Nothing Special   »   [go: up one dir, main page]

JP2021018000A - Separately installed air conditioning system - Google Patents

Separately installed air conditioning system Download PDF

Info

Publication number
JP2021018000A
JP2021018000A JP2019132378A JP2019132378A JP2021018000A JP 2021018000 A JP2021018000 A JP 2021018000A JP 2019132378 A JP2019132378 A JP 2019132378A JP 2019132378 A JP2019132378 A JP 2019132378A JP 2021018000 A JP2021018000 A JP 2021018000A
Authority
JP
Japan
Prior art keywords
air
heat exchange
heat
unit
conditioned space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019132378A
Other languages
Japanese (ja)
Other versions
JP6862504B2 (en
Inventor
木村 恵一
Keiichi Kimura
恵一 木村
貴之 石田
Takayuki Ishida
貴之 石田
英数 佐藤
Hidekazu Sato
英数 佐藤
後藤 和也
Kazuya Goto
和也 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Kohki Co Ltd
Original Assignee
Kimura Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Kohki Co Ltd filed Critical Kimura Kohki Co Ltd
Priority to JP2019132378A priority Critical patent/JP6862504B2/en
Priority to EP20164673.4A priority patent/EP3726153A1/en
Priority to AU2020202072A priority patent/AU2020202072B2/en
Priority to CN202020395508.7U priority patent/CN211739391U/en
Priority to CN202010218592.XA priority patent/CN111750461B/en
Publication of JP2021018000A publication Critical patent/JP2021018000A/en
Application granted granted Critical
Publication of JP6862504B2 publication Critical patent/JP6862504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Duct Arrangements (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Conditioning Control Device (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Central Air Conditioning (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

To provide a separately installed air conditioning system capable of reducing facility and running costs.SOLUTION: A separately installed air conditioning system comprises: an external air conditioner (4) that has a heat pump (50) capable of switching between cooling operation and heating operation, and exchanges heat with refrigerant for heat exchange of the heat pump (50) to supply the air; a heat exchange unit (5) having a heat exchanger (20) that selectively circulates cold water or hot water as water for heat exchange; a fan unit (7) that takes the outside air supplied from the external air conditioner (4) and return air of an air-conditioned space into the heat exchange unit (5), and exchanges heat with the water for heat exchange of the heat exchanger (20) to supply the air as air-conditioning air; and an attracting radiation unit (6) that attracts and mixes the return air in the air-conditioned space with the air-conditioning air supplied from the fan unit (7), discharges this mixed air to the air-conditioned space, and then radiates the heat of the mixed air. The external air conditioner (4), the fan unit (7) and the attracting radiation unit (6) are installed on the ceiling of the air-conditioned space, and the heat exchange unit (5) is installed in a machine room (R).SELECTED DRAWING: Figure 3

Description

本発明はセパレート設置空調システムに関するものである。 The present invention relates to a separate installation air conditioning system.

従来、ビルの空気調和システムは、屋外の冷温水熱源機と屋内の冷温水式空調機とを水配管で接続し、冷温水式空調機から空調用空気をダクトを使って室内に供給すると共に、室内の二酸化炭素が基準値を超えないように外気を導入する構成となっている。あるいは、冷温水を使わずに、ヒートポンプ式の室外機と室内機を冷媒配管で接続した構成となっている。 Conventionally, the air conditioning system of a building connects an outdoor cold / hot water heat source unit and an indoor cold / hot water air conditioner with a water pipe, and supplies air conditioning air from the cold / hot water air conditioner to the room using a duct. , It is configured to introduce outside air so that the carbon dioxide in the room does not exceed the standard value. Alternatively, the heat pump type outdoor unit and the indoor unit are connected by a refrigerant pipe without using cold / hot water.

特開2016−217561号公報Japanese Unexamined Patent Publication No. 2016-217561 特開2000−274777号公報Japanese Unexamined Patent Publication No. 2000-274777 特開2001−280859号公報Japanese Unexamined Patent Publication No. 2001-280859

冷温水式の場合、前記空調機は床面設置のため、空調機専用の機械室がビルに必要でレンタブル比が低下する問題がある。さらに、冷温水式空調機で冷房運転と暖房運転を同時にするには、4管式と呼ばれる冷水と温水を同時に冷温水式空調機へ送る水熱源設備が必要で、設備コスト及び運転コストが高くなる。一方、2管式と呼ばれる冷水と温水を切換えて冷温水式空調機へ送る水熱源設備では、冷房運転と暖房運転を同時にすることができず快適性が損なわれる問題がある。 In the case of the cold / hot water type, since the air conditioner is installed on the floor, there is a problem that a machine room dedicated to the air conditioner is required in the building and the rentable ratio is lowered. Furthermore, in order to simultaneously perform cooling operation and heating operation with a cold / hot water type air conditioner, a water heat source facility called a 4-tube type that simultaneously sends cold water and hot water to the cold / hot water type air conditioner is required, and the equipment cost and operating cost are high. Become. On the other hand, in a water heat source facility that switches between cold water and hot water, which is called a two-tube type, and sends it to a cold / hot water type air conditioner, there is a problem that the cooling operation and the heating operation cannot be performed at the same time, and the comfort is impaired.

また、空調機は、空調用空気と熱交換用水との間で熱交換させる熱交換器を備え、熱交換用水の流量を増減することで熱交換量を調整し、空調用空気を冷却又は加熱する能力を制御している。この熱交換器の伝熱管群を2つのグループに等分することで熱交換用水の下限流量を減らして、熱交換コイルの下限能力制御範囲を広げている。しかしながら、伝熱管群を等分しているため熱交換用水の下限流量に限度があり、僅少な熱交換量(貫流熱量)で足りる低空調負荷域では、能力過多となって冷やし過ぎや温め過ぎが生じ、熱交換器の熱交換で生じる熱交換用水の温度差が一定にならない問題があった。 In addition, the air conditioner is equipped with a heat exchanger that exchanges heat between the air conditioning air and the heat exchange water, adjusts the heat exchange amount by increasing or decreasing the flow rate of the heat exchange water, and cools or heats the air conditioning air. Controls the ability to do. By dividing the heat transfer tube group of this heat exchanger into two groups equally, the lower limit flow rate of the heat exchange water is reduced and the lower limit capacity control range of the heat exchange coil is expanded. However, since the heat transfer tube group is divided into equal parts, there is a limit to the lower limit flow rate of heat exchange water, and in a low air conditioning load region where a small amount of heat exchange (through heat amount) is sufficient, the capacity becomes excessive and it is overcooled or overheated. There is a problem that the temperature difference of the heat exchange water generated by the heat exchange of the heat exchanger is not constant.

また、複数のテナントが入居しているビル等の建物では、チラー等の熱源機を共用して空調を行っており、各テナント毎に空調料金を按分して課金する必要がある。そのための課金システムとして、空調機に設けられた熱交換器の水量制御バルブの開度と稼働時間の積から空調料金を算出して按分するものがあった。このような課金システムでは、熱交換コイルの通水量は算出できるが、実際に熱交換に使用されたエネルギー消費量が不明なため、空調料金算出の正確性に欠ける問題があった。 In addition, in buildings such as buildings where multiple tenants are occupying, air conditioning is performed by sharing a heat source unit such as a chiller, and it is necessary to prorate and charge the air conditioning fee for each tenant. As a billing system for that purpose, there is a system in which the air conditioning charge is calculated and apportioned from the product of the opening degree of the water amount control valve of the heat exchanger provided in the air conditioner and the operating time. In such a billing system, the amount of water flowing through the heat exchange coil can be calculated, but since the amount of energy actually used for heat exchange is unknown, there is a problem that the calculation of the air conditioning charge is not accurate.

本発明は上記課題を解決するため、冷房運転と暖房運転を切換できるヒートポンプを有すると共に前記ヒートポンプの熱交換用冷媒で外気を熱交換して給気する外調機と、熱交換用水である冷水又は温水を選択的に流通させる熱交換器を有する熱交換ユニットと、前記外調機から給気された前記外気と被空調空間の還気とを前記熱交換ユニットに取込んで前記熱交換器の前記熱交換用水で熱交換して空調用空気として給気するファンユニットと、前記ファンユニットから給気された前記空調用空気で前記被空調空間の還気を誘引して混合すると共にこの混合空気を前記被空調空間に出しつつ前記混合空気の熱を放射する誘引放射ユニットと、を備え、前記外調機と前記ファンユニットと前記誘引放射ユニットを前記被空調空間の天井に設置し、前記熱交換ユニットを機械室に設置したことを最も主要な特徴とする。 In order to solve the above problems, the present invention has an external conditioner which has a heat pump capable of switching between cooling operation and heating operation and exchanges heat with the heat exchange refrigerant of the heat pump to supply air, and cold water which is heat exchange water. Alternatively, the heat exchanger unit having a heat exchanger for selectively flowing hot water, and the outside air supplied from the external conditioner and the return air of the air-conditioned space are taken into the heat exchange unit. The fan unit that exchanges heat with the heat exchange water and supplies air as air conditioning air and the air conditioning air supplied from the fan unit attracts and mixes the return air of the air-conditioned space and mixes the air. An attractive radiation unit that radiates the heat of the mixed air while discharging air to the air-conditioned space is provided, and the external conditioner, the fan unit, and the attractive radiation unit are installed on the ceiling of the air-conditioned space. The most important feature is that the heat exchange unit is installed in the machine room.

請求項1と2の発明によれば、通常一体設置されている熱交換ユニットとファンユニットを分けてセパレート化し、外調機とファンユニットと誘引放射ユニットを天井に、熱交換ユニットを機械室に、各々設置しているので、機械室を狭小化でき施工の省力化が図れて、レンタブル比を高めることができる。
2管式の水熱源設備と、ヒートポンプ式の外調機を設けるだけでよいので、4管式の水熱源設備に比べて、設備及び運転のコストを低減できる。
冷房と暖房の両方が要求される中間期などに、ヒートポンプ式の外調機単体で冷房運転と暖房運転を自由に切換えできるので快適性が向上する。しかも、外気冷房ができかつ熱交換ユニットの運転に使用する水熱源設備を停止できるので省エネ性が向上する。
外調機と熱交換ユニットの2段階で空気を処理するので除湿効果や加湿効果に優れる。
誘引放射ユニットの熱放射の作用により温度ムラがなく被空調空間の快適性が向上する。
誘引放射ユニットで空調用空気と還気を誘引混合して、混合空気の温度を被空調空間の温度に近づけることができるため、コールドドラフトがなく冷房時の結露防止効果が得られる。
According to the inventions of claims 1 and 2, the heat exchange unit and the fan unit, which are usually integrally installed, are separated and separated, and the external conditioner, the fan unit, and the attracting radiation unit are used as the ceiling, and the heat exchange unit is used as the machine room. Since each is installed, the machine room can be narrowed, labor can be saved, and the rentable ratio can be increased.
Since it is only necessary to provide a 2-tube type water heat source equipment and a heat pump type external air conditioner, the equipment and operation costs can be reduced as compared with the 4-tube type water heat source equipment.
In the middle period when both cooling and heating are required, the heat pump type external air conditioner can freely switch between cooling operation and heating operation, improving comfort. Moreover, energy saving is improved because the outside air can be cooled and the water heat source equipment used for operating the heat exchange unit can be stopped.
Since the air is treated in two stages, the external controller and the heat exchange unit, it has excellent dehumidifying and humidifying effects.
Due to the action of heat radiation from the attract radiation unit, there is no temperature unevenness and the comfort of the air-conditioned space is improved.
Since the air-conditioning air and the return air can be attracted and mixed by the attracting radiation unit to bring the temperature of the mixed air close to the temperature of the air-conditioned space, there is no cold draft and the effect of preventing dew condensation during cooling can be obtained.

請求項2の発明によれば、第1と第2の運転パターンを組合わせることで、被空調空間の空調負荷の変動にきめ細かく対応できるので空調能力の過不足が発生せず、無駄なエネルギー消費がなくなって省エネ性が向上する。
誘引放射ユニットによる熱放射なので空調範囲に偏りがなく、どの組の空調機器を停止しても被空調空間全域の空調をカバーでき、快適性が損なわれない。
請求項3の発明によれば、第3の運転パターンにより空調機器の運転時間を平均化して長寿命化を図れる。
According to the invention of claim 2, by combining the first and second operation patterns, it is possible to finely respond to fluctuations in the air conditioning load of the air-conditioned space, so that excess or deficiency of the air conditioning capacity does not occur and wasteful energy consumption occurs. Eliminates and improves energy efficiency.
Since the heat is radiated by the attracting radiation unit, the air conditioning range is not biased, and even if any set of air conditioning equipment is stopped, the air conditioning of the entire air-conditioned space can be covered, and comfort is not impaired.
According to the third aspect of the invention, the operating time of the air conditioner can be averaged and the life can be extended by the third operation pattern.

請求項4の発明によれば、冷媒配管が不要な一体形ヒートポンプを備えた外調機なので、セパレートタイプのヒートポンプ式空調機と比べて設備コスト及び運転コストを低減できる。
外気と比べてエクセルギーの高い還気を熱源として利用するので、省エネ性の向上とデフロスト運転の軽減を図れる。
外調機で換気することができるので、別個に換気装置を設置せずに済み設備コストを低減できる。
外調機全体を天井から降ろすことなく、スライド機構にて外調機の底面からヒートポンプを出し入れできるのでメンテナンスが容易となる。
According to the invention of claim 4, since the external air conditioner is provided with an integrated heat pump that does not require a refrigerant pipe, the equipment cost and the operating cost can be reduced as compared with the separate type heat pump type air conditioner.
Since the return air, which has a higher exergy than the outside air, is used as a heat source, it is possible to improve energy saving and reduce defrost operation.
Since it can be ventilated by an external air conditioner, it is not necessary to install a separate ventilation device, and the equipment cost can be reduced.
Maintenance is easy because the heat pump can be taken in and out from the bottom of the external air conditioner by the slide mechanism without lowering the entire external air conditioner from the ceiling.

請求項5の発明によれば、熱交換用水の流量と給気風量の両方で被空調空間の温度調整をしているので(熱交換用水の水量制御のみ又は給気風量制御のみの温度調整と比べて)空調能力の過大な変動(過冷却や過加熱)を緩和して、屋内温度のオーバーシュートを抑制でき、安定性と快適性に優れた空調を行える。
空調負荷が変動しても熱交換用水の温度差を一定に制御しつつ、給気風量の増減によって被空調空間の温度を制御するので快適性も維持できる。
低空調負荷の場合に分流回路の第1グループで熱交換用水の流量を増減させて下限流量をさらに最少化できる。そのため、熱交換器の下限能力制御範囲が広がって低空調負荷の場合でも能力過多とならず、エネルギー浪費及び冷やし過ぎや温め過ぎが無くなって省エネ性と快適性が向上する。
低空調負荷の場合でも熱交換用水の温度差を一定に制御するので熱交換ユニットの少水量大温度差運転ができ、少水量化による配管や空調設備の簡略化と、大温度差化による熱源機の省エネ化を図れる。
According to the invention of claim 5, since the temperature of the air-conditioned space is adjusted by both the flow rate of the heat exchange water and the air supply air volume (the temperature adjustment of only the water amount control of the heat exchange water or only the air supply air volume control). (Compared to this) It is possible to mitigate excessive fluctuations in air conditioning capacity (overcooling and overheating), suppress overshoot of indoor temperature, and perform air conditioning with excellent stability and comfort.
Even if the air conditioning load fluctuates, the temperature difference of the heat exchange water is controlled to be constant, and the temperature of the air-conditioned space is controlled by increasing or decreasing the amount of air supply air, so comfort can be maintained.
In the case of a low air conditioning load, the lower limit flow rate can be further minimized by increasing or decreasing the flow rate of heat exchange water in the first group of the shunt circuit. Therefore, the lower limit capacity control range of the heat exchanger is widened so that the capacity is not excessive even in the case of a low air-conditioning load, energy waste, overcooling and overheating are eliminated, and energy saving and comfort are improved.
Since the temperature difference of the heat exchange water is controlled to be constant even when the air conditioning load is low, the heat exchange unit can be operated with a small amount of water and a large temperature difference. You can save energy on the machine.

請求項6の発明によれば、冷房時に熱交換用水を第1グループに流通させて第2グループに流通させないようにし、第1グループを通過して過冷却除湿した空気を、不重複ゾーンを通過した前記過冷却除湿空気よりも高温のバイパス空気で再熱し、不快な冷感がないドライエアーを得ることができる。このとき、前記過冷却除湿空気が逃げないように前記バイパス空気で挟むので混合が促進されて確実に再熱することができる。そのため、湿度が高くてジメジメする中間期でも、コールドドラフトのないカラッとした気流で空調ができ快適性が向上する。しかも、バイパスダンパ等の機器が不要でコストダウンとコンパクト化を図れる。 According to the invention of claim 6, the heat exchange water is circulated to the first group during cooling so as not to be circulated to the second group, and the supercooled dehumidified air passing through the first group passes through the non-overlapping zone. By reheating with bypass air having a temperature higher than that of the supercooled dehumidified air, dry air without an unpleasant cooling sensation can be obtained. At this time, since the supercooled dehumidified air is sandwiched between the bypass airs so as not to escape, mixing is promoted and reheating can be reliably performed. Therefore, even in the middle period when the humidity is high and it gets damp, air conditioning can be performed with a crisp air flow without cold draft, and comfort is improved. Moreover, equipment such as a bypass damper is not required, and cost reduction and compactness can be achieved.

請求項7の発明によれば、熱交換用水の温度差を一定に制御し、熱交換用水の温度差と、熱交換用水の流量と、に基づいて被空調空間のエネルギー消費量を算出できる。そのため、各被空調空間のエネルギー消費量を比較することで空調料金を正確に算出して按分できる。
熱交換用水の流量と温度を計測するだけでよく、熱交換ユニットの運転とエネルギー消費量の出力を一つの制御装置で行えるので設備や施工を簡略化でき、コスト低減を図れる。
According to the invention of claim 7, the temperature difference of the heat exchange water can be controlled to be constant, and the energy consumption of the air-conditioned space can be calculated based on the temperature difference of the heat exchange water and the flow rate of the heat exchange water. Therefore, the air-conditioning charge can be accurately calculated and apportioned by comparing the energy consumption of each air-conditioned space.
Since it is only necessary to measure the flow rate and temperature of the heat exchange water, the operation of the heat exchange unit and the output of energy consumption can be performed with one control device, so that the equipment and construction can be simplified and the cost can be reduced.

請求項8の発明によれば、熱交換ユニットのエネルギー消費量の増減に応じて熱源機の運転台数を増減させるので熱源機のエネルギー浪費を抑えることができ省エネとなる。
請求項9の発明によれば、伝熱管群の死水領域が減少し、伝熱管群の通風抵抗が小さくて省エネとなり、空調用空気との接触面積(貫流熱量)が増して熱交換効率が向上する。そのため、熱交換器の伝熱面積を増加(大型化)させずに少水量大温度差運転ができる。
According to the invention of claim 8, since the number of operating heat source machines is increased or decreased according to the increase or decrease in the energy consumption of the heat exchange unit, the energy waste of the heat source unit can be suppressed and energy saving can be achieved.
According to the invention of claim 9, the dead water region of the heat transfer tube group is reduced, the ventilation resistance of the heat transfer tube group is small, energy is saved, the contact area with air conditioning air (through heat amount) is increased, and the heat exchange efficiency is improved. To do. Therefore, it is possible to operate with a small amount of water and a large temperature difference without increasing (increasing the size) the heat transfer area of the heat exchanger.

本発明のセパレート設置空調システムの簡略平面図である。It is a simplified plan view of the separate installation air-conditioning system of this invention. 図1の簡略側面図である。It is a simplified side view of FIG. 空調機器の簡略説明図である。It is a simplified explanatory drawing of an air conditioner. 熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger. 図4のA矢視の簡略説明図である。It is a simplified explanatory view of the arrow A view of FIG. 図4のB矢視の簡略説明図である。It is a simplified explanatory view of the arrow B view of FIG. 外調機の側面断面図である。It is a side sectional view of an external conditioner. 誘引放射ユニットの斜視図である。It is a perspective view of the attraction radiation unit. 誘引放射ユニットの断面図である。It is sectional drawing of the attract radiation unit. 空調運転の一例を示すフローチャートである。It is a flowchart which shows an example of the air-conditioning operation. セパレート設置空調システムの他の実施例を示す簡略平面図である。It is a simplified plan view which shows the other embodiment of the separate installation air conditioning system.

図1から図3は本発明のセパレート設置空調システムの一実施例で、このセパレート設置空調システムは、空調機器1、熱交換ユニット5、水熱源設備2及び制御装置3を備えており、ビルなどの建物に設置する。空調機器1は、建物内の1又は複数の被空調空間Sの天井に2組以上設置し、熱交換ユニット5は機械室Rに設置する。被空調空間Sは、建物の各階層を天井、床及び壁等で区画して成る。空調機器1は、外調機4、ファンユニット7及び誘引放射ユニット6を備えている。各図の太い点線の矢印は空気の気流方向を示す。 1 to 3 are an embodiment of the separate installation air conditioning system of the present invention. The separate installation air conditioning system includes an air conditioner 1, a heat exchange unit 5, a water heat source facility 2, and a control device 3, and includes a building and the like. Installed in the building of. Two or more sets of the air conditioner 1 are installed on the ceiling of one or a plurality of air-conditioned spaces S in the building, and the heat exchange unit 5 is installed in the machine room R. The air-conditioned space S is formed by partitioning each floor of the building by a ceiling, a floor, a wall, or the like. The air conditioner 1 includes an external air conditioner 4, a fan unit 7, and an attractive radiation unit 6. The thick dotted arrow in each figure indicates the direction of air flow.

外調機4は、冷房運転と暖房運転を切換できるヒートポンプ50を有し、被空調空間Sの還気を熱源空気として使用する。このヒートポンプ50の熱交換用冷媒で外気(OA)を熱交換(冷却又は加熱)して給気(SA)する。熱交換ユニット5は、熱交換用水である冷水又は温水を選択的に流通させる水用の熱交換器20を有している。この熱交換器20の熱交換用水で、外調機4から給気された外気と被空調空間Sの還気(RA)とを熱交換(冷却又は加熱)して空調用空気としてファンユニット7にて給気(SA)する。あるいは、外気のみ又は外気と還気の混合空気を、熱交換器20の熱交換用水で熱交換せずに空調用空気としてファンユニット7にて給気する。 The external air conditioner 4 has a heat pump 50 capable of switching between cooling operation and heating operation, and uses the return air of the air-conditioned space S as heat source air. The outside air (OA) is heat-exchanged (cooled or heated) with the heat exchange refrigerant of the heat pump 50 to supply air (SA). The heat exchange unit 5 has a heat exchanger 20 for water that selectively circulates cold water or hot water as heat exchange water. With the heat exchange water of the heat exchanger 20, the outside air supplied from the external air conditioner 4 and the return air (RA) of the air-conditioned space S are heat-exchanged (cooled or heated), and the fan unit 7 is used as air-conditioning air. Air supply (SA) at. Alternatively, only the outside air or the mixed air of the outside air and the return air is supplied by the fan unit 7 as air conditioning air without heat exchange with the heat exchange water of the heat exchanger 20.

誘引放射ユニット6は、熱交換ユニット5から給気された空調用空気で被空調空間Sの還気を誘引して混合し、この混合空気を被空調空間Sに出しつつ混合空気の熱を放射する。誘引放射ユニット6、ファンユニット7、機械室R、熱交換ユニット5、外調機4及び屋外との間で空気が流通するようにダクト15を介して相互に接続する。ダクト15は図1と図2では太い実線で簡略化して示す。図例では、被空調空間Sを天井板8で仕切って設けた天井懐に空調機器1を設置している。天井懐は天井チャンバ―として利用し、天井板8に設けた空気取入口9から被空調空間Sの還気を天井懐に取入れる。 The attracting radiation unit 6 attracts and mixes the return air of the air-conditioned space S with the air-conditioning air supplied from the heat exchange unit 5, and radiates the heat of the mixed air while discharging the mixed air to the air-conditioned space S. To do. The attraction radiation unit 6, the fan unit 7, the machine room R, the heat exchange unit 5, the external air conditioner 4, and the outdoor are connected to each other via a duct 15 so that air can flow. The duct 15 is shown simply by a thick solid line in FIGS. 1 and 2. In the illustrated example, the air conditioner 1 is installed in the ceiling pocket provided by partitioning the air-conditioned space S by the ceiling plate 8. The ceiling pocket is used as a ceiling chamber, and the return air of the air-conditioned space S is taken into the ceiling pocket from the air intake 9 provided in the ceiling plate 8.

水熱源設備2は2管式で、熱源機10及び循環機器11を備えている。熱源機10は、熱交換ユニット5の熱交換器20に供される熱交換用水を冷却又は加熱して、熱交換に適した冷水又は温水となるように水温調整する。熱源機10は複数台設け、1台毎個別に運転・停止できかつ冷水と温水を切換できるように構成する。循環機器11は、熱交換用水を熱源機10と熱交換ユニット5との間で循環させる。循環機器11は、熱交換用水を熱源機10から熱交換ユニット5へ送る往配管12と、熱交換ユニット5から熱源機10へ還す還配管13と、熱交換用水を搬送するポンプ14と、を備えている。 The water heat source equipment 2 is a two-tube type and includes a heat source machine 10 and a circulation device 11. The heat source machine 10 cools or heats the heat exchange water provided in the heat exchanger 20 of the heat exchange unit 5, and adjusts the water temperature so that the water becomes cold water or hot water suitable for heat exchange. A plurality of heat source machines 10 are provided so that each unit can be individually started and stopped and can switch between cold water and hot water. The circulation device 11 circulates heat exchange water between the heat source machine 10 and the heat exchange unit 5. The circulation device 11 includes an outgoing pipe 12 that sends heat exchange water from the heat source machine 10 to the heat exchange unit 5, a return pipe 13 that returns the heat exchange unit 5 to the heat source machine 10, and a pump 14 that conveys the heat exchange water. I have.

熱交換ユニット5は、熱交換器20と、熱交換器20に流れる熱交換用水の流量を調整するバルブ33と、熱交換器20を通過した空気を加湿する加湿器21と熱交換器20と加湿器21とファン22とを内装するケーシング24と、を備えている。ケーシング24には外気口16と還気口26を設ける。機械室Rは空気混合チャンバーとして利用し、機械室Rに設けた空気取入口17から被空調空間Sの還気を取入れる。 The heat exchange unit 5 includes a heat exchanger 20, a valve 33 that adjusts the flow rate of heat exchange water flowing through the heat exchanger 20, a humidifier 21 that humidifies the air that has passed through the heat exchanger 20, and a heat exchanger 20. It includes a casing 24 that houses the humidifier 21 and the fan 22. The casing 24 is provided with an outside air port 16 and a return air port 26. The machine room R is used as an air mixing chamber, and the return air of the air-conditioned space S is taken in from the air intake 17 provided in the machine room R.

ファンユニット7は、給気用ファン22と、ファン22の回転数を無段階又は段階制御して給気風量を調整する回転制御器23と、空気を分流させる分岐チャンバ部25と、を備えている。分岐チャンバ部25は複数の誘引放射ユニット6にダクト15を介して接続する。ファン22は、外調機4から給気された外気と、被空調空間Sから空気取入口17及び還気口26を介して取込んだ還気を、熱交換ユニット5の熱交換器20及び加湿器21に通過させて分岐チャンバ部25からダクト15を介して誘引放射ユニット6に送風する。 The fan unit 7 includes an air supply fan 22, a rotation controller 23 that adjusts the air supply air volume by steplessly or stepwise controlling the rotation speed of the fan 22, and a branch chamber portion 25 that divides air. There is. The branch chamber portion 25 is connected to a plurality of attractive radiation units 6 via a duct 15. The fan 22 uses the outside air supplied from the external air conditioner 4 and the return air taken in from the air-conditioned space S through the air intake port 17 and the return air port 26 to the heat exchanger 20 of the heat exchange unit 5 and the return air. It is passed through the humidifier 21 and blown from the branch chamber portion 25 to the attracting radiation unit 6 through the duct 15.

図4から図6に示すように、熱交換器20は、フィン群27と分流回路28とを備えている。フィン群27は、空調用空気が通る隙間をあけて配置した多数のプレートフィン29から成る。分流回路28は、熱交換用水が流通する伝熱管群30を複数のグループGに分配しかつ分配の割合を相違させて成る。これにより、一部又は全てのグループGの伝熱面積(熱交換量)を異ならせる。たとえば、図5の太い一点鎖線で示す単独かつ最少分配割合の第1のグループG(G1)と、第1グループ(G1)を除いた図5の細い一点鎖線で示す分配割合の多い第2のグループG(G2)と、に分ける。伝熱管群30は空調用空気の気流方向を横切るように蛇行させてフィン群27に接続する。伝熱管群30の直管部は楕円管にて構成するのが望ましいが円形管としてもよい。 As shown in FIGS. 4 to 6, the heat exchanger 20 includes a fin group 27 and a flow dividing circuit 28. The fin group 27 is composed of a large number of plate fins 29 arranged so as to allow air for air conditioning to pass through. The shunt circuit 28 distributes the heat transfer tube group 30 through which the heat exchange water flows to a plurality of groups G and has different distribution ratios. As a result, the heat transfer area (heat exchange amount) of some or all of the group G is made different. For example, the first group G (G1) having a single and minimum distribution ratio shown by the thick alternate long and short dash line in FIG. 5 and the second group G (G1) having a large distribution ratio shown by the thin alternate long and short dash line in FIG. 5 excluding the first group (G1). Divide into group G (G2). The heat transfer tube group 30 meanders across the air flow direction of the air conditioning air and is connected to the fin group 27. The straight tube portion of the heat transfer tube group 30 is preferably formed of an elliptical tube, but may be a circular tube.

第1グループG1の熱交換用水入口は第1の分岐ヘッダ31に接続し、第2グループG2の熱交換用水入口は第2の分岐ヘッダ31に接続する。第1グループG1と第2グループG2の熱交換用水出口は両方とも合流ヘッダ32に接続する。分岐ヘッダ31はバルブ33を介して往配管12に接続し、合流ヘッダ32は還配管13に接続する。バルブ33は流量(弁開度)を無段階に調整することができる比例制御弁とし、分流回路28の各グループGに設ける。熱交換ユニット5の冷却能力と加熱能力の増減は、分流回路28を流れる熱交換用水の流量制御と、ファン22の給気風量制御と、を組合わせて調整する。分流回路28は、熱交換器20を通る空気の気流方向から見たときに、第2グループG2に、第1グループG1と重ならない不重複ゾーンFが、複数形成されると共に、第1グループG1が不重複ゾーンFで挟まれるように構成する。 The heat exchange water inlet of the first group G1 is connected to the first branch header 31, and the heat exchange water inlet of the second group G2 is connected to the second branch header 31. Both the heat exchange water outlets of the first group G1 and the second group G2 are connected to the merging header 32. The branch header 31 is connected to the outgoing pipe 12 via the valve 33, and the merging header 32 is connected to the return pipe 13. The valve 33 is a proportional control valve capable of steplessly adjusting the flow rate (valve opening degree), and is provided in each group G of the shunt circuit 28. The increase / decrease in the cooling capacity and the heating capacity of the heat exchange unit 5 is adjusted by combining the flow rate control of the heat exchange water flowing through the shunt circuit 28 and the air supply air volume control of the fan 22. In the shunt circuit 28, a plurality of non-overlapping zones F that do not overlap with the first group G1 are formed in the second group G2 when viewed from the direction of the air flow passing through the heat exchanger 20, and the first group G1 Is configured to be sandwiched between non-overlapping zones F.

図3と図7に示すように、外調機4は、ヒートポンプ50と、外気を加湿する加湿器40と、外気(OA)を外調機4から熱交換ユニット5に給気する外気用給気ファン41と、還気(RA)を屋外に排気(EA)する熱源空気用排気ファン42と、外気用給気ファン41と熱源空気用排気ファン42の回転数を無段階又は段階制御して給気風量と排気風量を調整する回転制御器43と、これらを内装するケーシング45と、ケーシング45の底部からヒートポンプ50を出し入れするためのスライド機構46と、を備えている。ケーシング45には還気口54を設ける。 As shown in FIGS. 3 and 7, the external air conditioner 4 includes a heat pump 50, a humidifier 40 that humidifies the outside air, and an outside air supply that supplies the outside air (OA) from the external air conditioner 4 to the heat exchange unit 5. The rotation speeds of the air fan 41, the heat source air exhaust fan 42 that exhausts the return air (RA) to the outside (EA), the outside air air supply fan 41, and the heat source air exhaust fan 42 are steplessly or stepwise controlled. It includes a rotation controller 43 for adjusting the supply air volume and the exhaust air volume, a casing 45 for incorporating them, and a slide mechanism 46 for moving the heat pump 50 in and out from the bottom of the casing 45. The casing 45 is provided with a return air port 54.

スライド機構46は、ヒートポンプ50を取り付けたフレーム47と、フレーム47を上下移動させるダンパー48と、を備える。ダンパー48は、ケーシング45とフレーム47に跨って設ける。外調機4の保守点検は、天井板8に設けた点検口44を開き、ケーシング45の底面の開口部を閉じている外装板49を外し、スライド機構46を用いてフレーム47と共にヒートポンプ50を降ろして行う。ダンパー48は、ガスやオイルの圧力で伸縮して作業者の身体的負担を軽減する。 The slide mechanism 46 includes a frame 47 to which the heat pump 50 is attached, and a damper 48 for moving the frame 47 up and down. The damper 48 is provided so as to straddle the casing 45 and the frame 47. For maintenance and inspection of the external air conditioner 4, the inspection port 44 provided on the ceiling plate 8 is opened, the exterior plate 49 closing the opening on the bottom surface of the casing 45 is removed, and the heat pump 50 is installed together with the frame 47 using the slide mechanism 46. Take it down. The damper 48 expands and contracts due to the pressure of gas or oil to reduce the physical burden on the operator.

図3に示すように、ヒートポンプ50は、外気用熱交換器51と熱源空気用熱交換器52と圧縮機53とを有する冷媒配管工事が不要な一体形とする。外気用給気ファン41は、屋外からダクト15を介して外気を取込んで外気用熱交換器51を通過させ、外調機4からダクト15及び機械室Rを介して熱交換ユニット5に送風して供給する。図例では、機械室Rと外調機4をダクト15で接続しているが、外調機4と熱交換ユニット5をダクト15で接続してもよい。熱源空気用排気ファン42は、被空調空間Sから空気取入口9及び還気口54を介して還気を取込んで熱源空気用熱交換器52を通過させ、外調機4からダクト15を介して屋外に排気する。 As shown in FIG. 3, the heat pump 50 is an integrated type having a heat exchanger 51 for outside air, a heat exchanger 52 for heat source air, and a compressor 53, which does not require refrigerant piping work. The outside air supply fan 41 takes in outside air from the outside through the duct 15, passes it through the outside air heat exchanger 51, and blows air from the external controller 4 to the heat exchange unit 5 via the duct 15 and the machine room R. And supply. In the illustrated example, the machine room R and the external air conditioner 4 are connected by the duct 15, but the external air conditioner 4 and the heat exchange unit 5 may be connected by the duct 15. The heat source air exhaust fan 42 takes in return air from the air-conditioned space S through the air intake port 9 and the return air port 54, passes it through the heat source air heat exchanger 52, and passes the duct 15 from the external air conditioner 4. Exhaust to the outside through.

ヒートポンプ50は、冷媒に対して圧縮・凝縮・膨張・蒸発の工程順を繰返し、この冷媒と熱交換する空気に対して冷媒蒸発工程で吸熱を冷媒凝縮工程で放熱を各々行うものである。ヒートポンプ50は、冷媒の蒸発工程と凝縮工程であって互いに異なる工程を担う外気用熱交換器51及び熱源空気用熱交換器52と、冷媒を圧縮して搬送する圧縮機53と、冷媒を膨張させる膨張弁等の減圧機構55と、外気用熱交換器51及び熱源空気用熱交換器52の蒸発工程と凝縮工程を切換えるバルブ等の切換機構56と、を少なくとも備え、これらを冷媒が循環するように配管接続して成る。 The heat pump 50 repeats the steps of compression, condensation, expansion, and evaporation of the refrigerant, and absorbs heat from the air that exchanges heat with the refrigerant in the refrigerant evaporation step and dissipates heat in the refrigerant condensation step. The heat pump 50 expands the refrigerant, the outside air heat exchanger 51 and the heat source air heat exchanger 52, which are the refrigerant evaporation process and the refrigerant condensation process, and the compressor 53 that compresses and conveys the refrigerant. It is provided with at least a pressure reducing mechanism 55 such as an expansion valve to be operated, and a switching mechanism 56 such as a valve for switching between the evaporation process and the condensation process of the heat exchanger 51 for outside air and the heat exchanger 52 for heat source air, and the refrigerant circulates therein. It consists of connecting pipes like this.

外気用熱交換器51と熱源空気用熱交換器52は、熱交換ユニット5の熱交換器20と同様に、熱交換用冷媒が流通する伝熱管群を、空気が通過するフィン群に接続した構造で、熱交換用冷媒と通過空気が、伝熱管群及びフィン群を介して熱交換する(図示省略)。伝熱管群は楕円管にて構成するのが望ましいが円形管としてもよい。外調機4の冷却能力と加熱能力の増減は、外気用熱交換器51の外気冷却又は加熱能力制御と、外気用給気ファン41の給気風量制御と、を組合わせて調整する。 In the heat exchanger 51 for outside air and the heat exchanger 52 for heat source air, the heat transfer tubes through which the heat exchange refrigerant flows are connected to the fins through which the air passes, similarly to the heat exchanger 20 of the heat exchange unit 5. In the structure, the heat exchange refrigerant and the passing air exchange heat via the heat transfer tube group and the fin group (not shown). The heat transfer tube group is preferably formed of an elliptical tube, but may be a circular tube. The increase / decrease in the cooling capacity and the heating capacity of the external air conditioner 4 is adjusted by combining the outside air cooling or heating capacity control of the outside air heat exchanger 51 and the supply air volume control of the outside air supply fan 41.

図8と図9に示すように、誘引放射ユニット6は、空気供給部60、空気誘引部61及び空気混合部62を備え、天井板8の開口部から空気混合部62の底面を被空調空間Sに向けた状態で設置する。空気供給部60は熱交換ユニット5の供給空気を噴流し、空気誘引部61は噴流空気の誘引作用にて被空調空間Sの還気を引き込む。空気混合部62は、混合空気の熱を蓄熱するプレート63と貫孔64の群を備え、貫孔64を介してプレート63から熱を被空調空間Sへ放射しつつ混合空気を被空調空間Sへ放出する。 As shown in FIGS. 8 and 9, the attraction radiation unit 6 includes an air supply unit 60, an air attraction unit 61, and an air mixing unit 62, and an air-conditioned space is provided on the bottom surface of the air mixing unit 62 from the opening of the ceiling plate 8. Install in a state facing S. The air supply unit 60 jets the supply air of the heat exchange unit 5, and the air attraction unit 61 draws the return air of the air-conditioned space S by the action of attracting the jet air. The air mixing unit 62 includes a plate 63 for storing the heat of the mixed air and a group of through holes 64, and radiates heat from the plate 63 to the air-conditioned space S through the through holes 64 while radiating the mixed air to the air-conditioned space S. Release to.

図2と図5に示すように、制御装置3は、被空調空間Sの温度及び湿度と熱交換用水の温度差を設定する設定部70と、空気状態検出部71と、水状態検出部72と、空調制御部73、温度補償部74と、エネルギー消費監視部75と、熱源制御部76と、を備えており、これらはマイクロプロセッサ、各種センサー、スイッチ、その他の制御機器にて構成する。 As shown in FIGS. 2 and 5, the control device 3 includes a setting unit 70 for setting the temperature and humidity of the air-conditioned space S and a temperature difference between the heat exchange water, an air condition detection unit 71, and a water condition detection unit 72. The air conditioning control unit 73, the temperature compensation unit 74, the energy consumption monitoring unit 75, and the heat source control unit 76 are provided, and these are composed of a microprocessor, various sensors, switches, and other control devices.

空気状態検出部71は、被空調空間Sの空気(還気)の温度及び湿度を検出する還気センサー77を備える。水状態検出部72は、各被空調空間Sの熱交換用水の流量を検出する流量計78と、熱交換器20の熱交換用水の入口水温と出口水温を検出する水温計79と、を備える。流量計78は各被空調空間Sの往配管12又は還配管13に設け、水温計79は各熱交換ユニット5の熱交換器20に接続する往配管12と還配管13に設ける。なお、水状態検出部72は、流量計78と水温計79を一体にした熱量計としてもよい。 The air condition detection unit 71 includes a return air sensor 77 that detects the temperature and humidity of the air (return air) in the air-conditioned space S. The water state detection unit 72 includes a flow meter 78 that detects the flow rate of the heat exchange water in each air-conditioned space S, and a water temperature meter 79 that detects the inlet water temperature and the outlet water temperature of the heat exchange water of the heat exchanger 20. .. The flow meter 78 is provided in the forward pipe 12 or the return pipe 13 of each air-conditioned space S, and the water temperature gauge 79 is provided in the forward pipe 12 and the return pipe 13 connected to the heat exchanger 20 of each heat exchange unit 5. The water state detection unit 72 may be a calorimeter in which a flow meter 78 and a water temperature gauge 79 are integrated.

空調制御部73は、空気用検出部46で検出した被空調空間Sの空気の温度及び湿度が設定部70で設定した被空調空間Sの温度及び湿度になるように、外調機4及び熱交換ユニット5の冷却能力と加熱能力を制御し、外調機4及び熱交換ユニット5の加湿器21、40の加湿量を制御する。さらに、空調制御部73は、空調機器1の運転と停止を組単位で行う第1の運転パターンと、外調機4の単体運転と外調機4及び熱交換ユニット5の同時運転とを切換える第2の運転パターンと、運転中の空調機器1と停止中の空調機器1を交替させる第3の運転パターンと、外調機4と熱交換ユニット5の一方又は両方の空調能力を増減させる第4の運転パターンと、を有しており、第1から第4の運転パターンを切換え又は組合せて被空調空間Sを空調する。 The air conditioning control unit 73 heats the external conditioner 4 and heat so that the temperature and humidity of the air in the air-conditioned space S detected by the air detection unit 46 becomes the temperature and humidity of the air-conditioned space S set by the setting unit 70. The cooling capacity and heating capacity of the exchange unit 5 are controlled, and the humidification amounts of the humidifiers 21 and 40 of the external air conditioner 4 and the heat exchange unit 5 are controlled. Further, the air conditioning control unit 73 switches between the first operation pattern in which the air conditioning device 1 is operated and stopped in groups, and the single operation of the external air conditioner 4 and the simultaneous operation of the external air conditioner 4 and the heat exchange unit 5. The second operation pattern, the third operation pattern in which the air-conditioning device 1 in operation and the air-conditioning device 1 in stop are replaced, and the air-conditioning capacity of one or both of the external conditioner 4 and the heat exchange unit 5 are increased or decreased. The air-conditioned space S is air-conditioned by switching or combining the first to fourth operation patterns.

たとえば、被空調空間Sの空気の温度及び湿度と、予め設定した温度及び湿度と、の差(空調負荷)が減少するにしたがって、空調機器1の運転パターンを第1、第2の順番に切換えて空調能力を減少させる。第1と第2と第4の運転パターンを組合せた場合は、被空調空間Sの温度及び湿度の制御範囲が拡がり、よりきめ細かな空調が行える。これらの運転パターンに、第3の運転パターンを追加で組合せた場合は、特定の空調機器1だけに運転が偏らなくなる。 For example, as the difference between the temperature and humidity of the air in the air-conditioned space S and the preset temperature and humidity (air-conditioning load) decreases, the operation pattern of the air-conditioning device 1 is switched in the order of first and second. To reduce the air conditioning capacity. When the first, second, and fourth operation patterns are combined, the control range of the temperature and humidity of the air-conditioned space S is expanded, and more detailed air conditioning can be performed. When the third operation pattern is additionally combined with these operation patterns, the operation is not biased only to the specific air conditioner 1.

上述の運転パターンにおいて、外調機4の運転は、ヒートポンプ50の圧縮機53と、外気用給気ファン41と、熱源空気用排気ファン42と、を稼働させて行い、熱交換ユニット5の運転は、各バルブ33を開いて熱交換器20に熱交換用水を流通させると共にファンユニット7のファン22を稼働させて行う。外調機4の停止はヒートポンプ50の圧縮機53を止めて行い、熱交換ユニット5の停止は各バルブ33を全閉にして熱交換器20の熱交換用水の流通を止めて行う。 In the above operation pattern, the external air conditioner 4 is operated by operating the compressor 53 of the heat pump 50, the outside air supply fan 41, and the heat source air exhaust fan 42, and the heat exchange unit 5 is operated. Is performed by opening each valve 33 to circulate heat exchange water through the heat exchanger 20 and operating the fan 22 of the fan unit 7. The external air conditioner 4 is stopped by stopping the compressor 53 of the heat pump 50, and the heat exchange unit 5 is stopped by fully closing each valve 33 to stop the flow of heat exchange water in the heat exchanger 20.

温度補償部74は、低空調負荷の場合に分流回路28の第1グループG1で熱交換用水の流量を増減させて熱交換器20の熱交換で生じる熱交換用水の温度差を一定に制御すると共に熱交換ユニット5の給気風量を増減させて被空調空間Sの温度を制御する。さらに温度補償部74は、高空調負荷の場合に全てのグループGで熱交換用水の流量を増減させて熱交換用水の温度差を一定に制御すると共に、高空調負荷と低空調負荷との間の通常空調負荷の場合に第2グループG2で熱交換用水の流量を増減させて熱交換用水の温度差を一定に制御する。これにより真夏や真冬などのように最大の熱交換量が必要となる高空調負荷の場合から、中間期などのように僅少な熱交換量で足りる低空調負荷の場合まで幅広く、熱交換ユニット5の少水量大温度差運転に対応できる。 The temperature compensation unit 74 increases or decreases the flow rate of the heat exchange water in the first group G1 of the flow dividing circuit 28 in the case of a low air conditioning load, and constantly controls the temperature difference of the heat exchange water generated by the heat exchange of the heat exchanger 20. At the same time, the temperature of the air-conditioned space S is controlled by increasing or decreasing the air supply air volume of the heat exchange unit 5. Further, the temperature compensation unit 74 increases or decreases the flow rate of the heat exchange water in all groups G in the case of a high air conditioning load to control the temperature difference of the heat exchange water to be constant, and between the high air conditioning load and the low air conditioning load. In the case of the normal air conditioning load of, the second group G2 increases or decreases the flow rate of the heat exchange water to control the temperature difference of the heat exchange water to be constant. As a result, the heat exchange unit 5 covers a wide range from high air-conditioning loads that require the maximum heat exchange amount such as midsummer and midwinter to low air-conditioning loads that require a small amount of heat exchange such as the middle period. It can handle small water volume and large temperature difference operation.

エネルギー消費監視部75は、熱交換ユニット5の熱交換器20に供された熱交換用水の流量と、熱交換器20の熱交換により生じた熱交換用水の温度差と、に基づいて被空調空間S毎のエネルギー消費量を算出してデータ出力する。熱源制御部76は、エネルギー消費監視部75にてデータ出力された全ての被空調空間Sのエネルギー消費量の増減に応じて熱源機10の運転台数を増減させる信号を出力する。 The energy consumption monitoring unit 75 is air-conditioned based on the flow rate of the heat exchange water provided to the heat exchanger 20 of the heat exchange unit 5 and the temperature difference of the heat exchange water generated by the heat exchange of the heat exchanger 20. The energy consumption for each space S is calculated and output as data. The heat source control unit 76 outputs a signal for increasing or decreasing the number of operating heat source machines 10 according to the increase or decrease in the energy consumption of all the air-conditioned spaces S data output by the energy consumption monitoring unit 75.

図10は空調運転の一例を示している。空調運転開始後、外調機4は運転せずに熱交換ユニット5のみを運転し、熱交換器20の熱交換用水の流量とファン22の給気風量を最大にしてウォーミングアップ運転する。被空調空間Sの温度(還気温度)が、予め設定された還気温度の許容範囲になれば、外調機4の運転を開始する。その後、熱交換ユニット5の熱交換器20の熱交換で生じる熱交換用水の温度差(水温差)が、予め設定された水温差の許容範囲を外れている場合、設定水温差に近づくように熱交換器20の熱交換用水の流量を制御する。この処理によって、還気温度が設定還気温度の許容範囲を外れた場合、設定還気温度に近づくようにファン22の給気風量を制御する。これらの処理を熱交換ユニット5の空調運転を停止するまで繰り返す。 FIG. 10 shows an example of air conditioning operation. After the start of the air conditioning operation, the external air conditioner 4 is not operated and only the heat exchange unit 5 is operated to maximize the flow rate of the heat exchange water of the heat exchanger 20 and the air supply air volume of the fan 22 to perform the warm-up operation. When the temperature of the air-conditioned space S (return air temperature) falls within the allowable range of the return air temperature set in advance, the operation of the external air conditioner 4 is started. After that, when the temperature difference (water temperature difference) of the heat exchange water generated by the heat exchange of the heat exchanger 20 of the heat exchange unit 5 is out of the preset allowable range of the water temperature difference, the temperature difference is brought closer to the set water temperature difference. The flow rate of heat exchange water in the heat exchanger 20 is controlled. When the return air temperature deviates from the allowable range of the set return air temperature by this process, the supply air volume of the fan 22 is controlled so as to approach the set return air temperature. These processes are repeated until the air conditioning operation of the heat exchange unit 5 is stopped.

なお、本発明は上述の実施例に限定されない。図1の実施例では、外調機4とファンユニット7と誘引放射ユニット6とを一組とする空調機器1としているが、図11に示すように外調機4と熱交換ユニット5とファンユニット7と誘引放射ユニット6とを一組とする空調機器1としてもよい。また、設計空調能力に応じて空調機器1の組数を増減したり、必要な空調能力を超える場合は空調機器1の適宜の組の外調機4を省略するも自由である。図例では分流回路28のグループGを2つのグループG1とG2に分配しているが、3つ以上のグループGに分配してそのうちの1つのグループGを最少分配割合とするも自由である。誘引放射ユニット6は天井板8に設置しているが被空調空間Sを構成する壁面に設置してもよい。また、天井板8を省略した状態の天井に空調機器1を設置してもよい。 The present invention is not limited to the above-mentioned examples. In the embodiment of FIG. 1, the air conditioner 1 is a set of the external air conditioner 4, the fan unit 7, and the attractive radiation unit 6, but as shown in FIG. 11, the external air conditioner 4, the heat exchange unit 5, and the fan are used. The air conditioner 1 may be a set of the unit 7 and the attracting radiation unit 6. Further, the number of sets of the air conditioner 1 may be increased or decreased according to the design air conditioning capacity, or if the required air conditioning capacity is exceeded, the external air conditioner 4 of an appropriate set of the air conditioner 1 may be omitted. In the illustrated example, the group G of the shunt circuit 28 is distributed to two groups G1 and G2, but it is also free to distribute the group G to three or more groups G and set one group G as the minimum distribution ratio. Although the attracting radiation unit 6 is installed on the ceiling plate 8, it may be installed on the wall surface forming the air-conditioned space S. Further, the air conditioner 1 may be installed on the ceiling with the ceiling plate 8 omitted.

1 空調機器
3 制御装置
4 外調機
5 熱交換ユニット
6 誘引放射ユニット
7 ファンユニット
10 熱源機
20 熱交換器
28 分流回路
30 伝熱管群
45 ケーシング
46 スライド機構
50 ヒートポンプ
51 外気用熱交換器
52 熱源空気用熱交換器
53 圧縮機
73 空調制御部
74 温度補償部
75 エネルギー消費監視部
76 熱源制御部
F 不重複ゾーン
G グループ
R 機械室
S 被空調空間
1 Air conditioner 3 Control device 4 External conditioner 5 Heat exchange unit 6 Induction radiation unit 7 Fan unit 10 Heat source machine 20 Heat exchanger 28 Divided circuit 30 Heat transfer tube group 45 Casing 46 Slide mechanism 50 Heat pump 51 Outside air heat exchanger 52 Heat source Heat exchanger for air 53 Compressor 73 Air conditioning control unit 74 Temperature compensation unit 75 Energy consumption monitoring unit 76 Heat source control unit F Non-overlapping zone G Group R Machine room S Air-conditioned space

請求項1と2の発明によれば、通常一体設置されている熱交換ユニットとファンユニットを分けてセパレート化して天井と機械室に、各々設置しているので、機械室を狭小化でき施工の省力化が図れて、レンタブル比を高めることができる。
2管式の水熱源設備と、ヒートポンプ式の外調機を設けるだけでよいので、4管式の水熱源設備に比べて、設備及び運転のコストを低減できる。
冷房と暖房の両方が要求される中間期などに、ヒートポンプ式の外調機単体で冷房運転と暖房運転を自由に切換えできるので快適性が向上する。しかも、外気冷房ができかつ熱交換ユニットの運転に使用する水熱源設備を停止できるので省エネ性が向上する。
外調機と熱交換ユニットの2段階で空気を処理するので除湿効果や加湿効果に優れる。
誘引放射ユニットの熱放射の作用により温度ムラがなく被空調空間の快適性が向上する。
誘引放射ユニットで空調用空気と還気を誘引混合して、混合空気の温度を被空調空間の温度に近づけることができるため、コールドドラフトがなく冷房時の結露防止効果が得られる。
低空調負荷の場合に熱交換器の分流回路の第1グループで熱交換用水の流量を増減させて下限流量をさらに最少化できる。そのため、熱交換器の下限能力制御範囲が広がって低空調負荷の場合でも能力過多とならず、エネルギー浪費及び冷やし過ぎや温め過ぎが無くなって省エネ性と快適性が向上する。
低空調負荷の場合でも熱交換器の熱交換用水の温度差を一定に制御するので熱交換ユニットの少水量大温度差運転ができ、少水量化による配管や空調設備の簡略化と、大温度差化による熱源機の省エネ化を図れる。
冷房時に熱交換用水を熱交換器の分流回路の第1グループに流通させて第2グループに流通させないようにし、第1グループを通過して過冷却除湿した空気を、不重複ゾーンを通過した前記過冷却除湿空気よりも高温のバイパス空気で再熱し、不快な冷感がないドライエアーを得ることができる。このとき、前記過冷却除湿空気が逃げないように前記バイパス空気で挟むので混合が促進されて確実に再熱することができる。そのため、湿度が高くてジメジメする中間期でも、コールドドラフトのないカラッとした気流で空調ができ快適性が向上する。しかも、バイパスダンパ等の機器が不要でコストダウンとコンパクト化を図れる。
According to the inventions of claims 1 and 2, since the heat exchange unit and the fan unit, which are usually integrally installed, are separated and installed in the ceiling and the machine room, respectively, the machine room can be narrowed for construction. Labor saving can be achieved and the rentable ratio can be increased.
Since it is only necessary to provide a 2-tube type water heat source equipment and a heat pump type external air conditioner, the equipment and operation costs can be reduced as compared with the 4-tube type water heat source equipment.
In the middle period when both cooling and heating are required, the heat pump type external air conditioner can freely switch between cooling operation and heating operation, improving comfort. Moreover, energy saving is improved because the outside air can be cooled and the water heat source equipment used for operating the heat exchange unit can be stopped.
Since the air is processed in two stages, the external controller and the heat exchange unit, it has excellent dehumidifying and humidifying effects.
Due to the action of heat radiation from the attract radiation unit, there is no temperature unevenness and the comfort of the air-conditioned space is improved.
Since the air-conditioning air and the return air can be attracted and mixed by the attracting radiation unit to bring the temperature of the mixed air close to the temperature of the air-conditioned space, there is no cold draft and the effect of preventing dew condensation during cooling can be obtained.
In the case of a low air conditioning load, the lower limit flow rate can be further minimized by increasing or decreasing the flow rate of heat exchange water in the first group of the heat exchanger diversion circuit. Therefore, the lower limit capacity control range of the heat exchanger is widened so that the capacity is not excessive even in the case of a low air-conditioning load, energy waste, overcooling and overheating are eliminated, and energy saving and comfort are improved.
Even when the air conditioning load is low, the temperature difference of the heat exchange water of the heat exchanger is controlled to be constant, so the heat exchange unit can be operated with a small amount of water and a large temperature difference. It is possible to save energy in the heat source machine by making a difference.
During cooling, the heat exchange water is circulated to the first group of the heat exchanger's diversion circuit so that it is not circulated to the second group, and the supercooled dehumidified air that has passed through the first group has passed through the non-overlapping zone. By reheating with bypass air that is hotter than supercooled dehumidified air, it is possible to obtain dry air without an unpleasant feeling of coldness. At this time, since the supercooled dehumidified air is sandwiched between the bypass airs so as not to escape, mixing is promoted and reheating can be reliably performed. Therefore, even in the middle period when the humidity is high and it gets damp, air conditioning can be performed with a crisp air flow without cold draft, and comfort is improved. Moreover, equipment such as a bypass damper is not required, and cost reduction and compactness can be achieved.

請求項5の発明によれば、熱交換器の熱交換用水の温度差を一定に制御し、熱交換用水の温度差と、熱交換用水の流量と、に基づいて被空調空間のエネルギー消費量を算出できる。そのため、各被空調空間のエネルギー消費量を比較することで空調料金を正確に算出して按分できる。
熱交換用水の流量と温度を計測するだけでよく、熱交換ユニットの運転とエネルギー消費量の出力を一つの制御装置で行えるので設備や施工を簡略化でき、コスト低減を図れる。
According to the invention of claim 5, the temperature difference of the heat exchange water of the heat exchanger is controlled to be constant, and the energy consumption of the air-conditioned space is based on the temperature difference of the heat exchange water and the flow rate of the heat exchange water. Can be calculated. Therefore, the air-conditioning charge can be accurately calculated and apportioned by comparing the energy consumption of each air-conditioned space.
Since it is only necessary to measure the flow rate and temperature of the heat exchange water, the operation of the heat exchange unit and the output of energy consumption can be performed with one control device, so that the equipment and construction can be simplified and the cost can be reduced.

請求項の発明によれば、熱交換ユニットのエネルギー消費量の増減に応じて熱源機の運転台数を増減させるので熱源機のエネルギー浪費を抑えることができ省エネとなる。
請求項7の発明によれば、熱交換器の伝熱管群の死水領域が減少し、伝熱管群の通風抵抗が小さくて省エネとなり、空調用空気との接触面積(貫流熱量)が増して熱交換効率が向上する。そのため、熱交換器の伝熱面積を増加(大型化)させずに少水量大温度差運転ができる。
According to the invention of claim 6 , since the number of operating heat source machines is increased or decreased according to the increase or decrease in the energy consumption of the heat exchange unit, the energy waste of the heat source unit can be suppressed and energy saving can be achieved.
According to the invention of claim 7, the dead water region of the heat transfer tube group of the heat exchanger is reduced, the ventilation resistance of the heat transfer tube group is small to save energy, and the contact area (through heat amount) with the air conditioning air is increased to heat. Exchange efficiency is improved. Therefore, it is possible to operate with a small amount of water and a large temperature difference without increasing (increasing the size) the heat transfer area of the heat exchanger.

Claims (9)

冷房運転と暖房運転を切換できるヒートポンプ(50)を有すると共に前記ヒートポンプ(50)の熱交換用冷媒で外気を熱交換して給気する外調機(4)と、熱交換用水である冷水又は温水を選択的に流通させる熱交換器(20)を有する熱交換ユニット(5)と、前記外調機(4)から給気された前記外気と被空調空間(S)の還気とを前記熱交換ユニット(5)に取込んで前記熱交換器(20)の前記熱交換用水で熱交換して空調用空気として給気するファンユニット(7)と、前記ファンユニット(7)から給気された前記空調用空気で前記被空調空間(S)の還気を誘引して混合すると共にこの混合空気を前記被空調空間(S)に出しつつ前記混合空気の熱を放射する誘引放射ユニット(6)と、を備え、前記外調機(4)と前記ファンユニット(7)と前記誘引放射ユニット(6)を前記被空調空間(S)の天井に設置し、前記熱交換ユニット(5)を機械室(R)に設置したことを特徴とするセパレート設置空調システム。 An external air conditioner (4) having a heat pump (50) capable of switching between cooling operation and heating operation and exchanging heat with the heat exchange refrigerant of the heat pump (50) to supply air, and cold water or heat exchange water. The heat exchange unit (5) having a heat exchanger (20) for selectively flowing hot water, the outside air supplied from the external conditioner (4), and the return air of the air-conditioned space (S) are described. A fan unit (7) that takes in heat exchange unit (5) and exchanges heat with the heat exchange water of the heat exchanger (20) to supply air as air conditioning air, and air supply from the fan unit (7). An attracting radiation unit that attracts and mixes the return air of the air-conditioned space (S) with the air-conditioning air, and radiates the heat of the mixed air while discharging the mixed air to the air-conditioned space (S). 6), the external air conditioner (4), the fan unit (7), and the attracting radiation unit (6) are installed on the ceiling of the air-conditioned space (S), and the heat exchange unit (5) is provided. A separate installation air conditioning system characterized by the fact that is installed in the machine room (R). 前記外調機(4)と前記ファンユニット(7)と前記誘引放射ユニット(6)とを一組とする空調機器(1)、又は、前記外調機(4)と前記熱交換ユニット(5)と前記ファンユニット(7)と前記誘引放射ユニット(6)とを一組とする空調機器(1)を、備ええると共に制御装置(3)を備え、前記制御装置(3)は、2組以上の前記空調機器(1)の運転と停止を組単位で行う第1の運転パターンと、前記外調機(4)の単体運転と前記外調機(4)及び前記熱交換ユニット(5)の同時運転とを切換える第2の運転パターンと、を用いて前記被空調空間(S)を空調する空調制御部(73)を、備えた請求項1に記載のセパレート設置空調システム。 An air conditioner (1) in which the external conditioner (4), the fan unit (7), and the attractive radiation unit (6) are a set, or the external conditioner (4) and the heat exchange unit (5). ), The fan unit (7), and the air-conditioning device (1) which is a set of the attracting radiation unit (6), and also includes a control device (3), and the control device (3) has two sets. The first operation pattern in which the operation and stop of the air conditioner (1) are performed in groups, the single operation of the external air conditioner (4), the external air conditioner (4), and the heat exchange unit (5). The separate installation air-conditioning system according to claim 1, further comprising an air-conditioning control unit (73) for air-conditioning the air-conditioned space (S) using a second operation pattern for switching between the simultaneous operations of the above. 前記空調制御部(73)が、運転中の前記空調機器(1)と停止中の前記空調機器(1)を交替させる第3の運転パターンを、有する請求項2に記載のセパレート設置空調システム。 The separate installation air conditioning system according to claim 2, wherein the air conditioning control unit (73) has a third operation pattern in which the operating air conditioning device (1) and the stopped air conditioning device (1) are replaced. 前記外調機(4)が、前記被空調空間(S)の還気を熱源空気として使用するものであって外気用熱交換器(51)と熱源空気用熱交換器(52)と圧縮機(53)とを有する一体形のヒートポンプ(50)と、前記ヒートポンプ(50)を内装するケーシング(45)と、前記ケーシング(45)の底部から前記ヒートポンプ(50)を出し入れするためのスライド機構(46)と、を備えた請求項1から3のいずれかに記載のセパレート設置空調システム。 The external air conditioner (4) uses the return air of the air-conditioned space (S) as heat source air, and is an outside air heat exchanger (51), a heat source air heat exchanger (52), and a compressor. An integrated heat pump (50) having (53), a casing (45) containing the heat pump (50), and a slide mechanism (50) for moving the heat pump (50) in and out from the bottom of the casing (45). 46), the separate installation air conditioning system according to any one of claims 1 to 3. 前記熱交換ユニット(5)の前記熱交換器(20)は、前記熱交換用水が流通する伝熱管群(30)を複数のグループ(G)に分配しかつ前記分配の割合を相違させて成る分流回路(28)を、備え、前記制御装置(3)は、低空調負荷の場合に前記分流回路(28)の単独かつ最少分配割合の第1のグループ(G1)で前記熱交換用水の流量を増減させて前記熱交換器(20)の熱交換で生じる前記熱交換用水の温度差を一定に制御すると共に前記ファンユニット(7)の給気風量を増減させて前記被空調空間(S)の温度を制御する温度補償部(74)を、備えた請求項2から4のいずれかに記載のセパレート設置空調システム。 The heat exchanger (20) of the heat exchange unit (5) distributes the heat transfer tube group (30) through which the heat exchange water flows to a plurality of groups (G) and has different distribution ratios. The control device (3) includes a diversion circuit (28), and the control device (3) is a single group (G1) of the diversion circuit (28) having a minimum distribution ratio in the case of a low air conditioning load. The temperature difference of the heat exchange water generated by the heat exchange of the heat exchanger (20) is controlled to be constant, and the air supply air volume of the fan unit (7) is increased or decreased to increase or decrease the air-conditioned space (S). The separate installation air conditioning system according to any one of claims 2 to 4, further comprising a temperature compensation unit (74) for controlling the temperature of the above. 前記熱交換ユニット(5)の前記熱交換器(20)を通る空気の気流方向から見たときに、前記分流回路(28)の前記第1グループ(G1)を除いた第2の前記グループ(G2)に、前記第1グループ(G1)と重ならない不重複ゾーン(F)が、形成されると共に、前記第1グループ(G1)が前記不重複ゾーン(F)で挟まれるように前記分流回路(28)を構成した請求項5に記載のセパレート設置空調システム。 The second group (G1) excluding the first group (G1) of the shunt circuit (28) when viewed from the air flow direction of the air passing through the heat exchanger (20) of the heat exchange unit (5). A non-overlapping zone (F) that does not overlap with the first group (G1) is formed in G2), and the shunt circuit is formed so that the first group (G1) is sandwiched between the non-overlapping zones (F). The separate installation air conditioning system according to claim 5, which comprises (28). 前記制御装置(3)は、前記熱交換ユニット(5)の前記熱交換器(20)に供された前記熱交換用水の流量と前記熱交換器(20)の熱交換で生じる前記熱交換用水の温度差とに基づいて前記被空調空間(S)のエネルギー消費量を算出して出力するエネルギー消費監視部(75)を、備えた請求項2から6のいずれかに記載のセパレート設置空調システム。 The control device (3) is the heat exchange water generated by the heat exchange between the flow rate of the heat exchange water provided to the heat exchanger (20) of the heat exchange unit (5) and the heat exchange of the heat exchanger (20). The separate installation air conditioning system according to any one of claims 2 to 6, further comprising an energy consumption monitoring unit (75) that calculates and outputs the energy consumption of the air-conditioned space (S) based on the temperature difference of the above. .. 前記熱交換ユニット(5)の前記熱交換器(20)に供される前記熱交換用水を冷却又は加熱して水温調整する複数台の熱源機(10)を、備え、前記制御装置(3)は、前記エネルギー消費監視部(75)にて出力された前記被空調空間(S)の前記エネルギー消費量の増減に応じて前記熱源機(10)の運転台数を増減させる信号を出力する熱源制御部(76)を、備えた請求項7に記載のセパレート設置空調システム。 The control device (3) is provided with a plurality of heat source machines (10) for cooling or heating the heat exchange water provided in the heat exchanger (20) of the heat exchange unit (5) to adjust the water temperature. Is a heat source control that outputs a signal for increasing or decreasing the number of operating units of the heat source machine (10) according to an increase or decrease in the energy consumption of the air-conditioned space (S) output by the energy consumption monitoring unit (75). The separate installation air conditioning system according to claim 7, further comprising a unit (76). 前記熱交換ユニット(5)の前記熱交換器(20)の伝熱管群(30)を楕円管にて構成した請求項1から8のいずれかに記載のセパレート設置空調システム。 The separate installation air conditioning system according to any one of claims 1 to 8, wherein the heat transfer tube group (30) of the heat exchanger (20) of the heat exchange unit (5) is formed of an elliptical tube.
JP2019132378A 2019-03-29 2019-07-18 Separate installation air conditioning system Active JP6862504B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019132378A JP6862504B2 (en) 2019-07-18 2019-07-18 Separate installation air conditioning system
EP20164673.4A EP3726153A1 (en) 2019-03-29 2020-03-20 Air conditioning system
AU2020202072A AU2020202072B2 (en) 2019-03-29 2020-03-23 Air conditioning system
CN202020395508.7U CN211739391U (en) 2019-03-29 2020-03-25 Air conditioning system
CN202010218592.XA CN111750461B (en) 2019-03-29 2020-03-25 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019132378A JP6862504B2 (en) 2019-07-18 2019-07-18 Separate installation air conditioning system

Publications (2)

Publication Number Publication Date
JP2021018000A true JP2021018000A (en) 2021-02-15
JP6862504B2 JP6862504B2 (en) 2021-04-21

Family

ID=74563093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019132378A Active JP6862504B2 (en) 2019-03-29 2019-07-18 Separate installation air conditioning system

Country Status (1)

Country Link
JP (1) JP6862504B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6951518B1 (en) * 2020-07-16 2021-10-20 木村工機株式会社 Air conditioning system

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103324A (en) * 1988-10-12 1990-04-16 Toda Constr Co Ltd Air conditioning system designed for intelligent building
JPH037821A (en) * 1989-06-05 1991-01-16 Takasago Thermal Eng Co Ltd Air conditioner
JP2000146267A (en) * 1998-11-05 2000-05-26 Toho Gas Co Ltd Air conditioning control system
JP2001304614A (en) * 2000-04-24 2001-10-31 Kimura Kohki Co Ltd Air-conditioning system
JP2002031369A (en) * 2000-07-14 2002-01-31 Kimura Kohki Co Ltd All-season coping air conditioner
JP2003042480A (en) * 2001-08-01 2003-02-13 Kimura Kohki Co Ltd Ceiling installation type heat pump air conditioner
JP2004271095A (en) * 2003-03-10 2004-09-30 Osaka Gas Co Ltd Air conditioner
JP2005195280A (en) * 2004-01-08 2005-07-21 Takenaka Komuten Co Ltd Air conditioner and multi-bed room air conditioning apparatus
JP2008304096A (en) * 2007-06-06 2008-12-18 Sanken Setsubi Kogyo Co Ltd Air conditioning system
JP2010249340A (en) * 2009-04-13 2010-11-04 Kimura Kohki Co Ltd Heat pump type intermediate temperature air conditioning system
JP2011145045A (en) * 2009-12-17 2011-07-28 Kimura Kohki Co Ltd Inductive radiation air conditioner
JP2012088042A (en) * 2011-12-16 2012-05-10 Daikin Industries Ltd Air conditioning control device
JP2012154611A (en) * 2011-01-06 2012-08-16 Kimura Kohki Co Ltd One-span air conditioning system
JP2013217634A (en) * 2012-03-13 2013-10-24 Taisei Corp Energy saving air conditioning system
WO2015037214A1 (en) * 2013-09-11 2015-03-19 ダイキン工業株式会社 Heat exchanger and air conditioner
JP2018146118A (en) * 2017-03-01 2018-09-20 木村工機株式会社 Air Conditioning System

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103324A (en) * 1988-10-12 1990-04-16 Toda Constr Co Ltd Air conditioning system designed for intelligent building
JPH037821A (en) * 1989-06-05 1991-01-16 Takasago Thermal Eng Co Ltd Air conditioner
JP2000146267A (en) * 1998-11-05 2000-05-26 Toho Gas Co Ltd Air conditioning control system
JP2001304614A (en) * 2000-04-24 2001-10-31 Kimura Kohki Co Ltd Air-conditioning system
JP2002031369A (en) * 2000-07-14 2002-01-31 Kimura Kohki Co Ltd All-season coping air conditioner
JP2003042480A (en) * 2001-08-01 2003-02-13 Kimura Kohki Co Ltd Ceiling installation type heat pump air conditioner
JP2004271095A (en) * 2003-03-10 2004-09-30 Osaka Gas Co Ltd Air conditioner
JP2005195280A (en) * 2004-01-08 2005-07-21 Takenaka Komuten Co Ltd Air conditioner and multi-bed room air conditioning apparatus
JP2008304096A (en) * 2007-06-06 2008-12-18 Sanken Setsubi Kogyo Co Ltd Air conditioning system
JP2010249340A (en) * 2009-04-13 2010-11-04 Kimura Kohki Co Ltd Heat pump type intermediate temperature air conditioning system
JP2011145045A (en) * 2009-12-17 2011-07-28 Kimura Kohki Co Ltd Inductive radiation air conditioner
JP2012154611A (en) * 2011-01-06 2012-08-16 Kimura Kohki Co Ltd One-span air conditioning system
JP2012088042A (en) * 2011-12-16 2012-05-10 Daikin Industries Ltd Air conditioning control device
JP2013217634A (en) * 2012-03-13 2013-10-24 Taisei Corp Energy saving air conditioning system
WO2015037214A1 (en) * 2013-09-11 2015-03-19 ダイキン工業株式会社 Heat exchanger and air conditioner
JP2018146118A (en) * 2017-03-01 2018-09-20 木村工機株式会社 Air Conditioning System

Also Published As

Publication number Publication date
JP6862504B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
JP5518812B2 (en) External air conditioner with air conditioning function
JP5175219B2 (en) Cooling and ventilation equipment
CN108534319B (en) Air conditioner and air conditioning system provided with same
CN108800375B (en) Air heat source heat pump type air conditioner
JP5554431B2 (en) External air conditioner with air conditioning function
JP6825900B2 (en) Air conditioning system
JP6425750B2 (en) Air conditioning system
JP5775185B2 (en) Heat exchange coil and air conditioner
CN111750461B (en) Air conditioning system
JP6862504B2 (en) Separate installation air conditioning system
JP6084737B1 (en) Air conditioning system
JP4376285B2 (en) Mixed air conditioner
JP6764599B1 (en) Air conditioning system
JP6873194B2 (en) Air conditioner
AU2020205244B2 (en) Heat exchanger and air conditioner
KR20020072114A (en) Air-conditioning system for a multistory building
JP7061170B1 (en) Residential air conditioning system
JP6858396B2 (en) Air conditioning system
WO2023148854A1 (en) Heat-exchange-type ventilation device
JP6894961B2 (en) Pneumatic radiant air conditioner
JPH0213749A (en) Airconditioner
JP2004177050A (en) Floor embedded air-conditioner
JP2018169089A (en) Cold/hot-water type air conditioner
JP2022111682A (en) Housing air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210331

R150 Certificate of patent or registration of utility model

Ref document number: 6862504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150