JP2021090275A - Calculation device and full charge capacity calculation method - Google Patents
Calculation device and full charge capacity calculation method Download PDFInfo
- Publication number
- JP2021090275A JP2021090275A JP2019219411A JP2019219411A JP2021090275A JP 2021090275 A JP2021090275 A JP 2021090275A JP 2019219411 A JP2019219411 A JP 2019219411A JP 2019219411 A JP2019219411 A JP 2019219411A JP 2021090275 A JP2021090275 A JP 2021090275A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- charge capacity
- full charge
- voltage
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004364 calculation method Methods 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 claims description 24
- 238000007599 discharging Methods 0.000 claims description 15
- 230000010287 polarization Effects 0.000 claims description 10
- 238000009825 accumulation Methods 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 41
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 210000003771 C cell Anatomy 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
開示の実施形態は、算出装置および満充電容量算出方法に関する。 The disclosed embodiments relate to a calculation device and a full charge capacity calculation method.
従来、HEV(Hybrid Electric Vehicle)やEV(Electric Vehicle)等に搭載されるリチウムイオン二次電池(LiB:Lithium-Ion rechargeable Battery)の満充電容量を算出する方法が知られている(たとえば、特許文献1参照)。 Conventionally, a method of calculating the full charge capacity of a lithium ion secondary battery (LiB: Lithium-Ion rechargeable battery) mounted on an HEV (Hybrid Electric Vehicle), an EV (Electric Vehicle), or the like has been known (for example, a patent). Reference 1).
たとえば、ΔSOC(State Of Charge)方式は、充電/放電前後のSOC差分とその間の電流積算量に基づいて満充電容量を算出する方式である。SOCは、開放電圧(OCV:Open Circuit Voltage)とSOCの関係性を示すOCV−SOC曲線に基づいて推定される。 For example, the ΔSOC (State Of Charge) method is a method of calculating the full charge capacity based on the SOC difference before and after charging / discharging and the current integrated amount between them. The SOC is estimated based on the OCV-SOC curve showing the relationship between the open circuit voltage (OCV) and the SOC.
しかしながら、上述した従来技術には、満充電容量の算出精度を向上させるうえで、さらなる改善の余地がある。 However, the above-mentioned prior art has room for further improvement in improving the accuracy of calculating the full charge capacity.
実施形態の一態様は、上記に鑑みてなされたものであって、満充電容量の算出精度を向上させることができる算出装置および満充電容量算出方法を提供することを目的とする。 One aspect of the embodiment is made in view of the above, and an object of the present invention is to provide a calculation device and a full charge capacity calculation method capable of improving the calculation accuracy of the full charge capacity.
実施形態の一態様に係る算出装置は、取得部と、均等化制御部と、算出部とを備える。前記取得部は、二次電池からなるバッテリの満充電容量の算出に際し、前記バッテリの放電開始前に該バッテリの第1の開放電圧と、前記バッテリの放電停止後に該バッテリの第2の開放電圧とをそれぞれ取得する。前記均等化制御部は、前記取得部による前記第1の開放電圧の取得前に、前記バッテリのセルの均等化を実行させる。前記算出部は、前記第1の開放電圧、前記第2の開放電圧、および、前記バッテリの放電中の電流積算量に基づいて、前記満充電容量を算出する。 The calculation device according to one aspect of the embodiment includes an acquisition unit, an equalization control unit, and a calculation unit. When calculating the full charge capacity of a battery composed of a secondary battery, the acquisition unit obtains a first open voltage of the battery before the start of discharge of the battery and a second open voltage of the battery after the discharge of the battery is stopped. And get each. The equalization control unit executes equalization of the cells of the battery before the acquisition of the first open circuit voltage by the acquisition unit. The calculation unit calculates the full charge capacity based on the first open circuit voltage, the second open circuit voltage, and the integrated current amount during discharge of the battery.
実施形態の一態様によれば、満充電容量の算出精度を向上させることができる。 According to one aspect of the embodiment, the accuracy of calculating the full charge capacity can be improved.
以下、添付図面を参照して、本願の開示する算出装置および満充電容量算出方法の実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of the calculation device and the full charge capacity calculation method disclosed in the present application will be described in detail with reference to the accompanying drawings. The present invention is not limited to the embodiments shown below.
また、以下では、実施形態に係る満充電容量算出方法を適用した算出装置が、車両に搭載されるLiB2を制御するバッテリECU(Electronic Control Unit)10である場合を例に挙げて説明する。 Further, in the following, a case where the calculation device to which the full charge capacity calculation method according to the embodiment is applied is a battery ECU (Electronic Control Unit) 10 for controlling LiB2 mounted on the vehicle will be described as an example.
まず、実施形態に係る満充電容量算出方法の概要について、図1A〜図1Eを用いて説明する。図1A〜図1Cは、比較例に係る満充電容量算出方法の概要説明図(その1)〜(その3)である。また、図1Dおよび図1Eは、実施形態に係る満充電容量算出方法の概要説明図(その1)および(その2)である。 First, the outline of the full charge capacity calculation method according to the embodiment will be described with reference to FIGS. 1A to 1E. 1A to 1C are schematic explanatory views (No. 1) to (No. 3) of the full charge capacity calculation method according to the comparative example. Further, FIGS. 1D and 1E are schematic explanatory views (No. 1) and (No. 2) of the full charge capacity calculation method according to the embodiment.
実施形態に係る満充電容量算出方法に先立って、比較例の方から説明する。図1Aに示すように、ΔSOC方式で満充電容量を算出する場合、たとえば放電前のOCVHiと、放電後および分極解消後のOCVLoとをそれぞれ取得する。 Prior to the method for calculating the full charge capacity according to the embodiment, a comparative example will be described first. As shown in FIG. 1A, when the full charge capacity is calculated by the ΔSOC method, for example, OCV Hi before discharge and OCV Lo after discharge and after polarization elimination are acquired, respectively.
そして、図1Bに示すOCV−SOC曲線に基づき、OCVHiおよびOCVLoのそれぞれに対応するSOCを推定し、その差分と、放電中の電流積算量とを用いて満充電容量を算出する。 Then, based on the OCV-SOC curve shown in FIG. 1B, the SOC corresponding to each of OCV Hi and OCV Lo is estimated, and the full charge capacity is calculated using the difference and the integrated current amount during discharging.
しかしながら、かかる方式には、図1Cに示すように2つの問題点がある。1つ目は、放電前のOCVHiの取得時に、セル電圧にバラツキがあり、いずれかのセル電圧が所定範囲外にあると、セル電圧に信頼性がなく、満充電容量を算出することができない。 However, such a method has two problems as shown in FIG. 1C. The first is that there is a variation in the cell voltage when acquiring OCV Hi before discharging, and if any of the cell voltages is out of the predetermined range, the cell voltage is unreliable and the full charge capacity can be calculated. Can not.
2つ目は、放電中にセル電圧にバラツキが出ると、放電後のOCVLoの取得時に、いずれかのセルが目標電圧以上となってしまう。かかる場合、満充電容量の算出はできるものの、精度が悪化してしまう。 Second, if the cell voltage varies during discharge, one of the cells will exceed the target voltage when the OCV Lo is acquired after discharge. In such a case, although the full charge capacity can be calculated, the accuracy deteriorates.
そこで、実施形態に係る満充電容量算出方法では、OCVHiの取得前に、セル均等化を実施し、OCVHiの取得前のセル電圧のバラツキを解消することとした。また、放電後および分極解消後のOCVLoの取得前に、セル均等化を実施し、OCVLoの取得前のセル電圧のバラツキを解消することとした。 Therefore, in the full charge capacity calculation method according to the embodiment, before the acquisition of OCV Hi, and performs cell equalization, it was decided to eliminate the dispersion of the cell voltage before the acquisition of OCV Hi. Further, it was decided to carry out cell equalization after discharge and before acquisition of OCV Lo after elimination of polarization to eliminate variations in cell voltage before acquisition of OCV Lo.
具体的には、図1Dに示すように、実施形態に係る満充電容量算出方法では、セル均等化を実施後に、OCVHiを取得する。このように、OCVHiの取得前に予めセル均等化を実施しておくことで、セル電圧を所定範囲内に収めて、セル電圧の信頼性を確保することができる。 Specifically, as shown in FIG. 1D, in the full charge capacity calculation method according to the embodiment, OCV Hi is acquired after cell equalization is performed. In this way, by performing cell equalization in advance before acquiring OCV Hi , the cell voltage can be kept within a predetermined range and the reliability of the cell voltage can be ensured.
また、図1Eに示すように、実施形態に係る満充電容量算出方法では、放電要求電圧までの放電後および分極解消後に、セル均等化を実施の上、OCVLoを取得する。このとき、セル均等化は、目標電圧を超えているセルについてのみ実施される。このように、OCVLoの取得前に予めセル均等化を実施しておくことで、すべてのセル電圧を目標電圧以下に収めて、算出される満充電容量の精度が悪化するのを防止することができる。 Further, as shown in FIG. 1E, in the full charge capacity calculation method according to the embodiment, OCV Lo is acquired after performing cell equalization after discharging to the required discharge voltage and after eliminating polarization. At this time, cell equalization is performed only for cells exceeding the target voltage. In this way, by performing cell equalization in advance before acquiring OCV Lo , all cell voltages can be kept below the target voltage, and the accuracy of the calculated full charge capacity can be prevented from deteriorating. Can be done.
なお、図1Dおよび図1Eに示す処理は、満充電容量の算出に際して、双方ともが行われてもよいし、いずれか一方のみが行われてもよい。 The processes shown in FIGS. 1D and 1E may be performed by both or only one of them when calculating the full charge capacity.
このように、実施形態に係る満充電容量算出方法では、セル均等化を実施後に、OCVHiを取得すること、および、放電要求電圧までの放電後および分極解消後に、セル均等化を実施の上、OCVLoを取得すること、の少なくともいずれか一方を行うこととした。 As described above, in the full charge capacity calculation method according to the embodiment, after performing cell equalization, OCV Hi is acquired, and after discharging to the required discharge voltage and after eliminating polarization, cell equalization is performed. , Obtaining OCV Lo , or at least one of them.
そのうえで、実施形態に係る満充電容量算出方法では、取得されたOCVHiおよびOCVLoに基づいて、ΔSOC方式で満充電容量を算出することとした。 Then, in the full charge capacity calculation method according to the embodiment, the full charge capacity is calculated by the ΔSOC method based on the acquired OCV Hi and OCV Lo.
これにより、実施形態に係る満充電容量算出方法によれば、満充電容量の算出精度を向上させることができる。 Thereby, according to the full charge capacity calculation method according to the embodiment, the calculation accuracy of the full charge capacity can be improved.
以下、上述した実施形態に係る満充電容量算出方法を適用したバッテリ制御システム1の構成例について、さらに具体的に説明する。 Hereinafter, a configuration example of the battery control system 1 to which the full charge capacity calculation method according to the above-described embodiment is applied will be described in more detail.
図2は、実施形態に係るバッテリ制御システム1のブロック図である。なお、図2では、本実施形態の特徴を説明するために必要な構成要素のみを機能ブロックで表しており、一般的な構成要素についての記載を省略している。 FIG. 2 is a block diagram of the battery control system 1 according to the embodiment. Note that, in FIG. 2, only the components necessary for explaining the features of the present embodiment are represented by functional blocks, and the description of general components is omitted.
換言すれば、図2に図示される各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。例えば、各機能ブロックの分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することが可能である。 In other words, each component shown in FIG. 2 is a functional concept and does not necessarily have to be physically configured as shown in the figure. For example, the specific form of distribution / integration of each functional block is not limited to the one shown in the figure, and all or part of the functional blocks are functionally or physically distributed in arbitrary units according to various loads and usage conditions. -It is possible to integrate and configure.
図2に示すように、バッテリ制御システム1は、LiB2と、セルバランスIC(Integrated Circuit)3と、充放電IC4と、電圧センサ5と、電流センサ6と、バッテリECU10と、上位ECU20とを含む。LiB2は、リチウムイオン二次電池であって、内部に直列に接続された複数のセルCを備える。
As shown in FIG. 2, the battery control system 1 includes a LiB2, a cell balance IC (Integrated Circuit) 3, a charge / discharge IC 4, a voltage sensor 5, a current sensor 6, a battery ECU 10, and a
セルバランスIC3は、バッテリECU10からの指示に基づいて、LiB2内のセルCのエネルギー容量を均等化するセル均等化を実行する。 The cell balance IC 3 executes cell equalization to equalize the energy capacity of the cell C in the LiB2 based on the instruction from the battery ECU 10.
充放電IC4は、バッテリECU10からの指示に基づいて、LiB2を充放電動作させる。 The charge / discharge IC4 charges / discharges LiB2 based on an instruction from the battery ECU 10.
電圧センサ5は、LiB2の電池電圧を計測するセンサである。たとえば、電圧センサ5は、LiB2のOCVを測定することができる。電流センサ6は、LiB2の充放電電流を計測するセンサである。 The voltage sensor 5 is a sensor that measures the battery voltage of LiB2. For example, the voltage sensor 5 can measure the OCV of LiB2. The current sensor 6 is a sensor that measures the charge / discharge current of LiB2.
バッテリECU10は、記憶部11と、制御部12とを備える。記憶部11は、たとえば、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって実現され、図2の例では、OCV−SOC曲線11aを記憶する。OCV−SOC曲線11aは、図1Bを用いて説明したOCV−SOC曲線に対応する。 The battery ECU 10 includes a storage unit 11 and a control unit 12. The storage unit 11 is realized by, for example, a semiconductor memory element such as a RAM (Random Access Memory) or a flash memory (Flash Memory), or a storage device such as a hard disk or an optical disk. In the example of FIG. 2, the OCV-SOC curve 11a Remember. The OCV-SOC curve 11a corresponds to the OCV-SOC curve described with reference to FIG. 1B.
また、図2に示すように、制御部12は、コントローラ(controller)であり、たとえば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等によって、たとえば記憶部11に記憶されている各種プログラムがRAMを作業領域として実行されることにより実現される。また、制御部12は、たとえば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現することができる。 Further, as shown in FIG. 2, the control unit 12 is a controller, and for example, various programs stored in the storage unit 11 by a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or the like. Is realized by executing RAM as a work area. Further, the control unit 12 can be realized by, for example, an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
制御部12は、均等化制御部12aと、充放電制御部12bと、取得部12cと、算出部12dとを有し、以下に説明する情報処理の機能や作用を実現または実行する。
The control unit 12 includes an equalization control unit 12a, a charge / discharge control unit 12b, an
均等化制御部12aは、満充電容量算出処理に際し、OCVHiの取得前に、セルバランスIC3にLiB2のセル均等化を実行させる。また、均等化制御部12aは、満充電容量算出処理に際し、放電要求電圧までの放電後および分極解消後のOCVLoの取得前に、セルバランスIC3にLiB2のセル均等化を実行させる。 The equalization control unit 12a causes the cell balance IC 3 to execute the cell equalization of LiB2 before acquiring the OCV Hi in the full charge capacity calculation process. Further, the equalization control unit 12a causes the cell balance IC3 to perform cell equalization of LiB2 in the process of calculating the full charge capacity before acquiring OCV Lo after discharging to the required discharge voltage and after resolving the polarization.
なお、均等化制御部12aは、かかるOCVLoの取得前のセル均等化において、目標電圧を超えているセルCについてのみセル均等化を実行させる。 The equalization control unit 12a executes cell equalization only for the cell C exceeding the target voltage in the cell equalization before the acquisition of the OCV Lo.
充放電制御部12bは、満充電容量算出処理に際し、OCVHiの取得後に放電を開始し、放電要求電圧に到達するまで放電するように、充放電IC4にLiB2を放電動作させる。 The charge / discharge control unit 12b causes the charge / discharge IC4 to discharge LiB2 so as to start discharging after acquiring OCV Hi and discharge until the required discharge voltage is reached in the full charge capacity calculation process.
取得部12cは、均等化制御部12aによるセル均等化後、および、充放電制御部12bによる放電開始前に、電圧センサ5を介してOCVHiを取得する。また、取得部12cは、充放電制御部12bによる放電停止後および分極解消後、ならびに、その後の均等化制御部12aによるセル均等化後に、電圧センサ5を介してOCVLoを取得する。 The acquisition unit 12c acquires OCV Hi via the voltage sensor 5 after the cell equalization by the equalization control unit 12a and before the start of discharge by the charge / discharge control unit 12b. Further, the acquisition unit 12c acquires the OCV Lo via the voltage sensor 5 after the charge / discharge control unit 12b stops the discharge and the polarization is eliminated, and after the cell equalization by the equalization control unit 12a.
また、取得部12cは、充放電制御部12bによる放電中の電流積算量を電流センサ6を介して取得する。
Further, the
算出部12dは、取得部12cによって取得されたOCVHi、OCVLo、電流積算量およびOCV−SOC曲線11aに基づき、ΔSOC方式により満充電容量を算出する。また、算出部12dは、算出した満充電容量をたとえば上位ECU20へ出力する。
The calculation unit 12d calculates the full charge capacity by the ΔSOC method based on the OCV Hi , OCV Lo , current integrated amount, and OCV-SOC curve 11a acquired by the
上位ECU20は、バッテリECU10の上位のECUであり、IG(イグニッション)オフ中にバッテリECU10を間欠起動させて、満充電容量算出処理を実行させる。
The
次に、実施形態に係るバッテリECU10が実行する処理手順について、図3を用いて説明する。図3は、実施形態に係るバッテリECU10が実行する処理手順を示すフローチャートである。 Next, the processing procedure executed by the battery ECU 10 according to the embodiment will be described with reference to FIG. FIG. 3 is a flowchart showing a processing procedure executed by the battery ECU 10 according to the embodiment.
図3に示すように、バッテリECU10は、上位ECU20によりIGオフ中に間欠起動され(ステップS101)、満充電容量算出処理が開始される。まず、均等化制御部12aが、セルバランスIC3にセル均等化を実行させる(ステップS102)。
As shown in FIG. 3, the battery ECU 10 is intermittently started by the
そして、ステップS102の終了後、電流が流れていない、かつ、全セル電圧値が一定以上であるか否かが判定される(ステップS103)。ここで、電流が流れていない、かつ、全セル電圧値が一定以上であれば(ステップS103,Yes)、取得部12cが、OCVHiを取得する(ステップS104)。
Then, after the end of step S102, it is determined whether or not no current is flowing and the voltage values of all cells are equal to or higher than a certain level (step S103). Here, if no current is flowing and the voltage values of all cells are equal to or higher than a certain value (step S103, Yes), the
そして、充放電制御部12bが、充放電IC4に放電開始させる(ステップS105)。充放電制御部12bは、放電中、放電用電圧以下に到達したか否かを判定し(ステップS106)、放電用電圧以下に到達していなければ(ステップS106,No)、ステップS106を繰り返す。 Then, the charge / discharge control unit 12b causes the charge / discharge IC4 to start discharging (step S105). The charge / discharge control unit 12b determines whether or not the voltage has reached the discharge voltage or lower during discharging (step S106), and if the charge / discharge voltage has not reached the discharge voltage or lower (steps S106, No), repeats step S106.
一方、放電用電圧以下に到達していれば(ステップS106,Yes)、充放電IC4に放電停止させる(ステップS107)。そして、分極解消後、均等化制御部12aが、セルバランスIC3にセル均等化を実行させる(ステップS108)。 On the other hand, if the voltage reaches the discharge voltage or less (step S106, Yes), the charge / discharge IC4 is stopped from discharging (step S107). Then, after the polarization is eliminated, the equalization control unit 12a causes the cell balance IC3 to execute cell equalization (step S108).
そして、ステップS108のセル均等化後、取得部12cが、OCVLoを取得する(ステップS109)。そして、算出部12dが、取得部12cによって取得されたOCVHi、OCVLoおよび電流積算量に基づき、ΔSOC方式で満充電容量を算出して(ステップS110)、処理を終了する。
Then, after cell equalization in step S108, the
また、ステップS103の判定条件を満たさない場合(ステップS103,No)、処理を終了する。 If the determination condition of step S103 is not satisfied (steps S103, No), the process ends.
上述してきたように、実施形態に係るバッテリECU10(「算出装置」の一例に相当)は、取得部12cと、均等化制御部12aと、算出部12dとを備える。取得部12cは、LiB2(「二次電池からなるバッテリ」の一例に相当)の満充電容量の算出に際し、LiB2の放電開始前にかかるLiB2のOCVHi(「第1の開放電圧」の一例に相当)と、LiB2の放電停止後にかかるLiB2のOCVLo(「第2の開放電圧」の一例に相当)とをそれぞれ取得する。均等化制御部12aは、取得部12cによるOCVHiの取得前に、LiB2のセルCの均等化を実行させる。算出部12dは、OCVHi、OCVLo、および、LiB2の放電中の電流積算量に基づいて、上記満充電容量を算出する。
As described above, the battery ECU 10 (corresponding to an example of the “calculation device”) according to the embodiment includes an
したがって、実施形態に係るバッテリECU10によれば、OCVHiの取得前にセルCの電圧のバラツキを解消することで、満充電容量の算出精度を向上させることができる。また、満充電容量の算出精度が向上することで、電池性能の使用効率を向上させることができる。 Therefore, according to the battery ECU 10 according to the embodiment, it is possible to improve the calculation accuracy of the full charge capacity by eliminating the variation in the voltage of the cell C before acquiring the OCV Hi. Further, by improving the calculation accuracy of the full charge capacity, it is possible to improve the usage efficiency of the battery performance.
また、実施形態に係るバッテリECU10は、取得部12cと、均等化制御部12aと、算出部12dとを備える。取得部12cは、LiB2の満充電容量の算出に際し、LiB2の放電開始前にかかるLiB2のOCVHiと、LiB2の放電停止後にかかるLiB2のOCVLoとをそれぞれ取得する。均等化制御部12aは、取得部12cによるOCVLoの取得前に、LiB2のセルCの均等化を実行させる。算出部12dは、OCVHi、OCVLo、および、LiB2の放電中の電流積算量に基づいて、上記満充電容量を算出する。
Further, the battery ECU 10 according to the embodiment includes an
したがって、実施形態に係るバッテリECU10によれば、OCVLoの取得前にセルCの電圧のバラツキを解消することで、満充電容量の算出精度を向上させることができる。また、満充電容量の算出精度が向上することで、電池性能の使用効率を向上させることができる。 Therefore, according to the battery ECU 10 according to the embodiment, it is possible to improve the calculation accuracy of the full charge capacity by eliminating the variation in the voltage of the cell C before acquiring the OCV Lo. Further, by improving the calculation accuracy of the full charge capacity, it is possible to improve the usage efficiency of the battery performance.
また、均等化制御部12aは、OCVLoの取得前および分極解消後に、所定の目標電圧を超えているセルCについてのみ均等化を実行させる。 Further, the equalization control unit 12a executes equalization only for the cell C exceeding the predetermined target voltage before the acquisition of the OCV Lo and after the polarization is eliminated.
したがって、実施形態に係るバッテリECU10によれば、OCVLoの取得前および分極解消後に、目標電圧を超えているセルCについてのみ電圧のバラツキを解消することで、満充電容量の算出精度を向上させることができる。 Therefore, according to the battery ECU 10 according to the embodiment, the calculation accuracy of the full charge capacity is improved by eliminating the voltage variation only in the cell C exceeding the target voltage before the acquisition of the OCV Lo and after the polarization is eliminated. be able to.
なお、上述した実施形態では、図2に示したように、バッテリECU10がLiB2と別体に構成される例を挙げたが、この限りではなく、たとえば1つの電池パックとして、バッテリECU10とLiB2とを一体に構成してもよい。 In the above-described embodiment, as shown in FIG. 2, an example in which the battery ECU 10 is configured separately from the LiB2 is given, but the present invention is not limited to this, and for example, the battery ECU10 and the LiB2 are used as one battery pack. May be integrally configured.
また、バッテリECU10は、上位ECU20と一体に構成されて、たとえば車両全体を統合的に制御する制御装置の機能の一部として構成されてもよい。
Further, the battery ECU 10 may be configured integrally with the
また、上述した実施形態では、バッテリECU10が、車両に搭載されるLiB2の満充電容量を算出する算出装置である場合を例に挙げたが、この限りではなく、LiB2の搭載先を問うものではない。したがって、車両以外にLiB2が搭載される場合にも適用することができる。 Further, in the above-described embodiment, the case where the battery ECU 10 is a calculation device for calculating the full charge capacity of the LiB2 mounted on the vehicle is given as an example, but the present invention is not limited to this, and the mounting destination of the LiB2 is not questioned. Absent. Therefore, it can be applied to the case where LiB2 is mounted in addition to the vehicle.
さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and variations can be easily derived by those skilled in the art. For this reason, the broader aspects of the invention are not limited to the particular details and representative embodiments expressed and described as described above. Therefore, various modifications can be made without departing from the spirit or scope of the general concept of the invention as defined by the appended claims and their equivalents.
1 バッテリ制御システム
2 LiB
3 セルバランスIC
4 充放電IC
5 電圧センサ
6 電流センサ
10 バッテリECU
11 記憶部
11a OCV−SOC曲線
12 制御部
12a 均等化制御部
12b 充放電制御部
12c 取得部
12d 算出部
20 上位ECU
C セル
1 Battery control system 2 LiB
3 Cell balance IC
4 Charge / discharge IC
5 Voltage sensor 6 Current sensor 10 Battery ECU
11 Storage unit 11a OCV-SOC curve 12 Control unit 12a Equalization control unit 12b Charge /
C cell
Claims (5)
前記取得部による前記第1の開放電圧の取得前に、前記バッテリのセルの均等化を実行させる均等化制御部と、
前記第1の開放電圧、前記第2の開放電圧、および、前記バッテリの放電中の電流積算量に基づいて、前記満充電容量を算出する算出部と
を備えることを特徴とする算出装置。 When calculating the full charge capacity of a battery composed of a secondary battery, the first open voltage of the battery is acquired before the start of discharging the battery, and the second open voltage of the battery is obtained after the discharge of the battery is stopped. Acquisition department and
An equalization control unit that executes equalization of the cells of the battery before the acquisition of the first open circuit voltage by the acquisition unit.
A calculation device including a calculation unit that calculates the full charge capacity based on the first open circuit voltage, the second open circuit voltage, and the integrated current amount during discharge of the battery.
前記取得部による前記第2の開放電圧の取得前に、前記バッテリのセルの均等化を実行させる均等化制御部と、
前記第1の開放電圧、前記第2の開放電圧、および、前記バッテリの放電中の電流積算量に基づいて、前記満充電容量を算出する算出部と
を備えることを特徴とする算出装置。 When calculating the full charge capacity of a battery composed of a secondary battery, the first open voltage of the battery is acquired before the start of discharging the battery, and the second open voltage of the battery is obtained after the discharge of the battery is stopped. Acquisition department and
An equalization control unit that executes equalization of the cells of the battery before the acquisition of the second open circuit voltage by the acquisition unit.
A calculation device including a calculation unit that calculates the full charge capacity based on the first open circuit voltage, the second open circuit voltage, and the integrated current amount during discharge of the battery.
前記第2の開放電圧の取得前および分極解消後に、所定の目標電圧を超えている前記セルについてのみ均等化を実行させる
ことを特徴とする請求項2に記載の算出装置。 The equalization control unit
The calculation device according to claim 2, wherein equalization is executed only for the cells exceeding a predetermined target voltage before the acquisition of the second open circuit voltage and after the polarization is eliminated.
前記取得工程における前記第1の開放電圧の取得前に、前記バッテリのセルの均等化を実行させる均等化制御工程と
前記第1の開放電圧、前記第2の開放電圧、および、前記バッテリの放電中の電流積算量に基づいて、前記満充電容量を算出する算出工程と
を含むことを特徴とする満充電容量算出方法。 When calculating the full charge capacity of a battery composed of a secondary battery, the first open voltage of the battery is acquired before the start of discharging the battery, and the second open voltage of the battery is obtained after the discharge of the battery is stopped. Acquisition process and
Before the acquisition of the first open circuit voltage in the acquisition step, the equalization control step of executing the equalization of the cells of the battery, the first open circuit voltage, the second open circuit voltage, and the discharge of the battery. A method for calculating a full charge capacity, which comprises a calculation step of calculating the full charge capacity based on the integrated current amount in the medium.
前記取得工程における前記第2の開放電圧の取得前に、前記バッテリのセルの均等化を実行させる均等化制御工程と、
前記第1の開放電圧、前記第2の開放電圧、および、前記バッテリの放電中の電流積算量に基づいて、前記満充電容量を算出する算出工程と
を含むことを特徴とする満充電容量算出方法。 When calculating the full charge capacity of a battery composed of a secondary battery, the first open voltage of the battery is acquired before the start of discharging the battery, and the second open voltage of the battery is obtained after the discharge of the battery is stopped. Acquisition process and
Before the acquisition of the second open circuit voltage in the acquisition step, the equalization control step of executing the equalization of the cells of the battery and the equalization control step.
Full charge capacity calculation including a calculation step of calculating the full charge capacity based on the first open circuit voltage, the second open circuit voltage, and the integrated current amount during discharge of the battery. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019219411A JP2021090275A (en) | 2019-12-04 | 2019-12-04 | Calculation device and full charge capacity calculation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019219411A JP2021090275A (en) | 2019-12-04 | 2019-12-04 | Calculation device and full charge capacity calculation method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021090275A true JP2021090275A (en) | 2021-06-10 |
Family
ID=76220564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019219411A Pending JP2021090275A (en) | 2019-12-04 | 2019-12-04 | Calculation device and full charge capacity calculation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021090275A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022250128A1 (en) | 2021-05-28 | 2022-12-01 | 三井化学東セロ株式会社 | Back grinding adhesive film and method for producing electronic device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015083928A (en) * | 2013-10-25 | 2015-04-30 | 株式会社デンソー | Full charge capacity calculation device |
JP2018057137A (en) * | 2016-09-28 | 2018-04-05 | 株式会社デンソー | Full charge capacity calculation device |
-
2019
- 2019-12-04 JP JP2019219411A patent/JP2021090275A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015083928A (en) * | 2013-10-25 | 2015-04-30 | 株式会社デンソー | Full charge capacity calculation device |
JP2018057137A (en) * | 2016-09-28 | 2018-04-05 | 株式会社デンソー | Full charge capacity calculation device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022250128A1 (en) | 2021-05-28 | 2022-12-01 | 三井化学東セロ株式会社 | Back grinding adhesive film and method for producing electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4523738B2 (en) | Secondary battery remaining capacity control method and apparatus | |
JP6380635B2 (en) | CHARGE RATE ESTIMATION DEVICE AND CHARGE RATE ESTIMATION METHOD | |
JP3964635B2 (en) | Memory effect detection method and solution | |
CN110679056B (en) | Battery charge management apparatus and method | |
JP6759668B2 (en) | Power storage element management device, power storage device, and power storage system | |
US20090271132A1 (en) | Method for estimating state of charge of a rechargeable battery | |
EP3447511A1 (en) | State-of-charge calculation device, computer program, and state-of-charge calculation method | |
JP2016166864A (en) | Power storage element managing device, power storage element management method, power storage element module, power storage element management program, and moving body | |
JP7400172B2 (en) | Battery management device and method | |
JP6802723B2 (en) | Power storage device and power storage control method | |
CN107482269B (en) | Discharging control method and device of power battery, controller and automobile | |
JP6958965B2 (en) | Battery SOC Estimator and Method | |
JP6500795B2 (en) | Vehicle battery SOC management system | |
JP2018136131A (en) | State estimation device | |
KR102350920B1 (en) | device for detecting the state of charge of a battery | |
JP6822358B2 (en) | Rechargeable battery system | |
JP7253958B2 (en) | BATTERY CONTROL DEVICE AND BATTERY CONTROL METHOD | |
JP2021090275A (en) | Calculation device and full charge capacity calculation method | |
JP7261016B2 (en) | Estimation device and estimation method | |
JP2019144211A (en) | Estimation device and method for estimation | |
US9466990B2 (en) | Method for enhancing a battery management system, battery management system, battery system and motor vehicle | |
JP2020139846A (en) | State estimation device | |
EP4078206B1 (en) | A method for estimating capacity of a battery unit | |
JP6848775B2 (en) | Lithium ion secondary battery system | |
JP2020201122A (en) | Estimation device, estimation system, and method for estimation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220412 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230124 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230718 |