includes the case where only a small part (for example, 5% or less) is transmitted.

また、本実施例では撮像素子11とこれとは別体の第2の偏光素子10とを用いているが、これらに代えて、第2の偏光素子10と同等の機能を有する偏光素子を撮像素子に一体に設けた偏光イメージセンサを用いてよい。この場合も、偏光素子が偏光ビームスプリッタ(偏光分離面)と撮像素子との間に配置されているものとみなす。 Further, in this embodiment, the image pickup device 11 and the second polarizing element 10 which is a separate body from the image sensor 11 are used, but instead of these, a polarizing element having the same function as the second polarizing element 10 is imaged. A polarized image sensor integrally provided on the element may be used. In this case as well, it is considered that the polarizing element is arranged between the polarizing beam splitter (polarization separation surface) and the image pickup device.

また、光源6と撮像素子11を偏光ビームスプリッタ8に対して光学的に共役な関係となるように配置してもよい。これにより、照明光のうち一部(不要光)が本来の照明光路外を通って撮像装置4の内部で反射し、撮像素子11に向かうことを抑制できる。しかし、詳細は後述するが、光源6と撮像素子11を偏光ビームスプリッタ8に対して光学的に共役な関係からずらして配置することが好ましい。 Further, the light source 6 and the image pickup device 11 may be arranged so as to have an optically conjugate relationship with the polarization beam splitter 8. As a result, it is possible to prevent a part of the illumination light (unnecessary light) from passing outside the original illumination optical path and being reflected inside the image pickup apparatus 4 toward the image pickup device 11. However, as will be described in detail later, it is preferable that the light source 6 and the image sensor 11 are arranged so as to be displaced from each other in an optically conjugate relationship with the polarizing beam splitter 8.

また、光源6に、照明光をコリメートする光学系を設けてもよい。これにより、第1の偏光素子7に入射する照明光の入射角が統一され、第1の偏光素子7でのS偏光への変換をより良好に行わせることができる。また第2の偏光素子10においてもS偏光を良好に遮断することができる。コリメート光を用いる場合は、光源6の発光面積が撮像素子11の撮像面積と同じ大きさであることが好ましい。 Further, the light source 6 may be provided with an optical system for collimating the illumination light. As a result, the incident angle of the illumination light incident on the first polarizing element 7 is unified, and the conversion of the first polarizing element 7 to S-polarized light can be performed better. Further, the second polarizing element 10 can also block S-polarized light satisfactorily. When collimated light is used, it is preferable that the light emitting area of the light source 6 is the same as the image pickup area of the image pickup device 11.

さらに光源6が偏光ビームスプリッタ8の方向に長くなることを防ぐため、光源6の内部又は光源6と偏光ビームスプリッタ8との間に、ミラー等の反射面を設けてもよい。 Further, in order to prevent the light source 6 from becoming long in the direction of the polarizing beam splitter 8, a reflecting surface such as a mirror may be provided inside the light source 6 or between the light source 6 and the polarizing beam splitter 8.

また、撮像光学系9と偏光ビームスプリッタ8との間または撮像光学系9よりも被写体側の位置にλ/4板を配置し、該λ/4板を往復透過した照明光が、第2の偏光素子10を透過して撮像されるようにしてもよい。 Further, the λ / 4 plate is arranged between the imaging optical system 9 and the polarizing beam splitter 8 or at a position closer to the subject than the imaging optical system 9, and the illumination light transmitted back and forth through the λ / 4 plate is the second illumination light. The image may be taken through the polarizing element 10.

上述したように光源6と撮像素子11を偏光ビームスプリッタ8に対して光学的に共役な関係からずらして配置することが好ましい理由について説明する。図2において、24は偏光ビームスプリッタ8の偏光分離面上における撮像光学系9の光軸が交わる点(以下、分離点という)である。光源6と撮像素子11を偏光ビームスプリッタ8に対して光学的に共役な関係からずらして配置するとは、分離点24と光源6との間の光路長Llを、分離点と撮像素子11との間の光路長と異ならせる、すなわち長くする(Ll>Ls)または短くする(Ll<Ls)ことである。 As described above, the reason why it is preferable to displace the light source 6 and the image sensor 11 with respect to the polarizing beam splitter 8 from an optically conjugate relationship will be described. In FIG. 2, reference numeral 24 denotes a point (hereinafter referred to as a separation point) where the optical axes of the imaging optical system 9 intersect on the polarization separation surface of the polarization beam splitter 8. When the light source 6 and the image sensor 11 are arranged so as to be offset from each other in an optically conjugate relationship with the polarizing beam splitter 8, the optical path length Ll between the separation point 24 and the light source 6 is set between the separation point and the image sensor 11. It is different from the optical path length between them, that is, it is lengthened (Ll> Ls) or shortened (Ll <Ls).

従来のようにプロジェクタ機能と撮像機能とで光学系を共通化した撮像装置では、鮮明な投影像を得るために撮像素子と表示素子とを偏光分離面に対して光学的に共役な位置に配置する。しかし、本実施例の撮像装置4は、プロジェクタ機能ではない照明機能と撮像機能とを有する。撮像装置4において光源6から発される照明光が均一光でない場合に、光源6と撮像素子11とが偏光分離面(偏光ビームスプリッタ8)に対して光学的に共役な位置にあると、照明光のむらがそのまま照明領域に現れる。これに対して、光源6と撮像素子11を偏光ビームスプリッタ8に対して共役な位置からずらして配置することにより、照明光のむらが照明領域に現れないようにすることができる。 In an image pickup device in which the optical system is shared by the projector function and the image pickup function as in the conventional case, the image pickup element and the display element are arranged at positions optically conjugate with respect to the polarization separation surface in order to obtain a clear projection image. do. However, the image pickup apparatus 4 of this embodiment has a lighting function and an image pickup function that are not projector functions. When the illumination light emitted from the light source 6 in the image pickup apparatus 4 is not uniform light, the light source 6 and the image pickup element 11 are illuminated when they are optically conjugate to the polarization separation surface (polarization beam splitter 8). The unevenness of light appears in the illumination area as it is. On the other hand, by arranging the light source 6 and the image sensor 11 so as to be offset from the position conjugate with respect to the polarizing beam splitter 8, it is possible to prevent unevenness of the illumination light from appearing in the illumination region.

さらに撮像素子11と第1の偏光素子7を偏光ビームスプリッタ8に対して光学的に共役な位置からずらして配置することが好ましい。すなわち、分離点24と第1の偏光素子7との間の光路長Lpを、分岐点24と撮像素子11との間の光路長Lsと異ならせる(Lp>LsまたはLp<Ls)ようにすることが好ましい。撮像素子11と第1の偏光素子7を偏光ビームスプリッタ8に対して共役な位置に配置すると、第1の偏光素子7に付いたゴミや傷により発生した照明の影が被写体に投影される。特に照明の影が被写体のサイズと同等である場合は、撮像により得られる画像データを用いた顔認証や物体検出等の画像処理の精度が低下するおそれがある。 Further, it is preferable that the image sensor 11 and the first polarizing element 7 are arranged so as to be offset from the position optically conjugate with the polarizing beam splitter 8. That is, the optical path length Lp between the separation point 24 and the first polarizing element 7 is made different from the optical path length Ls between the branch point 24 and the image sensor 11 (Lp> Ls or Lp <Ls). Is preferable. When the image sensor 11 and the first polarizing element 7 are arranged at a position conjugate with respect to the polarizing beam splitter 8, the shadow of illumination generated by dust or scratches on the first polarizing element 7 is projected onto the subject. In particular, when the shadow of the illumination is the same as the size of the subject, the accuracy of image processing such as face recognition and object detection using the image data obtained by imaging may decrease.

このため、撮像素子11と第1の偏光素子7を偏光ビームスプリッタ8に対して共役な位置からずらして配置することにより、第1の偏光素子7に付いたゴミや傷により発生した照明の影が被写体に投影されないようにすることができる。 Therefore, by arranging the image sensor 11 and the first polarizing element 7 so as to be offset from the position conjugate with respect to the polarizing beam splitter 8, the shadow of the illumination generated by dust or scratches on the first polarizing element 7 is generated. Can be prevented from being projected onto the subject.

また本実施例において、光源6が撮像光学系9の直径の範囲内に収まっている場合は、Ll>LsまたはLp>Lsの方が好ましい。これにより、撮像装置4の光軸方向の長さを短くすることができ、チルト時に撮像装置4が回転する範囲を小さくすることができる。この結果、図1に示したドームカバー3を小さくすることができ、監視カメラ全体を小型化することができる。 Further, in this embodiment, when the light source 6 is within the diameter range of the imaging optical system 9, Ll> Ls or Lp> Ls is preferable. As a result, the length of the image pickup device 4 in the optical axis direction can be shortened, and the range in which the image pickup device 4 rotates when tilted can be reduced. As a result, the dome cover 3 shown in FIG. 1 can be made smaller, and the entire surveillance camera can be made smaller.

ただし、光源6にマスク等の遮光部材やレンズ等が含まれ、光源6が偏光ビームスプリッタ8の方向に長くなるような場合は、光源6の長さを短くするために、Ls>LlまたはLs>Lpの方が好ましい。 However, when the light source 6 includes a light-shielding member such as a mask, a lens, or the like and the light source 6 becomes longer in the direction of the polarizing beam splitter 8, Ls> Ll or Ls in order to shorten the length of the light source 6. > Lp is preferable.

次に、本実施例において、光路分離のために偏光ビームスプリッタ(偏光分離面)8を用いている理由を説明する。第1に、偏光分離面は第1の偏光素子7を透過した照明光のほとんどを撮像光学系9に導くことができるため、入射光を半々に分離するハーフミラーのような光路分離面を用いる場合に比べて照明効率と撮像効率を上させることができる。第2に、偏光分離面を用いると、撮像光学系9に導かれない照明光(不要光)が減少するため、撮像装置4の内部での不要光の反射が減り、撮像素子11への不要光の入射を効果的に抑制することができる。 Next, in this embodiment, the reason why the polarization beam splitter (polarization separation surface) 8 is used for optical path separation will be described. First, since most of the illumination light transmitted through the first polarizing element 7 can be guided to the imaging optical system 9, the polarization separation surface uses an optical path separation surface such as a half mirror that separates the incident light in half. Lighting efficiency and imaging efficiency can be improved as compared with the case. Secondly, when the polarization separation surface is used, the illumination light (unnecessary light) that is not guided to the image pickup optical system 9 is reduced, so that the reflection of unnecessary light inside the image pickup apparatus 4 is reduced and the image sensor 11 is unnecessary. The incident of light can be effectively suppressed.

さらに本実施例において、偏光ビームスプリッタ8として、偏光分離面をプレート状またはフィルム状の基板上に形成したプレート型偏光ビームスプリッタを用いている理由について説明する。図3(A),(B)は、第1の偏光素子7によりS偏光に変換されなかった無偏光光としての照明光が、キューブ状のプリズム8b′,8c′の間に偏光分離面8a′が形成されたキューブ型偏光ビームスプリッタ8′に入射する場合を示している。 Further, in this embodiment, the reason why a plate-type polarizing beam splitter having a polarizing separation surface formed on a plate-shaped or film-shaped substrate is used as the polarizing beam splitter 8 will be described. In FIGS. 3A and 3B, the illumination light as unpolarized light that was not converted into S-polarized light by the first polarizing element 7 is split into the polarization separation surfaces 8a between the cube-shaped prisms 8b'and 8c'. The case where ′ is formed is incident on the cube-type polarized beam splitter 8 ′ is shown.

図3(A)では、プリズム8b′に入射した無偏光光のうち偏光分離面8a′で反射されたP偏光成分の一部がプリズム8b′の出射面で内面反射して偏光分離面8a′に戻り、これを透過して不要光として撮像素子側に向かっている。また図3(B)では、プリズム8b′に入射した無偏光光のうち偏光分離面8a′を透過したP偏光成分がプリズム8c′で内面反射し、偏光分離面8a′に戻ってそこで反射して不要光として撮像素子側に向かっている。これらP偏光としての不要光は、第2の偏光素子10を透過して撮像素子11に到達する。 In FIG. 3A, a part of the P-polarized light component reflected by the polarization separation surface 8a'of the unpolarized light incident on the prism 8b'is internally reflected by the emission surface of the prism 8b' and is reflected on the polarization separation surface 8a'. It returns to, and is transmitted to the image pickup element side as unnecessary light. Further, in FIG. 3B, of the unpolarized light incident on the prism 8b', the P-polarized light component transmitted through the polarization separation surface 8a'is internally reflected by the prism 8c', returns to the polarization separation surface 8a', and is reflected there. The light is directed toward the image pickup element as unnecessary light. The unnecessary light as P-polarized light passes through the second polarizing element 10 and reaches the image sensor 11.

一方、図3(C)は、第1の偏光素子7によりS偏光に変換されなかった無偏光光が、プレート状またはフィルム状の基板8b上に偏光分離面8aが形成されたプレート型偏光ビームスプリッタ8に入射する場合を示している。図3(C)では、無偏光光のうち不要光としてのP偏光成分の多くは、偏光分離面8aを透過して基板8aで内面反射し、撮像光学系側に向かう。つまり、プレート型偏光ビームスプリッタ8を用いることで、その内部で発生した反射光としての不要光が第2の偏光素子10および撮像素子11に向かうことを抑制することができる。 On the other hand, FIG. 3C shows a plate-type polarizing beam in which unpolarized light that has not been converted into S-polarized light by the first polarizing element 7 has a polarization separation surface 8a formed on a plate-shaped or film-shaped substrate 8b. The case where the light is incident on the splitter 8 is shown. In FIG. 3C, most of the P-polarized light component as unnecessary light in the unpolarized light passes through the polarization separation surface 8a and is internally reflected by the substrate 8a toward the imaging optical system side. That is, by using the plate-type polarizing beam splitter 8, it is possible to prevent unnecessary light as reflected light generated inside the plate-type polarizing beam splitter 8 from heading toward the second polarizing element 10 and the image pickup device 11.

なお、プレート型偏光ビームスプリッタ8を用いる際には、その基板を透過する光が屈折して該基板が厚いほど非点収差が大きくなるため、基板8bをできるだけ薄くすることが好ましい。 When the plate-type polarizing beam splitter 8 is used, the light transmitted through the substrate is refracted and the thicker the substrate, the larger the astigmatism. Therefore, it is preferable to make the substrate 8b as thin as possible.

図4(A)は、本実施例の撮像装置4を分解して示している。25は撮像光学系9が含まれるレンズ鏡筒である。28は偏光ビームスプリッタ8とそれを保持する保持部材とを含む偏光分離ユニットである。27は第1の偏光素子7とそれを保持する保持部材とを含む第1の偏光素子7ユニットであり、29は第2の偏光素子10とそれを保持する保持部材とを含む第2の偏光素子ユニットである。30は撮像素子11とこれが実装された基板と該基板を保持する保持部材とを含む撮像素子ユニットである。 FIG. 4A shows the image pickup apparatus 4 of this embodiment in an exploded manner. Reference numeral 25 denotes a lens barrel including the imaging optical system 9. Reference numeral 28 denotes a polarization separation unit including a polarization beam splitter 8 and a holding member for holding the polarization beam splitter 8. Reference numeral 27 denotes a first polarizing element 7 unit including a first polarizing element 7 and a holding member for holding the first polarizing element 7, and 29 is a second polarized light including a second polarizing element 10 and a holding member for holding the second polarizing element 10. It is an element unit. Reference numeral 30 denotes an image sensor unit including an image sensor 11, a substrate on which the image sensor 11 is mounted, and a holding member for holding the substrate.

本実施例の撮像装置4は、図2に示した撮像装置4の組立て完了状態において偏光分離ユニット28を挟んだ光源6とは反対側に設けられた空間31を有する。さらに該空間31を挟んだ偏光分離ユニット28とは反対側に、拡散反射面31bを有する。 The image pickup device 4 of this embodiment has a space 31 provided on the side opposite to the light source 6 sandwiching the polarization separation unit 28 in the assembled state of the image pickup device 4 shown in FIG. Further, a diffuse reflection surface 31b is provided on the side opposite to the polarization separation unit 28 sandwiching the space 31.

第1の偏光素子7から出射して偏光ビームスプリッタ8を透過した不要光は、空間31を通過して拡散反射面31bで拡散反射される。仮に空間31が設けられておらず、偏光ビームスプリッタ8に近接した面31aで不要光が拡散反射してその偏光状態が崩れると、その少なくとも一部が直接または偏光ビームスプリッタ8で反射して第2の偏光素子10に向かい、これを透過して撮像素子11に入射するおそれがある。 Unwanted light emitted from the first polarizing element 7 and transmitted through the polarizing beam splitter 8 passes through the space 31 and is diffusely reflected by the diffuse reflection surface 31b. If the space 31 is not provided and unnecessary light is diffusely reflected on the surface 31a close to the polarizing beam splitter 8 and its polarization state is disrupted, at least a part thereof is directly reflected by the polarizing beam splitter 8 or the first. There is a possibility that the polarizing element 10 is directed toward the polarizing element 10 and is transmitted through the polarizing element 10 to be incident on the imaging element 11.

このため、本実施例では、偏光ビームスプリッタ8との間に空間31を挟んで拡散反射面31bを設けることで、拡散反射面31bを偏光ビームスプリッタ8から離すことができる。すなわち、偏光ビームスプリッタ8から出射した不要光が拡散反射面31bで反射するまでの光路長と拡散反射面31bで反射してから偏光ビームスプリッタ8に戻るまでの光路長や、第2偏光素子10に入射するまでの光路長を長くすることができる。光の強度は、逆二乗の法則により、距離の二乗に反比例する。これにより、不要光の撮像素子11への入射を軽減することができる。なお、面31aに反射防止構造を設けてもよい。 Therefore, in this embodiment, the diffuse reflection surface 31b can be separated from the polarization beam splitter 8 by providing the diffuse reflection surface 31b with a space 31 sandwiched between the polarization beam splitter 8 and the polarization beam splitter 8. That is, the optical path length until unnecessary light emitted from the polarizing beam splitter 8 is reflected by the diffuse reflection surface 31b, the optical path length from reflection by the diffuse reflection surface 31b until the return to the polarizing beam splitter 8, and the second polarizing element 10 The length of the optical path until it enters the light can be lengthened. The intensity of light is inversely proportional to the square of the distance according to the inverse square law. As a result, it is possible to reduce the incident of unnecessary light on the image sensor 11. An antireflection structure may be provided on the surface 31a.

また本実施例では、拡散反射面31bを偏光ビームスプリッタ8に正対する方向に対して撮像光学系側に傾斜させることにより、該拡散反射面31bで拡散反射して偏光ビームスプリッタ8や撮像素子11に向かう不要光を減少させている。さらに本実施例では、空間31の撮像素子側の端には拡散反射面31bに対して起立した拡散反射面31cを設けて、拡散反射面31bで拡散反射した不要光のうち直接、第2の偏光素子10に向かう光を低減させている。 Further, in this embodiment, by inclining the diffuse reflection surface 31b toward the imaging optical system with respect to the direction facing the polarizing beam splitter 8, the diffuse reflection surface 31b diffuses and reflects the polarization beam splitter 8 and the image pickup element 11. It reduces unnecessary light toward. Further, in this embodiment, a diffuse reflection surface 31c that stands up against the diffuse reflection surface 31b is provided at the end of the space 31 on the image pickup element side, and the second unnecessary light diffusely reflected by the diffuse reflection surface 31b is directly second. The light directed to the polarizing element 10 is reduced.

なお、拡散反射面31bを正反射面としてもよい。偏光ビームスプリッタ8を透過した不要光が正反射する場合は、その不要光の偏光状態が保たれる。このため、不要光がS偏光を維持すれば偏光ビームスプリッタ8で反射されても第2の偏光素子10で遮断され、撮像素子11への入射を抑制することができる。また、空間31を設けずに面31aの位置に正反射面を設けてもよい。 The diffuse reflection surface 31b may be a specular reflection surface. When the unwanted light transmitted through the polarizing beam splitter 8 is specularly reflected, the polarized state of the unwanted light is maintained. Therefore, if unnecessary light maintains S polarization, even if it is reflected by the polarization beam splitter 8, it is blocked by the second polarizing element 10, and it is possible to suppress the incident light on the image sensor 11. Further, the specular reflection surface may be provided at the position of the surface 31a without providing the space 31.

以上説明したように本実施例によれば、照明光のうち撮像素子11に入射する不要光を減少させつつ、撮像光学系9を通して被写体の照明と撮像とを行うことができる。 As described above, according to the present embodiment, it is possible to illuminate and image a subject through the image pickup optical system 9 while reducing unnecessary light incident on the image pickup element 11 among the illumination lights.

図5は、本発明の実施例2である撮像装置4′の構成を示している。本実施例において実施例と共通する構成要素には実施例1と同符号を付す。本実施例の撮像装置4′は、実施例1に対して、光源6および第1の偏光素子7′の位置と撮像素子11および第2の偏光素子10′の位置とを入れ替えた構成を有する。第1の偏光素子7′は、照明ユニット6から発せられた無偏光光としての照明光をP偏光(第1の偏光光)に変換して出射させる。一方、第2の偏光素子10′は、S偏光(第2の偏光光)を透過させ、P偏光を吸収または反射して透過させない(遮る)特性を有する。他の構成は実施例1と同じである。 FIG. 5 shows the configuration of the image pickup apparatus 4', which is the second embodiment of the present invention. In this embodiment, the components common to those in the embodiment are designated by the same reference numerals as those in the first embodiment. The image pickup apparatus 4'of this embodiment has a configuration in which the positions of the light source 6 and the first polarizing element 7'and the positions of the image pickup element 11 and the second polarizing element 10' are interchanged with respect to the first embodiment. .. The first polarizing element 7'converts the illumination light as unpolarized light emitted from the illumination unit 6 into P-polarized light (first polarized light) and emits it. On the other hand, the second polarizing element 10'has a property of transmitting S-polarized light (second polarized light) and absorbing or reflecting P-polarized light so as not to transmit (block) it. Other configurations are the same as in the first embodiment.

被写体側の撮像領域から撮像光学系9に入射して該撮像光学系9を通過した無偏光光としての撮像光のうちS偏光は、偏光ビームスプリッタ8で反射され、さらに第2の偏光素子10′を透過して撮像素子11に到達する。これにより、S偏光としての撮像光が形成する被写体像が撮像される。一方、光源6から出射して第1の偏光素子7′によりP偏光に変換された照明光は、偏光ビームスプリッタ8を透過し、撮像光学系9を通過して被写体側の照明領域に照射される。 Of the imaging light as unpolarized light that has entered the imaging optical system 9 from the imaging region on the subject side and passed through the imaging optical system 9, S-polarized light is reflected by the polarizing beam splitter 8 and further, the second polarizing element 10 It passes through ′ and reaches the image pickup element 11. As a result, the subject image formed by the imaging light as S-polarized light is imaged. On the other hand, the illumination light emitted from the light source 6 and converted into P-polarized light by the first polarizing element 7'transmits the polarization beam splitter 8 and passes through the imaging optical system 9 to irradiate the illumination region on the subject side. NS.

本実施例の撮像装置4′も、被写体を照明しながら該被写体の撮像を行うモードを有する。このモードにおいて、撮像光と照明光が共通の撮像光学系9を通過するため、撮像領域と照明領域とのパララクスが少ない。被写体において拡散反射した照明光(つまりは撮像光)は、第2の偏光素子10′を透過するS偏光成分を含むため、撮像素子11に到達できる。このため、被写体の照明と撮像とを同時に行うことが可能である。 The imaging device 4'of this embodiment also has a mode in which the subject is imaged while illuminating the subject. In this mode, since the imaging light and the illumination light pass through the common imaging optical system 9, there is little paralux between the imaging region and the illumination region. Since the illumination light diffusely reflected by the subject (that is, the image pickup light) contains the S polarization component transmitted through the second polarizing element 10', it can reach the image pickup element 11. Therefore, it is possible to simultaneously illuminate and image the subject.

また第1の偏光素子7′が、必ずしも無偏光光としての照明光を完全に(100%)P偏光に変換せず、数%だけ無偏光光のまま出射させる場合がある。また偏光ビームスプリッタ8の偏光分離面が、必ずしもP偏光を100%透過せず、数%のP偏光を反射する場合がある。このとき、偏光ビームスプリッタ8で反射したP偏光としての不要光が直接または撮像装置4′の内部で反射して第2の偏光素子10′および撮像素子11に向かう。しかし、本実施例では、このような不要なP偏光を第2の偏光素子10′により遮って撮像素子11に到達しないようにすることができる。 Further, the first polarizing element 7'does not necessarily completely convert the illumination light as unpolarized light into (100%) P-polarized light, and may emit only a few percent of the unpolarized light as unpolarized light. Further, the polarization splitting surface of the polarization beam splitter 8 does not necessarily transmit 100% of P-polarized light, and may reflect several% of P-polarized light. At this time, unnecessary light as P-polarized light reflected by the polarizing beam splitter 8 is reflected directly or inside the image pickup apparatus 4'and heads toward the second polarization element 10'and the image pickup device 11. However, in this embodiment, such unnecessary P-polarized light can be blocked by the second polarizing element 10'to prevent the image sensor 11 from being reached.

本実施例におけるLl,Ls,Lpの関係は実施例1と同じである。また本実施例でも偏光ビームスプリッタ8として、プレート型偏光ビームスプリッタを用いている。本実施例でも照明光が偏光ビームスプリッタ8の基板を透過する際に屈折するが、非点収差が生じにくい。 The relationship between Ll, Ls, and Lp in this example is the same as in Example 1. Further, in this embodiment as well, a plate-type polarizing beam splitter is used as the polarizing beam splitter 8. In this embodiment as well, the illumination light is refracted when it passes through the substrate of the polarizing beam splitter 8, but astigmatism is unlikely to occur.

図4(B)は、本実施例の撮像装置4′を分解して示している。本実施例の撮像装置4′は、図5に示した撮像装置4′の組立て完了状態において偏光分離ユニット28を挟んだ撮像素子ユニット30とは反対側に設けられた空間31′を有する。さらに該空間31′を挟んだ偏光分離ユニット28とは反対側に、拡散反射面31b′を有する。 FIG. 4B shows the image pickup apparatus 4'of this embodiment in an exploded manner. The image pickup device 4'of this embodiment has a space 31'provided on the side opposite to the image pickup device unit 30 sandwiching the polarization separation unit 28 in the assembled state of the image pickup device 4'shown in FIG. Further, a diffuse reflection surface 31b'is provided on the side opposite to the polarization separation unit 28 sandwiching the space 31'.

第1の偏光素子7′から出射して偏光ビームスプリッタ8で反射した不要光は、空間31′を通過して拡散反射面31b′で拡散反射される。実施例1と同様に、偏光ビームスプリッタ8との間に空間31′を挟んで拡散反射面31b′を設けることで、不要光が拡散反射面31b′で反射するまでの光路長と拡散反射面31b′で反射してから偏光ビームスプリッタ8に入射するまでの光路長を長くすることができ、不要光の撮像素子11への入射を抑制することができる。 Unwanted light emitted from the first polarizing element 7'and reflected by the polarizing beam splitter 8 passes through the space 31'and is diffusely reflected by the diffuse reflection surface 31b'. Similar to the first embodiment, by providing the diffuse reflection surface 31b'with a space 31'between the polarizing beam splitter 8, the optical path length and the diffuse reflection surface until unnecessary light is reflected by the diffuse reflection surface 31b'. The optical path length from the reflection by 31b'to the incident on the polarizing beam splitter 8 can be lengthened, and the incident of unnecessary light on the image pickup element 11 can be suppressed.

また本実施例でも、実施例1と同様に、拡散反射面31b′を偏光ビームスプリッタ8に正対する方向に対して撮像光学系側に傾斜させ、空間31の撮像素子側の端に拡散反射面31b′に対して起立した拡散反射面31c′を設けている。さらに実施例1と同様に拡散反射面31b′を正反射面としてもよいし、空間31′を設けずに偏光ビームスプリッタ8に近接した面31a′に正反射面を設けてもよい。 Further, also in this embodiment, as in the first embodiment, the diffuse reflection surface 31b'is inclined toward the imaging optical system with respect to the direction facing the polarizing beam splitter 8, and the diffuse reflection surface is at the end of the space 31 on the image pickup element side. A diffuse reflection surface 31c'that stands up against 31b' is provided. Further, as in the first embodiment, the diffuse reflection surface 31b'may be a specular reflection surface, or the specular reflection surface may be provided on the surface 31a' close to the polarizing beam splitter 8 without providing the space 31'.

本実施例でも、照明光のうち撮像素子11に入射する不要光を減少させつつ、撮像光学系9を通して被写体の照明と撮像とを行うことができる。 Also in this embodiment, it is possible to illuminate and image the subject through the image pickup optical system 9 while reducing unnecessary light incident on the image sensor 11 among the illumination lights.

以上説明した各実施例は代表的な例にすぎず、本発明の実施に際しては、各実施例に対して種々の変形や変更が可能である。 Each of the above-described examples is only a representative example, and various modifications and changes can be made to each of the examples in carrying out the present invention.

6 照明ユニット
7 第1の偏光素子
8 偏光ビームスプリッタ
9 撮像光学系
10 第2の偏光素子
11 撮像素子
6 Lighting unit 7 First polarizing element 8 Polarizing beam splitter 9 Imaging optical system 10 Second polarizing element 11 Imaging element

Claims (9)

被写体から撮像光学系に入射した撮像光を撮像する撮像素子と、
前記撮像光学系を通して前記被写体に照射される照明光となる第1の偏光光を出射させる光源系と、
前記第1の偏光光および該第1の偏光光とは偏光方向が異なる前記撮像光としての第2の偏光光のうち一方を反射して他方を透過させることにより、前記照明光を前記撮像光学系に向かわせ、前記撮像光学系からの前記撮像光を前記撮像素子に向かわせる偏光分離素子と、
前記偏光分離素子と前記撮像素子との間に配置され、前記第2の偏光光を透過させて前記第1の偏光光を遮る偏光素子とを有することを特徴とする撮像装置。
An image sensor that captures the imaging light incident on the imaging optical system from the subject,
A light source system that emits a first polarized light that is an illumination light that is applied to the subject through the imaging optical system.
By reflecting one of the first polarized light and the second polarized light as the imaging light whose polarization direction is different from that of the first polarized light and transmitting the other, the illumination light is transmitted to the imaging optics. A polarization separation element that directs the imaging light from the imaging optical system toward the system and directs the imaging light toward the imaging element.
An image pickup device that is arranged between the polarization separation element and the image pickup element and has a polarization element that transmits the second polarized light and blocks the first polarized light.
前記被写体に前記照明光を照射しながら前記被写体像の撮像を行うことを特徴とする請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the subject image is imaged while irradiating the subject with the illumination light. 前記光源系は、無偏光光を発する光源と、前記無偏光光を前記第1の偏光光に変換する偏光変換素子とを有することを特徴とする請求項1または2に記載の撮像装置。 The imaging device according to claim 1 or 2, wherein the light source system includes a light source that emits unpolarized light and a polarization conversion element that converts the unpolarized light into the first polarized light. 前記偏光分離素子の偏光分離面における前記撮像光学系の光軸と交わる分離点から前記光源ユニットまでの光路長および前記分離点から前記偏光変換素子までの光路長のうち少なくとも一方が、前記分離点から前記撮像素子までの光路長と異なることを特徴とする請求項1に記載の撮像装置。 At least one of the optical path length from the separation point intersecting the optical axis of the imaging optical system to the light source unit and the optical path length from the separation point to the polarization conversion element on the polarization separation surface of the polarization separation element is the separation point. The imaging device according to claim 1, wherein the optical path length from to the imaging element is different from that of the imaging device. 前記偏光分離素子は、プレート状またはフィルム状の透光性基板上に偏光分離面が設けられた素子であることを特徴とする請求項1から4のいずれか一項に記載の撮像装置。 The imaging device according to any one of claims 1 to 4, wherein the polarizing separation element is an element in which a polarization separation surface is provided on a plate-shaped or film-shaped translucent substrate. 前記照明光のうち前記偏光分離素子から前記撮像光学系に向かわない不要光を拡散反射させる拡散反射面を有し、
前記偏光分離素子と前記拡散反射面との間に、前記拡散反射面を前記偏光分離素子から離すための空間が設けられていることを特徴とする請求項1から5のいずれか一項に記載の撮像装置。
It has a diffuse reflection surface that diffusely reflects unnecessary light that does not go from the polarization separation element to the imaging optical system among the illumination lights.
The invention according to any one of claims 1 to 5, wherein a space for separating the diffuse reflection surface from the polarization separation element is provided between the polarization separation element and the diffusion reflection surface. Imaging device.
前記拡散反射面が、前記撮像光学系に向かって傾いていることを特徴とする請求項6に記載の撮像装置。 The imaging device according to claim 6, wherein the diffuse reflection surface is inclined toward the imaging optical system. 前記照明光のうち前記偏光分離素子から前記撮像光学系に向かわない不要光を正反射させる正反射面を有することを特徴とする請求項1から5のいずれか一項に記載の撮像装置。 The imaging device according to any one of claims 1 to 5, further comprising a specular reflection surface that specularly reflects unnecessary light that does not direct from the polarization separating element to the imaging optical system among the illumination lights. 請求項1から8のいずれか一項に記載の撮像装置と、
該撮像装置を回転させる回転ユニットとを有することを特徴とするカメラシステム。
The imaging device according to any one of claims 1 to 8.
A camera system including a rotating unit for rotating the image pickup device.
JP2020042619A 2020-03-12 2020-03-12 Imaging device Pending JP2021144138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020042619A JP2021144138A (en) 2020-03-12 2020-03-12 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020042619A JP2021144138A (en) 2020-03-12 2020-03-12 Imaging device

Publications (1)

Publication Number Publication Date
JP2021144138A true JP2021144138A (en) 2021-09-24

Family

ID=77766480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020042619A Pending JP2021144138A (en) 2020-03-12 2020-03-12 Imaging device

Country Status (1)

Country Link
JP (1) JP2021144138A (en)

Similar Documents

Publication Publication Date Title
US6101028A (en) Miniature microscope
JP5281923B2 (en) Projection display
US20070057164A1 (en) Scheimpflug normalizer
US6246526B1 (en) Light irradiating apparatus and image displaying apparatus
US20010013923A1 (en) Illuminating apparatus and projecting apparatus
US9829777B2 (en) Light source unit and projection type display apparatus
US20030193649A1 (en) Projection-type display apparatus
KR20170039130A (en) Projection-type display device
RU96120149A (en) OPTICAL PROJECTION SYSTEM
JP2018156065A (en) Forward-on-forward high dynamic range architecture for digital micromirror device
US20060228003A1 (en) Method and apparatus for detection of optical elements
US7648244B2 (en) Illuminating unit and projection-type image display apparatus employing the same
JP3870191B2 (en) Apparatus for projecting a multicolor image onto a projection screen
EP1052856A3 (en) Reflection type color projector
JP2004264657A (en) Lens barrel
JP2021144138A (en) Imaging device
US20080165328A1 (en) Projection apparatus
US20220365407A1 (en) Projection display apparatus
US5909302A (en) Staring scanner
US20230324665A1 (en) Microscope
JP2000347799A (en) Image pickup device
JP2022182597A (en) Prism block and projection type video display device
JP3575586B2 (en) Scratch inspection device
JP4622541B2 (en) Iris photography device
US7545555B2 (en) Projection device