JP2020204318A - Trash power generation system and operation method thereof - Google Patents
Trash power generation system and operation method thereof Download PDFInfo
- Publication number
- JP2020204318A JP2020204318A JP2020042461A JP2020042461A JP2020204318A JP 2020204318 A JP2020204318 A JP 2020204318A JP 2020042461 A JP2020042461 A JP 2020042461A JP 2020042461 A JP2020042461 A JP 2020042461A JP 2020204318 A JP2020204318 A JP 2020204318A
- Authority
- JP
- Japan
- Prior art keywords
- power generation
- waste
- generation system
- steam
- pressure turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 102
- 238000000034 method Methods 0.000 title claims description 29
- 239000010813 municipal solid waste Substances 0.000 title abstract 6
- 239000002918 waste heat Substances 0.000 claims abstract description 69
- 239000007789 gas Substances 0.000 claims abstract description 32
- 238000005260 corrosion Methods 0.000 claims abstract description 26
- 230000007797 corrosion Effects 0.000 claims abstract description 26
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 25
- 238000002485 combustion reaction Methods 0.000 claims abstract description 19
- 239000002699 waste material Substances 0.000 claims description 107
- 238000004056 waste incineration Methods 0.000 claims description 13
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 238000010586 diagram Methods 0.000 description 11
- 238000003303 reheating Methods 0.000 description 8
- 238000009434 installation Methods 0.000 description 6
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001804 chlorine Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/12—Heat utilisation in combustion or incineration of waste
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
本発明は、ごみ焼却熱を利用したごみ発電システム及びその運転方法に係り、詳しくは、排ガス再熱方式によるごみ発電システム及びその運転方法に関する。 The present invention relates to a waste power generation system using waste incineration heat and an operation method thereof, and more particularly to a waste power generation system by an exhaust gas reheating method and an operation method thereof.
ごみ発電システムは、ごみ焼却炉で発生した高温の燃焼排ガスから廃熱ボイラで熱回収し、廃熱ボイラで発生した高圧蒸気を蒸気タービンに送り、蒸気タービンを回転させて発電する。 In the waste power generation system, heat is recovered from the high-temperature combustion exhaust gas generated in the waste incinerator by a waste heat boiler, high-pressure steam generated by the waste heat boiler is sent to a steam turbine, and the steam turbine is rotated to generate power.
この種の発電システムでは、発電効率の向上のため、近年、蒸気の高温高圧化が進んでおり、廃熱ボイラで発生した蒸気を過熱器により高温高圧(例えば4MPaG、400℃)の過熱蒸気として蒸気タービンに送るごみ焼却発電システムが知られている(例えば特許文献1等、以下、「高温高圧方式」と言う。)。 In this type of power generation system, in recent years, the temperature and pressure of steam have been increased in order to improve power generation efficiency, and the steam generated in the waste heat boiler is used as superheated steam at high temperature and high pressure (for example, 4 MPaG, 400 ° C.) by a superheater. A waste incineration power generation system for sending to a steam turbine is known (for example, Patent Document 1 etc., hereinafter referred to as "high temperature and high pressure method").
しかしながら、都市ごみにおいてはごみ中に塩素分が含まれているため、この塩素分がごみの燃焼過程において塩化水素に変化し、燃焼排ガス中に含まれ、過熱器の高温腐食を招くこととなる。特に、蒸気温度が330℃以上になると、排ガス成分の性状にもよるが、過熱管の腐食が急速に進行する。 However, in urban waste, chlorine is contained in the waste, and this chlorine is converted to hydrogen chloride in the combustion process of the waste and is contained in the combustion exhaust gas, which causes high-temperature corrosion of the superheater. .. In particular, when the steam temperature is 330 ° C. or higher, the corrosion of the superheated pipe progresses rapidly, depending on the properties of the exhaust gas components.
そのような高温腐食のリスクを軽減しつつ高効率のごみ発電を実現するため、ごみ焼却の廃熱によって加熱されるボイラと、前記ボイラからの蒸気で駆動される蒸気タービン発電装置とを備え、前記蒸気タービン発電装置は、前記ボイラから高温腐食を生じない温度の蒸気が供給される高圧タービンと、前記高圧タービンの排気が供給される中低圧タービンと、前記中低圧タービンの排気を復水して前記ボイラに供給する給水経路を備え、前記高圧タービンの排気は除湿器を介して前記中低圧タービンに供給され、前記給水経路には、前記中低圧タービンから抽気した蒸気が供給される給水加熱器が設けられ、前記除湿器を介した蒸気は、前記ボイラからの蒸気が供給される再熱器によって加熱されて前記中低圧タービンに供給される、ごみ発電システムが提案されている(特許文献2、以下、「蒸気再熱方式」と言う。)。斯かるごみ発電システムにより、ボイラから高温腐食を生じない温度の蒸気が高圧タービンに供給されるので、ボイラの高温腐食リスクをなくすことができ、また、高圧タービンの排気が除湿器を介して中低圧タービンに供給され、且つ、中低圧タービンから抽気した蒸気によって給水加熱が行われるので、ボイラ蒸気温度を高温にすることなく高効率の発電を行うことができるとされている。この蒸気再熱方式では、高温高圧方式と異なり高圧タービン入口と中圧タービン出口との間の熱落差を除湿器と再熱器の採用によって増加するエンタルピーによってカバーし、熱効率を向上させている。 In order to reduce the risk of such high temperature corrosion and realize highly efficient waste power generation, a boiler heated by the waste heat of waste incineration and a steam turbine power generation device driven by steam from the boiler are provided. The steam turbine power generator recovers the high-pressure turbine to which steam at a temperature that does not cause high-temperature corrosion from the boiler, the medium-low pressure turbine to which the exhaust of the high-pressure turbine is supplied, and the exhaust of the medium-low pressure turbine. The water supply path is provided, the exhaust of the high pressure turbine is supplied to the medium and low pressure turbine via a dehumidifier, and the steam extracted from the medium and low pressure turbine is supplied to the water supply path. A waste power generation system has been proposed in which a device is provided and the steam via the dehumidifier is heated by a reheater to which steam from the boiler is supplied and supplied to the medium-low pressure turbine (Patent Document). 2. Hereinafter referred to as "steam reheating method"). Such a waste power generation system supplies steam at a temperature that does not cause high temperature corrosion from the boiler to the high pressure turbine, so that the risk of high temperature corrosion of the boiler can be eliminated, and the exhaust of the high pressure turbine is medium through the dehumidifier. Since the water supply and heating are performed by the steam supplied to the low-pressure turbine and extracted from the medium- and low-pressure turbine, it is said that high-efficiency power generation can be performed without raising the boiler steam temperature to a high temperature. In this steam reheating method, unlike the high temperature and high pressure method, the heat drop between the high pressure turbine inlet and the medium pressure turbine outlet is covered by the enthalpy increased by the adoption of the dehumidifier and the reheater, and the thermal efficiency is improved.
上記従来の蒸気再熱方式は、高温腐食のリスクを軽減しつつも上記高温高圧方式の発電効率に近づけることが可能であるが、さらなる高効率化が望まれる。 The conventional steam reheating method can approach the power generation efficiency of the high temperature and high pressure method while reducing the risk of high temperature corrosion, but further improvement in efficiency is desired.
そこで本発明は、高温腐食のリスクを軽減しつつも上記従来の蒸気再熱方式に比してごみ発電効率を高め得るごみ発電システム及びその運転方法を提供することを主たる目的とする。 Therefore, it is a main object of the present invention to provide a waste power generation system and an operation method thereof that can improve the waste power generation efficiency as compared with the above-mentioned conventional steam reheat method while reducing the risk of high-temperature corrosion.
上記目的を達成するため、本発明に係るごみ発電システムの第1の態様は、ごみ焼却の廃熱を利用して高温腐食を生じさせない温度の飽和蒸気を発生させる廃熱ボイラと、前記廃熱ボイラから前記飽和蒸気が供給される高圧タービンと、前記高圧タービンから排気された蒸気を除湿する除湿器と、前記除湿器で除湿された蒸気をごみ焼却の燃焼排ガスによって加熱することにより高温腐食を生じさせない温度の過熱蒸気とする再熱器と、前記再熱器から前記過熱蒸気が供給される低圧タービンと、を備える。 In order to achieve the above object, the first aspect of the waste power generation system according to the present invention is a waste heat boiler that uses waste heat from waste incineration to generate saturated steam at a temperature that does not cause high temperature corrosion, and the waste heat. High-temperature corrosion is caused by heating the high-pressure turbine to which the saturated steam is supplied from the boiler, the dehumidifier that dehumidifies the steam exhausted from the high-pressure turbine, and the steam dehumidified by the dehumidifier with the combustion exhaust gas of waste incineration. It includes a reheater that uses superheated steam at a temperature at which it does not occur, and a low-pressure turbine to which the superheated steam is supplied from the reheater.
本発明に係るごみ発電システムの第2の態様は、前記飽和蒸気が250〜300℃とされ得る。 In the second aspect of the waste power generation system according to the present invention, the saturated steam can be 250 to 300 ° C.
本発明に係るごみ発電システムの第3の態様は、前記過熱蒸気が、320℃以下とされ得る。 In the third aspect of the waste power generation system according to the present invention, the superheated steam can be set to 320 ° C. or lower.
本発明に係るごみ発電システムの第4の態様は、前記再熱器が、ごみ焼却による燃焼排ガスの温度が500℃〜600℃の領域に設置され得る。 In the fourth aspect of the waste power generation system according to the present invention, the reheater can be installed in a region where the temperature of the combustion exhaust gas produced by incineration of waste is in the range of 500 ° C. to 600 ° C.
本発明に係るごみ発電システムの第5の態様は、一つの車室内を高圧部と低圧部とに仕切ることにより前記高圧タービン及び前記低圧タービンが単車室内に収容され得る。 In a fifth aspect of the waste power generation system according to the present invention, the high-pressure turbine and the low-pressure turbine can be accommodated in a single vehicle interior by partitioning one vehicle interior into a high-pressure portion and a low-pressure portion.
本発明に係るごみ発電システムの第6の態様は、前記高圧タービンと前記低圧タービンとが別個に設けられ、前記高圧タービンと前記低圧タービンの各々に発電機が接続され得る。 In the sixth aspect of the waste power generation system according to the present invention, the high-pressure turbine and the low-pressure turbine may be provided separately, and a generator may be connected to each of the high-pressure turbine and the low-pressure turbine.
本発明に係るごみ発電システムの第7の態様は、ごみ焼却のための焼却炉が複数台設置され、複数台の前記焼却炉の其々に対して前記廃熱ボイラ及び前記再熱器が設けられ、前記焼却炉の其々に対して設けられた複数台の前記廃熱ボイラからの前記飽和蒸気が1台の前記高圧タービンに供給されるように構成され、前記焼却炉の其々に対して設けられた複数台の前記再熱器からの前記過熱蒸気が1台の前記低圧タービンに供給されるように構成され得る。 In the seventh aspect of the waste power generation system according to the present invention, a plurality of incinerators for incinerating waste are installed, and the waste heat boiler and the reheater are provided for each of the plurality of incinerators. The saturated steam from the plurality of waste heat boilers provided for each of the incinerators is supplied to one high-pressure turbine, and the saturated steam is supplied to each of the incinerators. The superheated steam from the plurality of reheaters provided may be configured to be supplied to the low pressure turbine.
また、本発明に係るごみ発電システムの運転方法は、上記第7の態様のごみ発電システムの運転方法であって、ごみ発電システム全体の負荷の低下に応じて、複数台の前記焼却炉のうちの幾つかの焼却炉を稼働し、他の焼却炉の稼働を停止することを特徴とする。 Further, the operation method of the waste power generation system according to the present invention is the operation method of the waste power generation system according to the seventh aspect, and is among the plurality of the incinerators according to the decrease in the load of the entire waste power generation system. It is characterized by operating some incinerators and shutting down other incinerators.
本発明に係るごみ発電システムの前記運転方法は、一態様において、前記焼却炉、前記廃熱ボイラ、及び前記再熱器が其々2台設けられ、ごみ発電システム全体の負荷が1/2以下の時に、1台の焼却炉へのごみ供給を停止し、他の1台の焼却炉を稼働させる。 In one aspect of the operation method of the waste power generation system according to the present invention, the incinerator, the waste heat boiler, and the reheater are each provided, and the load of the entire waste power generation system is 1/2 or less. At this time, the supply of waste to one incinerator is stopped and the other incinerator is operated.
本発明に係るごみ発電システムの前記運転方法は、他の一態様において、前記焼却炉、前記廃熱ボイラ、及び前記再熱器が其々3台設けられ、ごみ発電システム全体の負荷が2/3以下且つ1/3を超える時には1台の焼却炉を停止して他の2台の焼却炉を稼働させ、ごみ発電システム全体の負荷が1/3以下の時には2台の焼却炉を停止して他の1台の焼却炉を稼働させる。 In another aspect of the operation method of the waste power generation system according to the present invention, the incinerator, the waste heat boiler, and the reheater are each provided with three units, and the load of the entire waste power generation system is 2 /. When it is 3 or less and exceeds 1/3, one incinerator is stopped and the other two incinerators are operated, and when the load of the entire waste power generation system is 1/3 or less, two incinerators are stopped. And operate another incinerator.
本発明によれば、除湿器で除湿された飽和蒸気を、ごみ焼却の燃焼排ガスによって加熱して高温腐食を生じさせない温度の過熱蒸気とすることにより、高温腐食のリスクを低減しつつ従来の蒸気再熱方式より高効率のごみ発電システム及びその運転方法を提供することができる。 According to the present invention, the saturated steam dehumidified by the dehumidifier is heated by the combustion exhaust gas of waste incineration to be superheated steam at a temperature that does not cause high temperature corrosion, thereby reducing the risk of high temperature corrosion and the conventional steam. It is possible to provide a waste power generation system having higher efficiency than the reheat method and its operation method.
本発明の実施形態について、以下に図面を参照して説明する。全図及び全実施形態を通じて同一又は類似の構成要素には同符号を付した。 Embodiments of the present invention will be described below with reference to the drawings. The same or similar components are designated by the same reference numerals throughout all figures and all embodiments.
図1は、本発明に係るごみ発電システムの第1実施形態を示している。図1に示す系統図において、実線で示す経路は蒸気経路を示し、破線で示す経路は給水経路を示している。第1実施形態のごみ発電システムは、図1を参照して、ごみ焼却の廃熱を利用して高温腐食を生じさせない温度の飽和蒸気V1を発生させる廃熱ボイラ1と、廃熱ボイラ1から飽和蒸気V1が供給される高圧タービン2と、高圧タービン2から排気された蒸気V2を除湿する除湿器3と、除湿器3で除湿され蒸気V3をごみ焼却の燃焼排ガスGによって加熱することにより高温腐食を生じさせない温度の過熱蒸気V4とする再熱器4と、再熱器4から過熱蒸気V4が供給される低圧タービン5と、を備えている。符号GEは発電機を示している。 FIG. 1 shows a first embodiment of a waste power generation system according to the present invention. In the system diagram shown in FIG. 1, the path shown by the solid line shows the steam path, and the path shown by the broken line shows the water supply path. In the waste power generation system of the first embodiment, referring to FIG. 1, the waste heat boiler 1 that generates saturated steam V1 at a temperature that does not cause high temperature corrosion by utilizing the waste heat of waste incineration and the waste heat boiler 1 High temperature by heating the high pressure turbine 2 to which the saturated steam V1 is supplied, the dehumidifier 3 that dehumidifies the steam V2 exhausted from the high pressure turbine 2, and the steam V3 that is dehumidified by the dehumidifier 3 by the combustion exhaust gas G of waste incineration. It includes a reheater 4 that uses superheated steam V4 at a temperature that does not cause corrosion, and a low-pressure turbine 5 that supplies superheated steam V4 from the reheater 4. The code GE indicates a generator.
廃熱ボイラ1及び再熱器4は、図示例では各2台備えているが、1台又は3台以上とすることもできる。図示例において、高圧タービン2と低圧タービン5とは、同軸、即ちタービンローター(車軸)が共通とされて、1台の発電機Gに接続されている。 The waste heat boiler 1 and the reheater 4 are provided with two units each in the illustrated example, but one or three or more units may be provided. In the illustrated example, the high-pressure turbine 2 and the low-pressure turbine 5 are coaxial, that is, have a common turbine rotor (axle) and are connected to one generator G.
廃熱ボイラ1で発生する飽和蒸気V1は、高温腐食を生じさせない温度の飽和蒸気である。高温腐食は330℃を超えると活発になるため、飽和蒸気V1は330℃未満、好ましくは320℃以下とされる。ごみ焼却施設において一般的に使用されている高圧の飽和ボイラ(廃熱ボイラ)は、飽和蒸気温度が250℃〜300℃である。従って、一般的に使用されている廃熱ボイラで発生した飽和蒸気V1を、過熱器を経由しないで高圧タービン2に供給することで、高温腐食を生じさせない温度の飽和蒸気V1を高圧タービン2に供給することができる。廃熱ボイラ1は、焼却炉と一体となったものや別置きタイプのものがある。大型のストーカ式ごみ焼却炉では、焼却炉の壁面まで水冷壁を下した構造の一体型廃熱ボイラが一般的である。 The saturated steam V1 generated in the waste heat boiler 1 is a saturated steam having a temperature that does not cause high-temperature corrosion. Since high-temperature corrosion becomes active above 330 ° C., the saturated steam V1 is set to less than 330 ° C., preferably 320 ° C. or lower. A high-pressure saturated boiler (waste heat boiler) generally used in a waste incineration facility has a saturated steam temperature of 250 ° C. to 300 ° C. Therefore, by supplying the saturated steam V1 generated in the generally used waste heat boiler to the high pressure turbine 2 without passing through the superheater, the saturated steam V1 having a temperature that does not cause high temperature corrosion is supplied to the high pressure turbine 2. Can be supplied. The waste heat boiler 1 includes a type integrated with an incinerator and a separately placed type. In a large-scale stoker-type waste incinerator, an integrated waste heat boiler having a structure in which a water-cooled wall is lowered to the wall surface of the incinerator is common.
高圧タービン2では、蒸気タービンの下限限界乾き度付近まで乾き度が下がるように仕事がなされる。具体的には、高圧タービン2の出口での蒸気の乾き度は、0.88以上とされる。 In the high-pressure turbine 2, work is performed so that the dryness is lowered to near the lower limit dryness of the steam turbine. Specifically, the dryness of steam at the outlet of the high-pressure turbine 2 is 0.88 or more.
高圧タービン2を出た蒸気V2は、除湿器3において除湿され、再熱器4へ流れる。除湿器3は、高圧タービン2から排気された蒸気V2を、好ましくは乾き度99%以上、より好ましくは乾き飽和蒸気(乾き度100%)になるまで除湿することができる。除湿器3としては、例えばベーンセパレータタイプの除湿器を採用することができる。 The steam V2 leaving the high-pressure turbine 2 is dehumidified by the dehumidifier 3 and flows to the reheater 4. The dehumidifier 3 can dehumidify the steam V2 exhausted from the high-pressure turbine 2 until it has a dryness of 99% or more, more preferably a dry saturated steam (dryness of 100%). As the dehumidifier 3, for example, a vane separator type dehumidifier can be adopted.
除湿器3で除湿された蒸気V3は、再熱器4においてごみ焼却の燃焼排ガスGによって加熱され、高温腐食を生じさせない温度の過熱蒸気V4とされる。高温腐食は330℃を超えると活発になるため、過熱蒸気V4は330℃未満、好ましくは320℃以下とされる。 The steam V3 dehumidified by the dehumidifier 3 is heated by the combustion exhaust gas G of waste incineration in the reheater 4, and is regarded as a superheated steam V4 having a temperature that does not cause high-temperature corrosion. Since high-temperature corrosion becomes active above 330 ° C., the superheated steam V4 is set to less than 330 ° C., preferably 320 ° C. or lower.
再熱器4は、ごみ焼却による燃焼排ガスGの温度が500℃〜600℃の領域(煙道)に設置され得る。焼却炉(不図示)の出口付近の燃焼排ガス温度が一般的には850℃〜1000℃程度であり、効率的な伝熱面積となるような排ガスの最低温度は500℃程度と考えられるからである。このような温度域(500℃〜600℃)は、例えば廃熱ボイラの中間位置にある。焼却炉の燃焼排ガスは、再熱器4の入り口に至る過程で再熱器4の上流側の廃熱ボイラによって500〜600℃程度まで冷却され、更に、再熱器4の下流側の廃熱ボイラによって200℃程度まで冷却される。ごみ焼却炉(図示せず。)は、従来公知のごみ焼却炉とすることがでる。燃焼排ガスの条件(HCl等の腐食成分が少ない等の条件)によっては、燃焼排ガスGの温度が700℃〜850℃の温度域に再熱器4を設置することもできる。このような温度域(700℃〜850℃)は、例えば焼却炉一体型の廃熱ボイラの高温部側の煙道にある。 The reheater 4 can be installed in a region (flue) where the temperature of the combustion exhaust gas G produced by incineration of waste is 500 ° C. to 600 ° C. This is because the temperature of the combustion exhaust gas near the outlet of the incinerator (not shown) is generally about 850 ° C to 1000 ° C, and the minimum temperature of the exhaust gas that provides an efficient heat transfer area is considered to be about 500 ° C. is there. Such a temperature range (500 ° C. to 600 ° C.) is located at an intermediate position of, for example, a waste heat boiler. The combustion exhaust gas of the incinerator is cooled to about 500 to 600 ° C. by the waste heat boiler on the upstream side of the reheater 4 in the process of reaching the inlet of the reheater 4, and further, the waste heat on the downstream side of the reheater 4 is cooled. It is cooled to about 200 ° C by a boiler. The waste incinerator (not shown) can be a conventionally known waste incinerator. Depending on the conditions of the combustion exhaust gas (conditions such as a small amount of corrosive components such as HCl), the reheater 4 can be installed in a temperature range in which the temperature of the combustion exhaust gas G is 700 ° C. to 850 ° C. Such a temperature range (700 ° C. to 850 ° C.) is, for example, in the flue on the high temperature side of the waste heat boiler integrated with the incinerator.
再熱器4は、減温装置(図示せず。)を備えることができ、減温装置により再熱器4の出口での過熱蒸気V3の温度を、高温腐食を生じさせない温度に制御することができる。減温装置は、従来公知の減温装置を採用することができ、例えば、蒸気中に給水をスプレーして温度を下げる様式、或いは、給水と熱交換して温度を下げる様式とすることができる。 The reheater 4 can be provided with a temperature reducing device (not shown), and the temperature of the superheated steam V3 at the outlet of the reheater 4 is controlled by the temperature reducing device to a temperature at which high temperature corrosion does not occur. Can be done. As the temperature reducing device, a conventionally known temperature reducing device can be adopted. For example, a method of spraying water supply into steam to lower the temperature, or a method of exchanging heat with the water supply to lower the temperature can be adopted. ..
低圧タービン5から排気された蒸気は、復水器6で冷却して凝縮されて飽和水となり、復水タンク7に貯水される。復水タンク7に溜まったボイラ水は、復水ポンプ8によって脱気器9に送られ、酸素等の非凝縮性ガスが除去されて、給水ポンプ10によって廃熱ボイラ1に給水される。 The steam exhausted from the low-pressure turbine 5 is cooled by the condenser 6 and condensed to become saturated water, which is stored in the condenser tank 7. The boiler water collected in the condensate tank 7 is sent to the deaerator 9 by the condensate pump 8, non-condensable gas such as oxygen is removed, and the water is supplied to the waste heat boiler 1 by the water supply pump 10.
復水ポンプ8と脱気器9との給水経路11に給水ヒータ12を介在させることができ、低圧タービン5から抽気した蒸気により復水を加熱することができる。給水ヒータ12で復水を加熱した蒸気は、熱を奪われ凝縮して水となり、復水タンク7に送られる。 A water supply heater 12 can be interposed in the water supply path 11 between the condensate pump 8 and the deaerator 9, and the condensate can be heated by the steam extracted from the low-pressure turbine 5. The steam obtained by heating the condensate with the water supply heater 12 is deprived of heat and condensed into water, which is sent to the condensate tank 7.
高圧タービン2から排気された蒸気は、再熱器4に供給するほか、バルブ制御により、一部を温水器等の熱利用設備Hに供給した後に脱気器9に送り、他の一部をそのまま脱気器9に送ることができる。 The steam exhausted from the high-pressure turbine 2 is supplied to the reheater 4, a part of the steam is supplied to the heat utilization equipment H such as a water heater by valve control, and then sent to the deaerator 9, and the other part is sent. It can be sent to the deaerator 9 as it is.
図1に示す例では、ごみ焼却のための焼却炉(図示せず。)は複数台(図示例は2台)設置され、複数台の前記焼却炉の其々に対して廃熱ボイラ1が設けられ、前記焼却炉の其々に対して設けられた複数台(図示例は2台)の廃熱ボイラ1からの飽和蒸気が合流して1台の高圧タービン2に供給されるように構成されている。また、複数台(図示例は2台)の廃熱ボイラ1の其々に対して再熱器4が設けられ、廃熱ボイラ1の其々に対して設けられた複数台(図示例は2台)の再熱器4からの過熱蒸気が合流して1台の低圧タービン5に供給されるように構成されている。このようにして、ごみ発電システムの蒸気サイクル経路を形成する前記蒸気経路及び前記給水経路に、複数台の廃熱ボイラ1及び再熱器4が並列に接続され得る。 In the example shown in FIG. 1, a plurality of incinerators (not shown) for incinerating waste are installed (two in the illustrated example), and a waste heat boiler 1 is provided for each of the plurality of incinerators. Saturated steam from a plurality of waste heat boilers 1 (two in the illustrated example) provided for each of the incinerators is combined and supplied to one high-pressure turbine 2. Has been done. Further, a reheater 4 is provided for each of a plurality of waste heat boilers 1 (2 units in the illustrated example), and a plurality of units (2 units in the illustrated example) provided for each of the waste heat boilers 1. The superheated steam from the reheater 4 of the unit) is configured to merge and be supplied to one low-pressure turbine 5. In this way, a plurality of waste heat boilers 1 and reheaters 4 can be connected in parallel to the steam path and the water supply path forming the steam cycle path of the waste power generation system.
図2は、本発明に係るごみ発電システムの第2実施形態を示している。第2実施形態のごみ発電システムは、1つの車室内を高圧部と低圧部とに仕切ることにより高圧タービン2及び低圧タービン5が単車室内に収容されている点が、高圧タービンと低圧タービンとが其々の車室に設けられている2車室構造の上記第1実施形態と異なり、その他の構成は、上記第1実施形態と同様である。第2実施形態では、単車室の蒸気タービンを組み合わせることにより、コストの低減化を図ることができる。 FIG. 2 shows a second embodiment of the waste power generation system according to the present invention. In the waste power generation system of the second embodiment, the high-pressure turbine and the low-pressure turbine are in that the high-pressure turbine 2 and the low-pressure turbine 5 are housed in the single vehicle interior by partitioning one vehicle interior into a high-pressure unit and a low-pressure unit. Unlike the first embodiment of the two-chamber structure provided in each of the passenger compartments, the other configurations are the same as those of the first embodiment. In the second embodiment, the cost can be reduced by combining the steam turbines in the motorcycle compartment.
図3は、本発明に係るごみ発電システムの第3実施形態を示している。第3実施形態のごみ発電システムは、高圧タービン2と低圧タービン5が別個に設けられ、其々に発電機GEが接続されている点が、上記第1実施形態及び第2実施形態と相違する。斯かる構成の第3実施形態は、新規建設時だけでなく、改造時にも適用できる。例えば、ボイラの交換を必要とする基幹改良工事において、既存の蒸気条件が3MPa、300℃級であれば、既存のタービンを低圧タービンに流用し、高圧タービンのみを新たに設置することで第3実施形態のごみ発電システムを構築することができる。 FIG. 3 shows a third embodiment of the waste power generation system according to the present invention. The waste power generation system of the third embodiment is different from the first embodiment and the second embodiment in that the high-pressure turbine 2 and the low-pressure turbine 5 are separately provided and the generator GE is connected to each of them. .. The third embodiment of such a configuration can be applied not only at the time of new construction but also at the time of remodeling. For example, in a backbone improvement work that requires replacement of a boiler, if the existing steam conditions are 3 MPa and 300 ° C class, the existing turbine can be diverted to the low-pressure turbine and only the high-pressure turbine can be newly installed. The waste power generation system of the embodiment can be constructed.
以下、実施例及び比較例を挙げて、本発明を更に具体的に説明する。但し、本発明は、各例によって、限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to each example.
実施例1として図1に示す排ガス再熱方式を採用したごみ発電システムとし、比較例1として図4に示す高温高圧方式のごみ発電システムとし、比較例2として図5に示す蒸気再熱方式のごみ発電システムとした。図4において符号SHは過熱器、符号Tは蒸気タービンを其々示す。図5において、除湿器3を介した蒸気は、廃熱ボイラ1からの蒸気が供給される再熱器4’によって再熱されて低圧タービン5に供給されている。 As the first embodiment, the waste power generation system adopting the exhaust gas reheating method shown in FIG. 1 is used, as the comparative example 1, the high temperature and high pressure type waste power generation system shown in FIG. 4 is used, and as the comparative example 2, the steam reheating method shown in FIG. 5 is used. It was a waste power generation system. In FIG. 4, reference numeral SH indicates a superheater, and reference numeral T indicates a steam turbine. In FIG. 5, the steam via the dehumidifier 3 is reheated by the reheater 4'to which the steam from the waste heat boiler 1 is supplied and supplied to the low pressure turbine 5.
処理能力150トン/日のストーカ式ごみ焼却炉2炉を備え、ごみ発熱量12000kJ/kgの清掃工場について、実施例1、比較例1,2の3方式の比較を行った。廃熱ボイラ1は、自然循環ボイラとし、発電用火力設備の技術基準によるものとした。実施例1及び比較例2の除湿器3はベーンセパレータを備えるタイプとした。実施例1、比較例1,2において、復水器6は空冷式とし、飽和温度50℃、飽和蒸気圧力0.01235MPa・absとした。 For a cleaning plant equipped with two stoker-type waste incinerators with a processing capacity of 150 tons / day and a waste calorific value of 12000 kJ / kg, three methods of Example 1 and Comparative Examples 1 and 2 were compared. The waste heat boiler 1 was a natural circulation boiler, and was based on the technical standards for thermal power generation equipment. The dehumidifier 3 of Example 1 and Comparative Example 2 was of a type provided with a vane separator. In Example 1 and Comparative Examples 1 and 2, the condenser 6 was air-cooled, and the saturation temperature was 50 ° C. and the saturated steam pressure was 0.01235 MPa · abs.
実施例1、比較例1、及び比較例2は、其々、下記表1の条件とした。 Example 1, Comparative Example 1, and Comparative Example 2 each had the conditions shown in Table 1 below.
実施例1、比較例1、比較例2について、下記式により発電端効率η(%)を試算した。 For Example 1, Comparative Example 1, and Comparative Example 2, the power generation end efficiency η (%) was calculated by the following formula.
η=(3600ΣPn/nGrHu)×100
上式において、発電出力Pn(kW)、焼却炉数n、ごみ定格焼却量Gr=6250(kg/時/炉)、ごみ発熱量Hu=12000(kJ/kg)とし、Pnは各タービン毎に求めて加算した。各発電機の発電出力は、実施例1、比較例1,2の其々においてタービン廻りの熱量バランスを求め、その条件に基づいた発電出力をメーカー指定のタービン内部効率等により算定した。また、タービン出口蒸気の乾き度は0.9とした。試算した発電効率の結果を下記表2に示す。
η = (3600ΣPn / nGrHu) × 100
In the above formula, power generation output Pn (kW), number of incinerators n, waste rated incineration amount Gr = 6250 (kg / hour / furnace), waste calorific value Hu = 12000 (kJ / kg), and Pn is set for each turbine. Obtained and added. For the power generation output of each generator, the calorific value balance around the turbine was obtained in each of Example 1 and Comparative Examples 1 and 2, and the power generation output based on the conditions was calculated based on the turbine internal efficiency specified by the manufacturer. The dryness of the turbine outlet steam was set to 0.9. The results of the estimated power generation efficiency are shown in Table 2 below.
表2の結果より、発電端効率は、比較例1>実施例1>比較例2であったが、比較例1と実施例1との差は0.36%であり、実施例1は比較例1と比較して遜色のない発電端効率を達成し得ることが分かる。 From the results in Table 2, the power generation end efficiency was Comparative Example 1> Example 1> Comparative Example 2, but the difference between Comparative Example 1 and Example 1 was 0.36%, and Example 1 was compared. It can be seen that the power generation end efficiency comparable to that of Example 1 can be achieved.
図6は、実施例1、比較例1、比較例2の其々の蒸気状態変化を示す概念図である。図6の蒸気状態変化を示す概念図において、実施例1、比較例1、比較例2の其々のA1〜3−B1〜3間の直線(タービン蒸気の状態変化線)の傾きの大きさは、比較例1>実施例1>比較例2となっており、この傾きはタービンの内部効率に直接関連する。 FIG. 6 is a conceptual diagram showing changes in steam states of Example 1, Comparative Example 1, and Comparative Example 2. In the conceptual diagram showing the change of state of steam in FIG. 6, the slope of the straight line (change of state of turbine steam) between A 1 to 3 to B 1 to 3 of Example 1, Comparative Example 1 and Comparative Example 2 respectively. The magnitude is Comparative Example 1> Example 1> Comparative Example 2, and this inclination is directly related to the internal efficiency of the turbine.
図6の蒸気状態変化を示す概念図において飽和線(乾き度1.00)より下の湿り蒸気域では、タービンの湿り損失が大きくなり、タービンの有効熱落差は小さくなる。つまり、湿り領域に占めるエンタルピー差の割合が小さい比較例1では、タービンの内部効率が高くなり、発電端効率も高くなる傾向にある。 In the conceptual diagram showing the change of steam state in FIG. 6, in the wet steam region below the saturation line (dryness 1.00), the wet steam loss of the turbine becomes large and the effective heat head of the turbine becomes small. That is, in Comparative Example 1 in which the ratio of the enthalpy difference to the wet region is small, the internal efficiency of the turbine tends to be high, and the power generation end efficiency tends to be high.
実施例1では、比較例2に比べ湿り領域に占める割合が大きく減少している。実施例1が比較例2より、発電端効率が大きく上回っているのはそのためであり、比較例1の発電端効率に近づいた要因でもある。 In Example 1, the proportion of the wet region is significantly reduced as compared with Comparative Example 2. This is the reason why the power generation end efficiency of Example 1 is much higher than that of Comparative Example 2, and it is also a factor that approaches the power generation end efficiency of Comparative Example 1.
上記の結果より、本発明に係るごみ発電システムは、高温腐食のリスクを軽減しつつも蒸気再熱方式に比してごみ発電効率を高めることができる。 From the above results, the waste power generation system according to the present invention can improve the waste power generation efficiency as compared with the steam reheat method while reducing the risk of high temperature corrosion.
上記実施例1においては図1に示すように廃熱ボイラ1及び再熱器4を各2台備える構成としたが、図7に示すように廃熱ボイラ1及び再熱器4を各1台のみ備える構成のごみ発電システムを実施例2とし、ごみ発電システム全体の負荷を変えて発電効率を試算し、比較した。 In the first embodiment, as shown in FIG. 1, two waste heat boilers 1 and two reheaters 4 are provided, but as shown in FIG. 7, one waste heat boiler 1 and one reheater 4 are provided. Example 2 was a waste power generation system having only a configuration, and the power generation efficiency was calculated and compared by changing the load of the entire waste power generation system.
実施例1ではごみ焼却炉が2炉であり、各炉に廃熱ボイラ1台を備える。実施例2はごみ焼却炉が1炉である。実施例1,2の比較条件をそろえるため、実施例2のごみ焼却炉1炉の処理能力は実施例1のごみ焼却炉1炉の処理能力の2倍とし、実施例2の廃熱ボイラの定格出力は実施例1の廃熱ボイラ1台の定格出力の2倍とした。比較結果を下記表3に示す。 In the first embodiment, there are two waste incinerators, and each furnace is provided with one waste heat boiler. In the second embodiment, there is one waste incinerator. In order to meet the comparison conditions of Examples 1 and 2, the processing capacity of the waste incinerator 1 of Example 2 is double the processing capacity of the waste incinerator 1 of Example 1, and the waste heat boiler of Example 2 is used. The rated output was twice the rated output of one waste heat boiler of Example 1. The comparison results are shown in Table 3 below.
表3に於いて、ごみ発電システム全体とは、焼却炉、廃熱ボイラ、再熱器、蒸気タービンを含む、発電を行うのに必要な全機器の総体をいう。 In Table 3, the entire waste power generation system refers to the total of all equipment necessary for power generation, including an incinerator, a waste heat boiler, a reheater, and a steam turbine.
表3において、ごみ発電システム全体の運転負荷を100%とした場合、実施例11,実施例21ともに、焼却炉および廃熱ボイラの運転負荷は100%(定格出力)の状態であり、システム全体の蒸気量100%、再熱器設置位置のガス温度域500〜600℃であり、再熱後蒸気過熱度及び発電効率は実施例21をベースとした場合に実施例11も実施例21と同じとなる。 In Table 3, assuming that the operating load of the entire waste power generation system is 100%, the operating load of the incinerator and the waste heat boiler is 100% (rated output) in both Example 1 1 and Example 2 1 . steam of 100% of the whole system, a gas temperature range 500 to 600 ° C. reheater installation position, reheat after steam superheating degree and power generation efficiency can also example 1 1 when the base example 2 1 embodiment Same as Example 2 1 .
表3において、ごみ発電システム全体の運転負荷を50%とした場合、実施例22では焼却炉および廃熱ボイラの運転負荷は50%(定格出力の1/2)で運転するが、実施例12では2台のうちの1台の焼却炉および廃熱ボイラを停止、すなわち、2炉のうちの1炉のごみ焼却炉へのごみ供給を停止して他の1炉のごみ焼却炉に全ごみ量を供給することで2台のうちの他の1台の廃熱ボイラの運転負荷は100%(定格出力)の状態となる。その結果、システム全体の蒸気量は実施例12,22ともにシステム全体の運転負荷100%の場合に比べて50%になるが、実施例22では燃焼排ガスの温度が実施例12に比して低くなり、再熱器設置位置の排ガス温度域が実施例12では500〜600℃をキープしているが、実施例22では450℃〜550℃に下がっている。そのため、実施例22は、再熱後の蒸気過熱度が低下し、実施例12に比して発電効率も低下している。 In Table 3, when the operating load of the entire waste generation system is 50%, and the operation load of the second embodiment 2, incinerator and a waste heat boiler is operating at 50% (1/2 of the rated output), Example 1 2 in stop one incinerator and waste heat boiler of the two, i.e., to stop the waste feed to 1 furnace incinerator of the two furnace incinerator other 1 furnace By supplying the total amount of waste, the operating load of the waste heat boiler of the other one of the two units becomes 100% (rated output). As a result, the vapor amount of the entire system Example 1 2, 2 2 but both become 50% than that of the overall system operation load of 100%, in Example 2 the temperature Example 2 in the combustion exhaust gas 1 2 compared lowered, although the exhaust gas temperature region of the reheater installation position is keep the example 1, 2 500 to 600 ° C., and dropped to example 2, 2 450 ° C. to 550 ° C.. Therefore, Example 2 2, reduces the steam superheat after reheating, have reduced power-generating efficiency in comparison with Example 1 2.
実施例12と実施例22とで再熱器設置位置のガス温度域に差がでる理由は、次の通りである。ごみ発電システム全体の運転負荷50%の例として、ごみ量を50%とする場合について説明する。 Reason for a difference in the gas temperature region of the reheater installation position comes out in Example 1 2 Example 2 2 is as follows. As an example of an operating load of 50% for the entire waste power generation system, a case where the amount of waste is 50% will be described.
実施例12では、運転する焼却炉に全ごみ量を供給した場合、焼却炉および廃熱ボイラの運転負荷は100%であり、その時の燃焼排ガス量は定格排ガス量である。再熱器設置位置に至るまでの廃熱ボイラの伝熱面の大きさは定格排ガス量に対して所定の温度域(定格温度域)となるように設計される。そのため、運転する焼却炉の再熱器設置位置の排ガス温度域は定格温度域となる。 In Example 1 2, the case of supplying the total amount of waste in an incinerator to operate, the operation load of the incinerator and waste heat boiler is 100% flue gas quantity at that time is the rated amount of exhaust gas. The size of the heat transfer surface of the waste heat boiler up to the reheater installation position is designed to be in a predetermined temperature range (rated temperature range) with respect to the rated exhaust gas amount. Therefore, the exhaust gas temperature range at the reheater installation position of the incinerator to be operated is the rated temperature range.
これに対して実施例22では、焼却炉に供給されるごみ量が50%、すなわち、焼却炉および廃熱ボイラの運転負荷は100%であり、その時の燃焼排ガス量は定格排ガス量の1/2である。再熱器設置位置に至るまでの廃熱ボイラの伝熱面の大きさは定格排ガス量に対して所定の温度域(定格温度域)となるように設計されるため、1/2の燃焼排ガス量を定格温度域まで下げるのに必要な伝熱面の大きさより十分大きい伝熱面を通過した燃焼排ガスの温度は定格温度域より低くなる。 In Example 2 2 In contrast, 50% waste amount supplied to the incinerator, namely, the operation load of the incinerator and waste heat boiler is 100% flue gas quantity at that time is 1 rating exhaust gas amount It is / 2. Since the size of the heat transfer surface of the waste heat boiler up to the reheater installation position is designed to be in the specified temperature range (rated temperature range) with respect to the rated exhaust gas amount, it is 1/2 of the combustion exhaust gas. The temperature of the combustion exhaust gas that has passed through the heat transfer surface, which is sufficiently larger than the size of the heat transfer surface required to reduce the amount to the rated temperature range, becomes lower than the rated temperature range.
表3では、廃熱ボイラが1台と2台の例を示したが、廃熱ボイラが3台の場合も同様である。廃熱ボイラを3台とした場合、すなわち焼却炉を3台とした場合の方が、廃熱ボイラ1台(焼却炉1台)のごみ発電システムに比べて、システム全体の負荷が低下した時には、発電効率が高くなり得る。例えば、システム全体の負荷が2/3以下(且つ1/3超)に低下した場合、廃熱ボイラ3台(ごみ焼却炉3台)のごみ発電システムでは、2台の焼却炉のみに均等に各々の運転負荷100%に相当するごみ量を供給し、廃熱ボイラ2台のみで運転した方が、廃熱ボイラ1台(焼却炉1台)に運転負荷100%に相当するごみ量の2/3を供給するごみ発電システムに比べて、発電効率が高くなる。また、システム全体の負荷が1/3以下に低下した場合、廃熱ボイラ3台(ごみ焼却炉3台)のごみ発電システムでは、1台の焼却炉のみに全てのごみを供給し、廃熱ボイラ1台のみで運転した方が、廃熱ボイラ1台(焼却炉1台)のごみ発電システムに比べて、発電効率が高くなる。 Table 3 shows an example of one and two waste heat boilers, but the same applies to the case of three waste heat boilers. When the load of the entire system is lower when the number of waste heat boilers is three, that is, when the number of incinerators is three, compared to the waste power generation system of one waste heat boiler (one incinerator). , Power generation efficiency can be high. For example, if the load of the entire system is reduced to 2/3 or less (and more than 1/3), the waste power generation system with 3 waste heat boilers (3 waste incinerators) will be evenly distributed to only 2 incinerators. If the amount of waste equivalent to 100% of each operating load is supplied and operated with only two waste heat boilers, the amount of waste equivalent to 100% of the operating load of one waste heat boiler (one incinerator) is 2 The power generation efficiency is higher than that of the waste power generation system that supplies / 3. In addition, when the load of the entire system is reduced to 1/3 or less, the waste power generation system with 3 waste heat boilers (3 waste incinerators) supplies all the waste to only one incinerator and waste heat. The power generation efficiency is higher when operating with only one boiler than when using a waste power generation system with one waste heat boiler (one incinerator).
このように焼却炉、廃熱ボイラ、及び再熱器を其々複数台備える場合には、ごみ発電システム全体の負荷の低下に応じて、複数台の前記焼却炉のうちの幾つかの焼却炉の稼働し、他の焼却炉の稼働を停止することにより、焼却炉及び廃熱ボイラを1台づつのみ備えるごみ発電システムに比して、発電効率が向上し得る。 When a plurality of incinerators, waste heat boilers, and reheaters are provided in this way, some of the incinerators among the plurality of incinerators are provided according to the decrease in the load of the entire waste power generation system. By operating the incinerator and stopping the operation of other incinerators, the power generation efficiency can be improved as compared with the waste power generation system equipped with only one incinerator and one waste heat boiler.
本発明は、上記実施形態に限らず、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
1 廃熱ボイラ
2 高圧タービン
3 除湿器
4、4’ 再熱器
5 低圧タービン
6 復水器
7 復水タンク
8 復水ポンプ
9 脱気器
10 給水ポンプ
G 燃焼排ガス
GE 発電機
SH 過熱器
T 蒸気タービン
1 Waste heat boiler 2 High pressure turbine 3 Dehumidifier 4, 4'Reheater 5 Low pressure turbine 6 Condenser 7 Condenser tank 8 Condenser pump 9 Deaerator 10 Water supply pump G Combustion exhaust gas GE Generator SH Superheater T Steam Turbine
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019111857 | 2019-06-17 | ||
JP2019111857 | 2019-06-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020204318A true JP2020204318A (en) | 2020-12-24 |
JP7373801B2 JP7373801B2 (en) | 2023-11-06 |
Family
ID=73837045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020042461A Active JP7373801B2 (en) | 2019-06-17 | 2020-03-11 | Waste power generation system and its operation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7373801B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1122421A (en) * | 1997-06-30 | 1999-01-26 | Hitachi Ltd | Refuse incinerating power plant |
JP2001520360A (en) * | 1998-10-14 | 2001-10-30 | 株式会社荏原製作所 | Waste combustion power generation method and apparatus |
JP2008069702A (en) * | 2006-09-13 | 2008-03-27 | Kawasaki Heavy Ind Ltd | Operation control method of steam turbine and generating set of waste disposal plant |
JP2010540829A (en) * | 2007-10-04 | 2010-12-24 | シーメンス アクチエンゲゼルシヤフト | Generator / steam turbine / turbo compressor line and method for operating generator / steam turbine / turbo compressor line |
JP2017155613A (en) * | 2016-02-29 | 2017-09-07 | 東京瓦斯株式会社 | Trash power generating system |
-
2020
- 2020-03-11 JP JP2020042461A patent/JP7373801B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1122421A (en) * | 1997-06-30 | 1999-01-26 | Hitachi Ltd | Refuse incinerating power plant |
JP2001520360A (en) * | 1998-10-14 | 2001-10-30 | 株式会社荏原製作所 | Waste combustion power generation method and apparatus |
JP2008069702A (en) * | 2006-09-13 | 2008-03-27 | Kawasaki Heavy Ind Ltd | Operation control method of steam turbine and generating set of waste disposal plant |
JP2010540829A (en) * | 2007-10-04 | 2010-12-24 | シーメンス アクチエンゲゼルシヤフト | Generator / steam turbine / turbo compressor line and method for operating generator / steam turbine / turbo compressor line |
JP2017155613A (en) * | 2016-02-29 | 2017-09-07 | 東京瓦斯株式会社 | Trash power generating system |
Also Published As
Publication number | Publication date |
---|---|
JP7373801B2 (en) | 2023-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4838318B2 (en) | Power generation method and power plant | |
KR101594323B1 (en) | Power plant with integrated fuel gas preheating | |
JP5896885B2 (en) | Power generation system and method for operating power generation system | |
DK2499725T3 (en) | HYBRID BIOMASS PROCESS WITH REHEATING CYCLE | |
CA2679811C (en) | High efficiency feedwater heater | |
RU2688078C2 (en) | Coaling welded electric installation with oxy-ignition with heat integrating | |
JP2013545915A (en) | Method for operating a combined cycle power plant for cogeneration and a combined cycle power plant for implementing the method | |
JP2013096244A (en) | Steam turbine power generation system | |
JP2013527370A (en) | Energy recovery and steam supply for increased power output in combined cycle power systems | |
JP2014228218A (en) | Fire power-generating plant and operation method of the same | |
Chauhan et al. | Energy integration in boiler section of thermal power plant | |
JP3042394B2 (en) | Power generation system utilizing waste incineration heat | |
JP2019100617A (en) | Circulation type boiler system, fire power generation plant, and exhaust heat recovery method | |
JP3905967B2 (en) | Power generation / hot water system | |
US11313252B2 (en) | Enhanced HRSG for repowering a coal-fired electrical generating plant | |
JP4718333B2 (en) | Once-through exhaust heat recovery boiler | |
JP7373801B2 (en) | Waste power generation system and its operation method | |
JP6810378B2 (en) | Garbage power generation system | |
MX2010009587A (en) | Hybrid power plant. | |
JP5690954B1 (en) | Conventional thermal power plant and conventional thermal power generation method | |
JP2020029977A (en) | Temporary piping system for blowing-out of boiler and method for blowing out boiler | |
JP4343610B2 (en) | Power generation apparatus and power generation method | |
Tawney et al. | Economic and performance evaluation of combined cycle repowering options | |
JPH07305608A (en) | Boiler exhaust heat recovery equipment of full fired heat recovery combined plant | |
JP5292347B2 (en) | Power plant and power plant operation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221104 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230522 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230719 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231011 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231016 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7373801 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |