Nothing Special   »   [go: up one dir, main page]

JP2020111796A - Surface-treatment metallic material, production method of surface-treatment metallic material, and electronic component - Google Patents

Surface-treatment metallic material, production method of surface-treatment metallic material, and electronic component Download PDF

Info

Publication number
JP2020111796A
JP2020111796A JP2019003888A JP2019003888A JP2020111796A JP 2020111796 A JP2020111796 A JP 2020111796A JP 2019003888 A JP2019003888 A JP 2019003888A JP 2019003888 A JP2019003888 A JP 2019003888A JP 2020111796 A JP2020111796 A JP 2020111796A
Authority
JP
Japan
Prior art keywords
layer
upper layer
silver
tin alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019003888A
Other languages
Japanese (ja)
Inventor
高橋 豊
Yutaka Takahashi
豊 高橋
知亮 高橋
Tomoaki Takahashi
知亮 高橋
良聡 小林
Yoshiaki Kobayashi
良聡 小林
相場 玲宏
Tamahiro Aiba
玲宏 相場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019003888A priority Critical patent/JP2020111796A/en
Publication of JP2020111796A publication Critical patent/JP2020111796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

To provide a surface-treatment metallic material that has a uniformly formed surface-treatment layer.SOLUTION: A surface-treatment metallic material comprises: a base material; a lower layer composed of nickel, which is formed on the base material; a middle layer composed of a nickel-tin alloy, which is formed on the lower layer; and an upper layer composed of a silver-tin alloy, which is formed on the middle layer. Tin concentration variation inside the silver-tin alloy layer based on a depth direction analysis of a cross section EDS of the upper layer is within 3 mass%, and the average crystal grain diameter of the upper layer in the plane direction is between 0.001 μm and 0.5 μm.SELECTED DRAWING: Figure 3

Description

本発明は、表面処理金属材料、表面処理金属材料の製造方法、及び、電子部品に関する。 The present invention relates to a surface-treated metal material, a method for manufacturing a surface-treated metal material, and an electronic component.

一般に、自動車、家電、OA機器等の各種電子機器に使用されるコネクタ・端子等の電子部品には、銅又は銅合金が母材として使用され、これらは防錆、耐食性向上、電気的特性向上といった機能向上を目的としてめっき処理がなされている。めっきにはAu、Ag、Cu、Sn、Ni、半田及びPd等の種類があるが、特にSnまたはSn合金めっきを施したSnめっき材はコスト面、接触信頼性およびはんだ付け性等の観点からコネクタ、端子、スイッチ及びリードフレームのアウターリード部等に多用されている。 Generally, copper or copper alloy is used as a base material for electronic parts such as connectors and terminals used in various electronic devices such as automobiles, home appliances, and office automation equipment, and these are rust-preventive, corrosion resistant, and electrical characteristic improved. The plating process is performed for the purpose of improving the function. There are various types of plating such as Au, Ag, Cu, Sn, Ni, solder and Pd, but the Sn plated material plated with Sn or Sn alloy is particularly cost effective, contact reliable and solderable. It is widely used for connectors, terminals, switches, and outer lead parts of lead frames.

Sn系めっきでは、高温環境下で接触抵抗が上昇し、またはんだ付け性が劣化するという問題がある。この問題を回避する方法としてSn系めっきの厚さを厚くするという方法もあるが、この方法では後述の端子、コネクタの挿入力が増大するという問題が新たに発生する。 The Sn-based plating has a problem that the contact resistance increases or the solderability deteriorates in a high temperature environment. As a method of avoiding this problem, there is a method of increasing the thickness of Sn-based plating, but this method causes a new problem that the insertion force of terminals and connectors described later increases.

近年では、コネクタのピンの数が増え、これに伴うコネクタ挿入力の増加も問題になっている。自動車等のコネクタの組み立て作業は人手に頼ることが多く、挿入力の増大は作業者の手にかかる負担が大きくなるため、コネクタの低挿入力化が望まれているが、Snは端子の嵌合接続時の摩擦が大きく、コネクタの芯数が著しく増大すると強大な挿抜力が必要になる。 In recent years, the number of pins of the connector has increased, and the increase in connector insertion force due to this has also become a problem. Since the assembly work of a connector of an automobile or the like often depends on human hands, the increase of the insertion force puts a heavy burden on the operator's hand. Therefore, it is desired to reduce the insertion force of the connector. If the number of cores of the connector is significantly increased due to large friction at the time of mating, a strong insertion/removal force is required.

これら課題に対し、本発明者らにおける鋭意研究の結果、例えば特許文献1には、基材上に下層と中層と上層とを順に設け、下層と中層と上層とに所定の金属を用い、且つ、所定の厚み及び組成とすることで低ウィスカ性、低凝着磨耗性及び高耐久性を有する電子部品用金属材料を作製することができる。 In response to these problems, as a result of earnest research by the present inventors, for example, in Patent Document 1, a lower layer, a middle layer and an upper layer are sequentially provided on a substrate, and a predetermined metal is used for the lower layer, the middle layer and the upper layer, and With a predetermined thickness and composition, a metal material for electronic parts having low whisker properties, low adhesive wear and high durability can be produced.

特許第5275504号公報Japanese Patent No. 5275504

ところで、上述のように基材の表面に種々のめっき層を所定の厚みで形成し、電子部品材料としての性能を向上させているが、特に接触抵抗と挿入力の抑制向上の点で改善の余地があることがわかってきた。これは、製造方法においてある金属の溶融処理をすることで合金化を促進する場合がある(たとえば特許文献1段落0074参照)が、その際に形成される上層に不均質な濃度変動をもつ層が形成される場合があることがわかり、その結果、層内で特性に変動がみられ、測定値のばらつきが大きくなることが分かった。 By the way, as described above, various plating layers are formed on the surface of the base material with a predetermined thickness to improve the performance as an electronic component material. It turns out that there is room. This may promote alloying by subjecting a certain metal to a melting treatment in the manufacturing method (see, for example, paragraph 0074 of Patent Document 1), but the upper layer formed at that time has a nonuniform concentration fluctuation. It was found that there was a case where a layer was formed, and as a result, there was a variation in the characteristics within the layer, and it was found that there was a large variation in the measured values.

そこで本発明は、上記の課題を解決するためになされたものであり、均質に形成された表面処理層を有する表面処理金属材料を提供するものである。 Then, this invention is made|formed in order to solve the said subject, and provides the surface-treated metal material which has the surface-treated layer formed uniformly.

本発明者らは、鋭意検討の結果、基材上に下層と、中層および上層の成分を含有する合金被膜層を設け、上層における被膜の濃度変動を一定量以下に制御することで、摺動特性のばらつきを従来のものに対して改善できることを見出した。また、上層の平面方向の平均結晶粒径を所定範囲に制御することで、摺動特性を改善できることを見出した。また、基材上に下層と、中層および上層の成分を含有する合金被膜層を設けた後に熱処理を行うことにより中層を形成することができ、その結果、従来の単純な合金めっき被膜とは異なる層構成を形成し、一層の耐熱性向上に寄与できる製造方法を見出し、本発明に至った。 As a result of intensive studies, the present inventors have provided a lower layer on a substrate, an alloy coating layer containing components of an intermediate layer and an upper layer, and by controlling the concentration fluctuation of the coating in the upper layer to a certain amount or less, sliding It has been found that the variation in characteristics can be improved over the conventional one. It was also found that the sliding characteristics can be improved by controlling the average crystal grain size of the upper layer in the plane direction within a predetermined range. Further, the intermediate layer can be formed by performing heat treatment after providing the lower layer and the alloy coating layer containing the components of the intermediate layer and the upper layer on the substrate, and as a result, different from the conventional simple alloy plating coating. The present invention has been accomplished by finding a manufacturing method that can form a layered structure and contribute to further improvement in heat resistance.

以上の知見を基礎として完成した本発明は一側面において、基材と、前記基材上に形成され、ニッケルで構成された下層と、前記下層上に形成され、ニッケル−錫合金で構成された中層と、前記中層上に形成され、銀−錫合金で構成された上層とを備え、前記上層の断面EDS深さ方向分析における銀−錫合金層内部の錫濃度変動が3質量%以内であり、かつ前記上層の平面方向の平均結晶粒径が0.001μm以上0.5μm以下である、表面処理金属材料である。 In one aspect, the present invention completed based on the above findings is a substrate, a lower layer formed on the substrate and made of nickel, and a lower layer formed on the lower layer and made of a nickel-tin alloy. An intermediate layer and an upper layer formed on the intermediate layer and composed of a silver-tin alloy, wherein the variation in tin concentration inside the silver-tin alloy layer in the cross-sectional EDS depth direction analysis of the upper layer is within 3% by mass. The surface-treated metal material has an average crystal grain size in the plane direction of the upper layer of 0.001 μm or more and 0.5 μm or less.

本発明の表面処理金属材料は一実施形態において、前記上層の銀−錫合金層における錫濃度が、5質量%以上25質量%以下である。 In one embodiment of the surface-treated metal material according to the present invention, the tin concentration in the upper silver-tin alloy layer is 5% by mass or more and 25% by mass or less.

本発明の表面処理金属材料は別の一実施形態において、前記下層の厚みが0.5μm以上3.0μm以下であり、前記中層の厚みが0.01μm以上0.10μm以下であり、前記上層の厚みが0.25μm以上1.0μm以下である。 In another embodiment of the surface-treated metal material of the present invention, the thickness of the lower layer is 0.5 μm or more and 3.0 μm or less, the thickness of the middle layer is 0.01 μm or more and 0.10 μm or less, and the thickness of the upper layer is The thickness is 0.25 μm or more and 1.0 μm or less.

本発明は別の一側面において、本発明の表面処理金属材料を備えた電子部品である。 The present invention, in another aspect, is an electronic component comprising the surface-treated metal material of the present invention.

本発明は更に別の一側面において、基材上にニッケル層を形成するステップと、前記ニッケル層上に銀−錫合金層を湿式めっきで形成するステップと、前記銀−錫合金層を形成した後に熱処理を行い、前記基材上にニッケルで構成された下層と、前記下層上にニッケル−錫合金で構成された中層と、前記中層上に銀−錫合金で構成された上層とを形成するステップとを備え、前記上層は、断面EDS深さ方向分析における銀−錫合金層内部の錫濃度変動が3質量%以内であって、平面方向の平均結晶粒径が0.001μm以上0.5μm以下である、表面処理金属材料の製造方法である。 In still another aspect of the present invention, a step of forming a nickel layer on a base material, a step of forming a silver-tin alloy layer on the nickel layer by wet plating, and a step of forming the silver-tin alloy layer. After that, heat treatment is performed to form a lower layer made of nickel on the base material, an intermediate layer made of a nickel-tin alloy on the lower layer, and an upper layer made of a silver-tin alloy on the intermediate layer. The upper layer has a variation in tin concentration within the silver-tin alloy layer of 3 mass% or less in a cross-sectional EDS depth direction analysis, and an average crystal grain size in the plane direction of 0.001 μm or more and 0.5 μm or less. The following is the method for producing a surface-treated metal material.

本発明の表面処理金属材料の製造方法は一実施形態において、前記熱処理が前記銀−錫合金の融点未満の温度で実行される。 In one embodiment of the method for producing a surface-treated metal material according to the present invention, the heat treatment is performed at a temperature lower than the melting point of the silver-tin alloy.

本発明によれば、均質に形成された表面処理層を有する表面処理金属材料を提供することができる。 According to the present invention, it is possible to provide a surface-treated metal material having a uniformly formed surface-treated layer.

本発明の実施形態に係る表面処理金属材料の断面模式図である。It is a cross-sectional schematic diagram of the surface treatment metal material which concerns on embodiment of this invention. Ag−Sn二元系状態図である。It is an Ag-Sn binary system phase diagram. TEMによる実施例1の断面観察写真である。It is a cross-sectional observation photograph of Example 1 by TEM.

<表面処理金属材料の構成>
従来、表面処理金属材料の基材上にSnやAgを設けて熱処理によって各種めっき層を形成することで、接触抵抗及び挿入力を低減させ、耐食性を向上させようとしていた。しかしながら本発明者らはこれら性能の更なる向上を検討していた。そこで、従来は表面処理金属材料を断面観察することでライン分析を行い、めっき品の評価をしていたが、表層(上層)内部における含有元素の変動が生じている点に着目した。このような現象が発生すると、上層における摺動特性の変動が発生し、特に挿抜端子等に使用した際に挿入力のばらつきが発生するものと考えた。このような点から、本発明者らは表面処理金属材料の上層内部の元素濃度変動、とくに錫成分の濃度変動に着目し、その内部における錫の変動を極力抑制するためのめっき構成、及び、そのための製造条件を見出した。以下、本発明の実施形態に係る表面処理金属材料について説明する。
<Structure of surface-treated metal material>
Conventionally, Sn or Ag is provided on a base material of a surface-treated metal material and various plating layers are formed by heat treatment to reduce contact resistance and insertion force and improve corrosion resistance. However, the present inventors have been studying further improvement of these performances. Therefore, conventionally, line analysis was performed by observing the cross-section of the surface-treated metal material to evaluate the plated product, but attention was paid to the fact that the content of elements contained inside the surface layer (upper layer) varied. When such a phenomenon occurs, it is considered that the sliding characteristics in the upper layer fluctuate, and the insertion force varies especially when used in an insertion/removal terminal or the like. From such a point, the present inventors pay attention to the element concentration variation inside the upper layer of the surface-treated metal material, particularly the concentration variation of the tin component, and the plating constitution for suppressing the tin variation inside the layer as much as possible, and The manufacturing conditions for that have been found. Hereinafter, the surface-treated metal material according to the embodiment of the present invention will be described.

図1に示すように、実施形態に係る表面処理金属材料10は、基材11上に下層12が形成され、下層12上に中層13が形成され、中層13上に上層14が形成されている。 As shown in FIG. 1, in the surface-treated metal material 10 according to the embodiment, a lower layer 12 is formed on a base material 11, a middle layer 13 is formed on the lower layer 12, and an upper layer 14 is formed on the middle layer 13. ..

(基材)
基材11としては、特に限定されないが、例えば、銅及び銅合金、鉄系材、ステンレス、チタン及びチタン合金、アルミニウム及びアルミニウム合金などの金属基材を用いることができる。
(Base material)
The base material 11 is not particularly limited, but for example, a metal base material such as copper and copper alloys, iron-based materials, stainless steel, titanium and titanium alloys, aluminum and aluminum alloys can be used.

(下層)
下層12はニッケル(Ni)で構成されており、厚みは0.5μm以上3.0μm以下に形成することができる。Niを用いて下層12を形成することで、硬い下層12形成により薄膜潤滑効果が向上して凝着磨耗が減少し、下層12は基材11の構成金属が上層14に拡散するのを防止して耐熱性やはんだ濡れ性などを向上させる。下層12の厚みが0.5μm未満であると、硬い下層による薄膜潤滑効果が低下して凝着磨耗が大きくなり、また基材11の構成金属が上層14に拡散しやすくなり、耐熱性やはんだ濡れ性が劣化するおそれがある。一方、下層12の厚みは3.0μmを超えると曲げ加工性が悪くなるおそれがある。下層12の厚みは上記範囲において制御することで機能を発揮するが、生産性や省資源化の観点からも0.5μm以上2.0μm以下であるのが好ましい。
(Underlayer)
The lower layer 12 is made of nickel (Ni) and can be formed to have a thickness of 0.5 μm or more and 3.0 μm or less. By forming the lower layer 12 using Ni, the hard lower layer 12 improves the thin film lubrication effect and reduces the cohesive wear, and the lower layer 12 prevents the constituent metals of the base material 11 from diffusing into the upper layer 14. Improve heat resistance and solder wettability. When the thickness of the lower layer 12 is less than 0.5 μm, the thin film lubrication effect due to the hard lower layer is reduced, the adhesive wear is increased, and the constituent metal of the base material 11 is easily diffused into the upper layer 14, resulting in heat resistance and soldering. Wettability may deteriorate. On the other hand, if the thickness of the lower layer 12 exceeds 3.0 μm, bending workability may be deteriorated. The thickness of the lower layer 12 exerts its function by controlling in the above range, but it is preferably 0.5 μm or more and 2.0 μm or less from the viewpoint of productivity and resource saving.

(中層)
中層13はニッケル−錫(Ni−Sn)合金、主にNi3Sn4の金属間化合物で構成されており、厚みは0.01μm以上0.10μm以下に形成することができる。中層13がNi3Sn4合金で構成されていることで、塩素ガス、亜硫酸ガス、硫化水素ガス等のガスに対する耐食性に優れ、基材11の構成金属が上層14に拡散するのを防止し、耐熱性試験やはんだ濡れ性劣化を抑制するなどの耐久性を向上させる。なお、本発明においては、上層の結晶粒径を制御することにより摺動性向上の効果を付与できることから、中層13の厚みの下限は0.01μmで十分効果を達成することができる。中層13の厚みが0.01μm未満であると耐熱性が劣化する可能性がある。一方、中層13の厚みが0.10μmを超えると曲げ加工性が悪くなるおそれがある。中層13の厚みは上記範囲において制御することで機能を発揮するが、生産性や省資源化の観点からも中層13の厚みは0.015μm以上0.08μm以下であるのが好ましい。
(Middle layer)
Middle 13 nickel - tin (Ni-Sn) alloy, which consists mainly of Ni 3 Sn intermetallic compound 4, the thickness may be formed to 0.01μm or 0.10μm or less. Since the middle layer 13 is made of a Ni 3 Sn 4 alloy, it has excellent corrosion resistance to gases such as chlorine gas, sulfurous acid gas, and hydrogen sulfide gas, and prevents the constituent metals of the base material 11 from diffusing into the upper layer 14, Improve durability such as heat resistance test and suppression of solder wettability deterioration. In the present invention, since the effect of improving the slidability can be imparted by controlling the crystal grain size of the upper layer, the lower limit of the thickness of the middle layer 13 can be sufficient to achieve the effect. If the thickness of the intermediate layer 13 is less than 0.01 μm, the heat resistance may deteriorate. On the other hand, when the thickness of the intermediate layer 13 exceeds 0.10 μm, bending workability may be deteriorated. The thickness of the middle layer 13 exerts its function by controlling in the above range, but from the viewpoint of productivity and resource saving, the thickness of the middle layer 13 is preferably 0.015 μm or more and 0.08 μm or less.

(上層)
上層14は銀−錫(Ag−Sn)合金で構成されており、厚みは0.25μm以上1.0μm以下に形成することができる。上層14がAg−Sn合金で構成されていることで、塩素ガス、亜硫酸ガス、硫化水素ガス等のガスに対する耐食性が良好となり、接触抵抗が低下する。上層14の厚みが0.25μm未満であると、基材11や下層12の組成が上層14側に拡散しやすくなって耐熱性が悪くなるおそれがある。また微摺動によって上層14が磨耗し、接触抵抗の高い下層12が露出しやすくなるため耐微摺動磨耗性が悪く、微摺動によって接触抵抗が上昇しやすくなる。一方、上層14の厚みが1.0μmを超えると、硬い基材11または下層12による薄膜潤滑効果が低下して凝着磨耗が大きくなるおそれがある。また機械的耐久性が低下して、めっき削れが発生しやすくなるおそれがある。なお、本発明における上層14の厚みは、従来と比較して厚い範囲でも好適な範囲となっているが、これは結晶粒径の微細化により厚みが厚くなっても下層12や中層13の潤滑効果を発揮しやすく、かつ結晶粒微細化により耐摩耗性が向上される状態を形成できていることから、従来よりも厚い膜厚でも好適に使用できる。上層14の厚みは上記範囲において制御することで機能を発揮するが、生産性や省資源化の観点からも0.3μm以上0.8μm以下であるのが好ましい。
(Upper layer)
The upper layer 14 is composed of a silver-tin (Ag—Sn) alloy and can be formed to have a thickness of 0.25 μm or more and 1.0 μm or less. Since the upper layer 14 is made of an Ag—Sn alloy, the corrosion resistance to gases such as chlorine gas, sulfurous acid gas and hydrogen sulfide gas becomes good, and the contact resistance decreases. When the thickness of the upper layer 14 is less than 0.25 μm, the composition of the base material 11 and the lower layer 12 is likely to diffuse to the upper layer 14 side, and the heat resistance may deteriorate. Moreover, since the upper layer 14 is worn by the fine sliding and the lower layer 12 having a high contact resistance is easily exposed, the fine sliding wear resistance is poor, and the fine sliding tends to increase the contact resistance. On the other hand, if the thickness of the upper layer 14 exceeds 1.0 μm, the thin film lubrication effect of the hard base material 11 or the lower layer 12 may be deteriorated, and the cohesive wear may be increased. In addition, mechanical durability may be deteriorated and plating scraping may easily occur. In addition, the thickness of the upper layer 14 in the present invention is in a preferable range even in a thicker range as compared with the conventional one, but this is because even if the thickness is increased due to the refinement of the crystal grain size, the lower layer 12 and the middle layer 13 are lubricated. Since the effect can be easily exhibited and the state in which the wear resistance is improved by the crystal grain refinement can be formed, it can be suitably used even in a film thickness thicker than the conventional one. The thickness of the upper layer 14 exerts its function by controlling in the above range, but it is preferably 0.3 μm or more and 0.8 μm or less from the viewpoint of productivity and resource saving.

本発明におけるAg−Sn合金層からなる上層14の断面EDS深さ方向分析における銀−錫合金層内部の錫濃度変動が3質量%以内である。深さ方向の濃度変動が存在すると、上層14内において深さ方向での特性差異が生じる。その結果、例えば、表面処理金属材料10の使用に伴い、上層が徐々に減耗し、特性が変化してしまう。Ag−Sn合金層からなる上層14の断面EDS深さ方向分析における銀−錫合金層内部の錫濃度変動が3質量%を超えて存在すると、上層14内において深さ方向での特性差異が生じ、例えば使用に伴う挿入力のばらつきが大きくなり、また、接触抵抗も使用に伴いばらつきが生じることがある。従って、Ag−Sn合金層からなる上層14の断面EDS深さ方向分析における銀−錫合金層内部の錫濃度変動は3質量%以内の変動幅において制御している。上層14の深さ方向の濃度変動が解消されることにより、摺動特性の層内差異が低減でき、均一で特性に優れた上層14を得ることができる。また、より特性差異を抑制するためにAg−Sn合金層からなる上層14の断面EDS深さ方向分析における銀−錫合金層内部の錫濃度変動は2質量%以内で制御することが好ましい。 The variation in tin concentration inside the silver-tin alloy layer in the cross-sectional EDS depth direction analysis of the upper layer 14 made of the Ag-Sn alloy layer in the present invention is within 3 mass %. The presence of the concentration fluctuation in the depth direction causes a characteristic difference in the depth direction in the upper layer 14. As a result, for example, when the surface-treated metal material 10 is used, the upper layer is gradually worn away and the characteristics change. When the tin concentration variation in the silver-tin alloy layer in the cross-sectional EDS depth direction analysis of the upper layer 14 made of the Ag—Sn alloy layer exceeds 3 mass %, a characteristic difference in the depth direction occurs in the upper layer 14. For example, the variation of the insertion force may increase with use, and the contact resistance may also vary with use. Therefore, the tin concentration variation in the silver-tin alloy layer in the cross-sectional EDS depth direction analysis of the upper layer 14 made of the Ag-Sn alloy layer is controlled within the variation range of 3 mass% or less. By eliminating the concentration fluctuation in the depth direction of the upper layer 14, it is possible to reduce the difference in the sliding characteristics between layers, and it is possible to obtain the upper layer 14 that is uniform and has excellent characteristics. Further, in order to further suppress the characteristic difference, it is preferable to control the tin concentration variation inside the silver-tin alloy layer in the cross-sectional EDS depth direction analysis of the upper layer 14 made of the Ag—Sn alloy layer within 2 mass %.

本発明における上層14の平面方向の平均結晶粒径が0.001μm以上0.5μm以下である。上層14の平面方向の平均結晶粒径を0.001μm以上0.5μm以下に制御することで、結晶粒微細化における耐摩耗性向上効果が高まり、より一層摺動特性が向上する。摺動特性が向上することで、例えばコネクタやプレスフィット端子などに使用した際に、摺動性に優れた電子部品を提供することができる。平均結晶粒径が0.001μm未満は現実的ではなく、また0.5μm以上となると凝着摩耗により摺動特性が低下することから、上記範囲で製造することが好ましく、より好ましくは0.05μm以上0.4μm以下であり、さらにより好ましくは0.1μm以上0.35μm以下である。 The average crystal grain size in the plane direction of the upper layer 14 in the present invention is 0.001 μm or more and 0.5 μm or less. By controlling the average crystal grain size in the plane direction of the upper layer 14 to be 0.001 μm or more and 0.5 μm or less, the effect of improving the wear resistance in refining the crystal grains is enhanced, and the sliding characteristics are further improved. By improving the sliding characteristics, it is possible to provide an electronic component having excellent slidability when used in, for example, a connector or a press-fit terminal. If the average crystal grain size is less than 0.001 μm, it is not realistic, and if it is 0.5 μm or more, the sliding characteristics are deteriorated due to cohesive wear. Therefore, it is preferable to manufacture in the above range, more preferably 0.05 μm. Or more and 0.4 μm or less, and even more preferably 0.1 μm or more and 0.35 μm or less.

〈上層の平面方向の平均結晶粒径の測定方法〉
なお、上層14の平面方向の平均結晶粒径の測定方法であるが、表面処理金属材料10をFIBにて断面加工し、上層14の膜厚方向の中心部において、平面方向に直線を3μm引いた時のその線分を、結晶粒が完全に切断される個数で除した数を算出した値(線分の両端は合わせて1個とする)を採用する。これは、厚さ方向の結晶粒径は膜厚によって依存してしまうことから、本発明における結晶粒径は平面方向の平均結晶粒径が摺動特性や挿抜性に寄与することを見出したことによる。測定回数については特に規定するものではないが、任意の5か所を観察し、その平均値を算出することが好ましい。
<Method of measuring average crystal grain size in the plane direction of the upper layer>
The method for measuring the average crystal grain size in the plane direction of the upper layer 14 is as follows. The surface-treated metal material 10 is cross-section processed by FIB, and a straight line of 3 μm is drawn in the plane direction at the center of the upper layer 14 in the film thickness direction. The value obtained by dividing the line segment when the crystal grain is completely cut by the number of completely cut crystal grains (the total number of the ends of the line segment is one) is adopted. This is because the crystal grain size in the thickness direction depends on the film thickness, and thus the crystal grain size in the present invention was found to be that the average crystal grain size in the plane direction contributes to sliding characteristics and insertability/extractability. by. The number of times of measurement is not particularly specified, but it is preferable to observe five arbitrary points and calculate the average value.

〈上層のAg−Sn合金層におけるSn濃度〉
さらに、上層14のAg−Sn合金層におけるSn濃度は、5質量%以上25質量%以下であることが好ましい。上層14のAg−Sn合金層におけるSn濃度が5質量%未満であると耐硫化変色性に乏しくなり、一方で25質量%を超えるとSnの酸化による接触抵抗増加の可能性がある。上層14に形成されるAg−Sn合金層のSn濃度は上記範囲で制御することが好ましく、10質量%以上20質量%以下であることがさらに好ましい。
<Sn concentration in the upper Ag-Sn alloy layer>
Furthermore, the Sn concentration in the Ag—Sn alloy layer of the upper layer 14 is preferably 5% by mass or more and 25% by mass or less. When the Sn concentration in the Ag—Sn alloy layer of the upper layer 14 is less than 5% by mass, the sulfidation discoloration resistance becomes poor, while when it exceeds 25% by mass, the contact resistance may increase due to the oxidation of Sn. The Sn concentration of the Ag—Sn alloy layer formed on the upper layer 14 is preferably controlled within the above range, and more preferably 10% by mass or more and 20% by mass or less.

<表面処理金属材料の製造方法>
本発明の実施形態に係る表面処理金属材料の製造方法は、基材11上にニッケル層を形成するステップと、ニッケル層上に銀−錫合金層を湿式めっきで形成するステップと、銀−錫合金層を形成した後に熱処理を行い、基材11上にニッケルで構成された下層12と、下層12上にニッケル−錫合金で構成された中層13と、中層13上に銀−錫合金で構成された上層14とを形成するステップとを備える。上層14に形成されるAg−Sn合金を湿式めっきで形成すると、均質にAg−Sn合金成分で上層14を形成できるため大変好ましい。また、上層14に形成されるAg−Sn合金を湿式めっきで形成した後、熱処理を行うことにより、上層14のAg−Sn合金層および中層13のNi−Sn合金層を所望の厚さ及び均一な組成にて形成できるため、製造方法として大変好ましい。なお、熱処理温度については、Ag−Sn合金の融点未満で実施することで再結晶化を抑制することができることから、上層14のめっき条件および熱処理温度および熱処理時間により平均結晶粒径を所望の大きさに制御することができる。熱処理温度に関しては、融点未満の処理であれば特に限定するものではないが、図2に示すAg−Sn二元系状態図に基づき、融点の1/2以上9/10以下が好ましく、特に融点の3/4以上4/5以下がより好ましい。より具体的な熱処理温度としては、240〜480℃が好ましく、288〜384℃がより好ましい。また熱処理時間については特に指定はないが、短時間すぎると中層の厚みが不十分となり、また長すぎると上層の結晶粒径が大きくなり0.5μm以上となる懸念があることから、好ましくは1〜120秒であり、より好ましくは5〜60秒である。
<Method for producing surface-treated metal material>
A method of manufacturing a surface-treated metal material according to an embodiment of the present invention includes a step of forming a nickel layer on a base material 11, a step of forming a silver-tin alloy layer on the nickel layer by wet plating, and a step of silver-tin. After forming the alloy layer, heat treatment is performed to form a lower layer 12 made of nickel on the base material 11, a middle layer 13 made of a nickel-tin alloy on the lower layer 12, and a silver-tin alloy made on the middle layer 13. Forming a top layer 14 that has been formed. It is very preferable to form the Ag—Sn alloy formed in the upper layer 14 by wet plating, because the upper layer 14 can be formed uniformly with the Ag—Sn alloy component. In addition, after the Ag—Sn alloy formed in the upper layer 14 is formed by wet plating, heat treatment is performed to form the Ag—Sn alloy layer of the upper layer 14 and the Ni—Sn alloy layer of the middle layer 13 with a desired thickness and uniform thickness. Since it can be formed with various compositions, it is very preferable as a manufacturing method. Regarding the heat treatment temperature, since recrystallization can be suppressed by performing the heat treatment at a temperature lower than the melting point of the Ag—Sn alloy, the average crystal grain size can be set to a desired value depending on the plating conditions of the upper layer 14, the heat treatment temperature, and the heat treatment time. Can be controlled. The heat treatment temperature is not particularly limited as long as it is a treatment below the melting point, but based on the Ag-Sn binary system phase diagram shown in FIG. Is more preferably 3/4 or more and 4/5 or less. As a more specific heat treatment temperature, 240 to 480°C is preferable, and 288 to 384°C is more preferable. The heat treatment time is not particularly specified, but if the time is too short, the thickness of the middle layer will be insufficient, and if it is too long, the crystal grain size of the upper layer will be large and may be 0.5 μm or more. ~120 seconds, more preferably 5~60 seconds.

熱処理後に後述のリン酸エステル系の液を使用した後処理を行ってもよい。または、熱処理前に後述のリン酸エステル系の液を使用した後処理を行った後、熱処理を行ってもよい。当該後処理(表面処理)は、めっき材の上層14表面を、1種又は2種以上のリン酸エステルと、環状有機化合物の1種又は2種以上とを含有する水溶液(リン酸エステル系液とよぶ)を用いて行うことが望ましい。リン酸エステル系液に添加されるリン酸エステルは、めっきの酸化防止剤および潤滑剤としての機能を果たす。本発明に使用されるリン酸エステルは、一般式〔1〕および〔2〕で表される。一般式〔1〕で表される化合物のうち好ましいものを挙げると、ラウリル酸性リン酸モノエステルなどがある。一般式〔2〕で表される化合物のうち好ましいものを挙げると、ラウリル酸性リン酸ジエステルなどがある。 After the heat treatment, a post-treatment using a phosphoric acid ester-based liquid described below may be performed. Alternatively, the heat treatment may be performed after a post-treatment using a phosphoric acid ester-based liquid described later before the heat treatment. The post-treatment (surface treatment) is an aqueous solution (phosphoric acid ester-based liquid) containing the one or more kinds of phosphoric acid ester and one or more kinds of cyclic organic compounds on the surface of the upper layer 14 of the plated material. It is desirable to do so. The phosphoric acid ester added to the phosphoric acid ester-based liquid serves as an antioxidant and a lubricant for plating. The phosphoric acid ester used in the present invention is represented by the general formulas [1] and [2]. Preferred examples of the compound represented by the general formula [1] include lauryl acid phosphoric acid monoester. Preferred examples of the compound represented by the general formula [2] include lauryl acid phosphoric acid diester.

(式〔1〕、〔2〕において、R1およびR2はそれぞれ置換アルキルを表し、Mは水素又はアルカリ金属を表す。) (In the formulas [1] and [2], R 1 and R 2 each represent a substituted alkyl, and M represents hydrogen or an alkali metal.)

リン酸エステル系液に添加される環状有機化合物は、めっきの酸化防止剤としての機能を果たす。本発明に使用される環状有機化合物の群を一般式〔3〕および〔4〕で表す。一般式〔3〕および〔4〕で表す環状有機化合物群のうち好ましいものを挙げると、例えばメルカプトベンゾチアゾール、メルカプトベンゾチアゾールのNa塩、メルカプトベンゾチアゾールのK塩、ベンゾトリアゾール、1−メチルトリアゾール、トリルトリアゾール、トリアジン系化合物などがある。 The cyclic organic compound added to the phosphoric acid ester-based liquid functions as an antioxidant for plating. The group of cyclic organic compounds used in the present invention is represented by the general formulas [3] and [4]. Preferred examples of the cyclic organic compound group represented by the general formulas [3] and [4] include, for example, mercaptobenzothiazole, Na salt of mercaptobenzothiazole, K salt of mercaptobenzothiazole, benzotriazole, 1-methyltriazole, Examples include tolyltriazole and triazine compounds.

(式〔3〕、〔4〕中、R1は水素、アルキル、または置換アルキルを表し、R2はアルカリ金属、水素、アルキル、または置換アルキルを表し、R3はアルカリ金属または水素を表し、R4は−SH、アルキル基かアリール基で置換されたアミノ基、またはアルキル置換イミダゾリルアルキルを表し、R5およびR6は−NH2、−SHまたは−SM(Mはアルカリ金属を表す)を表す。) (In the formulas [3] and [4], R 1 represents hydrogen, alkyl, or substituted alkyl, R 2 represents alkali metal, hydrogen, alkyl, or substituted alkyl, R 3 represents alkali metal or hydrogen, R 4 represents —SH, an amino group substituted with an alkyl group or an aryl group, or an alkyl-substituted imidazolylalkyl, and R 5 and R 6 represent —NH 2 , —SH or —SM (M represents an alkali metal). Represents.)

<表面処理金属材料の用途>
本発明の実施形態に係る表面処理金属材料の用途は特に限定しないが、摺動特性が優れていることからその特徴を生かすことのできる表面処理金属材料が好ましい。例えば表面処理金属材料を接点部分に用いたコネクタ端子、FFC端子またはFPC端子、外部接続用電極に用いた電子部品などが挙げられる。なお、端子については、圧着端子、はんだ付け端子、プレスフィット端子等、配線側との接合方法によらない。外部接続用電極には、タブに表面処理を施した接続部品や半導体のアンダーバンプメタル用に表面処理を施した材料などがある。また、このように形成されたコネクタ端子を用いてコネクタを作製しても良く、FFC端子またはFPC端子を用いてFFCまたはFPCを作製しても良い。また本発明の実施形態に係る表面処理金属材料は、ハウジングに取り付ける装着部の一方側にメス端子接続部が、他方側に基板接続部がそれぞれ設けられ、該基板接続部を基板に形成されたスルーホールに圧入して該基板に取り付ける圧入型端子に用いても良い。コネクタはオス端子とメス端子の両方が本発明の実施形態に係る表面処理金属材料であっても良いし、オス端子またはメス端子の片方だけであっても良い。なおオス端子とメス端子の両方を本発明の実施形態に係る表面処理金属材料にすることで、更に低挿抜性が向上する。さらには往復摺動性が要求される摺動接点などにも好適に使用することができる。
<Applications of surface-treated metal materials>
The use of the surface-treated metal material according to the embodiment of the present invention is not particularly limited, but a surface-treated metal material that has excellent sliding characteristics and can utilize its characteristics is preferable. For example, a connector terminal using a surface-treated metal material for a contact portion, an FFC terminal or an FPC terminal, an electronic component used for an external connection electrode, and the like can be given. The terminals do not depend on the method of joining with the wiring side, such as crimp terminals, soldering terminals, press-fit terminals, and the like. Examples of the external connection electrode include a connection component whose tab is surface-treated and a surface-treated material for a semiconductor under bump metal. Further, a connector may be manufactured using the connector terminal thus formed, and an FFC or FPC may be manufactured using FFC terminals or FPC terminals. Further, in the surface-treated metal material according to the embodiment of the present invention, the female terminal connecting portion is provided on one side of the mounting portion to be attached to the housing, and the board connecting portion is provided on the other side, and the board connecting portion is formed on the board. It may be used as a press-fitting type terminal that is press-fitted into the through hole and attached to the substrate. In the connector, both the male terminal and the female terminal may be the surface-treated metal material according to the embodiment of the present invention, or only one of the male terminal and the female terminal may be used. By using the surface-treated metal material according to the embodiment of the present invention for both the male terminal and the female terminal, the low mating/unmating property is further improved. Furthermore, it can be suitably used for sliding contacts that require reciprocal sliding properties.

以下、本発明の実施例と比較例を共に示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。 Hereinafter, both Examples and Comparative Examples of the present invention will be shown, but these are provided for better understanding of the present invention and are not intended to limit the present invention.

<表面処理金属材料の作製>
実施例1〜19、比較例1〜2として、以下の条件で、基材(幅20mm、長さ80mm、厚み0.64mmの黄銅板)の表面に、Niめっき、Ag−Sn合金めっき、さらに熱処理およびリン酸エステル系液処理の順で表面処理を行った。
比較例3として、実施例1と同様に基材の表面に、Niめっき、Ag−Sn合金めっきを形成した後、熱処理をしないで、同様にリン酸エステル系液処理を行った。
従来例1として、上記条件のうち、Niめっき後のAg−Sn合金めっきに替えてAgめっき、Snめっきの順で表面処理を行った。従来例2として、従来例1の条件のうち、Snめっきは施工せずAgめっきのみとし、熱処理を省略して表面処理を行った。
表1に各実施例、従来例、比較例のめっき厚さ、及び熱処理条件を示す。
<Production of surface-treated metal material>
As Examples 1 to 19 and Comparative Examples 1 and 2, Ni plating, Ag-Sn alloy plating, and further on the surface of the base material (width 20 mm, length 80 mm, thickness 0.64 mm) under the following conditions: The surface treatment was performed in the order of heat treatment and phosphoric ester solution treatment.
As Comparative Example 3, after the Ni plating and the Ag—Sn alloy plating were formed on the surface of the substrate in the same manner as in Example 1, the phosphoric acid ester-based liquid treatment was similarly performed without heat treatment.
As Conventional Example 1, of the above conditions, surface treatment was performed in the order of Ag plating and Sn plating instead of Ag-Sn alloy plating after Ni plating. As Conventional Example 2, of the conditions of Conventional Example 1, Sn plating was not applied, only Ag plating was performed, and heat treatment was omitted to perform surface treatment.
Table 1 shows the plating thickness and heat treatment conditions of each example, conventional example, and comparative example.

(Niめっき条件)
表面処理方法:電気めっき
めっき液:スルファミン酸Ni(150g/l)+硼酸(30g/l)
めっき温度:55℃
電流密度:0.5〜4A/dm2
(Ni plating conditions)
Surface treatment method: Electroplating plating solution: Ni sulfamate (150 g/l) + boric acid (30 g/l)
Plating temperature: 55℃
Current density: 0.5-4 A/dm 2

(Ag−Snめっき条件)−実施例1〜19、比較例1〜3にのみ適用−
表面処理方法:電気めっき
めっき液:ロームアンドハース社製Ag−Sn合金めっき液 製品名:SILVERON GT−820
めっき温度:50℃
電流密度:1〜10A/dm2
(Ag-Sn plating conditions)-Applicable only to Examples 1 to 19 and Comparative Examples 1 to 3-
Surface treatment method: Electroplating Plating solution: Rohm and Haas Ag-Sn alloy plating solution Product name: SILVERON GT-820
Plating temperature: 50℃
Current density: 1 to 10 A/dm 2

(Agめっき条件)−従来例1〜2にのみ適用−
表面処理方法:電気めっき
めっき液:シアン化Ag(10g/l)+シアン化カリウム(30g/l)
めっき温度:40℃
電流密度:0.2〜4A/dm2
(Ag plating conditions)-Applicable only to Conventional Examples 1 and 2-
Surface treatment method: electroplating Plating solution: Ag cyanide (10 g/l) + potassium cyanide (30 g/l)
Plating temperature: 40℃
Current density: 0.2-4 A/dm 2

(Snめっき条件)−従来例1〜2にのみ適用−
表面処理方法:電気めっき
めっき液:メタンスルホン酸Sn(50g/l)+メタンスルホン酸(200g/l)
めっき温度:30℃
電流密度:5〜7A/dm2
(Sn plating conditions)-Applicable only to Conventional Examples 1 and 2-
Surface treatment method: electroplating Plating solution: methanesulfonic acid Sn (50 g/l) + methanesulfonic acid (200 g/l)
Plating temperature: 30℃
Current density: 5-7 A/dm 2

(熱処理)−実施例1〜19、比較例1〜2、従来例1にのみ適用−
上記めっき後の試料に対し、表1に示す温度、及び処理時間にて熱処理を実施した。なお熱処理雰囲気はすべて大気雰囲気とした。
(Heat Treatment)-Applicable only to Examples 1 to 19, Comparative Examples 1 and 2, and Conventional Example 1-
Heat treatment was performed on the sample after plating at the temperature and the treatment time shown in Table 1. The heat treatment atmosphere was all air atmosphere.

(リン酸エステル系液処理)
上記熱処理後、めっき表面に以下のリン酸エステル種及び環状有機化合物種を用いて以下の条件にてリン酸エステル系液処理を行った。
・リン酸エステル種:ラウリル酸性リン酸モノエステル(リン酸モノラウリルエステル)
・環状有機化合物種:ベンゾトリアゾール
・電解条件:2Vで5秒陽極電解
(Phosphate ester liquid treatment)
After the heat treatment, the phosphoric acid ester type liquid treatment was performed on the plating surface using the following phosphoric acid ester species and cyclic organic compound species under the following conditions.
・Phosphoric acid ester type: lauryl acid phosphoric acid monoester (phosphoric acid monolauryl ester)
-Cyclic organic compound species: benzotriazole-Electrolysis conditions: 2 V, 5 seconds anodic electrolysis

<評価>
・下層の厚み測定
下層の厚みは、蛍光X線膜厚計(Seiko Instruments製 SEA5100、コリメータ0.1mmΦ)で測定した。
下層の厚み測定は、任意の10点について評価を行って平均化した。
<Evaluation>
-Measurement of thickness of lower layer The thickness of the lower layer was measured with a fluorescent X-ray film thickness meter (SEA5100 manufactured by Seiko Instruments, collimator 0.1 mmΦ).
The measurement of the thickness of the lower layer was carried out by averaging by evaluating arbitrary 10 points.

・表層及び上層及び中層の構造[組成]の決定及び厚み測定
得られた試料の上層及び中層の構造の決定及び厚み測定は、STEM(走査型電子顕微鏡)分析による線分析で行った。厚みは、線分析(または面分析)から求めた距離に対応する。STEM装置は、日本電子株式会社製JEM−2100Fを用いた。本装置の加速電圧は200kVである。
また、得られた試料の上層及び中層の構造の決定及び厚み測定は、任意の10点について評価を行って平均化した。表層の厚みは上層及び中層の厚みと同様に測定した。
また、実施例1〜19、従来例1、および比較例1〜2は、いずれも中層がNi3Sn4合金で構成されていた。上層は実施例16および17がAg−Sn固溶体、実施例1〜15および18、比較例1〜2はAg15Sn2合金およびAg3Sn合金の混合体、実施例19および従来例1はAg3Sn合金、従来例2はAgめっき、比較例3はAg−Snめっきで構成されていた。
-Determination of structure [composition] of surface layer and upper layer and middle layer and thickness measurement The structure and thickness measurement of the upper layer and middle layer of the obtained sample were determined by line analysis by STEM (scanning electron microscope) analysis. The thickness corresponds to the distance obtained from the line analysis (or surface analysis). As the STEM device, JEM-2100F manufactured by JEOL Ltd. was used. The acceleration voltage of this device is 200 kV.
Further, the determination of the structures of the upper layer and the middle layer of the obtained sample and the measurement of the thickness were performed at arbitrary 10 points and averaged. The thickness of the surface layer was measured in the same manner as the thicknesses of the upper layer and the middle layer.
In Examples 1-19, Conventional Example 1, and Comparative Examples 1 and 2 are both middle was configured with Ni 3 Sn 4 alloy. In the upper layer, Examples 16 and 17 are Ag-Sn solid solutions, Examples 1 to 15 and 18, Comparative Examples 1 and 2 are a mixture of Ag 15 Sn 2 alloy and Ag 3 Sn alloy, and Example 19 and Conventional Example 1 are Ag. 3 Sn alloy, Conventional Example 2 was composed of Ag plating, and Comparative Example 3 was composed of Ag-Sn plating.

・上層の断面EDS深さ方向分析における銀−錫合金層内部の錫濃度変動の評価
内部の錫濃度変動においては、前記TEM用薄片において、深さ方向にEDS分析により厚さ方向の錫濃度を0.05μm間隔で実施し、その濃度変動を「最大値−最小値」として定義し評価した。
Evaluation of variation in tin concentration inside the silver-tin alloy layer in cross-sectional EDS depth direction analysis of upper layer Regarding variation in internal tin concentration, the tin concentration in the thickness direction of the TEM flakes was determined by EDS analysis in the depth direction. The measurement was carried out at intervals of 0.05 μm, and the concentration fluctuation was defined as “maximum value-minimum value” and evaluated.

・挿入力
挿入力は、市販のSnリフローめっきメス端子(090型住友TS/矢崎090IIシリーズメス端子非防水/F090−SMTS)を用いてめっきを施したオス端子と挿抜試験することによって評価した。
試験に用いた測定装置は、アイコーエンジニアリング製1311NRであり、オスピンの摺動距離5mmで評価した。
なお、本開示において挿入力が1.4N未満である場合に、優れた挿入力であると定義して「○」を付し、さらに1.2N未満である場合に、より一層優れた挿入力であると定義して「◎」を付した。一方、1.4N以上である場合は、不可である定義として「×」を付した。
Insertion force The insertion force was evaluated by performing an insertion/extraction test with a plated male terminal using a commercially available Sn reflow plated female terminal (090 type Sumitomo TS/Yazaki 090II series female terminal non-waterproof/F090-SMTS).
The measuring device used for the test is 1311NR manufactured by Aiko Engineering Co., Ltd., and the sliding distance of the male pin was 5 mm.
In the present disclosure, when the insertion force is less than 1.4 N, it is defined as an excellent insertion force and marked with “◯”, and when it is less than 1.2 N, the insertion force is further improved. It was defined as and was attached with "◎". On the other hand, in the case of 1.4 N or more, “x” is added as a definition of being impossible.

・挿入力のばらつきについて
挿入力について、その測定値のばらつきを同上の装置より読み取り、±30%以内の変動である時を優として「◎」を付し、±40以内である時を良として「○」を付し、±50%以内である時を可として「△」を付し、±50%を超えるものを不可として「×」を付した。
・Regarding variation in insertion force Regarding the insertion force, the variation in the measured value is read from the same device as above, and when the variation is within ±30%, it is marked as "◎", and when it is within ±40, it is regarded as good. “O” was given, and when it was within ±50%, it was marked with “Δ”, and when it was within ±50%, it was marked with “×”.

・曲げ加工性について
曲げ加工性に関しては、板厚と同じ曲げ半径(0.64mm)にて圧延筋と直角方向に90°曲げ加工後、その頂点部を実体顕微鏡にて観察した。その観察により、曲げしわが小さいものを優として「◎」を付し、しわが大きいが割れには至っていないものを良として「○」を付し、わずかに割れているが基材が露出していないものを可として「△」を付し、割れが発生して基材が露出しているものを不可として「×」を付した。
Bending workability Regarding bending workability, after bending at 90° in the direction perpendicular to the rolling bar at the same bending radius (0.64 mm) as the plate thickness, the apex was observed with a stereomicroscope. From the observation, those with small bending wrinkles were marked as "◎", those with large wrinkles but not cracked were marked as "○", and there were slight cracks but the base material was exposed. Those that were not marked were marked with a “Δ”, and those with a crack that had exposed the base material were marked with a “X”.

・耐硫化性
耐硫化性は、下記の試験環境で評価した。耐硫化性の評価は、環境試験を終えた試験後の試料の外観である。
硫化水素ガス腐食試験
硫化水素濃度:10ppm
温度:40℃
湿度:80%RH
曝露時間:96h
なお、その外観観察により、まったく変色していないものを優として「◎」を付し、わずかに変色しているがその面積は5%未満であるものを良として「○」を付し、わずかに変色しておりその面積が5%以上20%未満のものを可として「△」を付し、変色が著しいもしくは面積が20%以上のものを不可として「×」を付した。
-Sulfidation resistance Sulfidation resistance was evaluated in the following test environment. The evaluation of sulfidation resistance is the appearance of the sample after the test that has completed the environmental test.
Hydrogen sulfide gas corrosion test Hydrogen sulfide concentration: 10ppm
Temperature: 40°C
Humidity: 80%RH
Exposure time: 96h
As a result of observation of the appearance, those that did not discolor at all were marked as "◎", and those that were slightly discolored but had an area of less than 5% were marked as "○" and slightly When the discoloration was 5% or more and less than 20%, the color was marked with "△", and when the color was significantly discolored or the area was 20% or more was marked with "X".

・接触抵抗
接触抵抗は四端子法(精密摺動試験機 CRS−G2050型 山崎精機研究所)にて接触荷重1Nで測定した。これは、従来の測定は3Nで測定しているが、より低荷重のコネクタや電気接点にて適応するためには、より低荷重での測定値における数値が重要であることから、本発明においては1N測定を適用している。試料として、めっき直後(初期)の試料を評価した。試料数は5個とし、各試料の最小値から最大値の範囲を採用した。
なお、本開示において接触抵抗が10mΩ以下である場合に、優れた接触抵抗であると定義して「○」を付し、さらに5mΩ未満である場合に、より一層すぐれた接触抵抗であると定義して「◎」を付した。一方、10mΩを超える場合は、不可である定義として「×」を付した。
Contact resistance The contact resistance was measured by a four-terminal method (precision sliding tester CRS-G2050 type Yamazaki Seiki Laboratory) with a contact load of 1N. This is because the conventional measurement is performed at 3N, but in order to adapt to a connector or an electrical contact with a lower load, the numerical value in the measured value under a lower load is important, so in the present invention. Applies a 1N measurement. As a sample, a sample immediately after plating (initial stage) was evaluated. The number of samples was 5, and the range from the minimum value to the maximum value of each sample was adopted.
In the present disclosure, when the contact resistance is 10 mΩ or less, it is defined as excellent contact resistance and is marked with “◯”, and when it is less than 5 mΩ, it is defined as even better contact resistance. Then, “◎” was added. On the other hand, in the case of exceeding 10 mΩ, “x” is added as a definition of being impossible.

実施例1〜19はいずれも挿入力が小さく、さらに挿入力ばらつきが良好に抑制されていた。
従来例1および比較例1、3は、上層におけるSn濃度の変動が大きいことに起因して、挿入力のばらつきが比較的大きかった。
比較例2は、上層における平面方向の平均結晶粒径が大きいことに起因して、挿入力が比較的大きかった。
図3にTEMによる実施例1の断面観察写真を示す。
In each of Examples 1 to 19, the insertion force was small and the variation in the insertion force was well suppressed.
In Conventional Example 1 and Comparative Examples 1 and 3, the variation in the Sn concentration in the upper layer was large, and therefore the variation in the insertion force was relatively large.
In Comparative Example 2, the insertion force was relatively large due to the large average crystal grain size in the plane direction in the upper layer.
FIG. 3 shows a cross-sectional observation photograph of Example 1 by TEM.

10 表面処理金属材料
11 基材
12 下層
13 中層
14 上層
10 Surface-treated metal material 11 Base material 12 Lower layer 13 Middle layer 14 Upper layer

Claims (6)

基材と、
前記基材上に形成され、ニッケルで構成された下層と、
前記下層上に形成され、ニッケル−錫合金で構成された中層と、
前記中層上に形成され、銀−錫合金で構成された上層と、
を備え、
前記上層の断面EDS深さ方向分析における銀−錫合金層内部の錫濃度変動が3質量%以内であり、かつ前記上層の平面方向の平均結晶粒径が0.001μm以上0.5μm以下である、表面処理金属材料。
Base material,
A lower layer formed on the base material and made of nickel,
An intermediate layer formed on the lower layer and composed of a nickel-tin alloy,
An upper layer formed on the middle layer and composed of a silver-tin alloy,
Equipped with
The variation in tin concentration inside the silver-tin alloy layer in the cross-sectional EDS depth direction analysis of the upper layer is within 3 mass %, and the average crystal grain size in the plane direction of the upper layer is 0.001 μm or more and 0.5 μm or less. , Surface treated metal materials.
前記上層の銀−錫合金層における錫濃度が、5質量%以上25質量%以下である、請求項1に記載の表面処理金属材料。 The surface-treated metal material according to claim 1, wherein the tin concentration in the upper silver-tin alloy layer is 5% by mass or more and 25% by mass or less. 前記下層の厚みが0.5μm以上3.0μm以下であり、前記中層の厚みが0.01μm以上0.10μm以下であり、前記上層の厚みが0.25μm以上1.0μm以下である、請求項1または2に記載の表面処理金属材料。 The thickness of the lower layer is 0.5 μm or more and 3.0 μm or less, the thickness of the middle layer is 0.01 μm or more and 0.10 μm or less, and the thickness of the upper layer is 0.25 μm or more and 1.0 μm or less. The surface-treated metal material as described in 1 or 2. 請求項1〜3のいずれか1項に記載の表面処理金属材料を備えた電子部品。 An electronic component comprising the surface-treated metal material according to claim 1. 基材上にニッケル層を形成するステップと、
前記ニッケル層上に銀−錫合金層を湿式めっきで形成するステップと、
前記銀−錫合金層を形成した後に熱処理を行い、前記基材上にニッケルで構成された下層と、前記下層上にニッケル−錫合金で構成された中層と、前記中層上に銀−錫合金で構成された上層とを形成するステップと、
を備え、
前記上層は、
断面EDS深さ方向分析における銀−錫合金層内部の錫濃度変動が3質量%以内であって、
平面方向の平均結晶粒径が0.001μm以上0.5μm以下である、表面処理金属材料の製造方法。
Forming a nickel layer on the substrate,
Forming a silver-tin alloy layer on the nickel layer by wet plating;
After forming the silver-tin alloy layer, heat treatment is performed to form a lower layer made of nickel on the base material, a middle layer made of a nickel-tin alloy on the lower layer, and a silver-tin alloy on the middle layer. Forming an upper layer composed of
Equipped with
The upper layer is
The variation in the tin concentration inside the silver-tin alloy layer in the cross-sectional EDS depth direction analysis is within 3% by mass,
A method for producing a surface-treated metal material, wherein an average crystal grain size in a plane direction is 0.001 μm or more and 0.5 μm or less.
前記熱処理は、前記銀−錫合金の融点未満の温度で実行される、請求項5に記載の表面処理金属材料の製造方法。 The method for producing a surface-treated metal material according to claim 5, wherein the heat treatment is performed at a temperature lower than the melting point of the silver-tin alloy.
JP2019003888A 2019-01-11 2019-01-11 Surface-treatment metallic material, production method of surface-treatment metallic material, and electronic component Pending JP2020111796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019003888A JP2020111796A (en) 2019-01-11 2019-01-11 Surface-treatment metallic material, production method of surface-treatment metallic material, and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019003888A JP2020111796A (en) 2019-01-11 2019-01-11 Surface-treatment metallic material, production method of surface-treatment metallic material, and electronic component

Publications (1)

Publication Number Publication Date
JP2020111796A true JP2020111796A (en) 2020-07-27

Family

ID=71666631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019003888A Pending JP2020111796A (en) 2019-01-11 2019-01-11 Surface-treatment metallic material, production method of surface-treatment metallic material, and electronic component

Country Status (1)

Country Link
JP (1) JP2020111796A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021182240A1 (en) * 2020-03-11 2021-09-16 株式会社オートネットワーク技術研究所 Metal material, connection terminal, and method for producing metal material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11350189A (en) * 1998-06-03 1999-12-21 Furukawa Electric Co Ltd:The Material for electrical and electronic parts, its production and electrical and electronic parts using the material
WO2004059042A1 (en) * 2002-12-26 2004-07-15 Ebara Corporation Lead-free bump and method for forming the same
JP2006206945A (en) * 2005-01-27 2006-08-10 Toyo Kohan Co Ltd SURFACE-TREATED Al SHEET HAVING EXCELLENT SOLDERABILITY WITH LOW MELTING POINT
US20160268709A1 (en) * 2015-03-14 2016-09-15 Diehl Metal Applications Gmbh Press-fit pin and coating method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11350189A (en) * 1998-06-03 1999-12-21 Furukawa Electric Co Ltd:The Material for electrical and electronic parts, its production and electrical and electronic parts using the material
WO2004059042A1 (en) * 2002-12-26 2004-07-15 Ebara Corporation Lead-free bump and method for forming the same
JP2006206945A (en) * 2005-01-27 2006-08-10 Toyo Kohan Co Ltd SURFACE-TREATED Al SHEET HAVING EXCELLENT SOLDERABILITY WITH LOW MELTING POINT
US20160268709A1 (en) * 2015-03-14 2016-09-15 Diehl Metal Applications Gmbh Press-fit pin and coating method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021182240A1 (en) * 2020-03-11 2021-09-16 株式会社オートネットワーク技術研究所 Metal material, connection terminal, and method for producing metal material
JP2021143363A (en) * 2020-03-11 2021-09-24 株式会社オートネットワーク技術研究所 Metal material, connection terminal, and method of producing metal material
JP7359046B2 (en) 2020-03-11 2023-10-11 株式会社オートネットワーク技術研究所 Metal materials, connection terminals, and metal material manufacturing methods

Similar Documents

Publication Publication Date Title
JP6050664B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
KR101639994B1 (en) Surface-treated plated material and method for producing same, and electronic component
JP5427945B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
WO2014017238A1 (en) Metal material for electronic components, method for producing same, connector terminal using same, connector and electronic component
JP6029435B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP6267404B1 (en) Surface treatment plating material, connector terminal, connector, FFC terminal, FFC, FPC and electronic parts
KR20190117596A (en) Metal materials for electronic components and manufacturing methods thereof, connector terminals, connectors and electronic components using the same
JP5980746B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP5275504B1 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP2018123422A (en) Surface treatment plating material, connector terminal, connector, ffc terminal, ffc, fpc and electronic part
JP2015045058A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015045045A (en) Electronic-component metallic material and method for producing the same, and connector terminal, connector and electronic component using the same
JP2015046268A (en) Electronic-component metallic material and method for producing the same, and connector terminal, connector and electronic component using the same
JP6012564B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP2020111796A (en) Surface-treatment metallic material, production method of surface-treatment metallic material, and electronic component
JP2015045053A (en) Metallic material for electronic component, method for producing the same, and connector terminal, connector and electronic component using the same
JP2015045044A (en) Metallic material for electronic component, method for producing the same,and connector terminal, connector and electronic component using the same
JP2015045042A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2014139345A (en) Surface treatment plated material and production method of the same, and electronic component
JP2015045050A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015045047A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP6592140B1 (en) Surface-treated metal material, method for producing surface-treated metal material, and electronic component
JP2015045051A (en) Metallic material for electronic component, method for producing the same, and connector terminal, connector and electronic component using the same
JP2015045043A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015045054A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230228