JP2021080871A - diesel engine - Google Patents
diesel engine Download PDFInfo
- Publication number
- JP2021080871A JP2021080871A JP2019208438A JP2019208438A JP2021080871A JP 2021080871 A JP2021080871 A JP 2021080871A JP 2019208438 A JP2019208438 A JP 2019208438A JP 2019208438 A JP2019208438 A JP 2019208438A JP 2021080871 A JP2021080871 A JP 2021080871A
- Authority
- JP
- Japan
- Prior art keywords
- governor
- limit
- upper limit
- actuator
- increase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- High-Pressure Fuel Injection Pump Control (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
Description
本発明は、ディーゼルエンジンに関し、詳しくは、負荷解除後のエンジン実回転数の整定時間が短くなるディーゼルエンジンに関する。 The present invention relates to a diesel engine, and more particularly to a diesel engine in which the setting time of the actual engine speed after the load is released is shortened.
従来、燃料噴射ポンプと、メカニカルガバナと、電子ガバナを備え、メカニカルガバナは、燃料噴射ポンプの燃料調量ラックのラック位置の増量限界を定め、定格回転数を超える超定格回転領域では、ドループ制御特性に基づいて増量限界を画し、電子ガバナは、増量限界よりも燃料減量側で、アイソクロナス制御特性に基づいて、ラック位置を制御するように構成された、ディーゼルエンジンがある(例えば、特許文献1参照)。 Conventionally, a fuel injection pump, a mechanical governor, and an electronic governor are provided. The mechanical governor sets a limit for increasing the rack position of the fuel metering rack of the fuel injection pump, and droop control is performed in the super-rated rotation range exceeding the rated rotation speed. There is a diesel engine that defines the weight increase limit based on the characteristics, and the electronic governor is configured to control the rack position based on the isochronous control characteristics on the fuel weight reduction side of the weight increase limit (for example, patent documents). 1).
《問題点》 負荷解除後のエンジン回転数の整定時間が長くなることがある。
特許文献1のエンジンでは、超定格回転領域で、負荷解除後のエンジン実回転数の整定時間が長くなることがある。
<< Problem >> It may take a long time to set the engine speed after the load is released.
In the engine of
本発明の課題は、負荷解除後のエンジン実回転数の整定時間が短くなるディーゼルエンジンを提供することにある。 An object of the present invention is to provide a diesel engine in which the setting time of the actual engine speed after the load is released is shortened.
本願発明の主要な構成は、次の通りである。
図1に例示するように、電子ガバナ(3)は上限制限マップ(3b)を備え、図2に例示するように、超定格回転領域では、増量限界(2a)を超える電流値の上限が、上限制限マップ(3b)(図1参照)に入力された上限制限値(3c)に制限されるように構成されている、ことを特徴とするディーゼルエンジン。
The main configurations of the present invention are as follows.
As illustrated in FIG. 1, the electronic governor (3) is provided with an upper limit limit map (3b), and as illustrated in FIG. 2, in the super-rated rotation region, the upper limit of the current value exceeding the increase limit (2a) is set. A diesel engine characterized in that it is configured to be limited to the upper limit limit value (3c) entered in the upper limit limit map (3b) (see FIG. 1).
本願発明は、次の効果を奏する。
《効果》 負荷解除後のエンジン実回転数の整定時間が短くなる。
図2に例示するように、増量限界(2a)を超える電流値の上限が上限制限値(3c)で制限されるため、図3(A)に例示するグラフ(実線)のように、負荷解除(10)後のエンジン実回転数の整定時間(T0)が短くなる。
The invention of the present application has the following effects.
<< Effect >> The settling time of the actual engine speed after the load is released is shortened.
As illustrated in FIG. 2, since the upper limit of the current value exceeding the increase limit (2a) is limited by the upper limit limit value (3c), the load is released as shown in the graph (solid line) illustrated in FIG. 3 (A). After (10), the settling time (T0) of the actual engine speed becomes shorter.
図1〜図3は、本発明の実施形態に係るディーゼルエンジンを説明する図で、この実施形態では、立形の多気筒ディーゼルエンジンについて説明する。 1 to 3 are views for explaining a diesel engine according to an embodiment of the present invention, and in this embodiment, a vertical multi-cylinder diesel engine will be described.
図1に示すように、このディーゼルエンジンは、燃料噴射ポンプ(1)と、メカニカルガバナ(2)と、電子ガバナ(3)を備えている。
メカニカルガバナ(2)は、燃料噴射ポンプ(1)の燃料調量ラック(1a)のラック位置の増量限界(2a)(図2参照)を定め、図2に示すように、定格回転数を超える超定格回転領域では、負荷投入(9)により、ラック位置が増量側に移動するにつれて、エンジン実回転数が低下するドループ制御特性に基づいて増量限界(2a)を画する。
As shown in FIG. 1, this diesel engine includes a fuel injection pump (1), a mechanical governor (2), and an electronic governor (3).
The mechanical governor (2) sets an increase limit (2a) (see FIG. 2) of the rack position of the fuel metering rack (1a) of the fuel injection pump (1), and exceeds the rated rotation speed as shown in FIG. In the super-rated rotation region, the increase limit (2a) is set based on the droop control characteristic in which the actual engine speed decreases as the rack position moves to the increase side due to the load injection (9).
図1に示すように、電子ガバナ(3)は、アクチュエータ(3a)を備え、図2に示すように、前記増量限界(2a)よりも燃料減量側で、負荷変動に拘わらずエンジン実回転数を一定のエンジン目標回転数(TR)に維持するアイソクロナス制御特性に基づいて、ラック位置を制御し、負荷投入(9)時には、PID制御またはPI制御で、アクチュエータ(3a)に印加する電流値を上昇させ、ラック位置を増量側に移動させるように構成されている。 As shown in FIG. 1, the electronic governor (3) includes an actuator (3a), and as shown in FIG. 2, the actual engine speed is on the fuel reduction side of the increase limit (2a) regardless of the load fluctuation. The rack position is controlled based on the isochronous control characteristic that maintains the engine at a constant engine speed (TR), and at the time of load application (9), the current value applied to the actuator (3a) is controlled by PID control or PI control. It is configured to be raised and the rack position to be moved to the increase side.
図1に示すように、電子ガバナ(3)は上限制限マップ(3b)を備え、図2に示すように、超定格回転領域では、前記増量限界(2a)を超える電流値の上限が、上限制限マップ(3b)(図1参照)に入力された上限制限値(3c)に制限されるように構成されている。 As shown in FIG. 1, the electronic governor (3) has an upper limit limit map (3b), and as shown in FIG. 2, in the super-rated rotation region, the upper limit of the current value exceeding the increase limit (2a) is the upper limit. It is configured to be limited to the upper limit value (3c) entered in the limit map (3b) (see FIG. 1).
図2に示すように、このエンジンによれば、増量限界(2a)を超える電流値の上限が上限制限値(3c)で制限されるため、図3(A)に示すグラフ(実線)のように、負荷解除(10)後のエンジン実回転数の整定時間(T0)が短くなる。 As shown in FIG. 2, according to this engine, the upper limit of the current value exceeding the increase limit (2a) is limited by the upper limit limit value (3c), so that the graph (solid line) shown in FIG. 3A is shown. In addition, the settling time (T0) of the actual engine speed after the load release (10) is shortened.
その理由は、次のように推定される。
図2に示すように、超定格回転領域で、所定のエンジン目標回転数(TR)に設定された電子ガバナ(3)による制御中、負荷投入(9)により、エンジン実回転数が低下し、アクチュエータ(3a)に印加される電流値が上昇し、矢印のように、ラック位置がアイソクロナス制御特性に基づいて増量側に移動する。さらに、ラック位置が増量側に移動してメカニカルガバナ(2)で定められた増量限界(2a)に達すると、メカニカルガバナ(2)による制御が支配的となり、ドループ制御特性に基づいて、エンジン実回転数は低下し、エンジン目標回転数(TR)とエンジン実回転数との回転数偏差(11)が生じるため、アクチュエータ(3a)に印加される電流値はラック位置の増量限界(2a)を越えて、ラック位置の調量とは無関係に上昇する。
The reason is presumed as follows.
As shown in FIG. 2, the actual engine speed decreases due to the load application (9) during control by the electronic governor (3) set to a predetermined engine target speed (TR) in the super-rated speed region. The value of the current applied to the actuator (3a) rises, and the rack position moves to the increase side based on the isochronous control characteristics as shown by the arrow. Further, when the rack position moves to the increase side and reaches the increase limit (2a) defined by the mechanical governor (2), the control by the mechanical governor (2) becomes dominant, and the engine actual based on the droop control characteristics. Since the rotation speed decreases and the rotation speed deviation (11) between the engine target rotation speed (TR) and the engine actual rotation speed occurs, the current value applied to the actuator (3a) reaches the rack position increase limit (2a). Beyond, it rises regardless of the metering of the rack position.
このような場合、図2に示すグラフ(二点鎖線)のように、増量限界(2a)を越える電流値の上限に特別な制限が無い従来品では、アアクチュエータ(3a)の増量作動限界値まで電流値が上昇し、その電流上昇時間が長くなるため、図3(B)に示すグラフ(二点鎖線)のように、積分上昇値(R1)が高くなり、図3(A)に示すグラフ(二点鎖線)のように、負荷解除(10)後の積分値のキャンセルに時間がかかり、エンジン実回転数が大きくオーバーシュートし、負荷解除(10)後のエンジン実回転数の整定時間(T1)が長びく。 In such a case, as shown in the graph (dashed line) shown in FIG. 2, in the conventional product in which there is no special limit on the upper limit of the current value exceeding the increase limit (2a), the increase operation limit value of the actuator (3a) As the current value rises to, and the current rise time becomes longer, the integrated rise value (R1) becomes higher as shown in the graph (dashed-dotted line) shown in FIG. 3 (B), and is shown in FIG. 3 (A). As shown in the graph (dashed line), it takes time to cancel the integrated value after the load is released (10), the actual engine current speed overshoots significantly, and the settling time of the actual engine speed after the load is released (10). (T1) is long.
これに対し、本実施形態では、図2に示すように、増量限界(2a)を超える電流値の上限を上限制限値(3c)で制限したため、電流上昇値が低くなり、その電流上昇時間が短くなるため、図3(B)に示すグラフ(実線)のように、積分上昇値(R0)が低くなり、図3(A)に示すグラフ(実線)のように、負荷解除(10)後の積分値のキャンセルに時間がかからず、実回転数のオーバーシュートが小さく、負荷解除(10)後のエンジン実回転数の整定時間(T0)が短くなる。 On the other hand, in the present embodiment, as shown in FIG. 2, since the upper limit of the current value exceeding the increase limit (2a) is limited by the upper limit limit value (3c), the current increase value becomes lower and the current increase time becomes lower. As the length becomes shorter, the integrated increase value (R0) becomes lower as shown in the graph (solid line) shown in FIG. 3 (B), and after the load is released (10) as shown in the graph (solid line) shown in FIG. 3 (A). It does not take time to cancel the integrated value of, the overshoot of the actual rotation speed is small, and the settling time (T0) of the actual engine speed after the load release (10) is shortened.
図1に示すように、メカニカルガバナ(2)は、ガバナレバー(4)と、最高回転数設定位置で固定されたアクセル操作手段(5)と、ガバナレバー(4)とアクセル操作手段(5)の間に架設されたガバナスプリング(6)と、ガバナレバー(4)に連携されたガバナ力発生手段(7)を備えている。
電子ガバナ(3)は、アクチュエータ(3a)と、アクチュエータ(3a)を制御する電子制御装置(8)を備えている。
このエンジンは、ガバナレバー(4)とアクチュエータ(3a)で調量ラック(1a)を燃料増量側でそれぞれ受け止めるように構成され、図2に示す超定格回転領域では、上限制限マップ(3b)に入力された上限制限値(3c)に基づいて、図1に示すガバナレバー(4)で受け止められた調量ラック(1a)からのアクチュエータ(3a)の出力部(3e)の離間距離(3d)が制限されるように構成されている。
As shown in FIG. 1, the mechanical governor (2) is located between the governor lever (4), the accelerator operating means (5) fixed at the maximum rotation speed setting position, and between the governor lever (4) and the accelerator operating means (5). It is equipped with a governor spring (6) erected in the governor and a governor force generating means (7) linked to the governor lever (4).
The electronic governor (3) includes an actuator (3a) and an electronic control device (8) that controls the actuator (3a).
This engine is configured so that the governor lever (4) and the actuator (3a) receive the metering rack (1a) on the fuel increasing side, respectively, and in the super-rated rotation region shown in FIG. 2, the input is input to the upper limit limit map (3b). Based on the upper limit value (3c), the separation distance (3d) of the output unit (3e) of the actuator (3a) from the metering rack (1a) received by the governor lever (4) shown in FIG. 1 is limited. It is configured to be.
このエンジンによれば、図2に示す超定格回転領域では、図1に示すガバナレバー(4)で受け止められた燃料調量ラック(1a)からのアクチュエータ(3a)の出力部(3e)の離間距離(3d)が短くなり、負荷解除(10)後の出力部(3e)の戻りが早く、ラック位置を速やかに燃料減量側に戻すことができ、図3(A)に示すグラフ(実線)のように、負荷解除(10)後のエンジン実回転数の整定時間(T0)が短くなる。 According to this engine, in the super-rated rotation region shown in FIG. 2, the separation distance of the output unit (3e) of the actuator (3a) from the fuel metering rack (1a) received by the governor lever (4) shown in FIG. 1 (3d) is shortened, the output unit (3e) returns quickly after the load is released (10), and the rack position can be quickly returned to the fuel reduction side. As described above, the settling time (T0) of the actual engine speed after the load release (10) is shortened.
図1に示すように、燃料噴射ポンプ(1)は、列形のプランジャ式燃料噴射ポンプで、燃料調量ラック(1a)の燃料増減方向のラック位置の移動で、プランジャ(12)の斜め溝(12a)とバレル(13)の逃げ孔(13a)の周方向の相対位置を調節し、燃料噴射量を調節する。
プランジャ(12)はタペット(14)を介して燃料噴射カム(15)で昇降駆動される。
As shown in FIG. 1, the fuel injection pump (1) is a row-type plunger type fuel injection pump, and is a diagonal groove of the plunger (12) due to the movement of the rack position in the fuel increase / decrease direction of the fuel metering rack (1a). The relative positions of the relief holes (13a) of (12a) and the barrel (13) in the circumferential direction are adjusted to adjust the fuel injection amount.
The plunger (12) is driven up and down by the fuel injection cam (15) via the tappet (14).
図1に示すように、メカニカルガバナ(2)のアクセル操作手段(5)は、アクセルレバーである。ガバナレバー(4)には、ガバナスプリング(6)から燃料増量側に向かうバネ力(6a)が作用する。ガバナ力発生手段(7)は、クランク軸(16)で回転駆動される遠心式ガバナウェイト(7a)とガバナスリーブ(7b)を備え、エンジン実回転数が上昇すると、遠心式ガバナウェイト(7a)が拡角し、ガバナスリーブ(7b)のスライドを介してガバナレバー(4)に燃料減量方向に向かうガバナ力(7c)が作用する。ガバナレバー(4)は、付勢バネ(17)の付勢力(17a)で燃料増量方向に付勢された燃料調量ラック(1a)を燃料増量側から受け止め、ガバナスプリング(6)からのバネ力(6a)と、ガバナ力(7c)との不釣り合い力で揺動するガバナレバー(4)でラック位置を制御し、ラック位置の増量限界(2a)(図2参照)を定める。 As shown in FIG. 1, the accelerator operating means (5) of the mechanical governor (2) is an accelerator lever. A spring force (6a) acting from the governor spring (6) toward the fuel increasing side acts on the governor lever (4). The governor force generating means (7) includes a centrifugal governor weight (7a) and a governor sleeve (7b) that are rotationally driven by a crank shaft (16), and when the actual engine speed increases, the centrifugal governor weight (7a) Is widened, and a governor force (7c) acting in the direction of fuel reduction acts on the governor lever (4) via the slide of the governor sleeve (7b). The governor lever (4) receives the fuel metering rack (1a) urged in the fuel increasing direction by the urging force (17a) of the urging spring (17) from the fuel increasing side, and the spring force from the governor spring (6). The rack position is controlled by the governor lever (4) that swings due to the disproportionate force between (6a) and the governor force (7c), and the rack position increase limit (2a) (see FIG. 2) is determined.
図1に示す電子ガバナ(3)の電子制御装置(8)は、エンジンECUである。ECUは、電子制御ユニットの略称で、マイコンが用いられている。
アクチュエータ(3a)には、リニアソレノイドが用いられている。リニアソレノイドは、アクチュエータ本体(3f)から出力部(3e)を突出させたもので、印加される電流値が増加するにつれて、出力部(3e)はアクチュエータ本体(3f)に大きく引き込まれる。出力部(3e)には出力ロッドが用いられている。
上限制限マップ(3b)は、電子制御装置(8)に内蔵された記憶部に記憶されている。記憶部には、フラッシュメモリ、P−ROM、EP−ROM、E2P−ROM等の不揮発性メモリが用いられる。
The electronic control device (8) of the electronic governor (3) shown in FIG. 1 is an engine ECU. The ECU is an abbreviation for an electronic control unit, and a microcomputer is used.
A linear solenoid is used for the actuator (3a). The linear solenoid has an output unit (3e) protruding from the actuator body (3f), and as the applied current value increases, the output unit (3e) is largely drawn into the actuator body (3f). An output rod is used for the output unit (3e).
The upper limit limit map (3b) is stored in a storage unit built in the electronic control device (8). A non-volatile memory such as a flash memory, P-ROM, EP-ROM, or E2P-ROM is used as the storage unit.
図1に示すように、電子制御装置(8)には、アクセルペダル(18)の踏み込み位置からアクセル開度を検出するアクセルセンサ(18a)と、クランク軸(16)のフライホイール(19)に設けられた回転検出ディスク(20)の全周に設けられた鋸歯状突起の通過を検出する回転検出センサ(20a)が連携され、アクセル開度の検出に基づくエンジン目標回転数(RT)(図2参照)と、回転検出センサ(20a)の検出に基づくエンジン実回転数の回転数偏差(11)(図2参照)を小さくするように、アクチュエータ(3a)でラック位置を制御する。 As shown in FIG. 1, the electronic control device (8) includes an accelerator sensor (18a) that detects the accelerator opening from the depressed position of the accelerator pedal (18), and a flywheel (19) of the crankshaft (16). The rotation detection sensor (20a) that detects the passage of the serrated protrusions provided on the entire circumference of the rotation detection disk (20) provided is linked, and the engine target rotation speed (RT) (RT) based on the detection of the accelerator opening is linked. The rack position is controlled by the actuator (3a) so as to reduce the rotation speed deviation (11) (see FIG. 2) of the actual engine speed based on the detection of the rotation detection sensor (20a) and the rotation speed detection sensor (20a).
図1に示すアクチュエータ(3a)は、負荷投入(9)によりラック位置がメカニカルガバナ(2)で定められた増量限界(2a)(図2参照)に達するまでは、付勢バネ(17)で燃料増量方向に付勢された燃料調量ラック(1a)を燃料増量側から出力部(3e)で受け止め、ラック位置を制御するが、図2に示すラック位置が増量限界(2a)に達した後もエンジン実回転数が低下すると、アクチュエータ(3a)(図1参照)に印加される電流値はラック位置の増量限界(2a)を越えて上昇し、図1に示す出力部(3e)はアクチュエータ本体(3f)側に引き込まれ、出力部(3e)はガバナレバー(4)で受け止められている燃料調量ラック(1a)から離間する。
図2に示すように、上昇する電流値は、上限制限マップ(3b)(図1参照)に入力された上限制限値(3c)に制限される。上限制限値(3c)は、エンジン目標回転数が定格回転数側から無負荷最高回転数側に増加するにつれて、次第に小さくなる。
The actuator (3a) shown in FIG. 1 uses an urging spring (17) until the rack position reaches the increase limit (2a) (see FIG. 2) defined by the mechanical governor (2) by loading (9). The fuel metering rack (1a) urged in the fuel increasing direction is received by the output unit (3e) from the fuel increasing side, and the rack position is controlled. After that, when the actual engine speed decreases, the current value applied to the actuator (3a) (see FIG. 1) rises beyond the rack position increase limit (2a), and the output unit (3e) shown in FIG. 1 increases. It is pulled toward the actuator body (3f) side, and the output unit (3e) is separated from the fuel metering rack (1a) received by the governor lever (4).
As shown in FIG. 2, the rising current value is limited to the upper limit limit value (3c) input in the upper limit limit map (3b) (see FIG. 1). The upper limit value (3c) gradually decreases as the engine target rotation speed increases from the rated rotation speed side to the no-load maximum rotation speed side.
(1)…燃料噴射ポンプ、(1a)…燃料調量ラック、(2)…メカニカルガバナ、(2a)…増量限界、(3)…電子ガバナ、(3a)…アクチュエータ、(3b)…上限制限マップ、(3c)…上限制限値、(3d)…離間距離、(3e)…出力部、(4)…ガバナレバー、(5)…アクセル操作手段、(6)…ガバナスプリング、(7)…ガバナ力発生手段、(8)…電子制御装置、(TR)…エンジン目標回転数。 (1) ... Fuel injection pump, (1a) ... Fuel metering rack, (2) ... Mechanical governor, (2a) ... Weight increase limit, (3) ... Electronic governor, (3a) ... Actuator, (3b) ... Upper limit limit Map, (3c) ... upper limit limit value, (3d) ... separation distance, (3e) ... output unit, (4) ... governor lever, (5) ... accelerator operating means, (6) ... governor spring, (7) ... governor Force generating means, (8) ... Electronic control device, (TR) ... Engine target rotation speed.
Claims (2)
メカニカルガバナ(2)は、燃料噴射ポンプ(1)の燃料調量ラック(1a)のラック位置の増量限界(2a)を定め、定格回転数を超える超定格回転領域では、負荷投入(9)により、ラック位置が増量側に移動するにつれて、エンジン実回転数が低下するドループ制御特性に基づいて増量限界(2a)を画し、
電子ガバナ(3)は、アクチュエータ(3a)を備え、前記増量限界(2a)よりも燃料減量側で、負荷変動に拘わらずエンジン実回転数を一定のエンジン目標回転数(TR)に維持するアイソクロナス制御特性に基づいて、ラック位置を制御し、負荷投入(9)時には、PID制御またはPI制御で、アクチュエータ(3a)に印加する電流値を上昇させ、ラック位置を増量側に移動させるように構成され、
電子ガバナ(3)は上限制限マップ(3b)を備え、超定格回転領域では、前記増量限界(2a)を超える電流値の上限が、上限制限マップ(3b)に入力された上限制限値(3c)に制限されるように構成されている、ことを特徴とするディーゼルエンジン。 It is equipped with a fuel injection pump (1), a mechanical governor (2), and an electronic governor (3).
The mechanical governor (2) sets an increase limit (2a) of the rack position of the fuel metering rack (1a) of the fuel injection pump (1), and in the super-rated rotation range exceeding the rated rotation speed, the load is applied (9). , The increase limit (2a) is set based on the droop control characteristic that the actual engine speed decreases as the rack position moves to the increase side.
The electronic governor (3) is provided with an actuator (3a) and is isochronous that maintains the actual engine speed at a constant engine target speed (TR) on the fuel reduction side of the increase limit (2a) regardless of load fluctuations. The rack position is controlled based on the control characteristics, and at the time of load application (9), the current value applied to the actuator (3a) is increased by PID control or PI control, and the rack position is moved to the increase side. Being done
The electronic governor (3) is provided with an upper limit limit map (3b), and in the super-rated rotation region, the upper limit of the current value exceeding the increase limit (2a) is the upper limit limit value (3c) input to the upper limit limit map (3b). ) Is configured to be a diesel engine.
メカニカルガバナ(2)は、ガバナレバー(4)と、最高回転数設定位置で固定されたアクセル操作手段(5)と、ガバナレバー(4)とアクセル操作手段(5)の間に架設されたガバナスプリング(6)と、ガバナレバー(4)に連携されたガバナ力発生手段(7)を備え、
電子ガバナ(3)は、アクチュエータ(3a)と、アクチュエータ(3a)を制御する電子制御装置(8)を備え、
ガバナレバー(4)とアクチュエータ(3a)で調量ラック(1a)を燃料増量側でそれぞれ受け止めるように構成され、超定格回転領域では、上限制限マップ(3b)に入力された上限制限値(3c)に基づいて、ガバナレバー(4)で受け止められた調量ラック(1a)からのアクチュエータ(3a)の出力部(3e)の離間距離(3d)が制限されるように構成されている、ことを特徴とするディーゼルエンジン。 In the diesel engine according to claim 1,
The mechanical governor (2) is a governor lever (4), an accelerator operating means (5) fixed at the maximum rotation speed setting position, and a governor spring (5) installed between the governor lever (4) and the accelerator operating means (5). 6) and a governor force generating means (7) linked to the governor lever (4) are provided.
The electronic governor (3) includes an actuator (3a) and an electronic control device (8) that controls the actuator (3a).
The governor lever (4) and actuator (3a) are configured to receive the metering rack (1a) on the fuel increase side, respectively. In the super-rated rotation region, the upper limit limit value (3c) entered in the upper limit limit map (3b). Based on the above, the distance (3d) of the output unit (3e) of the actuator (3a) from the metering rack (1a) received by the governor lever (4) is limited. Diesel engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019208438A JP7211927B2 (en) | 2019-11-19 | 2019-11-19 | diesel engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019208438A JP7211927B2 (en) | 2019-11-19 | 2019-11-19 | diesel engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021080871A true JP2021080871A (en) | 2021-05-27 |
JP7211927B2 JP7211927B2 (en) | 2023-01-24 |
Family
ID=75964709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019208438A Active JP7211927B2 (en) | 2019-11-19 | 2019-11-19 | diesel engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7211927B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61232339A (en) * | 1985-04-08 | 1986-10-16 | Yanmar Diesel Engine Co Ltd | Controller of internal-combustion engine for working machine |
US4884541A (en) * | 1989-01-12 | 1989-12-05 | Tecumseh Products Company | Speed governor for small engines |
JP2001107792A (en) * | 1999-08-03 | 2001-04-17 | Kubota Corp | Fuel supply device of engine |
JP2003083090A (en) * | 2001-09-11 | 2003-03-19 | Kubota Corp | Electronic governor for diesel engine |
-
2019
- 2019-11-19 JP JP2019208438A patent/JP7211927B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61232339A (en) * | 1985-04-08 | 1986-10-16 | Yanmar Diesel Engine Co Ltd | Controller of internal-combustion engine for working machine |
US4884541A (en) * | 1989-01-12 | 1989-12-05 | Tecumseh Products Company | Speed governor for small engines |
JP2001107792A (en) * | 1999-08-03 | 2001-04-17 | Kubota Corp | Fuel supply device of engine |
JP2003083090A (en) * | 2001-09-11 | 2003-03-19 | Kubota Corp | Electronic governor for diesel engine |
Also Published As
Publication number | Publication date |
---|---|
JP7211927B2 (en) | 2023-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105189992B (en) | Fuel injection control system and fuel injection system | |
US20150090227A1 (en) | High pressure fuel pump control for idle tick reduction | |
US10161342B2 (en) | Control device for high-pressure pump | |
US4212279A (en) | Electronic-mechanical governor for diesel engines | |
JP4544153B2 (en) | Fuel injection control device | |
GB2040500A (en) | Centrifugal speed governor for internal combustion engines having fuel injection | |
JP2021080871A (en) | diesel engine | |
JPS6056148A (en) | Speed controller of self-ignition type internal combustion engine | |
GB2125558A (en) | Controlling the fuel metering for an internal combustion engine | |
US10837390B2 (en) | Method for ascertaining a setpoint value for a manipulated variable for actuating a low-pressure pump | |
US4355609A (en) | Liquid fuel pumping apparatus | |
US4372267A (en) | Fuel pumping apparatus | |
US5195490A (en) | Speed governor for fuel injection pumps of internal combustion engines | |
US2619080A (en) | Fuel injection system for compression ignition engines | |
GB1521735A (en) | Governors | |
GB2044488A (en) | Fuel injection pump | |
WO2020184339A1 (en) | Control device for high-pressure pump | |
US20160298564A1 (en) | Method For Operating An Injector Of An Injection System Of An Internal Combustion Engine | |
US3230946A (en) | Device for controlling the amount of fuel injected into an internal combustion engine as a function of engine speed | |
JPS608123Y2 (en) | Injection amount correction device for distribution type fuel injection pump for internal combustion engine | |
GB2052094A (en) | Liquid fuel pumping apparatus | |
US11680536B2 (en) | Method for managing a piston pump for a heat engine | |
JP2002106401A (en) | Fuel regulator for diesel engine | |
US2938510A (en) | Fuel control for internal combustion engines | |
US2153921A (en) | Means for varying the fuel supply to internal combustion engines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230112 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7211927 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |