Nothing Special   »   [go: up one dir, main page]

JP2021063458A - Exhaust emission control device and control method for said exhaust emission control device - Google Patents

Exhaust emission control device and control method for said exhaust emission control device Download PDF

Info

Publication number
JP2021063458A
JP2021063458A JP2019188267A JP2019188267A JP2021063458A JP 2021063458 A JP2021063458 A JP 2021063458A JP 2019188267 A JP2019188267 A JP 2019188267A JP 2019188267 A JP2019188267 A JP 2019188267A JP 2021063458 A JP2021063458 A JP 2021063458A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
auxiliary pump
control
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019188267A
Other languages
Japanese (ja)
Other versions
JP7383445B2 (en
Inventor
圭輔 佐久間
Keisuke Sakuma
圭輔 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Bosch Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Corp filed Critical Bosch Corp
Priority to JP2019188267A priority Critical patent/JP7383445B2/en
Priority to CN202011091448.0A priority patent/CN112727588B/en
Publication of JP2021063458A publication Critical patent/JP2021063458A/en
Application granted granted Critical
Publication of JP7383445B2 publication Critical patent/JP7383445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2046Periodically cooling catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/162Controlling of coolant flow the coolant being liquid by thermostatic control by cutting in and out of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

To provide an exhaust emission control device provided in a cooling water circulation system of an internal combustion engine and capable of determining whether an auxiliary pump driven by electric power to cool a reducing agent addition valve is in an operable state.SOLUTION: A control device (40) for an exhaust emission control device includes: an acquisition section (41) acquiring starting-related information that can determine that an internal combustion engine (1) is started when the internal combustion engine (1) is started; and an execution section (42) executing control of an operation diagnosis for making a diagnosis to determine whether an auxiliary pump (34) is in an operable state. When the starting-related information is acquired by the acquisition section (41), the execution section (42) executes the control of the operation diagnosis while executing control of test driving for driving the auxiliary pump (34) at least over a predetermined period.SELECTED DRAWING: Figure 3

Description

本発明は、内燃機関の排気ガスを浄化する排気浄化装置及び該排気浄化装置の制御方法に関する。 The present invention relates to an exhaust purification device that purifies the exhaust gas of an internal combustion engine and a control method for the exhaust purification device.

従来、車両用の排気浄化装置として、例えば、車両用のディーゼルエンジン等の内燃機関の排気通路内に配置されてアンモニア(NH3)を吸着して窒素酸化物(NOx)を還元するSCR触媒と、NH3を供給するために還元剤(例えば、尿素水溶液(尿素水))をSCR触媒の上流側の排気通路内に添加する還元剤添加弁と、還元剤を貯蔵タンクから還元剤添加弁に供給する還元剤供給装置等を備える尿素SCRシステムがある。このような尿素SCRシステムでは、例えば、内燃機関の冷却水を該内燃機関の駆動力により駆動されるポンプまたは電力により駆動される電動ポンプにより循環させて還元剤添加弁を冷却する冷却装置が付設されており、高温の排気ガスに曝される還元剤添加弁の温度及び当該還元剤添加弁内の還元剤の温度の上昇を抑制する構成のものがある(例えば、特許文献1参照)。 Conventionally, as an exhaust purification device for a vehicle, for example, an SCR catalyst which is arranged in an exhaust passage of an internal combustion engine such as a diesel engine for a vehicle to adsorb ammonia (NH3) and reduce nitrogen oxides (NOx). A reducing agent addition valve that adds a reducing agent (for example, an aqueous urea solution (urea water)) into the exhaust passage on the upstream side of the SCR catalyst to supply NH3, and a reducing agent that is supplied from the storage tank to the reducing agent addition valve. There is a urea SCR system equipped with a reducing agent supply device and the like. In such a urea SCR system, for example, a cooling device is provided for cooling the reducing agent addition valve by circulating the cooling water of the internal combustion engine by a pump driven by the driving force of the internal combustion engine or an electric pump driven by electric power. There is a configuration that suppresses an increase in the temperature of the reducing agent addition valve exposed to high-temperature exhaust gas and the temperature of the reducing agent in the reducing agent addition valve (see, for example, Patent Document 1).

特開2011−80397号公報Japanese Unexamined Patent Publication No. 2011-80397

特許文献1に記載の排気浄化装置では、内燃機関の停止に伴って該内燃機関の駆動力により駆動されるポンプの駆動が停止されるが、該内燃機関の停止後には、電動ポンプを駆動させることにより内燃機関の冷却水を循環させて還元剤添加弁を冷却する。しかし、電動ポンプが作動可能な状態でない場合、例えば、電動ポンプの配線に短絡や断線が生じた場合や電動ポンプに故障が生じている場合等でも、内燃機関の停止後であって該電動ポンプが作動されるときまで、当該電動ポンプが作動可能な状態でないことが検出されず、内燃機関の停止後において還元剤添加弁を冷却するときに電動ポンプが作動せず、還元剤添加弁が冷却されない虞がある。 In the exhaust gas purification device described in Patent Document 1, the driving of the pump driven by the driving force of the internal combustion engine is stopped when the internal combustion engine is stopped, but the electric pump is driven after the internal combustion engine is stopped. As a result, the cooling water of the internal combustion engine is circulated to cool the reducing agent addition valve. However, even if the electric pump is not in an operable state, for example, if the wiring of the electric pump is short-circuited or disconnected, or if the electric pump has a failure, the electric pump is after the internal combustion engine is stopped. It is not detected that the electric pump is not in an operable state until the operation of the electric pump, and the electric pump does not operate when the reducing agent addition valve is cooled after the internal combustion engine is stopped, and the reducing agent addition valve is cooled. There is a risk that it will not be done.

本発明は、上述の課題を背景としてなされたものであり、内燃機関の冷却水循環系に設けられ、還元剤添加弁を冷却するために電力により駆動される補助ポンプが作動可能な状態か否かを判定することができる排気浄化装置を提供することを目的とする。 The present invention has been made against the background of the above-mentioned problems, and whether or not an auxiliary pump provided in the cooling water circulation system of the internal combustion engine and driven by electric power to cool the reducing agent addition valve can be operated. It is an object of the present invention to provide an exhaust gas purification device capable of determining.

本発明に係る排気浄化装置は、内燃機関(1)の排気ガスを浄化する排気浄化触媒(12)と、該排気浄化触媒(12)の上流側に還元剤を添加する還元剤添加弁(11)と、前記内燃機関(1)の冷却媒体を循環させて前記還元剤添加弁(11)を冷却する冷却装置(30)と、を備える排気浄化装置(10)であって、前記排気浄化装置(10)を制御する制御装置(40)と、前記冷却装置(30)に設けられ、前記内燃機関(1)が運転されているときに、前記内燃機関(1)の駆動力により駆動されて前記冷却媒体を循環させる主ポンプ(33)と、前記冷却装置(30)に設けられ、前記内燃機関(1)が停止されているときに、前記内燃機関(1)の駆動力によらず電力により駆動されて前記冷却媒体を循環させる補助ポンプ(34)と、を備え、前記制御装置(40)は、前記内燃機関(1)が始動されるときに、当該内燃機関(1)が始動される旨を特定可能な始動関連情報を取得する取得部(41)と、前記補助ポンプ(34)が作動可能な状態であるか否かを診断する作動診断の制御を実行する実行部(42)と、を備え、前記実行部(42)は、前記取得部(41)により前記始動関連情報が取得された場合に、前記補助ポンプ(34)を少なくとも所定期間にわたり駆動させるテスト駆動の制御を実行しつつ、前記作動診断の制御を実行する構成である。 The exhaust purification device according to the present invention includes an exhaust purification catalyst (12) that purifies the exhaust gas of the internal combustion engine (1) and a reducing agent addition valve (11) that adds a reducing agent to the upstream side of the exhaust purification catalyst (12). ), And a cooling device (30) that circulates the cooling medium of the internal combustion engine (1) to cool the reducing agent addition valve (11), and is an exhaust gas purification device (10). The control device (40) for controlling (10) and the cooling device (30) are provided and are driven by the driving force of the internal combustion engine (1) when the internal combustion engine (1) is in operation. When the main pump (33) that circulates the cooling medium and the internal combustion engine (1) provided in the cooling device (30) are stopped, electric power is applied regardless of the driving force of the internal combustion engine (1). The control device (40) includes an auxiliary pump (34) driven by the engine to circulate the cooling medium, and the internal combustion engine (1) is started when the internal combustion engine (1) is started. An acquisition unit (41) that acquires start-related information that can identify the fact, and an execution unit (42) that controls operation diagnosis for diagnosing whether or not the auxiliary pump (34) is in an operable state. When the start-related information is acquired by the acquisition unit (41), the execution unit (42) executes a test drive control for driving the auxiliary pump (34) for at least a predetermined period of time. At the same time, it is configured to execute the control of the operation diagnosis.

このような構成によれば、排気浄化装置(10)の制御装置(40)は、取得部(41)により始動関連情報が取得された場合、すなわち内燃機関が始動される場合に、実行部(42)により補助ポンプ(34)のテスト駆動の制御を実行させつつ当該補助ポンプ(34)の作動診断の制御を実行させるので、内燃機関(1)が停止されて主ポンプ(33)の駆動が停止された以降において冷却媒体を循環させるために補助ポンプ(34)を作動させる以前に、当該補助ポンプ(34)が作動可能な状態か否かを診断することができる。 According to such a configuration, the control device (40) of the exhaust gas purification device (10) is the execution unit (40) when the start-related information is acquired by the acquisition unit (41), that is, when the internal combustion engine is started. Since the control of the test drive of the auxiliary pump (34) is executed by the auxiliary pump (34) and the control of the operation diagnosis of the auxiliary pump (34) is executed, the internal combustion engine (1) is stopped and the main pump (33) is driven. It is possible to diagnose whether or not the auxiliary pump (34) is in an operable state before the auxiliary pump (34) is operated to circulate the cooling medium after the stop.

本発明に係る排気浄化装置の制御方法は、内燃機関(1)の排気ガスを浄化する排気浄化触媒(12)と、該排気浄化触媒(12)の上流側に還元剤を添加する還元剤添加弁(11)と、前記内燃機関(1)の冷却媒体を循環させて前記還元剤添加弁(11)を冷却する冷却装置(30)と、を備える排気浄化装置(10)であって、前記排気浄化装置(10)を制御する制御装置(40)と、前記冷却装置(30)に設けられ、前記内燃機関(1)が運転されているときに、前記内燃機関(1)の駆動力により駆動されて前記冷却媒体を循環させる主ポンプ(33)と、前記冷却装置(30)に設けられ、前記内燃機関(1)が停止されているときに、前記内燃機関(1)の駆動力によらず電力により駆動されて前記冷却媒体を循環させる補助ポンプ(34)と、を備える排気浄化装置(10)の制御方法であって、前記内燃機関(1)が始動されるときに、当該内燃機関(1)が始動される旨を特定可能な始動関連情報を取得する取得ステップと、前記補助ポンプ(34)が作動可能な状態であるか否かを診断する作動診断の制御を実行する実行ステップと、を備え前記制御装置(40)は、前記実行ステップにおいて、前記取得ステップにより前記始動関連情報が取得された場合に、前記補助ポンプ(34)を少なくとも所定期間にわたりテスト駆動させる制御を実行しつつ、前記作動診断の制御を実行する構成である。 The control method of the exhaust purification device according to the present invention is to add an exhaust purification catalyst (12) that purifies the exhaust gas of the internal combustion engine (1) and a reducing agent that adds a reducing agent to the upstream side of the exhaust purification catalyst (12). An exhaust gas purification device (10) including a valve (11) and a cooling device (30) that circulates a cooling medium of the internal combustion engine (1) to cool the reducing agent addition valve (11). When the control device (40) for controlling the exhaust gas purification device (10) and the internal combustion engine (1) provided in the cooling device (30) are being operated, the driving force of the internal combustion engine (1) is used. When the main pump (33) that is driven to circulate the cooling medium and the internal combustion engine (1) provided in the cooling device (30) are stopped, the driving force of the internal combustion engine (1) is applied. It is a control method of an exhaust gas purification device (10) including an auxiliary pump (34) that is driven by electric power to circulate the cooling medium, and the internal combustion engine (1) is started when the internal combustion engine (1) is started. Execution of acquisition step of acquiring start-related information that can identify that the engine (1) is started, and control of operation diagnosis for diagnosing whether or not the auxiliary pump (34) is in an operable state. The control device (40) includes a step, and executes a control for test-driving the auxiliary pump (34) for at least a predetermined period of time when the start-related information is acquired by the acquisition step in the execution step. At the same time, it is configured to execute the control of the operation diagnosis.

このような構成によれば、排気浄化装置(10)の制御方法では、取得ステップにおい始動関連情報が取得された場合、すなわち内燃機関(1)が始動される場合に、実行ステップにおいて補助ポンプ(34)のテスト駆動の制御を実行しつつ当該補助ポンプ(34)の作動診断の制御を実行するので、内燃機関(1)が停止されて主ポンプ(33)の駆動が停止された以降において冷却媒体を循環させるために補助ポンプ(34)を作動させる以前に、当該補助ポンプ(34)が作動可能な状態か否かを診断することができる。 According to such a configuration, in the control method of the exhaust gas purification device (10), when the start-related information is acquired in the acquisition step, that is, when the internal combustion engine (1) is started, the auxiliary pump ( Since the control of the operation diagnosis of the auxiliary pump (34) is executed while the control of the test drive of 34) is executed, the cooling is performed after the internal combustion engine (1) is stopped and the drive of the main pump (33) is stopped. Before activating the auxiliary pump (34) to circulate the medium, it is possible to diagnose whether the auxiliary pump (34) is in an operable state.

尚、本発明は、本発明の請求項に記載された発明特定事項のみを有するものであって良いし、本発明の請求項に記載された発明特定事項とともに該発明特定事項以外の構成を有するものであっても良い。 The present invention may have only the invention-specific matters described in the claims of the present invention, and has a configuration other than the invention-specific matters together with the invention-specific matters described in the claims of the present invention. It may be a thing.

実施形態に係る排気浄化装置について説明するための図である。It is a figure for demonstrating the exhaust gas purification apparatus which concerns on embodiment. 補助ポンプの作動診断について説明するための図である。It is a figure for demonstrating operation diagnosis of an auxiliary pump. 排気浄化装置の制御方法について説明するためのフロー図である。It is a flow chart for demonstrating the control method of an exhaust gas purification apparatus.

以下、本発明に係る排気浄化装置及び排気浄化装置の制御方法の実施形態の例について図面を用いて説明する。尚、以下で説明する実施形態の構成、動作等は、一例であり、本発明は、そのような構成、動作等である場合に限定されない。また、以下では、同一の又は類似する説明を、適宜簡略化又は省略している。また、各図において、同一の又は類似する部材又は部分については、符号を付することを省略しているか、又は同一の符号を付している。また、細かい構造については、図示を適宜簡略化又は省略している。 Hereinafter, an example of an embodiment of the exhaust gas purification device and the control method of the exhaust gas purification device according to the present invention will be described with reference to the drawings. The configuration, operation, and the like of the embodiments described below are examples, and the present invention is not limited to such configurations, operations, and the like. Further, in the following, the same or similar description will be simplified or omitted as appropriate. Further, in each figure, the same or similar members or parts are omitted or given the same reference numerals. Further, for the detailed structure, the illustration is appropriately simplified or omitted.

本実施形態に係る排気浄化装置は、内燃機関(例えば、ディーゼルエンジンやガソリンエンジン等)の排気ガス中の窒素酸化物(NOx)を浄化する尿素SCRシステムとして適用することができる。本実施形態では、内燃機関として車両用のディーゼルエンジンを例に説明するが、本発明が特にこれに限定されるものではなく、例えば、建設機械や発電機等に用いられる内燃機関の排気浄化装置として適用することができる。 The exhaust purification device according to the present embodiment can be applied as a urea SCR system that purifies nitrogen oxides (NOx) in the exhaust gas of an internal combustion engine (for example, a diesel engine, a gasoline engine, etc.). In the present embodiment, a diesel engine for a vehicle will be described as an example of an internal combustion engine, but the present invention is not particularly limited thereto, and for example, an exhaust gas purification device for an internal combustion engine used in a construction machine, a generator, or the like. Can be applied as.

<実施形態>
[内燃機関の排気系について]
本実施形態に係る内燃機関1の排気系について、図1に基づいて説明する。本実施形態に係る内燃機関1は、車両に搭載されるディーゼルエンジンである。
<Embodiment>
[Exhaust system of internal combustion engine]
The exhaust system of the internal combustion engine 1 according to the present embodiment will be described with reference to FIG. The internal combustion engine 1 according to the present embodiment is a diesel engine mounted on a vehicle.

図1に示すように、内燃機関1の排気系には、排気管2が接続されており、当該排気管2内には、内燃機関1でのポスト噴射等によって当該排気管2内に供給された未燃燃料を酸化反応させて酸化熱を発生させる酸化触媒3が設けられている。酸化触媒3は、公知のもの、例えば、アルミナに白金を担持させたものに所定量のセリウム等の希土類元素を添加したもの等を用いることができる。 As shown in FIG. 1, an exhaust pipe 2 is connected to the exhaust system of the internal combustion engine 1, and the exhaust pipe 2 is supplied into the exhaust pipe 2 by post injection or the like in the internal combustion engine 1. An oxidation catalyst 3 is provided which causes an oxidation reaction of the unburned fuel to generate heat of oxidation. As the oxidation catalyst 3, a known catalyst, for example, one in which platinum is supported on alumina and a predetermined amount of a rare earth element such as cerium is added can be used.

酸化触媒3の下流側には、排気ガス中の粒子状物質(PM)を捕集するディーゼルパティキュレートフィルタ4(以下、DPF:Diesel particulate filterと呼ぶ場合がある)が設けられている。DPF4に流入する排気ガスは、当該DPF4の上流側において酸化触媒により発生される酸化熱により昇温されて、DPF4を加熱することができるようになっている。DPF4は、公知のもの、例えば、セラミック材料から構成されたハニカム構造のフィルタ等を用いることができる。 A diesel particulate filter 4 (hereinafter, may be referred to as a DPF: Diesel particulate filter) that collects particulate matter (PM) in the exhaust gas is provided on the downstream side of the oxidation catalyst 3. The exhaust gas flowing into the DPF 4 is heated by the heat of oxidation generated by the oxidation catalyst on the upstream side of the DPF 4, so that the DPF 4 can be heated. As DPF4, a known one, for example, a filter having a honeycomb structure made of a ceramic material or the like can be used.

DPF4の下流側には、排気管2内に還元剤を添加する還元剤添加弁11、アンモニア(NH3)を吸着して排気ガス中の窒素酸化物(NOx)を選択的に浄化する排気浄化触媒12(以下、SCR触媒:Selective Catalytic Reduction Catalystと呼ぶ場合がある。)が設けられている。SCR触媒12よりも上流側にDPF4が設けられていることにより、SCR触媒12にPMが付着するおそれがないようになっている。SCR触媒12は、例えば、NH3の吸着機能を有し、かつ、NOXを選択的に還元可能なゼオライト系の還元触媒を用いることができる。 On the downstream side of the DPF 4, a reducing agent addition valve 11 that adds a reducing agent into the exhaust pipe 2, an exhaust purification catalyst that adsorbs ammonia (NH3) and selectively purifies nitrogen oxides (NOx) in the exhaust gas. 12 (hereinafter, SCR catalyst: Selective Catalytic Reducation Catalyst may be referred to as) is provided. Since the DPF4 is provided on the upstream side of the SCR catalyst 12, there is no risk of PM adhering to the SCR catalyst 12. As the SCR catalyst 12, for example, a zeolite-based reduction catalyst having an adsorption function for NH3 and capable of selectively reducing NOX can be used.

また、排気管2内には、DPF4と還元剤添加弁11との間の排気ガス中のNOx濃度を検出するNOx濃度センサ13、還元剤添加弁11とSCR触媒12との間の排気ガスの温度を検出する温度センサ14、SCR触媒12の下流側の排気ガスの温度を検出する温度センサ15、SCR触媒12の下流側の排気ガス中のNOx濃度を検出するNOx濃度センサ16が、それぞれ排気管2内の所定位置に配置されている。 Further, in the exhaust pipe 2, a NOx concentration sensor 13 for detecting the NOx concentration in the exhaust gas between the DPF 4 and the reducing agent addition valve 11, and an exhaust gas between the reducing agent addition valve 11 and the SCR catalyst 12 The temperature sensor 14 that detects the temperature, the temperature sensor 15 that detects the temperature of the exhaust gas on the downstream side of the SCR catalyst 12, and the NOx concentration sensor 16 that detects the NOx concentration in the exhaust gas on the downstream side of the SCR catalyst 12 exhaust the exhaust gas, respectively. It is arranged at a predetermined position in the pipe 2.

内燃機関1の制御装置5(以下、ECU:Engine Control Unitと呼ぶ場合がある。)は、マイクロコンピュータ、マイクロプロセッサユニット等で構成される。ECU5は、DPF4に堆積したPMを強制的に燃焼させてDPF4を再生するDPF再生処理の制御を行うことが可能である。DPF再生処理として、例えば、該内燃機関1の燃料噴射弁(図示略)から排気管2内に未燃燃料を供給するポスト噴射制御等を行う。ポスト噴射制御が行われることにより、酸化触媒3に未燃燃料が供給され、当該未燃燃料の酸化反応により酸化熱が発生されて排気ガスが昇温される。そして、昇温された排気ガスによりDPF4が500℃〜600℃程度に昇温され、DPF4に堆積しているPMが燃焼されるようになっている。 The control device 5 of the internal combustion engine 1 (hereinafter, may be referred to as an Engine Control Unit) is composed of a microcomputer, a microprocessor unit, and the like. The ECU 5 can control the DPF regeneration process in which the PM deposited on the DPF 4 is forcibly burned to regenerate the DPF 4. As the DPF regeneration process, for example, post-injection control for supplying unburned fuel into the exhaust pipe 2 from a fuel injection valve (not shown) of the internal combustion engine 1 is performed. By performing post-injection control, unburned fuel is supplied to the oxidation catalyst 3, and heat of oxidation is generated by the oxidation reaction of the unburned fuel to raise the temperature of the exhaust gas. Then, the temperature of the DPF4 is raised to about 500 ° C. to 600 ° C. by the heated exhaust gas, and the PM accumulated in the DPF4 is burned.

酸化触媒3では、ポスト噴射制御により未燃燃料が供給された後、供給されたすべての未燃燃料が酸化反応し終えるまで酸化熱が発生し続けるので、ポスト噴射制御により供給される未燃燃料量に応じた期間にわたり排気ガスが昇温され続けることとなる。また、未燃燃料の酸化反応が終了した後も、酸化触媒3から排気ガスへの放熱等により当該酸化触媒3が所定温度に低下するまでの期間にわたり、排気ガスが昇温され続けることとなる。そして、酸化触媒3での酸化反応等により、PMを燃焼させることが可能な所定温度以上に排気ガスが昇温されている期間中は、DPF4において堆積しているPMが燃焼される際に発生する燃焼熱により、排気ガスが昇温され続けることとなる。これにより、DPF4の下流側の還元剤添加弁11は、ポスト噴射制御が行われてDPF4の再生処理が行われる場合には、該ポスト噴射制御により供給される未燃燃料量に応じた期間にわたり、DPF再生処理が行われていない期間中よりも高温の排気ガスに曝されることがある。 In the oxidation catalyst 3, after the unburned fuel is supplied by the post-injection control, heat of oxidation continues to be generated until all the supplied unburned fuels have completed the oxidation reaction. Therefore, the unburned fuel supplied by the post-injection control The temperature of the exhaust gas will continue to rise for a period corresponding to the amount. Further, even after the oxidation reaction of the unburned fuel is completed, the temperature of the exhaust gas will continue to rise for a period until the oxidation catalyst 3 drops to a predetermined temperature due to heat dissipation from the oxidation catalyst 3 to the exhaust gas. .. Then, during the period in which the exhaust gas is raised to a temperature higher than a predetermined temperature at which PM can be burned due to an oxidation reaction in the oxidation catalyst 3, it is generated when the PM accumulated in DPF 4 is burned. The heat of combustion causes the exhaust gas to continue to rise in temperature. As a result, when the post-injection control is performed and the DPF4 regeneration process is performed, the reducing agent addition valve 11 on the downstream side of the DPF4 has a period corresponding to the amount of unburned fuel supplied by the post-injection control. , May be exposed to higher temperature exhaust gas than during the period when the DPF regeneration process is not performed.

尚、DPF再生処理は、上術のポスト噴射制御の例に限られず、DPF4に流入される排気ガスの温度を、DPF4に堆積したPMを燃焼させることが可能な温度(例えば、500℃〜600℃程度)に昇温させることができる構成であれば良い。例えば、ポスト噴射に拠らずに酸化触媒3に未燃燃料を供給する装置を利用してDPF再生処理を行う構成でも良い。また、バーナや電熱線等の加熱装置を用いて直接DPF4を加熱することでPF再生処理を行う構成でも良い。 The DPF regeneration process is not limited to the example of post-injection control in the upper technique, and the temperature of the exhaust gas flowing into the DPF 4 is set to a temperature at which PM deposited on the DPF 4 can be burned (for example, 500 ° C. to 600 ° C.) Any configuration may be used as long as the temperature can be raised to about ° C.). For example, the DPF regeneration process may be performed by using a device that supplies unburned fuel to the oxidation catalyst 3 without relying on post-injection. Further, the PF regeneration process may be performed by directly heating the DPF 4 using a heating device such as a burner or a heating wire.

[排気浄化装置について]
本実施形態に係る内燃機関1の排気浄化装置10について、図1及び図2に基づいて説明する。排気浄化装置10は、内燃機関1から排出される排気ガス中のNOxを浄化する装置であり、前述のSCR触媒12と還元剤を用いてNOxを浄化する尿素SCRシステムとして構成される。
[About the exhaust purification device]
The exhaust gas purification device 10 of the internal combustion engine 1 according to the present embodiment will be described with reference to FIGS. 1 and 2. The exhaust purification device 10 is a device that purifies NOx in the exhaust gas discharged from the internal combustion engine 1, and is configured as a urea SCR system that purifies NOx by using the above-mentioned SCR catalyst 12 and a reducing agent.

図1に示すように、排気浄化装置10は、前述のSCR触媒12、NOx濃度センサ13、16、温度センサ14、15、還元剤添加弁11を備える還元剤供給装置20、内燃機関1の冷却媒体(冷媒)を循環させて還元剤添加弁11を冷却する冷却装置30、排気浄化装置10を制御する制御装置40(以下、DCU:Dosing Control Unitと呼ぶ場合がある。)、警告灯及びスピーカ(図示略)を備え所定の報知を行う報知装置50等により構成される。 As shown in FIG. 1, the exhaust purification device 10 includes a reducing agent supply device 20 including the above-mentioned SCR catalyst 12, NOx concentration sensors 13 and 16, temperature sensors 14 and 15, and a reducing agent addition valve 11, and cooling of the internal combustion engine 1. A cooling device 30 that circulates a medium (hydrogen) to cool the reducing agent addition valve 11, a control device 40 that controls an exhaust purification device 10 (hereinafter, may be referred to as a DCU: Dosing Control Unit), a warning light, and a speaker. It is composed of a notification device 50 or the like provided with (not shown) and performing a predetermined notification.

還元剤供給装置20は、SCR触媒12の上流側の排気管2内に還元剤を添加する還元剤添加弁11と、還元剤としての尿素水溶液(尿素水)を貯蔵する貯蔵タンク21と、該貯蔵タンク21内の還元剤を還元剤添加弁11に供給するための還元剤通路22(22a〜22c)と、該還元剤通路22に設けられ還元剤を圧送する圧送ポンプ23、還元剤通路22内の還元剤流路を切り換える機能を持つリバーティングバルブ24等を備える。 The reducing agent supply device 20 includes a reducing agent addition valve 11 that adds a reducing agent into the exhaust pipe 2 on the upstream side of the SCR catalyst 12, a storage tank 21 that stores a urea aqueous solution (urea water) as a reducing agent, and the same. A reducing agent passage 22 (22a to 22c) for supplying the reducing agent in the storage tank 21 to the reducing agent addition valve 11, a pressure feeding pump 23 provided in the reducing agent passage 22 for pumping the reducing agent, and a reducing agent passage 22. It is provided with a reverting valve 24 or the like having a function of switching the inner reducing agent flow path.

還元剤通路22は、貯蔵タンク21と圧送ポンプ23とを接続する第1還元剤通路22aと、圧送ポンプ23と還元剤添加弁11とを接続する第2還元剤通路22b、第2還元剤通路22bと貯蔵タンク21とを接続する第3還元剤通路22cを含む。また、第1還元剤通路22aには、還元剤流路を、貯蔵タンク21から還元剤添加弁11へ向かう順方向と、還元剤添加弁11から貯蔵タンク21へ向かう逆方向とに相互に切り換える機能を持ったリバーティングバルブ24が設けられ、第2還元剤通路22bには、該第2還元剤通路22b内の圧力を検出する圧力センサ25が設けられ、第3還元剤通路22cには、オリフィス26が設けられている。 The reducing agent passage 22 includes a first reducing agent passage 22a connecting the storage tank 21 and the pressure feeding pump 23, a second reducing agent passage 22b connecting the pressure feeding pump 23 and the reducing agent addition valve 11, and a second reducing agent passage. It includes a third reducing agent passage 22c that connects the 22b and the storage tank 21. Further, in the first reducing agent passage 22a, the reducing agent flow path is switched between the forward direction from the storage tank 21 to the reducing agent addition valve 11 and the reverse direction from the reducing agent addition valve 11 to the storage tank 21. A reverting valve 24 having a function is provided, a pressure sensor 25 for detecting the pressure in the second reducing agent passage 22b is provided in the second reducing agent passage 22b, and the third reducing agent passage 22c is provided with a pressure sensor 25. An orifice 26 is provided.

還元剤添加弁11は、DCU40から出力される制御信号によって開状態(ON状態)または閉状態(OFF状態)に制御されるON‐OFF弁であり、開状態に制御されているときに、還元剤を排気管2内に噴射して添加する一方、閉状態に制御されているときに、還元剤を排気管2内に添加しないようになっている。当該還元剤添加弁11は、DCU40により例えばDUTY制御され、開状態とされる期間と閉状態とされる期間がそれぞれ所定の長さに制御されることにより、所定タイミングで所定量の還元剤を排気管2内に添加することができる。 The reducing agent addition valve 11 is an ON-OFF valve that is controlled to an open state (ON state) or a closed state (OFF state) by a control signal output from the DCU 40, and reduces when the reducing agent addition valve 11 is controlled to the open state. While the agent is injected into the exhaust pipe 2 and added, the reducing agent is not added into the exhaust pipe 2 when the closed state is controlled. The reducing agent addition valve 11 is controlled by, for example, duty by the DCU 40, and the period of opening and the period of closing are controlled to predetermined lengths, so that a predetermined amount of reducing agent can be applied at a predetermined timing. It can be added into the exhaust pipe 2.

還元剤添加弁11を構成する電子部分や樹脂部分等は比較的熱に弱く、その耐熱温度Tlimは140℃〜150℃程度である一方、内燃機関1の通常作動時における排気ガス温度は、200℃〜300℃程度である。排気浄化装置10は、内燃機関1の冷却媒体を循環させて還元剤添加弁11を冷却する冷却装置30を備える。 The electronic parts and resin parts constituting the reducing agent addition valve 11 are relatively sensitive to heat, and the heat resistant temperature Trim is about 140 ° C. to 150 ° C., while the exhaust gas temperature during normal operation of the internal combustion engine 1 is 200. It is about ° C. to 300 ° C. The exhaust gas purification device 10 includes a cooling device 30 that circulates the cooling medium of the internal combustion engine 1 to cool the reducing agent addition valve 11.

冷却装置30は、内燃機関1の冷媒を利用して還元剤添加弁11を冷却する装置である。図1に示すように、冷却装置30は、ウォータージャケット31、冷媒通路32(32a〜32d)、主ポンプ33、補助ポンプ34、流量制御弁35等を備える。 The cooling device 30 is a device that cools the reducing agent addition valve 11 by using the refrigerant of the internal combustion engine 1. As shown in FIG. 1, the cooling device 30 includes a water jacket 31, a refrigerant passage 32 (32a to 32d), a main pump 33, an auxiliary pump 34, a flow rate control valve 35, and the like.

ウォータージャケット31は、還元剤添加弁11において還元剤を添加するノズル部分を覆う形状に成形されており、当該ウォータージャケット31の内部に還元剤添加弁11を挿入することができるようになっている。また、ウォータージャケット31には、冷媒導入口31aと冷媒排出口31bが設けられているとともに、当該冷媒導入口31aから冷媒排出口31bに連通する冷媒通路(図示略)が形成されており、冷媒導入口31aに供給された冷媒が冷媒通路内を流れて、冷媒排出口31bから排出される。ウォータージャケット31の内部を冷媒が流れることで、当該ウォータージャケット31に挿入された還元剤添加弁11の電子部品(例えば、電磁ソレノイド等)や樹脂カバー、ノズル部分などの比較的熱に弱い部材が冷却される。 The water jacket 31 is formed in a shape that covers the nozzle portion to which the reducing agent is added in the reducing agent addition valve 11, so that the reducing agent addition valve 11 can be inserted into the water jacket 31. .. Further, the water jacket 31 is provided with a refrigerant introduction port 31a and a refrigerant discharge port 31b, and a refrigerant passage (not shown) communicating from the refrigerant introduction port 31a to the refrigerant discharge port 31b is formed. The refrigerant supplied to the introduction port 31a flows through the refrigerant passage and is discharged from the refrigerant discharge port 31b. As the refrigerant flows inside the water jacket 31, relatively heat-sensitive members such as electronic parts (for example, an electromagnetic solenoid), a resin cover, and a nozzle portion of the reducing agent addition valve 11 inserted in the water jacket 31 are formed. It is cooled.

ウォータージャケット31の冷媒導入口31a及び冷媒排出口31bはそれぞれ冷媒通路32に接続されている。冷媒通路32は、冷媒導入口31aと補助ポンプ34とを接続する第1冷媒通路32aと、補助ポンプ34と主ポンプ33とを接続する第2冷媒通路32b、主ポンプ33と冷媒排出口31bとを接続する第3冷媒通路32cと、第2冷媒通路32b及び第3冷媒通路32cにそれぞれ設けられた分岐部を流量制御弁35を介して接続する第4冷媒通路32dとを含む。第2冷媒通路32b及び第3冷媒通路32cのうち主ポンプ33の周辺部分の冷媒通路は、内燃機関1の冷却装置(例えば、ファン、ラジエター、等)により冷却されることにより、冷媒通路32内の冷媒が所定温度に冷却される。 The refrigerant introduction port 31a and the refrigerant discharge port 31b of the water jacket 31 are connected to the refrigerant passage 32, respectively. The refrigerant passage 32 includes a first refrigerant passage 32a that connects the refrigerant introduction port 31a and the auxiliary pump 34, a second refrigerant passage 32b that connects the auxiliary pump 34 and the main pump 33, and a main pump 33 and the refrigerant discharge port 31b. Includes a third refrigerant passage 32c for connecting the above, and a fourth refrigerant passage 32d for connecting the branch portions provided in the second refrigerant passage 32b and the third refrigerant passage 32c via the flow control valve 35. Of the second refrigerant passage 32b and the third refrigerant passage 32c, the refrigerant passage in the peripheral portion of the main pump 33 is cooled in the refrigerant passage 32 by the cooling device (for example, fan, radiator, etc.) of the internal combustion engine 1. Refrigerant is cooled to a predetermined temperature.

主ポンプ33は、内燃機関1の駆動力によって駆動されるポンプであり、内燃機関1が運転状態であるときに駆動され、内燃機関1の運転が停止されること伴って駆動が停止される。補助ポンプ34は、内燃機関1が搭載されている車両に設けられたバッテリ(図示略)等にから供給される電力により駆動される電動ポンプであり、内燃機関1の運転状態に依存せず駆動可能である。補助ポンプ34は、後述のDCU40により作動状態と停止状態に適宜制御される。主ポンプ33及び補助ポンプ34の少なくとも一方が作動状態に制御されることにより、冷媒を内燃機関1側から第1冷媒通路32a、第2冷媒通路32bを介してウォータージャケット31の冷媒導入口31aに供給し、ウォータージャケット31の冷媒排出口31bから排出される冷媒を第3冷媒通路32cを介して内燃機関1側へ戻すように循環させることができる。 The main pump 33 is a pump driven by the driving force of the internal combustion engine 1, is driven when the internal combustion engine 1 is in an operating state, and is stopped when the operation of the internal combustion engine 1 is stopped. The auxiliary pump 34 is an electric pump driven by electric power supplied from a battery (not shown) or the like provided in a vehicle on which the internal combustion engine 1 is mounted, and is driven independently of the operating state of the internal combustion engine 1. It is possible. The auxiliary pump 34 is appropriately controlled into an operating state and a stopped state by the DCU 40 described later. By controlling at least one of the main pump 33 and the auxiliary pump 34 to the operating state, the refrigerant is sent from the internal combustion engine 1 side to the refrigerant introduction port 31a of the water jacket 31 via the first refrigerant passage 32a and the second refrigerant passage 32b. The refrigerant supplied and discharged from the refrigerant discharge port 31b of the water jacket 31 can be circulated so as to return to the internal combustion engine 1 side via the third refrigerant passage 32c.

流量制御弁35は、DCU40から出力される制御信号に基づいて開状態及び閉状態に制御される開閉弁である。流量制御弁35が開状態であるときには、主ポンプ33または補助ポンプ34の少なくとも一方が駆動されることで、第4冷媒通路32dに冷媒が流れる状態となる一方、流量制御弁35が閉状態であるときには、第4冷媒通路32dに冷媒が流れない状態となる。当該流量制御弁35が開状態及び閉状態のいずれの状態であっても、主ポンプ33または補助ポンプ34が駆動されることで、冷媒通路32内の還元剤は、第1〜第3冷媒通路32a〜32cを通り循環される。 The flow rate control valve 35 is an on-off valve that is controlled to an open state and a closed state based on a control signal output from the DCU 40. When the flow control valve 35 is in the open state, at least one of the main pump 33 and the auxiliary pump 34 is driven so that the refrigerant flows through the fourth refrigerant passage 32d, while the flow control valve 35 is in the closed state. At one point, the refrigerant does not flow into the fourth refrigerant passage 32d. Regardless of whether the flow control valve 35 is in the open state or the closed state, the reducing agent in the refrigerant passage 32 is released by driving the main pump 33 or the auxiliary pump 34 in the first to third refrigerant passages. It is circulated through 32a to 32c.

尚、本実施形態に係る冷却装置30は、冷媒通路が形成されたウォータージャケット31を備え、冷媒通路を流れる冷媒により還元剤添加弁11が冷却される構成であるが、例えば、ウォータージャケット31が冷媒通路とともに放熱フィンを備え、冷媒通路を流れる冷媒による冷却効果及び放熱フィンからの放熱による冷却効果に還元剤添加弁11が冷却される構成でも良い。還元剤添加弁11が冷媒及び放熱フィンにより冷却される構成では、特に高温に曝されるノズル部分を効果的に冷却することができる。 The cooling device 30 according to the present embodiment includes a water jacket 31 in which a refrigerant passage is formed, and the reducing agent addition valve 11 is cooled by the refrigerant flowing through the refrigerant passage. A radiator fin may be provided together with the refrigerant passage, and the reducing agent addition valve 11 may be cooled by the cooling effect of the refrigerant flowing through the refrigerant passage and the cooling effect of the heat radiation from the heat radiation fins. In the configuration in which the reducing agent addition valve 11 is cooled by the refrigerant and the heat radiation fins, the nozzle portion exposed to a particularly high temperature can be effectively cooled.

DCU40は、マイクロコンピュータ、マイクロプロセッサユニット等で構成され、図1に示すように、例えば、排気浄化装置10の制御に関する情報等を取得する取得部41と、排気浄化装置10の制御等を実行する実行部42と、実行部42での各種制御において用いられる情報を記憶する記憶部43とを備える。当該DCU40は、内燃機関1の運転を開始させるときに後述のスイッチ7が操作されたことに伴って通電が開始されて作動が開始され、当該内燃機関1の運転を停止させるときにスイッチ7が操作されたことに伴って作動が停止される。尚、DCU40の一部又は全ては、ファームウェア等の更新可能なもので構成されても良く、CPU等からの指令によって実行されるプログラムモジュール等で構成されても良い。また、DCU40は、例えば、1つであっても良く、また、複数に分かれていても良い。また、本実施形態では、DCU40とECU5は、それぞれ異なる制御装置により構成されるが、DCU40とECU5とが同じ制御装置により構成されても良い。 The DCU 40 is composed of a microcomputer, a microprocessor unit, and the like, and as shown in FIG. 1, for example, executes control of the exhaust gas purification device 10 and acquisition unit 41 for acquiring information and the like regarding control of the exhaust gas purification device 10. It includes an execution unit 42 and a storage unit 43 that stores information used in various controls in the execution unit 42. The DCU 40 is energized and started to operate when the switch 7 described later is operated when the operation of the internal combustion engine 1 is started, and the switch 7 is turned on when the operation of the internal combustion engine 1 is stopped. The operation is stopped as it is operated. A part or all of the DCU 40 may be composed of an updatable firmware or the like, or may be composed of a program module or the like executed by a command from the CPU or the like. Further, the DCU 40 may be, for example, one or may be divided into a plurality of DCU 40s. Further, in the present embodiment, the DCU 40 and the ECU 5 are configured by different control devices, but the DCU 40 and the ECU 5 may be configured by the same control device.

DCU40には、例えば、前述の排気浄化装置10が備える各種センサ(NOx濃度センサ13、16、温度センサ14、15、圧力センサ25等)、排気浄化装置10が搭載される車両のCAN6(Controller Area Network)、内燃機関1の運転を開始させるとき及び当該内燃機関1の運転を停止させるときに運転者等により操作されるスイッチ7(例えば、内燃機関1の運転を開始または運転を停止させるときに操作されるボタンスイッチ、所定キーが挿入されて回転操作されるいわゆるキースイッチ等)等が接続されており、取得部41は、各種センサにより出力される情報、CAN6上に存在する情報、スイッチ7の操作状況を示す情報等を取得すること、取得した情報を実行部42、記憶部43へ出力することができる。 The DCU 40 includes, for example, various sensors (NOx concentration sensors 13, 16, temperature sensors 14, 15, pressure sensors 25, etc.) included in the exhaust purification device 10 described above, and a vehicle CAN 6 (Controller Area) equipped with the exhaust purification device 10. Network), a switch 7 operated by a driver or the like when starting the operation of the internal combustion engine 1 and when stopping the operation of the internal combustion engine 1 (for example, when starting or stopping the operation of the internal combustion engine 1). A button switch to be operated, a so-called key switch to be rotated by inserting a predetermined key, etc.) are connected, and the acquisition unit 41 is connected to information output by various sensors, information existing on CAN 6, and a switch 7. It is possible to acquire information indicating the operation status of the above and output the acquired information to the execution unit 42 and the storage unit 43.

CAN6には、ECU5等が接続されており、DCU40の取得部41は、CAN6を介してECU5と通信することにより、内燃機関1の制御に関する情報等を取得することができる。内燃機関1の制御に関する情報には、例えば、燃料噴射量や噴射タイミングの情報、内燃機関1が備える各種センサ(例えば、内燃機関の回転数Neを検出する回転数センサ、車両の車速を検出する車速センサ、アクセルペダルの操作量を検出するアクセルセンサ、ブレーキペダルの操作量を検出するブレーキセンサ等)により検出される情報等が含まれる。 An ECU 5 or the like is connected to the CAN 6, and the acquisition unit 41 of the DCU 40 can acquire information or the like related to the control of the internal combustion engine 1 by communicating with the ECU 5 via the CAN 6. The information related to the control of the internal combustion engine 1 includes, for example, information on the fuel injection amount and injection timing, various sensors included in the internal combustion engine 1 (for example, a rotation speed sensor for detecting the rotation speed Ne of the internal combustion engine, and a vehicle speed of the vehicle. Information detected by a vehicle speed sensor, an accelerator sensor that detects the operation amount of the accelerator pedal, a brake sensor that detects the operation amount of the brake pedal, etc.) is included.

また、DCU40には、例えば、前述の排気浄化装置10が備える各種装置(還元剤添加弁11、圧送ポンプ23、リバーティングバルブ24、補助ポンプ34、流量制御弁35等)等が接続されており、実行部42は、各種装置の動作の制御、CAN6上または記憶部43への各種情報の出力を実行することができる。実行部42は、各種装置の動作の制御として、例えば、還元剤添加弁11を開閉制御する開閉制御、還元剤添加弁11内及び還元剤通路22内に還元剤を圧送するために圧送ポンプ23を駆動させる圧送制御、冷媒通路32内の冷媒を循環させるために補助ポンプ34を駆動させる冷却制御等を行う。 Further, for example, various devices (reducing agent addition valve 11, pressure feed pump 23, reverting valve 24, auxiliary pump 34, flow rate control valve 35, etc.) included in the above-mentioned exhaust purification device 10 are connected to the DCU 40. , The execution unit 42 can control the operation of various devices and output various information on the CAN 6 or to the storage unit 43. The execution unit 42 controls the operation of various devices, for example, opening / closing control for opening / closing the reducing agent addition valve 11, pressure feeding pump 23 for pumping the reducing agent into the reducing agent addition valve 11 and the reducing agent passage 22. Pressure feeding control for driving the auxiliary pump 34, cooling control for driving the auxiliary pump 34 to circulate the refrigerant in the refrigerant passage 32, and the like are performed.

図2に示すように、DCU40の内部には、FET44(Field Effect Transistor)が設けられている。FET44のゲートGには、実行部42での制御に基づいて出力され、補助ポンプ34の駆動状態を制御するための制御信号が入力されるようになっており、制御信号の入力状況に応じてFET44のソースSとドレインDの間が通電状態または非通電状態に制御されるようになっている。FET44のソースSは、グランドGdに接続されて接地されている。FET44のドレインDは、所定電源(図示略)に接続されて、所定電圧値の参照電圧Vrが印加される。また、ドレインDは、DCU40の外部の装置が接続される端子40aに接続されている。 As shown in FIG. 2, a FET 44 (Field Effect Transistor) is provided inside the DCU 40. A control signal is output to the gate G of the FET 44 based on the control of the execution unit 42, and a control signal for controlling the driving state of the auxiliary pump 34 is input, depending on the input status of the control signal. The space between the source S and the drain D of the FET 44 is controlled to be in an energized state or a non-energized state. The source S of the FET 44 is connected to the ground Gd and is grounded. The drain D of the FET 44 is connected to a predetermined power source (not shown), and a reference voltage Vr having a predetermined voltage value is applied. Further, the drain D is connected to a terminal 40a to which an external device of the DCU 40 is connected.

端子40aには、前述の補助ポンプ34を駆動させるための電気配線(電源配線)の負極側が接続されている。当該補助ポンプ34の電気配線(電源配線)の正極側は、DCU40の外部の装置が接続される端子40bに接続されており、DCU40内部の回路を介して、排気浄化装置10が搭載される車両のバッテリ(図示略)の正極側に接続されて、当該バッテリにより所定電圧値のバッテリ電圧Vbaが印加される。 The negative electrode side of the electrical wiring (power supply wiring) for driving the auxiliary pump 34 described above is connected to the terminal 40a. The positive electrode side of the electrical wiring (power supply wiring) of the auxiliary pump 34 is connected to the terminal 40b to which the external device of the DCU 40 is connected, and the vehicle on which the exhaust purification device 10 is mounted via the circuit inside the DCU 40. The battery voltage Vba of a predetermined voltage value is applied by the battery connected to the positive electrode side of the battery (not shown).

実行部42は、FET44のゲートGに対して制御信号を出力して、FET44のソースSとドレインDの間を通電状態に制御することにより、補助ポンプ34を駆動状態に制御することができる一方、FET44のソースSとドレインDの間を非通電状態に制御することで、補助ポンプ34を停止状態に制御することができるようになっている。 The execution unit 42 can control the auxiliary pump 34 to the drive state by outputting a control signal to the gate G of the FET 44 and controlling between the source S and the drain D of the FET 44 to be in the energized state. By controlling the space between the source S and the drain D of the FET 44 in a non-energized state, the auxiliary pump 34 can be controlled in a stopped state.

尚、本実施形態では、DCU40の端子40aに補助ポンプ34の電気配線が接続される構成であるが、補助ポンプ34は、リーレーを介して端子40aに接続される構成でも良く、リーレー等を介さずに端子40aに直接接続される構成でも良い。 In the present embodiment, the electrical wiring of the auxiliary pump 34 is connected to the terminal 40a of the DCU 40, but the auxiliary pump 34 may be connected to the terminal 40a via a reeley or the like. It may be configured to be directly connected to the terminal 40a without using it.

また、本実施形態では、DCU40は、内燃機関1の運転を開始させるとき及び当該内燃機関1の運転を停止させるときに運転者等により操作されるスイッチ7の出力状況に応じて始動、停止する構成、すなわち内燃機関1の始動停止のためのスイッチと共通のスイッチの出力状況に応じてDCU40が始動停止される構成であるが、DCU40は、内燃機関1の始動停止のためのスイッチとは異なる所定のスイッチ類を備え、当該スイッチ類の出力状況に基づいてDCU40への通電が開始されて作動が開始されたり、停止されたりする構成でも良い。 Further, in the present embodiment, the DCU 40 starts and stops according to the output status of the switch 7 operated by the driver or the like when the operation of the internal combustion engine 1 is started and when the operation of the internal combustion engine 1 is stopped. The DCU40 is started and stopped according to the configuration, that is, the output status of the switch common to the switch for starting and stopping the internal combustion engine 1, but the DCU40 is different from the switch for starting and stopping the internal combustion engine 1. A configuration may be configured in which predetermined switches are provided and the DCU 40 is started to be energized to start or stop the operation based on the output status of the switches.

[DCUの動作について]
本実施形態に係るDCU40が行う排気浄化装置10の制御について説明する。DCU40は、スイッチ7が操作されたことに伴って作動が開始されると、まず、記憶部43における所定の記憶領域を初期化して予め定められた初期値を設定する等の初期処理を実行する。そして、初期処理が完了した後に、排気浄化装置10の制御(例えば、取得部41より取得される各種情報等に基づいて所定量の還元剤を排気管2内に添加するために実行部42が還元剤添加弁11の開閉状態を制御する開閉制御、取得部41より取得される各種情報等に基づいて還元剤添加弁11内及び還元剤通路22内に還元剤を圧送するために実行部42が圧送ポンプ23の駆動状態を制御する圧送制御、取得部41より取得される各種情報等に基づいて還元剤添加弁11及び還元剤通路22の内部の還元剤を貯蔵タンク21に回収するように実行部42が圧送ポンプ23の駆動状態及びリバーティングバルブ24による還元剤流路の切り替え状態を制御する回収制御、取得部41より取得される各種情報等に基づいて冷媒通路32内を循環される冷媒の流量を調整するために実行部42が流量制御弁35の開閉状態を制御するオン−オフ制御、実行部42が補助ポンプ34を駆動制御して冷媒通路32内の内燃機関1の冷媒を循環させる冷却補助制御等)を行うことが可能である。
[About the operation of DCU]
The control of the exhaust gas purification device 10 performed by the DCU 40 according to the present embodiment will be described. When the operation of the DCU 40 is started as the switch 7 is operated, the DCU 40 first executes initial processing such as initializing a predetermined storage area in the storage unit 43 and setting a predetermined initial value. .. Then, after the initial treatment is completed, the execution unit 42 controls the exhaust purification device 10 (for example, the execution unit 42 adds a predetermined amount of the reducing agent into the exhaust pipe 2 based on various information acquired from the acquisition unit 41 and the like. An execution unit 42 for pumping the reducing agent into the reducing agent addition valve 11 and the reducing agent passage 22 based on opening / closing control for controlling the opening / closing state of the reducing agent addition valve 11, various information acquired from the acquisition unit 41, and the like. Collects the reducing agent inside the reducing agent addition valve 11 and the reducing agent passage 22 into the storage tank 21 based on the pressure feeding control that controls the driving state of the pressure feeding pump 23, various information acquired from the acquisition unit 41, and the like. The execution unit 42 circulates in the refrigerant passage 32 based on the recovery control that controls the driving state of the pump 23 and the switching state of the reducing agent flow path by the reverting valve 24, various information acquired from the acquisition unit 41, and the like. The execution unit 42 controls the open / closed state of the flow control valve 35 for on-off control to adjust the flow rate of the refrigerant, and the execution unit 42 drives and controls the auxiliary pump 34 to control the refrigerant of the internal combustion engine 1 in the refrigerant passage 32. It is possible to perform cooling auxiliary control, etc. to circulate.

開閉制御では、実行部42は、取得部41により取得される情報(例えば、NOx濃度センサ16により出力されるNOx濃度情報、内燃機関1の回転数Ne等)に基づいて、排気管2へ添加する還元剤の添加量を算出する。そして、算出された添加量に応じて還元剤添加弁11を開閉させる制御を実行する。開閉制御では、算出された添加量の還元剤を添加させるために、例えば、還元剤の添加量に応じた所定の時間間隔で還元剤添加弁11を開状態及び閉状態に制御するDUTY制御が行われることにより、所定タイミングで所定量の還元剤が添加される。開閉制御が実行されることにより、所定タイミングで所定量の還元剤が還元剤添加弁11から排気管2へ添加されて、NH3がSCR触媒12へ供給される。 In the open / close control, the execution unit 42 adds to the exhaust pipe 2 based on the information acquired by the acquisition unit 41 (for example, the NOx concentration information output by the NOx concentration sensor 16, the rotation speed Ne of the internal combustion engine 1, etc.). Calculate the amount of reducing agent added. Then, the control of opening and closing the reducing agent addition valve 11 is executed according to the calculated addition amount. In the open / close control, in order to add the calculated amount of the reducing agent, for example, DUTY control for controlling the reducing agent addition valve 11 to the open state and the closed state at a predetermined time interval according to the addition amount of the reducing agent is performed. By doing so, a predetermined amount of reducing agent is added at a predetermined timing. By executing the opening / closing control, a predetermined amount of the reducing agent is added to the exhaust pipe 2 from the reducing agent addition valve 11 at a predetermined timing, and NH3 is supplied to the SCR catalyst 12.

圧送制御では、実行部42は、取得部41により取得される情報(例えば、内燃機関1の運転を開始させるためにスイッチ7が操作された旨を示す情報、内燃機関1の回転数Ne等)に基づいて、内燃機関1が運転中にあるとことが特定される場合に、第2還元剤通路22b内の圧力を所定値に維持するように圧送ポンプ23を駆動させる制御を実行する。圧送制御が実行されることにより、還元剤添加弁11及び還元剤通路22の内部に還元剤が充填されて、還元剤添加弁11より還元剤を添加することが可能な状態とされる。 In the pumping control, the execution unit 42 receives information acquired by the acquisition unit 41 (for example, information indicating that the switch 7 has been operated to start the operation of the internal combustion engine 1, information indicating that the switch 7 has been operated, the rotation speed Ne of the internal combustion engine 1, etc.). When it is specified that the internal combustion engine 1 is in operation, the pressure feeding pump 23 is driven so as to maintain the pressure in the second reducing agent passage 22b at a predetermined value. By executing the pressure feeding control, the reducing agent is filled in the reducing agent addition valve 11 and the reducing agent passage 22, and the reducing agent can be added from the reducing agent addition valve 11.

回収制御では、実行部42は、取得部41により取得される情報(例えば、内燃機関1の運転を終了させるスイッチが操作された旨を示す情報や内燃機関1の回転数Ne等)に基づいて、内燃機関1の運転が停止されることが特定される場合に、圧送ポンプ23の駆動状態及びリバーティングバルブ24による還元剤流路の切り替え状態を制御して還元剤添加弁11及び還元剤通路22の内部の還元剤を貯蔵タンク21に回収させる制御を行う。回収制御が実行されることにより、還元剤添加弁11及び還元剤通路22の内部で還元剤が固化して流路が詰まってしまうこと等を防止できる。 In the recovery control, the execution unit 42 is based on the information acquired by the acquisition unit 41 (for example, information indicating that the switch for ending the operation of the internal combustion engine 1 has been operated, the rotation speed Ne of the internal combustion engine 1, etc.). When it is specified that the operation of the internal combustion engine 1 is stopped, the driving state of the pressure feed pump 23 and the switching state of the reducing agent flow path by the reverting valve 24 are controlled to control the reducing agent addition valve 11 and the reducing agent passage. Control is performed so that the reducing agent inside 22 is collected in the storage tank 21. By executing the recovery control, it is possible to prevent the reducing agent from solidifying inside the reducing agent addition valve 11 and the reducing agent passage 22 and clogging the flow path.

オン−オフ制御では、実行部42は、取得部41により取得される情報(例えば、CAN6を介して取得される外気温度等)に基づいて、貯蔵タンク21内の還元剤が凍結する虞があるか否かを判定する。例えば、CAN6を介して取得される外気温度を、予め定められた基準温度(例えば、還元剤の凝固点よりも所定値高い温度等)と比較し、貯蔵タンク21内の還元剤が凍結する虞があると判断される場合に、流量制御弁35に対して開状態に制御する制御信号を出力して、第4冷媒通路32dに冷媒が流れる状態に制御する。これにより、貯蔵タンク21内の還元剤を冷媒により加温することができ、当該貯蔵タンク21内の還元剤が凍結したり、還元剤の凍結による体積膨張に起因して還元剤添加弁11、貯蔵タンク21、還元剤通路22、主ポンプ33、補助ポンプ34等が損傷したりすることを防止する。また、オン−オフ制御では、実行部42は、取得部41により取得される情報(例えば、貯蔵タンク21の温度、貯蔵タンク21内の還元剤の温度等)に基づいて、貯蔵タンク21内の還元剤が凍結している虞があるか否かを判定する。例えば、貯蔵タンク21内の還元剤の温度を、予め定められた基準温度(例えば、還元剤の凝固点の温度等)と比較し、貯蔵タンク21内の還元剤が凍結している虞があると判断される場合に、流量制御弁35に対して開状態に制御する制御信号を出力して、第4冷媒通路32dに冷媒が流れる状態に制御する。これにより、貯蔵タンク21内の還元剤を冷媒により加温して解凍する。 In the on-off control, the execution unit 42 may freeze the reducing agent in the storage tank 21 based on the information acquired by the acquisition unit 41 (for example, the outside air temperature acquired via the CAN 6). Judge whether or not. For example, the outside air temperature acquired via CAN 6 is compared with a predetermined reference temperature (for example, a temperature higher than the freezing point of the reducing agent by a predetermined value), and the reducing agent in the storage tank 21 may freeze. When it is determined that there is, a control signal for controlling the open state is output to the flow control valve 35 to control the state in which the refrigerant flows through the fourth refrigerant passage 32d. As a result, the reducing agent in the storage tank 21 can be heated by the refrigerant, and the reducing agent in the storage tank 21 freezes, or the reducing agent addition valve 11 due to volume expansion due to the freezing of the reducing agent, It prevents the storage tank 21, the reducing agent passage 22, the main pump 33, the auxiliary pump 34, and the like from being damaged. Further, in the on-off control, the execution unit 42 in the storage tank 21 based on the information acquired by the acquisition unit 41 (for example, the temperature of the storage tank 21, the temperature of the reducing agent in the storage tank 21, etc.). Determine if the reducing agent may be frozen. For example, the temperature of the reducing agent in the storage tank 21 is compared with a predetermined reference temperature (for example, the temperature of the freezing point of the reducing agent), and the reducing agent in the storage tank 21 may be frozen. When it is determined, a control signal for controlling the open state is output to the flow control valve 35 to control the state in which the refrigerant flows through the fourth refrigerant passage 32d. As a result, the reducing agent in the storage tank 21 is heated by the refrigerant and thawed.

尚、流量制御弁35は、DCU40により開度が制御されることにより第4冷媒通路32dに流れる冷媒の流量を調整することが可能な流量調整弁により構成されても良い。流量制御弁35が流量調整弁である構成では、DCU40は、各種センサ等により取得される所定情報(例えば、内燃機関1の回転数Ne、温度センサ14により出力される温度情報等)に応じて、流量調整弁の開度を制御する構成とすることにより、冷媒通路32内に循環される冷媒の流量を適宜制御して、還元剤添加弁11及び当該還元剤添加弁11内の還元剤の温度を所定範囲(例えば、還元剤添加弁11の温度が耐熱温度Tlimよりも低い70℃〜80℃程度)に制御して、還元剤添加弁11の温度が耐熱温度Tlimよりも高まることを防止できる。 The flow rate control valve 35 may be configured by a flow rate adjusting valve capable of adjusting the flow rate of the refrigerant flowing through the fourth refrigerant passage 32d by controlling the opening degree by the DCU 40. In the configuration in which the flow control valve 35 is a flow control valve, the DCU 40 responds to predetermined information acquired by various sensors (for example, the rotation speed Ne of the internal combustion engine 1, the temperature information output by the temperature sensor 14, etc.). By controlling the opening degree of the flow control valve, the flow rate of the refrigerant circulated in the refrigerant passage 32 can be appropriately controlled to control the reducing agent addition valve 11 and the reducing agent in the reducing agent addition valve 11. The temperature is controlled within a predetermined range (for example, the temperature of the reducing agent addition valve 11 is about 70 ° C. to 80 ° C. lower than the heat resistant temperature Tim) to prevent the temperature of the reducing agent addition valve 11 from becoming higher than the heat resistant temperature Tim. it can.

冷却補助制御では、後述するように、実行部42は、取得部41により取得される情報に基づいて、主ポンプ33の駆動が停止されることにより、還元剤添加弁11の温度が耐熱温度Tlimよりも高まる可能性がある場合に、補助ポンプ34を駆動させて内燃機関1の運転が停止される後も冷媒通路32内の冷媒の循環を継続させる制御や、当該補助ポンプ34が作動可能な状態であるか否かを診断する制御を実行する。 In the cooling auxiliary control, as will be described later, in the execution unit 42, the drive of the main pump 33 is stopped based on the information acquired by the acquisition unit 41, so that the temperature of the reducing agent addition valve 11 becomes the heat resistant temperature Trim. When there is a possibility that the temperature will increase more than the above, the auxiliary pump 34 can be driven to continue the circulation of the refrigerant in the refrigerant passage 32 even after the operation of the internal combustion engine 1 is stopped, and the auxiliary pump 34 can be operated. Performs control to diagnose whether the condition is present or not.

[冷却補助処理について]
本実施形態に係るDCU40が行う冷却補助制御について、図3に基づいて説明する。
[About cooling auxiliary processing]
The cooling assist control performed by the DCU 40 according to the present embodiment will be described with reference to FIG.

DCU40は、取得部41により取得される情報(例えば、スイッチ7が出力する情報)に基づいて、スイッチ7が操作されて内燃機関1の運転が開始されることが特定された以後、スイッチ7が操作されて内燃機関1の運転が停止されることが特定されるまでの期間(以下、単位期間と呼ぶ場合がある)中において、所定時間間隔(例えば、10m秒間隔等)で当該冷却補助制御を繰り返し行う。 After it is specified that the switch 7 is operated and the operation of the internal combustion engine 1 is started based on the information acquired by the acquisition unit 41 (for example, the information output by the switch 7), the DCU 40 is operated by the switch 7. During the period until the operation of the internal combustion engine 1 is specified to be stopped (hereinafter, may be referred to as a unit period), the cooling auxiliary control is performed at predetermined time intervals (for example, 10 ms intervals, etc.). Is repeated.

図3に示すように、冷却補助制御では、まず、取得部41は、補助ポンプ34が作動可能な状態であるか否かを診断する作動診断が前回行われた際の診断結果を特定可能な診断情報を取得する(S01)。診断情報は、後述するS07のステップにおいて作動診断が行われることで記憶部43に記憶されるようになっている。診断情報が記憶される記憶部43の記憶領域は、DCU40が作動している期間(スイッチ7が操作されてDCU40の作動が開始されたときから、スイッチ7が操作されてDCU40の作動が停止されるときまでの期間)にわたり診断情報の内容を保持できるようになっている。当該診断情報が記憶される記憶部43の記憶領域は、前述の初期処理によりDCU40の作動が開始されたときに初期化されて、初期値として、補助ポンプ34が作動可能な状態である旨を示す値が設定されるようになっている。尚、診断情報が記憶される記憶部43の記憶領域は、DCU40が作動していない期間において診断情報の内容を保持可能な構成(例えば、いわゆるROMなどの不揮発性の記憶手段である構成等)でも良いし、DCU40の作動停止に伴って診断情報の内容が消失される構成(例えば、いわゆるRAMなどの揮発性記憶手段である構成)でも良い。 As shown in FIG. 3, in the cooling auxiliary control, first, the acquisition unit 41 can specify the diagnosis result when the operation diagnosis for diagnosing whether or not the auxiliary pump 34 is in the operable state was performed last time. Acquire diagnostic information (S01). The diagnostic information is stored in the storage unit 43 by performing the operation diagnosis in the step of S07 described later. The storage area of the storage unit 43 in which the diagnostic information is stored is the period during which the DCU 40 is operating (from the time when the switch 7 is operated and the operation of the DCU 40 is started, the switch 7 is operated and the operation of the DCU 40 is stopped. The contents of the diagnostic information can be retained for a period of time (until the time). The storage area of the storage unit 43 in which the diagnostic information is stored is initialized when the operation of the DCU 40 is started by the above-mentioned initial processing, and as an initial value, the auxiliary pump 34 is in an operable state. The indicated value is set. The storage area of the storage unit 43 in which the diagnostic information is stored has a configuration capable of holding the contents of the diagnostic information during the period when the DCU 40 is not operating (for example, a configuration that is a non-volatile storage means such as a so-called ROM). Alternatively, the configuration may be such that the content of the diagnostic information is lost when the operation of the DCU 40 is stopped (for example, a configuration which is a volatile storage means such as a so-called RAM).

取得部41により診断情報が取得された後、実行部42は、当該診断情報に基づいて、前回の作動診断において補助ポンプ34が作動可能な状態でない旨が診断されたか否かを判定する(S02)。そして、S02のステップにおいて、補助ポンプ34が作動可能な状態でない旨の診断がされていると判定された場合(Y)には、冷却補助制御を終了させる。 After the diagnostic information is acquired by the acquisition unit 41, the execution unit 42 determines, based on the diagnostic information, whether or not it was diagnosed in the previous operation diagnosis that the auxiliary pump 34 is not in an operable state (S02). ). Then, in the step of S02, when it is determined that the auxiliary pump 34 is not in an operable state (Y), the cooling auxiliary control is terminated.

一方、S02のステップにおいて、補助ポンプ34が作動可能な状態でない旨の診断がされていないと判定された場合(N)には、取得部41は、ECU5により内燃機関1の停止制御が行われるか否かを特定可能な停止関連情報(内燃機関1の運転を停止させるためにスイッチ7が操作されたことに伴い当該内燃機関1の運転を停止させる旨を特定可能な情報、内燃機関1の作動が一時的に停止される制御(例えば、いわゆるアイドリングストップ制御等)が行われる旨を特定可能な情報、内燃機関1の回転数Ne等)をCAN6上から取得し、実行部42は、当該停止関連情報に基づいて、ECU5により内燃機関1の作動を停止させる制御が行われるか否かを判定する(S04)。 On the other hand, in the step of S02, when it is determined that the auxiliary pump 34 is not in an operable state (N), the acquisition unit 41 controls the stop of the internal combustion engine 1 by the ECU 5. Stop-related information that can specify whether or not the internal combustion engine 1 is stopped (information that can specify that the operation of the internal combustion engine 1 is stopped when the switch 7 is operated to stop the operation of the internal combustion engine 1, the internal combustion engine 1 Information that can specify that control for temporarily stopping the operation (for example, so-called idling stop control, etc.) is performed, information such as the number of revolutions of the internal combustion engine 1 Ne, etc.) is acquired from the CAN 6, and the execution unit 42 is concerned. Based on the stop-related information, it is determined whether or not the ECU 5 controls to stop the operation of the internal combustion engine 1 (S04).

S04のステップにおいて、内燃機関1の作動を停止させる制御が行われないと判定された場合(N)(例えば、内燃機関1を作動させる作動制御が継続される場合、内燃機関1の作動が停止された状態が継続される場合等)には、取得部41は、ECU5により内燃機関1の始動制御が行われるか否かを特定可能な始動関連情報(例えば、ECU5により内燃機関1の始動制御が行われる旨を示すフラグ情報、内燃機関1の運転を開始させるためにスイッチ7が操作された旨を特定可能な情報等)をCAN6上から取得する(S05)。 In the step of S04, when it is determined that the control for stopping the operation of the internal combustion engine 1 is not performed (N) (for example, when the operation control for operating the internal combustion engine 1 is continued, the operation of the internal combustion engine 1 is stopped. In the case where the state is continued, the acquisition unit 41 can specify whether or not the start control of the internal combustion engine 1 is performed by the ECU 5 (for example, the start control of the internal combustion engine 1 by the ECU 5). (S05), the flag information indicating that the operation is performed, the information that can identify that the switch 7 has been operated to start the operation of the internal combustion engine 1, and the like) are acquired from the CAN 6.

尚、S05のステップにおいて、取得部41により取得される始動関連情報は、内燃機関1の始動制御が行われるか否かを特定可能な情報であれば良く、内燃機関1の始動制御が行われるか否かを特定可能にECU5が直接的に出力する情報でも良いし、始動制御が行われるか否かを間接的に特定可能な情報(例えば、内燃機関1が始動される際に制御されるセルモータ等の各種装置を作動させる制御が行われるか否かを示す情報、当該セルモータ等の各種装置の制御信号等)でも良い。 In the step of S05, the start-related information acquired by the acquisition unit 41 may be any information that can specify whether or not the start control of the internal combustion engine 1 is performed, and the start control of the internal combustion engine 1 is performed. Information that can be directly output by the ECU 5 so as to be able to specify whether or not it is possible, or information that can indirectly specify whether or not start control is performed (for example, it is controlled when the internal combustion engine 1 is started). Information indicating whether or not control for operating various devices such as a starter motor is performed, control signals of various devices such as the starter motor, etc.) may be used.

S05のステップにおいて取得部41により始動関連情報が取得された後、実行部42は、当該始動関連情報に基づいてECU5により内燃機関1の始動制御が行われるか否かを判定する(S06)。S06のステップにおいて内燃機関1の始動制御が行われると判定された場合(Y)は、取得部41は、スイッチ7の出力情報を取得し(S07)、実行部42は、当該出力情報等に基づいて内燃機関1の運転を開始させるためにスイッチ7が操作されたか否かを判定する(S08)。そして、S08のステップにおいて内燃機関1の運転を開始させるためにスイッチ7が操作されたことが特定される場合(Y)には、内燃機関1の運転開始に伴い内燃機関1の始動制御が行われる旨、すなわち内燃機関1の運転が開始されてから当該運転が終了されるまでの単位期間において、最初に始動制御が行われるタイミングであると判定し、予め定められた所定期間(作動診断にて診断結果が取得されるために十分な期間であり、例えば、5秒間等)にわたり補助ポンプ34を駆動させるテスト駆動制御を行う(S09)。 After the start-related information is acquired by the acquisition unit 41 in the step of S05, the execution unit 42 determines whether or not the start control of the internal combustion engine 1 is performed by the ECU 5 based on the start-related information (S06). When it is determined (Y) that the start control of the internal combustion engine 1 is performed in the step of S06, the acquisition unit 41 acquires the output information of the switch 7 (S07), and the execution unit 42 uses the output information and the like. Based on this, it is determined whether or not the switch 7 has been operated to start the operation of the internal combustion engine 1 (S08). Then, when it is specified that the switch 7 is operated to start the operation of the internal combustion engine 1 in the step S08 (Y), the start control of the internal combustion engine 1 is performed with the start of the operation of the internal combustion engine 1. That is, in the unit period from the start of the operation of the internal combustion engine 1 to the end of the operation, it is determined that it is the timing when the start control is first performed, and a predetermined predetermined period (for operation diagnosis) is determined. The test drive control for driving the auxiliary pump 34 is performed for a period sufficient for obtaining the diagnostic result (for example, 5 seconds) (S09).

テスト駆動制御では、実行部42は、所定のタイマAを初期化した後、当該タイマをカウントアップさせて所定時間を計測する制御を開始させるとともに、補助ポンプ34を駆動させるための制御信号をFET44のゲートGに対して出力する制御を開始させる。そして、実行部42は、タイマに基づいて前述の所定期間(作動診断にて診断結果が取得されるために十分な期間)が経過したことが特定されるときまで、FET44に対して制御信号を出力する制御を継続させ、当該所定期間が経過したことが特定されるときに、FET44への制御信号の出力を停止させるように制御する。このように、テスト駆動制御では、単位期間中にて最初に内燃機関1の始動制御が行われる場合に、作動診断にて診断結果が取得されるために十分な所定期間にわたり、FET44のゲートGに対して出力することにより、当該所定期間にわたり補助ポンプ34を駆動させる。 In the test drive control, after initializing the predetermined timer A, the execution unit 42 starts the control of counting up the timer to measure the predetermined time, and outputs the control signal for driving the auxiliary pump 34 to the FET 44. The control to output to the gate G of is started. Then, the execution unit 42 sends a control signal to the FET 44 until it is specified that the above-mentioned predetermined period (a period sufficient for the diagnosis result to be acquired by the operation diagnosis) has elapsed based on the timer. The output control is continued, and when it is specified that the predetermined period has elapsed, the output of the control signal to the FET 44 is stopped. As described above, in the test drive control, when the start control of the internal combustion engine 1 is performed for the first time in the unit period, the gate G of the FET 44 extends for a predetermined period sufficient for obtaining the diagnosis result in the operation diagnosis. By outputting to, the auxiliary pump 34 is driven for the predetermined period.

S09のステップにおいてテスト駆動制御が開始された後、すなわち補助ポンプ34が作動されている状態で、実行部42は、作動診断を行う作動診断制御の制御を行う(S10)。また、実行部42は、S06のステップにおいて内燃機関1の始動制御が行われないと判定された場合(N)、S08のステップにおいて内燃機関1の始動制御が行われるが単位期間での最初の始動制御ではないと判定された場合(N)、すなわち補助ポンプ34が作動されていない状態でも作動診断制御の制御を行う(S10)。 After the test drive control is started in the step S09, that is, in the state where the auxiliary pump 34 is operated, the execution unit 42 controls the operation diagnosis control for performing the operation diagnosis (S10). Further, when the execution unit 42 determines that the start control of the internal combustion engine 1 is not performed in the step S06 (N), the start control of the internal combustion engine 1 is performed in the step S08, but the first in the unit period. When it is determined that the start control is not performed (N), that is, the operation diagnosis control is controlled even when the auxiliary pump 34 is not operated (S10).

作動診断制御では、まず、実行部42は、取得部41にFET44のドレインDとソースSとの間のDS電圧Vdsを取得させる。そして、実行部42は、補助ポンプ34が駆動中であるか否かを、例えば、FET44のゲートGへの制御信号の出力状況に基づいて判定する。そして、補助ポンプ34が駆動中でない場合(例えば、前述のテスト駆動制御により補助ポンプ34が駆動される前の期間や、当該テスト駆動制御が終了した後の期間(例えば、排気浄化装置10の通常の作動期間中)等)には、DS電圧Vdsの値を予め定められた第1基準電圧値V_th1及び第2基準電圧値V_th2と比較する。 In the operation diagnosis control, first, the execution unit 42 causes the acquisition unit 41 to acquire the DS voltage Vds between the drain D of the FET 44 and the source S. Then, the execution unit 42 determines whether or not the auxiliary pump 34 is being driven, for example, based on the output status of the control signal to the gate G of the FET 44. Then, when the auxiliary pump 34 is not being driven (for example, a period before the auxiliary pump 34 is driven by the above-mentioned test drive control or a period after the test drive control is completed (for example, the normal exhaust purification device 10). During the operation period), etc.), the value of the DS voltage Vds is compared with the predetermined first reference voltage value V_th1 and the second reference voltage value V_th2.

第1基準電圧値V_th1は、端子40aに接続されている外部配線がグランドGdに短絡しているグランド短絡状態(以下、SCG状態と呼ぶ場合がある。)であるときにおけるFET44のドレインD及びソースS間での電圧降下値よりも若干高い値(例えば、2V等)に設定されている。第2基準電圧値V_th2は、前述の第1基準電圧値V_th1よりも高い値であり、かつ、端子40aに電気負荷が接続されていないオープンロード状態(例えば、電気負荷となる補助ポンプ34の電気配線が端子40aに接続されていない状態、端子40a及び補助ポンプ34の間の電気配線が断線している状態等、以下、OL状態と呼ぶ場合がある。)であるときにおけるFET44のドレインD及びソースS間での電圧降下値よりも若干低い値(例えば、前述の参照電圧Vr以下の値等)に設定されている。 The first reference voltage value V_th1 is the drain D and source of the FET 44 in a ground short-circuited state (hereinafter, may be referred to as an SCG state) in which the external wiring connected to the terminal 40a is short-circuited to the ground Gd. It is set to a value slightly higher than the voltage drop value between S (for example, 2V or the like). The second reference voltage value V_th2 is a value higher than the above-mentioned first reference voltage value V_th1 and is in an open load state in which an electric load is not connected to the terminal 40a (for example, electricity of the auxiliary pump 34 which is an electric load). The drain D and the drain D of the FET 44 when the wiring is not connected to the terminal 40a, the electrical wiring between the terminal 40a and the auxiliary pump 34 is broken, etc., may be hereinafter referred to as an OL state). It is set to a value slightly lower than the voltage drop value between the sources S (for example, a value equal to or less than the reference voltage Vr described above).

そして、実行部42は、DS電圧Vdsの値が第1基準電圧値V_th1以上であり、かつ第2基準電圧値V_th2以上である場合には、補助ポンプ34が作動可能な状態であると診断する。その後、当該状態が所定時間(例えば、500m秒)にわたり継続されたときに、当該補助ポンプ34が作動可能な状態である旨を示す診断情報(OK)を記憶部43に記憶させるとともに、当該診断情報(OK)をCAN6上へ出力する。補助ポンプ34の電気配線(電源配線)の正極側にバッテリ電圧Vbaが印加され、補助ポンプ34の電気配線(電源配線)の負極側に端子40aが接続されており、かつ補助ポンプ34の電気配線においてバッテリから端子40aまでの間に断線やグランド短絡が生じていない状態では、バッテリ電圧Vbaに応じた電圧値、すなわち第1基準電圧値V_th1及び第2基準電圧値V_th2よりも大きな電圧値がDS電圧Vdsとして取得されるので、診断結果として、補助ポンプ34が作動可能な状態である旨の判定がされるようになっている。 Then, when the value of the DS voltage Vds is the first reference voltage value V_th1 or more and the second reference voltage value V_th2 or more, the execution unit 42 diagnoses that the auxiliary pump 34 is in an operable state. .. After that, when the state is continued for a predetermined time (for example, 500 msec), the storage unit 43 stores diagnostic information (OK) indicating that the auxiliary pump 34 is in an operable state, and the diagnosis is made. Information (OK) is output on CAN6. The battery voltage Vba is applied to the positive side of the electrical wiring (power supply wiring) of the auxiliary pump 34, the terminal 40a is connected to the negative side of the electrical wiring (power supply wiring) of the auxiliary pump 34, and the electrical wiring of the auxiliary pump 34. In the state where there is no disconnection or ground short circuit between the battery and the terminal 40a, the voltage value corresponding to the battery voltage Vba, that is, the voltage value larger than the first reference voltage value V_th1 and the second reference voltage value V_th2 is DS. Since it is acquired as the voltage Vds, it is determined as a diagnosis result that the auxiliary pump 34 is in an operable state.

一方、実行部42は、DS電圧Vdsの値が第1基準電圧値V_th1未満である場合には、SCG状態であり、補助ポンプ34が作動可能な状態でないと診断する。その後、当該状態が所定時間(例えば、500m秒)にわたり継続されたときに、当該補助ポンプ34が作動可能な状態でない旨を示す診断情報(NG_SCG)を記憶部43に記憶させるとともに、当該診断情報(NG_SCG)をCAN6上へ出力する。 On the other hand, when the value of the DS voltage Vds is less than the first reference voltage value V_th1, the execution unit 42 diagnoses that it is in the SCG state and the auxiliary pump 34 is not in the operable state. After that, when the state is continued for a predetermined time (for example, 500 msec), the storage unit 43 stores diagnostic information (NG_SCG) indicating that the auxiliary pump 34 is not in an operable state, and the diagnostic information is stored. (NG_SCG) is output on CAN6.

DCU40の内部回路では、FET44のドレインD及び端子40aに参照電圧Vrが印加される。しかし、SCG状態が発生しているときには、参照電圧Vrの印加に伴って発生する電流は、FET44のドレインD及びソースS間にはほとんど流れず、当該FET44のドレインD及びソースS間よりも電気抵抗の低い端子40a及び外部配線を介してグランドGdへ流れることとなり、FET44のドレインD及びソースS間での電圧降下値は、微小な値(例えば、0V〜2V程度)となる。よって、第1基準電圧値V_th1として、SCG状態においてFET44のドレインD及びソースS間で生じ得る電圧降下値よりも高い値を設定することで、当該第1基準電圧値V_th1を用いてSCG状態を判定することができる。 In the internal circuit of the DCU 40, the reference voltage Vr is applied to the drain D and the terminal 40a of the FET 44. However, when the SCG state is generated, the current generated by the application of the reference voltage Vr hardly flows between the drain D and the source S of the FET 44, and is more electric than the drain D and the source S of the FET 44. It flows to the ground Gd via the terminal 40a having low resistance and the external wiring, and the voltage drop value between the drain D and the source S of the FET 44 becomes a minute value (for example, about 0V to 2V). Therefore, by setting the first reference voltage value V_th1 to a value higher than the voltage drop value that can occur between the drain D and the source S of the FET 44 in the SCG state, the SCG state is set using the first reference voltage value V_th1. Can be determined.

また、実行部42は、DS電圧Vdsの値が第1基準電圧値V_th1以上であり、かつ第2基準電圧値V_th2未満である場合には、OL状態であり、補助ポンプ34が作動可能な状態でないと診断する。その後、当該状態が所定時間(例えば、500m秒)にわたり継続されたときに、当該補助ポンプ34が作動可能な状態でない旨を示す診断情報(NG_OL)を記憶部43に記憶させるとともに、当該診断情報(NG_OL)をCAN6上へ出力する。 Further, when the value of the DS voltage Vds is equal to or higher than the first reference voltage value V_th1 and less than the second reference voltage value V_th2, the execution unit 42 is in the OL state and the auxiliary pump 34 can be operated. Diagnose not. After that, when the state is continued for a predetermined time (for example, 500 msec), the storage unit 43 stores diagnostic information (NG_OL) indicating that the auxiliary pump 34 is not in an operable state, and the diagnostic information is stored. (NG_OL) is output on CAN6.

DCU40の内部回路では、FET44のドレインD及び端子40aに参照電圧Vrが印加されるが、OL状態が発生しているときには、参照電圧Vrの印加に伴って発生する電流は、端子40a外へは流れず、FET44のドレインD及びソースS間を流れ、ソースSに接続されているグランドGdへ流れることにより、FET44のドレインD及びソースS間では、参照電圧Vrに相当する電圧降下が生じる。よって、第2基準電圧値V_th2として、OL状態においてFET44のドレインD及びソースS間で生じ得る電圧降下値、すなわち参照電圧Vrの値よりも低い値、かつ前述の第1基準電圧値V_th1よりも高い値を設定することで、当該第2基準電圧値V_th2を用いてOL状態を判定することができる。 In the internal circuit of the DCU 40, the reference voltage Vr is applied to the drain D and the terminal 40a of the FET 44, but when the OL state is generated, the current generated by the application of the reference voltage Vr flows out of the terminal 40a. It does not flow, flows between the drain D and the source S of the FET 44, and flows to the ground Gd connected to the source S, so that a voltage drop corresponding to the reference voltage Vr occurs between the drain D and the source S of the FET 44. Therefore, the second reference voltage value V_th2 is a voltage drop value that can occur between the drain D and the source S of the FET 44 in the OL state, that is, a value lower than the value of the reference voltage Vr, and a value lower than the above-mentioned first reference voltage value V_th1. By setting a high value, the OL state can be determined using the second reference voltage value V_th2.

作動診断制御では、補助ポンプ34が駆動中である場合には、DS電圧Vdsの値を予め定められた第3基準電圧値V_th3と比較する。第3基準電圧値V_th3は、補助ポンプ34の電気配線が断線やバッテリ短絡等がなく端子40aに正常に接続されており、かつ補助ポンプ34が正常に駆動している正常状態であるときにおけるFET44のドレインD及びソースS間での電圧降下値よりも若干高い値に設定されている。 In the operation diagnosis control, when the auxiliary pump 34 is being driven, the value of the DS voltage Vds is compared with the predetermined third reference voltage value V_th3. The third reference voltage value V_th3 is the FET 44 when the electrical wiring of the auxiliary pump 34 is normally connected to the terminal 40a without disconnection or battery short circuit, and the auxiliary pump 34 is normally driven. It is set to a value slightly higher than the voltage drop value between the drain D and the source S of.

そして、実行部42は、DS電圧Vdsの値が第3基準電圧値V_th3未満である場合には、補助ポンプ34が作動可能な状態であると診断する。その後、当該状態が所定時間(例えば、500m秒)にわたり継続されたときに、当該補助ポンプ34が作動可能な状態である旨を示す診断情報(OK)を記憶部43に記憶させるとともに、当該診断情報(OK)をCAN6上へ出力する。 Then, when the value of the DS voltage Vds is less than the third reference voltage value V_th3, the execution unit 42 diagnoses that the auxiliary pump 34 is in an operable state. After that, when the state is continued for a predetermined time (for example, 500 msec), the storage unit 43 stores diagnostic information (OK) indicating that the auxiliary pump 34 is in an operable state, and the diagnosis is made. Information (OK) is output on CAN6.

一方、DS電圧Vdsの値が第3基準電圧値V_th3以上である場合には、端子40aにバッテリ電圧Vbaが負荷を介さずに端子40aに印加されているバッテリ短絡状態(以下、SCB状態と呼ぶ場合がある。)または、何らかの原因で正常状態よりも高い異常な過電圧が端子40aに印加されている過電圧状態(OV状態と呼ぶ場合がある。)であり、補助ポンプ34が作動可能な状態でないと診断する。その後、当該状態が所定時間(例えば、500m秒)にわたり継続されたときに、当該補助ポンプ34が作動可能な状態でない旨を示す診断情報(NG_SCB)を記憶部43に出力して記憶させるとともに、当該診断情報(NG_SCB)をCAN6上へ出力する。 On the other hand, when the value of the DS voltage Vds is equal to or higher than the third reference voltage value V_th3, the battery voltage Vba is applied to the terminal 40a without passing through the load to the terminal 40a, and the battery short-circuit state (hereinafter referred to as SCB state). In some cases, it is an overvoltage state (sometimes called an OV state) in which an abnormal overvoltage higher than the normal state is applied to the terminal 40a for some reason, and the auxiliary pump 34 is not in an operable state. To diagnose. After that, when the state is continued for a predetermined time (for example, 500 msec), diagnostic information (NG_SCB) indicating that the auxiliary pump 34 is not in an operable state is output to the storage unit 43 and stored. The diagnostic information (NG_SCB) is output on CAN6.

補助ポンプ34の電気配線が断線やバッテリ短絡等がなく端子40aに正常に接続されており、かつ補助ポンプ34が正常に駆動している正常状態であるときには、バッテリ電圧Vbaは、補助ポンプ34及びFET44のドレインD−ソースS間に、それぞれの電気抵抗値の比率に応じて分圧されて印加されるので、FET44のドレインD−ソースS間では、バッテリ電圧Vbaの値よりも低い電圧降下が生じる。一方、SCB状態が発生しているときには、FET44のドレインD−ソースS間では、バッテリ電圧Vbaが印加されることとなるので、正常状態に比較して高い電圧降下が生じることとなる。また、OV状態が発生しているときには、正常状態であるときよりも高い値の電圧がFET44のドレインD−ソースS間に印加されるので、正常状態に比較して高い電圧降下が生じることとなる。よって、第3基準電圧値V_th3として、正常状態であるときにFET44のドレインD及びソースS間で生じ得る電圧降下値よりも若干高い値を設定することで、当該第3基準電圧値V_th3を用いてSCB状態またはOV状態であることを判定することができる。 When the electrical wiring of the auxiliary pump 34 is normally connected to the terminal 40a without disconnection or short circuit of the battery, and the auxiliary pump 34 is normally driven, the battery voltage Vba is set to the auxiliary pump 34 and the auxiliary pump 34. Since the voltage is divided and applied between the drain D and the source S of the FET 44 according to the ratio of the respective electric resistance values, a voltage drop lower than the value of the battery voltage Vba occurs between the drain D and the source S of the FET 44. Occurs. On the other hand, when the SCB state is generated, the battery voltage Vba is applied between the drain D and the source S of the FET 44, so that a higher voltage drop occurs as compared with the normal state. Further, when the OV state is generated, a voltage having a higher value than that in the normal state is applied between the drain D and the source S of the FET 44, so that a higher voltage drop occurs as compared with the normal state. Become. Therefore, by setting the third reference voltage value V_th3 to a value slightly higher than the voltage drop value that can occur between the drain D and the source S of the FET 44 in the normal state, the third reference voltage value V_th3 is used. It can be determined that it is in the SCB state or the OV state.

S10のステップにおいて作動診断制御を開始させた後、実行部42は、前述のS09のステップにおいて開始されたタイマAの値に基づいて、テスト駆動制御により補助ポンプ34を駆動させる所定期間が経過したか否かを判定し(S11)、当該所定期間が経過していないと判定した場合(N)は、S09のステップに戻り、当該テスト駆動制御による補助ポンプ34の駆動制御及び動作診断の制御を継続させる一方、の当該所定期間が経過したと判定した場合(Y)は、FET44のゲートGへの制御信号の出力を停止させて補助ポンプ34の駆動を停止させるように制御するとともに、タイマAによる所定期間の計測を終了させる(S12)。 After starting the operation diagnosis control in the step S10, the execution unit 42 has elapsed a predetermined period for driving the auxiliary pump 34 by the test drive control based on the value of the timer A started in the step S09 described above. If it is determined whether or not (S11) and it is determined that the predetermined period has not elapsed (N), the process returns to the step of S09, and the drive control and operation diagnosis control of the auxiliary pump 34 by the test drive control are performed. On the other hand, when it is determined that the predetermined period has elapsed (Y), the output of the control signal to the gate G of the FET 44 is stopped to control the operation of the auxiliary pump 34, and the timer A is stopped. The measurement for a predetermined period according to the above is completed (S12).

そして、取得部41は、記憶部43に記憶されている診断情報を取得し(S13)、実行部42は、取得部41により取得された診断情報に基づいて補助ポンプ34が作動可能な状態でない旨が診断されたか否かを判定する(S14)。S14のステップにおいて、補助ポンプ34が作動可能な状態でない旨の診断がされていないと判定された場合(N)には、冷却補助制御を終了させる一方、補助ポンプ34が作動可能な状態でない旨の診断がされている判定された場合(Y)には、補助ポンプ34が作動可能な状態でない旨を報知装置50により報知させる報知制御を行う(S15)。 Then, the acquisition unit 41 acquires the diagnostic information stored in the storage unit 43 (S13), and the execution unit 42 is not in a state in which the auxiliary pump 34 can be operated based on the diagnostic information acquired by the acquisition unit 41. It is determined whether or not the fact has been diagnosed (S14). If it is determined in step S14 that the auxiliary pump 34 is not in an operable state (N), the cooling auxiliary control is terminated, but the auxiliary pump 34 is not in an operable state. When it is determined that the diagnosis is made (Y), the notification device 50 notifies that the auxiliary pump 34 is not in an operable state (S15).

報知制御では、実行部42は、補助ポンプ34が作動可能な状態でない旨を報知させるための制御信号を報知装置50に対して出力する。報知装置50は、実行部42より当該制御信号を受信することで、例えば、当該報知装置50が搭載されている車両が備える所定の警告灯(図示略)を点灯状態に制御するとともに、当該車両が備える所定のスピーカ(図示略)から所定の警告音出力させる制御等を行うことにより、補助ポンプが作動可能な状態でない旨を車両の運転者等に報知する。尚、報知装置50において、補助ポンプが作動可能な状態でない旨を車両の運転者等に報知する態様は、警告灯を点灯状態に制御することのみでも良いし、スピーカから警告音出力させるのみでも良いし、警告灯やスピーカ以外の報知手段を用いて補助ポンプが作動可能な状態でない旨を報知する構成でも良い。 In the notification control, the execution unit 42 outputs a control signal to the notification device 50 to notify that the auxiliary pump 34 is not in an operable state. By receiving the control signal from the execution unit 42, the notification device 50 controls, for example, a predetermined warning light (not shown) provided in the vehicle on which the notification device 50 is mounted to be in a lit state, and also controls the vehicle to be in a lit state. By controlling the output of a predetermined warning sound from a predetermined speaker (not shown) provided in the vehicle, the driver or the like of the vehicle is notified that the auxiliary pump is not in an operable state. In the notification device 50, the mode of notifying the driver of the vehicle that the auxiliary pump is not in an operable state may be only controlling the warning light to a lighting state or simply outputting a warning sound from the speaker. Alternatively, a notification means other than a warning light or a speaker may be used to notify that the auxiliary pump is not in an operable state.

実行部42は、S15のステップにより報知制御を開始させた後、冷却補助処理を終了させる。報知装置50では、DCU40からの制御信号に基づいて警告灯を点灯状態に制御した後、所定期間(例えば、車両の運転者等により警告灯が点灯状態である旨が認識されるために十分な期間、補助ポンプ34に異常がない旨が特定されるまでの期間)にわたり当該警告灯の点灯状態が継続されることが好ましい。 The execution unit 42 starts the notification control by the step of S15, and then ends the cooling assist process. The notification device 50 is sufficient for a predetermined period (for example, the driver of the vehicle or the like to recognize that the warning light is in the lighting state) after controlling the warning light to be in the lighting state based on the control signal from the DCU 40. It is preferable that the warning light is kept lit for a period (a period until it is specified that there is no abnormality in the auxiliary pump 34).

前述のS04のステップにおいてCAN6上から取得される停止関連情報に基づき、ECU5により内燃機関1の作動を停止させる制御が行われると判定した場合(Y)(例えば、内燃機関1の運転を停止させるためにスイッチ7が操作されたことに伴い当該内燃機関1の運転を停止させる制御が行われる場合、内燃機関1の作動が一時的に停止される制御(例えば、いわゆるアイドリングストップ制御等)が行われる場合等)には、取得部41は、SCR触媒12の温度情報(例えば、温度センサ14、15の出力情報の遷移等に基づいて推定されるSCR触媒12の温度等)、還元剤添加弁11に関する温度情報(例えば、温度センサ14の出力情報に基づき特定される還元剤添加弁11の周囲の温度等)、CAN6上より取得される内燃機関1に関する制御情報(例えば、DPF4の再生処理が実施されているか否かを特定可能な情報、内燃機関1への燃料の噴射に関する情報、内燃機関1の作動が停止された時からの経過時間を示す情報等)等のうち少なくとも1つの情報を取得する(S16)。そして、実行部42は、取得部41により取得された情報に基づき、還元剤添加弁11に熱害(例えば、高温に曝されることにより損傷が生じること、還元剤の固化により還元剤添加弁11内の還元剤通路が詰まること等)が生じる可能性のある状況であるか否かを判定する(S17)。 When it is determined that the ECU 5 controls to stop the operation of the internal combustion engine 1 based on the stop-related information acquired from the CAN 6 in the step of S04 described above (Y) (for example, the operation of the internal combustion engine 1 is stopped). Therefore, when the operation of the internal combustion engine 1 is stopped as the switch 7 is operated, the operation of the internal combustion engine 1 is temporarily stopped (for example, so-called idling stop control). In such cases, the acquisition unit 41 determines the temperature information of the SCR catalyst 12 (for example, the temperature of the SCR catalyst 12 estimated based on the transition of the output information of the temperature sensors 14 and 15), the reducing agent addition valve. Temperature information about 11 (for example, the temperature around the reducing agent addition valve 11 specified based on the output information of the temperature sensor 14), control information about the internal combustion engine 1 acquired from the CAN 6 (for example, the regeneration process of the DPF 4). Information that can identify whether or not it is being implemented, information about fuel injection into the internal combustion engine 1, information indicating the elapsed time since the operation of the internal combustion engine 1 was stopped, etc.), etc. Acquire (S16). Then, based on the information acquired by the acquisition unit 41, the execution unit 42 causes heat damage to the reducing agent addition valve 11 (for example, damage is caused by exposure to a high temperature, and the reducing agent addition valve is solidified by the reducing agent. It is determined whether or not there is a possibility that the reducing agent passage in 11 is clogged (S17).

S17のステップにおいて、還元剤添加弁11に熱害が生じる可能性のある状況であると判定した場合(Y)、例えば、SCR触媒12の温度情報に基づいてSCR触媒12の温度が予め定められた所定の閾値よりも高い場合、還元剤添加弁11に関する温度情報に基づき当該還元剤添加弁11の温度が予め定められた所定の閾値よりも高い、内燃機関1に関する制御情報に基づきDPF4の再生処理が実施されており、酸化触媒3及びDPF4の下流側の還元剤添加弁11の温度が上昇する状況であることが特定される場合等には、実行部42は、補助ポンプ34を駆動させる補助ポンプ駆動制御を行う(S18)。補助ポンプ駆動制御では、実行部42はFET44のゲートGに対して補助ポンプ34を駆動させる制御信号を出力させることを継続して行う。実行部42は、当該補助ポンプ駆動制御を行うことにより、内燃機関1の作動状況にかかわらず、補助ポンプ34の駆動により内燃機関1の冷媒の循環を継続させて、還元剤添加弁11を冷却することができる。 In the step of S17, when it is determined that the reducing agent addition valve 11 may be damaged by heat (Y), for example, the temperature of the SCR catalyst 12 is predetermined based on the temperature information of the SCR catalyst 12. If it is higher than a predetermined threshold, the temperature of the reducing agent addition valve 11 is higher than a predetermined threshold based on the temperature information about the reducing agent addition valve 11, and the DPF4 is regenerated based on the control information about the internal combustion engine 1. When the treatment is carried out and it is specified that the temperature of the reducing agent addition valve 11 on the downstream side of the oxidation catalyst 3 and the DPF 4 rises, the execution unit 42 drives the auxiliary pump 34. Auxiliary pump drive control is performed (S18). In the auxiliary pump drive control, the execution unit 42 continuously outputs a control signal for driving the auxiliary pump 34 to the gate G of the FET 44. By performing the auxiliary pump drive control, the execution unit 42 continues the circulation of the refrigerant of the internal combustion engine 1 by driving the auxiliary pump 34 regardless of the operating state of the internal combustion engine 1, and cools the reducing agent addition valve 11. can do.

S18のステップにおいて補助ポンプ駆動制御が開始された後、取得部41は、SCR触媒12の温度情報、還元剤添加弁11に関する温度情報、内燃機関1に関する制御情報、等のうち少なくとも1つの情報を新たに取得する(S19)。そして、実行部42は、取得部41により取得された情報に基づき、還元剤添加弁11に熱害が生じる状況でなくなったか否かを判定し(S20)、未だ還元剤添加弁11に熱害が生じる状況であると判定した場合(N)には、S19のステップへ戻り、補助ポンプ駆動制御を継続し(S18〜S20)、還元剤添加弁11に熱害が生じる状況でなくなったと判定した場合(Y)に、当該補助ポンプ駆動制御を終了させるとともに冷却補助制御を終了させる。 After the auxiliary pump drive control is started in the step S18, the acquisition unit 41 obtains at least one of the temperature information of the SCR catalyst 12, the temperature information of the reducing agent addition valve 11, the control information of the internal combustion engine 1, and the like. Newly acquired (S19). Then, the execution unit 42 determines whether or not the reducing agent addition valve 11 is no longer in a state of heat damage based on the information acquired by the acquisition unit 41 (S20), and the reducing agent addition valve 11 is still heat-damaged. (N), the process returns to the step of S19, the auxiliary pump drive control is continued (S18 to S20), and it is determined that the reducing agent addition valve 11 is no longer in a situation where heat damage occurs. In the case (Y), the auxiliary pump drive control is terminated and the cooling auxiliary control is terminated.

[排気浄化装置の動作の作用効果について]
本実施形態に係る排気浄化装置10は、SCR触媒12の上流側の排気管2内に還元剤を添加する還元剤添加弁11を備えており、当該還元剤添加弁11は、例えば、還元剤添加弁11の上流側に配置されているDPF4を再生するDPF再生処理が内燃機関1のECU5により行われる場合に、DPF再生処理が行われていない通常時に比較して高温の排気ガスに曝されることがある。
[About the action and effect of the operation of the exhaust purification device]
The exhaust purification device 10 according to the present embodiment includes a reducing agent addition valve 11 for adding a reducing agent in the exhaust pipe 2 on the upstream side of the SCR catalyst 12, and the reducing agent addition valve 11 is, for example, a reducing agent. When the DPF regeneration process for regenerating the DPF 4 arranged on the upstream side of the addition valve 11 is performed by the ECU 5 of the internal combustion engine 1, it is exposed to a higher temperature exhaust gas than in the normal time when the DPF regeneration process is not performed. There are times.

これに対して、排気浄化装置10は、内燃機関1の駆動力により駆動される主ポンプ33または電力により駆動される補助ポンプ34により内燃機関1の冷媒循環させることで還元剤添加弁11を冷却する冷却装置30を備える構成である。そして、当該排気浄化装置10の制御装置であるDCU40は、内燃機関1の作動されている期間においては、内燃機関1の駆動力を利用して主ポンプ33が駆動されることを利用して内燃機関1の冷媒を循環させて還元剤添加弁11を冷却する。また、内燃機関1の停止に伴って主ポンプ33の駆動が停止されるが、該内燃機関1の運転が停止後される場合であって、例えば、DPF再生処理が継続されることにより還元剤添加弁11の温度が耐熱温度Tlimよりも高まる可能性がある場合には、補助ポンプ34を電力で駆動させて作動させることにより内燃機関1の冷却水を循環させることにより、内燃機関1の運転が停止された後も還元剤添加弁11を冷却することができるようになっている。 On the other hand, the exhaust gas purification device 10 cools the reducing agent addition valve 11 by circulating the refrigerant of the internal combustion engine 1 by the main pump 33 driven by the driving force of the internal combustion engine 1 or the auxiliary pump 34 driven by the electric power. It is configured to include a cooling device 30 to be used. Then, the DCU 40, which is the control device of the exhaust gas purification device 10, uses the driving force of the internal combustion engine 1 to drive the main pump 33 during the period in which the internal combustion engine 1 is operating. The refrigerant of the engine 1 is circulated to cool the reducing agent addition valve 11. Further, the drive of the main pump 33 is stopped when the internal combustion engine 1 is stopped, but the operation of the internal combustion engine 1 is stopped after the stop, for example, when the DPF regeneration process is continued, the reducing agent. When the temperature of the addition valve 11 may be higher than the heat resistant temperature Tlim, the internal combustion engine 1 is operated by circulating the cooling water of the internal combustion engine 1 by driving and operating the auxiliary pump 34 with electric power. The reducing agent addition valve 11 can be cooled even after the engine is stopped.

しかし、補助ポンプ34が作動可能な状態でない場合、例えば、補助ポンプ34の配線に断線状態(OL状態)やグランド短絡状態(SCG状態)が生じた場合や補助ポンプ34内で故障が生じてバッテリ短絡状態(SCB状態)や過電圧状態(OV状態)が発生している場合等でも、内燃機関1の停止後であって該補助ポンプ34が作動されるときまで、当該補助ポンプ34が作動可能な状態でないことが検出されず、内燃機関1の停止後において還元剤添加弁11を冷却するときに補助ポンプ34が作動せず、還元剤添加弁11が冷却されない虞がある。特に、補助ポンプ34が作動状態に制御されているときでなくては検出が困難である補助ポンプ34のバッテリ短絡状態(SCB状態)や過電圧状態(OV状態)について、補助ポンプ34が作動されるときまで検出されない虞がある。 However, when the auxiliary pump 34 is not in an operable state, for example, when the wiring of the auxiliary pump 34 is disconnected (OL state) or ground short-circuited state (SCG state), or when a failure occurs in the auxiliary pump 34 and the battery is used. Even when a short-circuit state (SCB state) or an overvoltage state (OV state) occurs, the auxiliary pump 34 can be operated until the auxiliary pump 34 is operated even after the internal combustion engine 1 is stopped. It is not detected that the state is not met, and when the reducing agent addition valve 11 is cooled after the internal combustion engine 1 is stopped, the auxiliary pump 34 may not operate and the reducing agent addition valve 11 may not be cooled. In particular, the auxiliary pump 34 is operated in the battery short-circuit state (SCB state) and the overvoltage state (OV state) of the auxiliary pump 34, which is difficult to detect unless the auxiliary pump 34 is controlled to the operating state. It may not be detected until time.

これに対して、本実施形態に係るDCU40は、補助ポンプ34を駆動制御して内燃機関1の冷媒を循環させる冷却補助制御を行うことが可能であり、当該冷却補助制御において、DCU40の実行部42は、取得部41により取得される始動関連情報に基づいて内燃機関1の作動を開始させる始動制御が行われると判定した場合(S06)、かつ、取得部41により取得されて出力されるスイッチ7の出力情報に基づいて、内燃機関1の運転を開始させるためにスイッチ7が操作されたことにより単位期間(内燃機関1の運転を開始させるためのスイッチ7の操作が行われた後から当該内燃機関1の運転を停止させるためのスイッチ7の操作が行われるまでの期間)において最初に始動制御が行われると判定した場合に(S08)、補助ポンプ34を駆動させるテスト駆動制御を行いつつ(S09)、補助ポンプ34が作動可能な状態であるか否かを診断する作動診断の制御を行う(S10)。これにより、単位期間の最初に始動制御が行われるときに作動診断を行うことができ、当該単位期間の終了時、すなわち内燃機関1の運転が停止されて主ポンプ33の駆動が停止された以降において補助ポンプ34を作動させる以前に、当該補助ポンプ34が作動可能な状態であるか否かを診断することができる。 On the other hand, the DCU 40 according to the present embodiment can perform cooling auxiliary control for circulating the refrigerant of the internal combustion engine 1 by driving and controlling the auxiliary pump 34, and in the cooling auxiliary control, the execution unit of the DCU 40. 42 is a switch that is acquired and output by the acquisition unit 41 when it is determined that the start control for starting the operation of the internal combustion engine 1 is performed based on the start-related information acquired by the acquisition unit 41 (S06). Based on the output information of 7, the switch 7 is operated to start the operation of the internal combustion engine 1 for a unit period (after the operation of the switch 7 for starting the operation of the internal combustion engine 1 is performed, the relevant operation is performed. When it is determined that the start control is first performed in the period until the operation of the switch 7 for stopping the operation of the internal combustion engine 1 is performed (S08), the test drive control for driving the auxiliary pump 34 is performed. (S09), the operation diagnosis for diagnosing whether or not the auxiliary pump 34 is in an operable state is controlled (S10). As a result, the operation diagnosis can be performed when the start control is performed at the beginning of the unit period, and at the end of the unit period, that is, after the operation of the internal combustion engine 1 is stopped and the drive of the main pump 33 is stopped. Before operating the auxiliary pump 34, it is possible to diagnose whether or not the auxiliary pump 34 is in an operable state.

尚、本実施形態では、冷却補助制御において、実行部42は、内燃機関1の作動を開始させる始動制御が行われると判定し、かつ、単位期間において最初に始動制御が行われると判定した場合に、テスト駆動制御を行いつつ作動診断の制御を行う構成であるが、実行部42は、少なくとも内燃機関1の作動を開始させる始動制御が行われると判定した場合に、テスト駆動制御を行いつつ作動診断の制御を行う構成でも良い。このような構成では、単位期間において最初に始動制御が行われると判定される場合に限られず、内燃機関1が始動される毎にテスト駆動制御及び作動診断の制御を行うことにより、内燃機関1が停止されて主ポンプ33の駆動が停止された以降において補助ポンプ34を作動させる以前に、当該補助ポンプ34が作動可能な状態か否かを診断することができ、当該診断の頻度を高めることができる。 In the present embodiment, in the cooling assist control, the execution unit 42 determines that the start control for starting the operation of the internal combustion engine 1 is performed, and determines that the start control is performed first in the unit period. In addition, although it is configured to control the operation diagnosis while performing the test drive control, the execution unit 42 performs the test drive control at least when it is determined that the start control for starting the operation of the internal combustion engine 1 is performed. It may be configured to control the operation diagnosis. In such a configuration, not only when it is determined that the start control is first performed in the unit period, but also by performing test drive control and operation diagnosis control each time the internal combustion engine 1 is started, the internal combustion engine 1 It is possible to diagnose whether or not the auxiliary pump 34 is in an operable state before the auxiliary pump 34 is operated after the main pump 33 is stopped and the drive of the main pump 33 is stopped, so that the frequency of the diagnosis can be increased. Can be done.

また、本実施形態では、冷却補助制御において、実行部42は、単位期間において最初に始動制御が行われると判定した場合に、テスト駆動制御を行いつつ作動診断の制御を行う構成であるが、実行部42は、単位期間において最初に始動制御が行われるタイミング以外のいずれかのタイミングで、少なくとも一度、テスト駆動制御を行いつつ作動診断の制御を行う構成でも良い。このような構成でも、本実施形態に係る構成と同様に、内燃機関1の運転が停止されて主ポンプ33の駆動が停止された以降において補助ポンプ34を作動させる以前に、当該補助ポンプ34の作動診断を行うことができる。 Further, in the present embodiment, in the cooling assist control, the execution unit 42 controls the operation diagnosis while performing the test drive control when it is determined that the start control is first performed in the unit period. The execution unit 42 may be configured to control the operation diagnosis while performing test drive control at least once at any timing other than the timing at which the start control is first performed in the unit period. Even in such a configuration, similarly to the configuration according to the present embodiment, after the operation of the internal combustion engine 1 is stopped and the drive of the main pump 33 is stopped, the auxiliary pump 34 is operated before the auxiliary pump 34 is operated. Operation diagnosis can be performed.

また、本実施形態では、冷却補助制御において、DCU40の取得部41は、スイッチ7の出力情報を取得し、実行部42は、当該出力情報に基づいて、内燃機関1の運転を開始させるためにスイッチ7が操作されたことが特定される場合に、内燃機関1の運転開始に伴い当該内燃機関1の始動制御が行われると判定する構成であるが、実行部42は、スイッチ7の出力情報以外の情報を用いて、内燃機関1の運転開始に伴い内燃機関1の始動制御が行われるか否かを判定する構成でも良く、例えば、CAN6上から取得される内燃機関1の制御に関する情報(例えば、ECU5により出力され、内燃機関1の運転開始に伴い内燃機関1の始動制御が行われる旨を特定可能な情報、ECU5により出力されるスイッチ7の出力情報等)に基づいて、内燃機関1の運転開始に伴い内燃機関1の始動制御が行われるか否かを判定する構成でも良い。 Further, in the present embodiment, in the cooling auxiliary control, the acquisition unit 41 of the DCU 40 acquires the output information of the switch 7, and the execution unit 42 starts the operation of the internal combustion engine 1 based on the output information. When it is specified that the switch 7 has been operated, it is determined that the start control of the internal combustion engine 1 is performed when the operation of the internal combustion engine 1 is started. Information other than the above may be used to determine whether or not the start control of the internal combustion engine 1 is performed when the operation of the internal combustion engine 1 is started. For example, information regarding the control of the internal combustion engine 1 acquired from the CAN 6 ( For example, the internal combustion engine 1 is output based on information that can be output by the ECU 5 and can specify that the start control of the internal combustion engine 1 is performed when the operation of the internal combustion engine 1 is started, output information of the switch 7 output by the ECU 5, etc. It may be configured to determine whether or not the start control of the internal combustion engine 1 is performed with the start of the operation of the internal combustion engine 1.

DCU40の実行部42は、内燃機関1の作動を開始させる始動制御が行われると判定した場合(S06)、かつ、単位期間(内燃機関1の運転を開始させるためのスイッチ7の操作が行われた後から当該内燃機関1の運転を停止させるためのスイッチ7の操作が行われるまでの期間)において最初に始動制御が行われると判定した場合に(S08)、テスト駆動制御を行いつつ(S09)、作動診断の制御を行うので(S10)、当該単位期間中において主ポンプ33により冷媒の循環が開始される前であって、冷媒を循環させるための負荷が比較的大きい状態であるときに、補助ポンプ34のテスト駆動制御を行って作動診断を行うことができる。また、当該単位期間中において、例えば、アイドリングストップ制御等により内燃機関1の作動が頻繁に停止及び始動されるような場合に、当該内燃機関1が始動される毎にテスト駆動制御が行われて補助ポンプ34が作動されることを回避することができ、当該補助ポンプ34の作動頻度を低減して作動による劣化を軽減できる。 When the execution unit 42 of the DCU 40 determines that the start control for starting the operation of the internal combustion engine 1 is performed (S06), the switch 7 for starting the operation of the internal combustion engine 1 is operated for a unit period (S06). When it is determined that the start control is first performed (S08) during the period from after that until the operation of the switch 7 for stopping the operation of the internal combustion engine 1 is performed), the test drive control is performed (S09). ), Since the operation diagnosis is controlled (S10), when the load for circulating the refrigerant is relatively large before the main pump 33 starts the circulation of the refrigerant during the unit period. , The operation diagnosis can be performed by performing the test drive control of the auxiliary pump 34. Further, during the unit period, for example, when the operation of the internal combustion engine 1 is frequently stopped and started by idling stop control or the like, test drive control is performed every time the internal combustion engine 1 is started. It is possible to prevent the auxiliary pump 34 from being operated, and it is possible to reduce the operation frequency of the auxiliary pump 34 and reduce the deterioration due to the operation.

DCU40の実行部42は、作動診断において補助ポンプ34が作動可能な状態でないと診断されたことが特定される場合に(S14)、その旨を報知装置50により報知する(S15)。これにより、補助ポンプ34が作動可能な状態でない場合に、当該補助ポンプ34が作動可能な状態となるように修理すること等を促すことができる。 When it is specified in the operation diagnosis that the auxiliary pump 34 is not in an operable state (S14), the execution unit 42 of the DCU 40 notifies the fact by the notification device 50 (S15). As a result, when the auxiliary pump 34 is not in an operable state, it is possible to urge repair or the like so that the auxiliary pump 34 is in an operable state.

DCU40の実行部42は、作動診断の制御において診断結果として補助ポンプ34が作動可能な状態であるか否かを特定可能な診断情報をCAN6上に出力するので、当該DCU40が搭載される車両が備える各種装置(例えば、ECU5等)は、補助ポンプ34の診断結果を参照することができる。 Since the execution unit 42 of the DCU 40 outputs diagnostic information on the CAN 6 that can identify whether or not the auxiliary pump 34 is in an operable state as a diagnosis result in the control of the operation diagnosis, the vehicle on which the DCU 40 is mounted can be used. Various devices (for example, ECU 5 and the like) provided can refer to the diagnosis result of the auxiliary pump 34.

DCU40の実行部42は、単位期間において最初に始動制御が行われると判定した場合に、補助ポンプ34のテスト駆動制御を行いつつ作動診断の制御を行う。すなわち補助ポンプ34が駆動されている作動状態において作動診断を行うので、当該作動診断において、補助ポンプ34について駆動制御が行われているときに特定可能となる事項、例えば、補助ポンプ34でバッテリ短絡状態(SCB状態)または過電圧状態(OV状態)が生じている可能性があるか否かを特定することができる。そして、実行部42により、補助ポンプ34に関してバッテリ短絡状態(SCB状態)または過電圧状態(OV状態)等が生じている可能性が特定される場合に、補助ポンプ34が作動可能な状態でない旨を診断することができる。 When it is determined that the start control is first performed in the unit period, the execution unit 42 of the DCU 40 controls the operation diagnosis while performing the test drive control of the auxiliary pump 34. That is, since the operation diagnosis is performed in the operating state in which the auxiliary pump 34 is driven, items that can be specified when the drive control of the auxiliary pump 34 is performed in the operation diagnosis, for example, a battery short circuit in the auxiliary pump 34. It is possible to identify whether or not a state (SCB state) or an overvoltage state (OV state) may have occurred. Then, when the execution unit 42 identifies the possibility that a battery short-circuit state (SCB state) or an overvoltage state (OV state) has occurred with respect to the auxiliary pump 34, the auxiliary pump 34 is not in an operable state. Can be diagnosed.

DCU40の実行部42は、内燃機関1の作動を開始させる始動制御が行われないと判定した場合(S06)、内燃機関1の始動制御が単位期間における最初の始動制御でないと判定した場合に(S08)、テスト駆動制御を行わず、作動診断の制御を行う。すなわち、補助ポンプ34が駆動されていない作動状態において作動診断を行うので、当該作動診断おいて、補助ポンプ34について駆動制御が行われていないときに特定可能となる事項、例えば、補助ポンプ34に関して断線状態、オープンロード状態(OL状態)、グランド短絡状態(SCG状態)等が生じている可能性があるか否か等を特定することができる。そして、実行部42により、補助ポンプ34に関して断線状態、オープンロード状態(OL状態)、グランド短絡状態(SCG状態)等が生じている可能性が特定される場合に、補助ポンプ34が作動可能な状態でない旨を診断することができる。 When the execution unit 42 of the DCU 40 determines that the start control for starting the operation of the internal combustion engine 1 is not performed (S06), and determines that the start control of the internal combustion engine 1 is not the first start control in the unit period (S06). S08), the test drive control is not performed, and the operation diagnosis is controlled. That is, since the operation diagnosis is performed in the operating state in which the auxiliary pump 34 is not driven, the matters that can be specified when the drive control of the auxiliary pump 34 is not performed in the operation diagnosis, for example, the auxiliary pump 34. It is possible to specify whether or not there is a possibility that a disconnection state, an open load state (OL state), a ground short circuit state (SCG state), or the like has occurred. Then, when the execution unit 42 identifies the possibility that the auxiliary pump 34 is in a disconnected state, an open load state (OL state), a ground short circuit state (SCG state), or the like, the auxiliary pump 34 can be operated. It is possible to diagnose that it is not in a state.

DCU40の実行部42は、冷却補助制御の開始時に、前回の作動診断により設定される診断情報を参照して補助ポンプ34が作動可能な状態でないか否かを判定し(S02)、補助ポンプ34が作動可能な状態でないと判定した場合には、補助ポンプ34のテスト駆動制御(S09)及び補助ポンプ駆動制御(S19)を行わず、冷却補助制御を終了させる。これにより、実行部42は、作動診断において補助ポンプ34が作動可能な状態でない旨が判定された後は(S10)、補助ポンプ34を駆動させる制御信号をFET44のゲートGに対して出力させないように制御し、補助ポンプ34への通電を制限して、補助ポンプ34が作動可能な状態でないときに当該補助ポンプ34が作動されることを防止することができる。 At the start of the cooling auxiliary control, the execution unit 42 of the DCU 40 determines whether or not the auxiliary pump 34 is in an operable state by referring to the diagnostic information set by the previous operation diagnosis (S02), and determines whether or not the auxiliary pump 34 is in an operable state (S02). If it is determined that is not in an operable state, the test drive control (S09) and the auxiliary pump drive control (S19) of the auxiliary pump 34 are not performed, and the cooling auxiliary control is terminated. As a result, the execution unit 42 does not output the control signal for driving the auxiliary pump 34 to the gate G of the FET 44 after it is determined in the operation diagnosis that the auxiliary pump 34 is not in an operable state (S10). It is possible to limit the energization of the auxiliary pump 34 to prevent the auxiliary pump 34 from being operated when the auxiliary pump 34 is not in an operable state.

尚、本実施形態では、冷却補助制御において、実行部42は、補助ポンプ34が作動可能な状態でないと判定した場合に、補助ポンプ34のテスト駆動制御(S09)及び補助ポンプ駆動制御(S19)を行わないことで、補助ポンプ34が作動可能な状態でないときに当該補助ポンプ34への通電を制限する構成であるが、例えば、DCU40や補助ポンプ34等が当該補助ポンプ34の駆動のための通電を遮断する遮断装置等を備え、作動診断により補助ポンプ34が作動可能な状態でない旨の診断がされた以降は、当該遮断装置により補助ポンプ34の駆動のための通電が遮断されることで、補助ポンプ34への通電が制限される構成でも良い。このような構成では、作動診断により補助ポンプ34が作動可能な状態でない旨の診断がされた以降に、例えば、補助ポンプ34を駆動させる制御信号が誤動作等によりFET44に対して出力されるようなことが生じても、補助ポンプ34が作動されることを防止することができる。 In the present embodiment, in the cooling auxiliary control, when the execution unit 42 determines that the auxiliary pump 34 is not in an operable state, the test drive control (S09) and the auxiliary pump drive control (S19) of the auxiliary pump 34 are performed. By not performing the above, the energization of the auxiliary pump 34 is restricted when the auxiliary pump 34 is not in an operable state. For example, the DCU 40, the auxiliary pump 34, or the like is used to drive the auxiliary pump 34. A shutoff device or the like for shutting off the energization is provided, and after the operation diagnosis indicates that the auxiliary pump 34 is not in an operable state, the shutoff device cuts off the energization for driving the auxiliary pump 34. , The configuration may be such that the energization of the auxiliary pump 34 is restricted. In such a configuration, after the operation diagnosis determines that the auxiliary pump 34 is not in an operable state, for example, a control signal for driving the auxiliary pump 34 is output to the FET 44 due to a malfunction or the like. Even if this happens, it is possible to prevent the auxiliary pump 34 from being operated.

以上、本発明の実施形態の例を説明してきたが、本発明はこの実施形態の例に限定されるものではなく、本発明の主旨を逸脱しない範囲における変更や追加があっても本発明に含まれることは言うまでもない。 Although the examples of the embodiments of the present invention have been described above, the present invention is not limited to the examples of the present invention, and even if there are changes or additions within the range not deviating from the gist of the present invention, the present invention is described. Needless to say, it is included.

1 内燃機関
4 DPF
7 スイッチ
11 還元剤添加弁
12 SCR触媒
32 冷媒通路
33 主ポンプ
34 補助ポンプ
40 DCU
41 取得部
42 実行部
50 報知装置
1 Internal combustion engine 4 DPF
7 Switch 11 Reducing agent addition valve 12 SCR catalyst 32 Refrigerant passage 33 Main pump 34 Auxiliary pump 40 DCU
41 Acquisition unit 42 Execution unit 50 Notification device

Claims (7)

内燃機関(1)の排気ガスを浄化する排気浄化触媒(12)と、該排気浄化触媒(12)の上流側に還元剤を添加する還元剤添加弁(11)と、前記内燃機関(1)の冷却媒体を循環させて前記還元剤添加弁(11)を冷却する冷却装置(30)と、を備える排気浄化装置(10)であって、
前記排気浄化装置(10)を制御する制御装置(40)と、
前記冷却装置(30)に設けられ、前記内燃機関(1)が運転されているときに、前記内燃機関(1)の駆動力により駆動されて前記冷却媒体を循環させる主ポンプ(33)と、
前記冷却装置(30)に設けられ、前記内燃機関(1)が停止されているときに、前記内燃機関(1)の駆動力によらず電力により駆動されて前記冷却媒体を循環させる補助ポンプ(34)と、
を備え、
前記制御装置(40)は、
前記内燃機関(1)が始動されるときに、当該内燃機関(1)が始動される旨を特定可能な始動関連情報を取得する取得部(41)と、
前記補助ポンプ(34)が作動可能な状態であるか否かを診断する作動診断の制御を実行する実行部(42)と、
を備え、
前記実行部(42)は、前記取得部(41)により前記始動関連情報が取得された場合に、前記補助ポンプ(34)を少なくとも所定期間にわたり駆動させるテスト駆動の制御を実行しつつ、前記作動診断の制御を実行する
排気浄化装置。
An exhaust purification catalyst (12) that purifies the exhaust gas of the internal combustion engine (1), a reducing agent addition valve (11) that adds a reducing agent to the upstream side of the exhaust purification catalyst (12), and the internal combustion engine (1). An exhaust gas purification device (10) including a cooling device (30) for circulating the cooling medium of the above and cooling the reducing agent addition valve (11).
A control device (40) that controls the exhaust gas purification device (10) and
A main pump (33) provided in the cooling device (30) and driven by the driving force of the internal combustion engine (1) to circulate the cooling medium when the internal combustion engine (1) is in operation.
An auxiliary pump provided in the cooling device (30) that circulates the cooling medium by being driven by electric power regardless of the driving force of the internal combustion engine (1) when the internal combustion engine (1) is stopped. 34) and
With
The control device (40)
When the internal combustion engine (1) is started, the acquisition unit (41) that acquires start-related information that can specify that the internal combustion engine (1) is started, and
An execution unit (42) that executes operation diagnosis control for diagnosing whether or not the auxiliary pump (34) is in an operable state, and
With
The execution unit (42) operates the operation while executing test drive control for driving the auxiliary pump (34) for at least a predetermined period when the start-related information is acquired by the acquisition unit (41). An exhaust purification device that performs diagnostic control.
前記実行部(42)は、前記内燃機関(1)の運転を開始させるためのスイッチ(7)の操作が行われた後から当該内燃機関(1)の運転を停止させるためのスイッチ(7)の操作が行われるまでの期間において、前記内燃機関(1)が最初に始動されるときに、前記テスト駆動の制御を実行しつつ、前記作動診断の制御を実行する
請求項1に記載の排気浄化装置。
The execution unit (42) is a switch (7) for stopping the operation of the internal combustion engine (1) after the operation of the switch (7) for starting the operation of the internal combustion engine (1) is performed. The exhaust according to claim 1, wherein when the internal combustion engine (1) is first started, the control of the test drive is executed and the control of the operation diagnosis is executed in the period until the operation of the above is performed. Purification device.
前記排気浄化装置(10)は、
前記補助ポンプ(34)が作動可能な状態であるか否かを報知する報知装置(50)を備え、
前記実行部(42)は、前記作動診断において前記補助ポンプ(34)が作動可能な状態でない旨が判定された場合に、前記報知装置(50)により前記補助ポンプ(34)が作動可能な状態でない旨を報知させる報知制御を実行する
請求項1または2に記載の排気浄化装置。
The exhaust gas purification device (10) is
A notification device (50) for notifying whether or not the auxiliary pump (34) is in an operable state is provided.
The execution unit (42) is in a state in which the auxiliary pump (34) can be operated by the notification device (50) when it is determined in the operation diagnosis that the auxiliary pump (34) is not in an operable state. The exhaust gas purification device according to claim 1 or 2, which executes a notification control for notifying that the system is not.
前記実行部(42)は、前記作動診断において、前記補助ポンプ(34)にバッテリ短絡が生じている可能性があるか否かを特定し、前記補助ポンプ(34)にバッテリ短絡が生じている可能性があると特定された場合に、前記補助ポンプ(34)が作動可能な状態でない旨を判定する
請求項1〜3のいずれか1項に記載の排気浄化装置。
In the operation diagnosis, the execution unit (42) identifies whether or not the auxiliary pump (34) may have a battery short circuit, and the auxiliary pump (34) has a battery short circuit. The exhaust gas purification device according to any one of claims 1 to 3, which determines that the auxiliary pump (34) is not in an operable state when it is specified that there is a possibility.
前記実行部(42)は、前記補助ポンプ(34)が駆動されていない期間において、前記補助ポンプ(34)の電源配線に断線またはグランド短絡が生じている可能性があるか否かを特定し、断線またはグランド短絡が生じている可能性があると特定された場合に、前記補助ポンプ(34)が作動可能な状態でない旨を判定する
請求項1〜4のいずれか1項に記載の排気浄化装置。
The execution unit (42) identifies whether or not there is a possibility that the power supply wiring of the auxiliary pump (34) may have a disconnection or a ground short circuit during the period when the auxiliary pump (34) is not driven. The exhaust according to any one of claims 1 to 4, which determines that the auxiliary pump (34) is not in an operable state when it is identified that a disconnection or a ground short circuit may have occurred. Purification device.
前記実行部(42)は、前記補助ポンプ(34)が作動可能な状態でない旨が判定された後、前記補助ポンプ(34)への通電を制限する制御を実行する
請求項1〜5のいずれか1項に記載の排気浄化装置。
Any of claims 1 to 5, wherein the executing unit (42) executes control for limiting energization of the auxiliary pump (34) after it is determined that the auxiliary pump (34) is not in an operable state. The exhaust purification device according to item 1.
内燃機関(1)の排気ガスを浄化する排気浄化触媒(12)と、該排気浄化触媒(12)の上流側に還元剤を添加する還元剤添加弁(11)と、前記内燃機関(1)の冷却媒体を循環させて前記還元剤添加弁(11)を冷却する冷却装置(30)と、を備える排気浄化装置(10)であって、
前記排気浄化装置(10)を制御する制御装置(40)と、
前記冷却装置(30)に設けられ、前記内燃機関(1)が運転されているときに、前記内燃機関(1)の駆動力により駆動されて前記冷却媒体を循環させる主ポンプ(33)と、
前記冷却装置(30)に設けられ、前記内燃機関(1)が停止されているときに、前記内燃機関(1)の駆動力によらず電力により駆動されて前記冷却媒体を循環させる補助ポンプ(34)と、
を備える前記排気浄化装置(10)の制御方法であって、
前記内燃機関(1)が始動されるときに、当該内燃機関(1)が始動される旨を特定可能な始動関連情報を取得する取得ステップと、
前記補助ポンプ(34)が作動可能な状態であるか否かを診断する作動診断の制御を実行する実行ステップと、
を備え
前記制御装置(40)は、
前記実行ステップにおいて、前記取得ステップにより前記始動関連情報が取得された場合に、前記補助ポンプ(34)を少なくとも所定期間にわたりテスト駆動させる制御を実行しつつ、前記作動診断の制御を実行する
排気浄化装置(10)の制御方法。
An exhaust purification catalyst (12) that purifies the exhaust gas of the internal combustion engine (1), a reducing agent addition valve (11) that adds a reducing agent to the upstream side of the exhaust purification catalyst (12), and the internal combustion engine (1). An exhaust gas purification device (10) including a cooling device (30) for circulating the cooling medium of the above and cooling the reducing agent addition valve (11).
A control device (40) that controls the exhaust gas purification device (10) and
A main pump (33) provided in the cooling device (30) and driven by the driving force of the internal combustion engine (1) to circulate the cooling medium when the internal combustion engine (1) is in operation.
An auxiliary pump provided in the cooling device (30) that circulates the cooling medium by being driven by electric power regardless of the driving force of the internal combustion engine (1) when the internal combustion engine (1) is stopped. 34) and
The control method of the exhaust gas purification device (10) comprising the above.
When the internal combustion engine (1) is started, an acquisition step of acquiring start-related information that can identify that the internal combustion engine (1) is started, and
An execution step for executing operation diagnosis control for diagnosing whether or not the auxiliary pump (34) is in an operable state, and an execution step.
The control device (40)
In the execution step, when the start-related information is acquired by the acquisition step, the exhaust gas purification that executes the control of the operation diagnosis while executing the control of test-driving the auxiliary pump (34) for at least a predetermined period of time. A control method for the device (10).
JP2019188267A 2019-10-14 2019-10-14 Exhaust purification device and control method for the exhaust purification device Active JP7383445B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019188267A JP7383445B2 (en) 2019-10-14 2019-10-14 Exhaust purification device and control method for the exhaust purification device
CN202011091448.0A CN112727588B (en) 2019-10-14 2020-10-13 Exhaust gas purification device and control method for exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019188267A JP7383445B2 (en) 2019-10-14 2019-10-14 Exhaust purification device and control method for the exhaust purification device

Publications (2)

Publication Number Publication Date
JP2021063458A true JP2021063458A (en) 2021-04-22
JP7383445B2 JP7383445B2 (en) 2023-11-20

Family

ID=75487750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019188267A Active JP7383445B2 (en) 2019-10-14 2019-10-14 Exhaust purification device and control method for the exhaust purification device

Country Status (2)

Country Link
JP (1) JP7383445B2 (en)
CN (1) CN112727588B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233450A (en) * 1993-02-04 1994-08-19 Nippondenso Co Ltd Fault detecting device for motor drive circuit
JP2009185755A (en) * 2008-02-08 2009-08-20 Bosch Corp Temperature sensor rationality diagnosing device, temperature sensor rationality diagnosing method, and exhaust emission control device for internal combustion engine
JP2015059458A (en) * 2013-09-18 2015-03-30 日立オートモティブシステムズ株式会社 Control device for cooling system
JP2015082884A (en) * 2013-10-22 2015-04-27 株式会社デンソー Power supply current monitoring device
US20160208670A1 (en) * 2015-01-21 2016-07-21 Deere & Company Def injector cooling system and method
JP2017066952A (en) * 2015-09-30 2017-04-06 トヨタ自動車株式会社 Control device for internal combustion engine
JP2021038697A (en) * 2019-09-03 2021-03-11 ダイムラー・アクチェンゲゼルシャフトDaimler AG Abnormality diagnostic device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3468254B2 (en) * 1995-10-03 2003-11-17 三菱ふそうトラック・バス株式会社 Diesel engine exhaust purification system
JPH10136687A (en) * 1996-09-04 1998-05-22 Jidosha Kiki Co Ltd Control method and control equipment of electric pump system power steering device
KR100251413B1 (en) * 1997-10-31 2000-04-15 김태구 A water pump control circuit of an electric vehicle
US7104043B2 (en) * 2002-11-01 2006-09-12 Visteon Global Technologies, Inc. Closed loop cold start retard spark control using ionization feedback
CN100417793C (en) * 2003-07-28 2008-09-10 通用电气公司 Locomotive engine restart shutdown override system and method
JP2009097479A (en) * 2007-10-19 2009-05-07 Bosch Corp Device and method for controlling reducing agent supplying device
JP2009228616A (en) * 2008-03-25 2009-10-08 Bosch Corp Reducer feeding device and cooling water circulation control device
JP2011144747A (en) * 2010-01-14 2011-07-28 Toyota Industries Corp Exhaust emission control device of diesel engine
JP6233450B2 (en) 2015-06-02 2017-11-22 トヨタ自動車株式会社 Control device for exhaust purification system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233450A (en) * 1993-02-04 1994-08-19 Nippondenso Co Ltd Fault detecting device for motor drive circuit
JP2009185755A (en) * 2008-02-08 2009-08-20 Bosch Corp Temperature sensor rationality diagnosing device, temperature sensor rationality diagnosing method, and exhaust emission control device for internal combustion engine
JP2015059458A (en) * 2013-09-18 2015-03-30 日立オートモティブシステムズ株式会社 Control device for cooling system
JP2015082884A (en) * 2013-10-22 2015-04-27 株式会社デンソー Power supply current monitoring device
US20160208670A1 (en) * 2015-01-21 2016-07-21 Deere & Company Def injector cooling system and method
JP2017066952A (en) * 2015-09-30 2017-04-06 トヨタ自動車株式会社 Control device for internal combustion engine
JP2021038697A (en) * 2019-09-03 2021-03-11 ダイムラー・アクチェンゲゼルシャフトDaimler AG Abnormality diagnostic device

Also Published As

Publication number Publication date
CN112727588B (en) 2022-11-18
CN112727588A (en) 2021-04-30
JP7383445B2 (en) 2023-11-20

Similar Documents

Publication Publication Date Title
JP5326461B2 (en) Engine exhaust purification system
EP2202401B1 (en) Power source system of internal combustion engine
JP5087188B2 (en) Exhaust purification system and control method of exhaust purification system
JP4557063B2 (en) Particulate filter regeneration device and driving method thereof
US9212582B2 (en) Exhaust gas purification system and method for controlling the same
JP4706627B2 (en) Engine exhaust purification system
JP6663680B2 (en) Control device for reducing agent injection device
JP6508475B2 (en) Diagnostic device
JP2009097348A (en) Control device and control method for reducer supply system
EP2737192B1 (en) Exhaust gas control apparatus for internal combustion engines, and control method for exhaust gas control apparatus for internal combustion engines
JP2009228616A (en) Reducer feeding device and cooling water circulation control device
EP3533978B1 (en) Urea water supply system and control method therefor
JP5653208B2 (en) Reducing agent supply device and control method thereof
JP2010180801A (en) Abnormality diagnostic device of exhaust gas purifying system
JP5533363B2 (en) SCR system
JP7383445B2 (en) Exhaust purification device and control method for the exhaust purification device
US9759111B2 (en) Control techniques of exhaust purification system and exhaust purification system
JP5698525B2 (en) Exhaust purification system and control method of exhaust purification system
WO2018047554A1 (en) Control device
JP2004183501A (en) Electric power supply control device for internal combustion engine
JPWO2015001858A1 (en) Reducing agent supply device and control method thereof
WO2018110143A1 (en) Heater control device and heater control method
WO2020121713A1 (en) Device for controlling reducing agent supply device
JP2018066326A (en) Urea water injection control device
JPH09166017A (en) Exhaust emission control device of engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230330

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231108

R151 Written notification of patent or utility model registration

Ref document number: 7383445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531