JP2020110382A - Crystalline lens hardness measurement device - Google Patents
Crystalline lens hardness measurement device Download PDFInfo
- Publication number
- JP2020110382A JP2020110382A JP2019003912A JP2019003912A JP2020110382A JP 2020110382 A JP2020110382 A JP 2020110382A JP 2019003912 A JP2019003912 A JP 2019003912A JP 2019003912 A JP2019003912 A JP 2019003912A JP 2020110382 A JP2020110382 A JP 2020110382A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- crystalline lens
- eyelid
- sound velocity
- ultrasonic transducer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Eye Examination Apparatus (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Description
本発明は、超音波原理を利用して水晶体の硬さを低侵襲で測定することができる水晶体硬度測定装置に関する。 The present invention relates to a lens hardness measuring device capable of measuring the hardness of a lens with minimal invasion by utilizing the ultrasonic principle.
超高齢化社会を向かえる上では、視覚の質が重要とされている。しかし、高齢者にとって老眼や白内障は避けられない課題である。老眼や白内障は、加齢が関与する水晶体の変化に基づくものであり、形態学的には、水晶体が硬化して弾性力が低下して、調節力が低下する変化である。 The quality of vision is important for the transition to a super-aging society. However, presbyopia and cataract are inevitable problems for the elderly. Presbyopia and cataract are based on aging-related changes in the crystalline lens, and are morphologically changes in which the crystalline lens hardens and the elastic force decreases, resulting in a decrease in accommodation.
水晶体の加齢変化を定量化法として、ブリルアン散乱法、ラマン散乱法、光干渉断層法(OCT)が知られている。ブリルアン散乱法は、共焦点光学系による角膜や水晶体の弾性状態を求めるものである。ラマン散乱法は、水晶体の水分量から水晶体の硬さや白内障の進行状態を求めるものである。光干渉断層法(OCT)は、網膜の断面を連続して撮ることにより、網膜やその下の新生血管等の状態を立体的に把握することができるというものである。 Brillouin scattering method, Raman scattering method, and optical coherence tomography (OCT) are known as methods for quantifying the aging of the crystalline lens. The Brillouin scattering method is to obtain the elastic state of the cornea and the crystalline lens by the confocal optical system. The Raman scattering method is used to determine the hardness of the crystalline lens and the progression of cataract from the water content of the crystalline lens. The optical coherence tomography (OCT) is capable of three-dimensionally grasping the condition of the retina and new blood vessels below it by continuously taking cross sections of the retina.
また、特許文献1,2には、超音波プローブ内の超音波トランスデューサから超音波を送信し、眼球の各組織からの反射エコーを受信して処理することにより、眼球の各組織の位置を得て、眼軸長を測定する眼科用超音波診断装置が提案されている。これらの技術では、眼軸長の厚さや水晶体の厚さを測定することができる。この眼科用超音波診断装置において、水晶体の厚さを測定する場合、水晶体の厚さは、水晶体の音速を一定として測定している。 Further, in Patent Documents 1 and 2, the position of each tissue of the eyeball is obtained by transmitting an ultrasonic wave from an ultrasonic transducer in the ultrasonic probe and receiving and processing a reflection echo from each tissue of the eyeball. Thus, an ophthalmic ultrasonic diagnostic apparatus for measuring the axial length of the eye has been proposed. With these techniques, the thickness of the axial length and the thickness of the crystalline lens can be measured. In this ophthalmic ultrasonic diagnostic apparatus, when measuring the thickness of the crystalline lens, the thickness of the crystalline lens is measured with the sound velocity of the crystalline lens being constant.
上記した水晶体の加齢変化を定量化法は、一定の情報(弾性状態、水分量、立体形状)を得ることができる点では有効であるが、老眼や白内障等の原因となる水晶体の加齢変化、すなわち水晶体の硬度変化を正確に測定することはできていない。 The method for quantifying the aging change of the lens described above is effective in that certain information (elastic state, water content, three-dimensional shape) can be obtained, but the aging of the lens that causes presbyopia or cataract, etc. is effective. It has not been possible to accurately measure changes, that is, changes in the hardness of the lens.
また、特許文献1,2の眼科用超音波診断装置では、測定に用いる超音波探触子の先端を角膜に直接接触させて使用するので、測定時は麻酔をして患者は目を開けたままで計測される。特にこの超音波探触子はペン型で細長く、正確に測定するためには、超音波探触子の先端が傾かないように接触させなければならない。こうした現状に対し、臨床現場では、低侵襲で正確に測定できる手段が期待されている。しかし、麻酔しないで測定すると、遠くを見たり近くを見たりする動的要素で水晶体の厚さが変化し、水晶体の厚さを正確に測定することができなくなってしまう。 Further, in the ophthalmic ultrasonic diagnostic apparatuses of Patent Documents 1 and 2, since the tip of the ultrasonic probe used for measurement is used by directly contacting the cornea, the patient is anesthetized during measurement and the patient's eyes should be open. Is measured up to. In particular, this ultrasonic probe is a pen type and is long and slender, and in order to perform accurate measurement, it is necessary to contact the tip of the ultrasonic probe so that it does not tilt. In response to this situation, clinical means are expected to provide a method that can be accurately measured with minimally invasiveness. However, if the measurement is performed without anesthesia, the thickness of the lens changes due to a dynamic element that looks far or near, and it becomes impossible to accurately measure the thickness of the lens.
本発明の目的は、超音波原理を利用して水晶体の硬さを低侵襲で測定することができる水晶体硬度測定装置を提供することにある。 An object of the present invention is to provide a lens hardness measuring device capable of measuring the hardness of the lens with minimal invasion by utilizing the ultrasonic principle.
本発明に係る水晶体硬度測定装置は、まぶた又は角膜に接触可能な柔軟シートと超音波を眼に向けて送信するとともに水晶体で反射した反射信号を受信する超音波トランスデューサとを一体化した探触子部と、前記水晶体の厚さデータと受信した前記反射信号とで前記水晶体の音速を算出し、記憶された音速とヤング率との関係に基づいて、前記水晶体のヤング率を演算するコンピュータ部と、を少なくとも有することを特徴とする。 The lens hardness measuring device according to the present invention is a probe in which a flexible sheet that can come into contact with the eyelid or cornea and an ultrasonic transducer that transmits ultrasonic waves toward the eye and receives a reflection signal reflected by the crystalline lens are integrated. And a computer unit for calculating the Young's modulus of the crystalline lens based on the relationship between the stored sound velocity and the Young's modulus by calculating the acoustic velocity of the crystalline lens with the thickness data of the crystalline lens and the received reflection signal. , At least.
この発明によれば、柔軟シートと超音波トランスデューサとを一体化した探触子部を、まぶた又は角膜に低侵襲で接触させることができる。コンピュータ部は、例えば光干渉断層法(OCT)で測定して得た正確な水晶体の厚さデータが入力され、その正確な厚さデータと超音波の反射信号とを利用して水晶体を通過する音速を算出する。記憶された音速とヤング率との相関関係に基づいて、水晶体のヤング率を演算して水晶体の硬さを評価することができる。この測定装置では、加齢変化により変化する水晶体の音速を正確に測定して、水晶体の硬さを低侵襲で容易且つ正確に評価することができる。この装置は、老眼や白内障等の進行度や薬の効果の評価に有効である。 According to the present invention, the probe portion in which the flexible sheet and the ultrasonic transducer are integrated can be brought into contact with the eyelid or the cornea with minimal invasion. The computer unit receives accurate lens thickness data obtained by, for example, optical coherence tomography (OCT) measurement, and passes through the lens using the accurate thickness data and ultrasonic reflection signals. Calculate the speed of sound. Based on the stored correlation between the sound velocity and the Young's modulus, the Young's modulus of the crystalline lens can be calculated to evaluate the hardness of the crystalline lens. With this measuring device, the sound velocity of the lens that changes with age can be accurately measured, and the hardness of the lens can be evaluated easily and accurately with minimally invasiveness. This device is effective for evaluating the degree of progress of presbyopia and cataracts and the effect of drugs.
本発明に係る水晶体硬度測定装置において、前記柔軟シートが、可撓性のゴム状材料であり、前記超音波トランスデューサは可撓性を有し、その先端は前記柔軟シート面と同一面となっており且つ前記まぶた又は角膜側に非突出状態で露出している。この発明によれば、可撓性を有する超音波トランスデューサの先端が柔軟シート面と同一面となっており全体として柔軟な一体構造体(探触子部)となっているので、超音波トランスデューサだけがまぶた又は角膜に直に当たることがなく、まぶた又は角膜の上で可撓性のゴム状材料を滑らせて測定することができる。また、従来のように超音波トランスデューサが傾いてしまうこともない。 In the lens hardness measuring device according to the present invention, the flexible sheet is a flexible rubber-like material, the ultrasonic transducer has flexibility, and its tip is flush with the flexible sheet surface. And is exposed to the eyelid or cornea side in a non-protruding state. According to this invention, since the tip of the ultrasonic transducer having flexibility is flush with the flexible sheet surface and is a flexible integrated structure (probe portion) as a whole, only the ultrasonic transducer is used. The flexible rubbery material can be slid over the eyelid or cornea for measurement without directly contacting the eyelid or cornea. Further, unlike the conventional case, the ultrasonic transducer does not tilt.
本発明に係る水晶体硬度測定装置において、前記柔軟シートは、前記超音波トランスデューサを中心にして左右対称に細長く伸びている。この発明によれば、左右対称に細長く伸びる柔軟シートを指で押さえながら超音波トランスデューサを移動させることができる。 In the lens hardness measuring device according to the present invention, the flexible sheet extends in a slender shape symmetrically with respect to the ultrasonic transducer. According to the present invention, it is possible to move the ultrasonic transducer while pressing the flexible sheet that is elongated symmetrically in a long and narrow shape with a finger.
本発明に係る水晶体硬度測定装置において、前記探触子部を前記まぶたに接触させる場合において、前記探触子部と前記まぶたとの間に設けることができるジェルパッドを備えている。この発明によれば、ジェルパッドを探触子部とまぶたとの間に設けることができ、眼に向けて送信した送信信号による不感帯を避けるとともに、送信信号内に測定データが重なって水晶体からの反射信号が測定不可能になることを防ぐことができる。 The crystalline lens hardness measuring device according to the present invention includes a gel pad that can be provided between the probe unit and the eyelid when the probe unit is brought into contact with the eyelid. According to the present invention, the gel pad can be provided between the probe unit and the eyelids, avoids a dead zone due to the transmission signal transmitted to the eye, and the measurement data is overlapped in the transmission signal so that the measurement signal from the crystalline lens is removed. It is possible to prevent the reflected signal from becoming unmeasurable.
本発明に係る水晶体硬度測定装置において、前記音速が、前記水晶体の下部での反射信号と前記水晶体の上部での反射信号との時間差と、前記厚さデータを割り算することで計算される。 In the lens hardness measuring device according to the present invention, the sound velocity is calculated by dividing the time difference between the reflection signal at the lower part of the lens and the reflection signal at the upper part of the lens and the thickness data.
本発明によれば、超音波原理を利用して水晶体の硬さを低侵襲で測定することができる水晶体硬度測定装置を提供することができる。この測定により、老眼や白内障等の進行や薬の効果を迅速且つ簡便に評価することができる。 According to the present invention, it is possible to provide a lens hardness measuring device capable of measuring the hardness of the lens with minimal invasion by utilizing the ultrasonic principle. By this measurement, the progress of presbyopia, cataract, etc. and the effect of the drug can be evaluated quickly and easily.
以下、本発明に係る水晶体硬度測定装置について図面を参照しつつ説明する。本発明は、本願記載の要旨を含む限り以下の実施形態及び実施例に限定されるものではなく、種々の態様に変形可能である。 Hereinafter, a lens hardness measuring device according to the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments and examples as long as including the subject matter of the present application, and can be modified into various aspects.
本発明に係る水晶体硬度測定装置30は、図1に示すように、まぶた21又は角膜22に接触可能な柔軟シート2と超音波を眼に向けて送信するとともに水晶体23で反射した反射信号を受信する超音波トランスデューサ1とを一体化した探触子部10と、水晶体23の厚さデータと反射信号とで水晶体23の音速を算出し、記憶された音速とヤング率との関係に基づいて、水晶体23のヤング率を演算するコンピュータ部5とを少なくとも有している。 As shown in FIG. 1, a lens hardness measuring device 30 according to the present invention transmits a flexible sheet 2 that can come into contact with an eyelid 21 or a cornea 22 and ultrasonic waves toward an eye and receives a reflection signal reflected by a lens 23. The ultrasonic velocity of the crystalline lens 23 is calculated from the probe unit 10 in which the ultrasonic transducer 1 is integrated, the thickness data of the crystalline lens 23, and the reflection signal, and based on the stored relationship between the acoustic velocity and the Young's modulus, It has at least the computer unit 5 for calculating the Young's modulus of the crystalline lens 23.
この水晶体硬度測定装置30は、柔軟シート2と超音波トランスデューサ1とを一体化した探触子部10を、まぶた21又は角膜22に低侵襲で接触させることができる。コンピュータ部5は、例えば光干渉断層法(OCT)で測定して得た正確な水晶体23の厚さデータが入力され、その正確な厚さデータと超音波の反射信号とを利用して水晶体23を通過する音速を算出する。記憶された音速とヤング率との相関関係に基づいて、水晶体23のヤング率を演算して水晶体23の硬さを評価することができる。この水晶体硬度測定装置30では、加齢変化により変化する水晶体23の音速を正確に測定して、水晶体23の硬さを低侵襲で容易且つ正確に評価することができる。この装置は、老眼や白内障等の進行度や薬の効果の評価に有効である。 The lens hardness measuring device 30 can bring the probe unit 10 in which the flexible sheet 2 and the ultrasonic transducer 1 are integrated into contact with the eyelid 21 or the cornea 22 with minimal invasiveness. The computer unit 5 is input with accurate thickness data of the crystalline lens 23 obtained by measurement by, for example, optical coherence tomography (OCT), and utilizes the accurate thickness data and the reflection signal of the ultrasonic wave to generate the crystalline lens 23. Calculate the speed of sound passing through. Based on the stored correlation between the sound velocity and the Young's modulus, the Young's modulus of the lens 23 can be calculated to evaluate the hardness of the lens 23. With this lens hardness measuring device 30, the sound velocity of the lens 23 that changes due to aging changes can be accurately measured, and the hardness of the lens 23 can be evaluated easily and accurately with minimal invasiveness. This device is effective for evaluating the degree of progress of presbyopia and cataracts and the effect of drugs.
以下、構成要素を説明する。 The components will be described below.
(探触子部)
探触子部10は、まぶた21又は角膜22に接触可能な柔軟シート2と超音波トランスデューサ1とを一体化されたものであり、超音波を眼に向けて送信するとともに水晶体23で反射した反射信号を受信する一体構造体素子である。なお、探触子部10を構成する超音波トランスデューサ1は、電気信号を超音波振動に変換する変換器を意味し、超音波振動子とも呼ばれるものである。超音波トランスデューサ1と柔軟シート2とを一体化させてなる探触子部10は、柔軟シート2をまぶた21又は角膜22に低侵襲で接触させることができ、従来のように超音波トランスデューサ1だけを角膜22に直に接触させなくてもよい。特にまぶた21に接触して測定する場合は、麻酔をして角膜22に直接接触する場合に比べて好ましく、なかでも可撓性のある超音波トランスデューサ1を採用することが好ましい。また、この探触子部10は、従来のような細長いペン型ではないので、超音波トランスデューサ1が傾かない。
(Probe section)
The probe unit 10 is one in which a flexible sheet 2 that can come into contact with the eyelid 21 or the cornea 22 and the ultrasonic transducer 1 are integrated, and transmits ultrasonic waves toward the eye and is reflected by the lens 23. It is an integral structural element that receives a signal. The ultrasonic transducer 1 that constitutes the probe unit 10 means a converter that converts an electric signal into ultrasonic vibration, and is also called an ultrasonic vibrator. The probe unit 10 in which the ultrasonic transducer 1 and the flexible sheet 2 are integrated can bring the flexible sheet 2 into contact with the eyelid 21 or the cornea 22 with minimal invasion, and only the ultrasonic transducer 1 as in the conventional case. Does not have to be in direct contact with the cornea 22. In particular, when the eyelid 21 is contacted for measurement, it is preferable as compared with the case where the anesthesia is directly contacted with the cornea 22, and it is particularly preferable to employ the flexible ultrasonic transducer 1. Further, since the probe unit 10 is not a long and narrow pen type as in the related art, the ultrasonic transducer 1 does not tilt.
超音波トランスデューサ1の構造形態は特に限定されないが、通常、円筒状の筐体(図示しない)内に保持されている。本発明で採用する超音波トランスデューサ1は、特許文献3で提案された超音波トランスデューサと同様の層構成を有しているものであれば、種々変形したものも採用できる。例えば、超音波トランスデューサ1は、例えば直径1〜3mm程度の小径の円板状であり、可撓性を有しており、整合層11と振動子12とダンパー材13とをその順に積層して形成されている。整合層11と振動子12との間には接着層14が設けられていてもよい。超音波トランスデューサ1には、印加電圧や反射信号を伝達するケーブル3が取り付けられている(図1参照)。そのケーブル3の他端には、接続端子4が設けられている。 The structural form of the ultrasonic transducer 1 is not particularly limited, but is usually held in a cylindrical casing (not shown). The ultrasonic transducer 1 used in the present invention may be variously modified as long as it has the same layer structure as the ultrasonic transducer proposed in Patent Document 3. For example, the ultrasonic transducer 1 is, for example, a disc having a small diameter of about 1 to 3 mm and has flexibility, and the matching layer 11, the vibrator 12, and the damper material 13 are laminated in that order. Has been formed. An adhesive layer 14 may be provided between the matching layer 11 and the vibrator 12. A cable 3 for transmitting an applied voltage or a reflected signal is attached to the ultrasonic transducer 1 (see FIG. 1). A connection terminal 4 is provided at the other end of the cable 3.
整合層11は、まぶた21又は角膜22に接触するとともに、まぶた21又は角膜22へ超音波の通りをよくするためのものである。整合層11の構成材料は、樹脂材料を好ましく挙げることができる。振動子12は、超音波の発生部材であり、外部から入力される印加電圧に基づいて超音波を発生する圧電素子とその圧電素子を覆う被覆材とで主に構成されているこうした振動子12は、例えばPZT等の素子にエポキシ等の樹脂をコンポジットした可撓性のあるものも好ましく使用でき、特に本発明を構成する超音波トランスデューサ1が可撓性を有するものとした場合には、まぶた21や角膜22に接触させるのに好ましい。ダンパー材13は、振動子12における自由振動を抑制するものであり、少なくとも振動子12が配置されている領域に配置されている。ダンパー材13は、振動子12の振動を吸収し、振動子12の振動を速やかに収束させるように機能する。ダンパー材13の構成材料は特に限定されないが、音響インピーダンスの値が振動子12に近く、減衰が大きい材料を好ましく挙げることができる。 The matching layer 11 is for contacting the eyelid 21 or the cornea 22 and improving the passage of ultrasonic waves to the eyelid 21 or the cornea 22. The constituent material of the matching layer 11 is preferably a resin material. The vibrator 12 is a member for generating ultrasonic waves, and is mainly composed of a piezoelectric element that generates ultrasonic waves based on an applied voltage input from the outside and a covering material that covers the piezoelectric element. For example, a flexible one in which an element such as PZT is composited with a resin such as epoxy can be preferably used. Especially, when the ultrasonic transducer 1 constituting the present invention has flexibility, eyelids are used. 21 and the cornea 22 are preferable. The damper material 13 suppresses free vibration in the vibrator 12, and is arranged at least in a region where the vibrator 12 is arranged. The damper material 13 functions to absorb the vibration of the vibrator 12 and quickly converge the vibration of the vibrator 12. The constituent material of the damper material 13 is not particularly limited, but a material having an acoustic impedance value close to that of the vibrator 12 and large attenuation can be preferably mentioned.
柔軟シート2は、可撓性のゴム状材料である。超音波トランスデューサ1の先端1aは、その柔軟シート面と同一面となるように設けられており、且つまぶた21又は角膜22側に非突出状態で露出している。この柔軟シート2は、超音波トランスデューサ1だけがまぶた21又は角膜22に直に当たることがなく、まぶた21又は角膜22の上を可撓性のゴム状材料を滑らせて測定することができる。また、従来のように超音波トランスデューサ1が傾いて当たることもない。 The flexible sheet 2 is a flexible rubber-like material. The tip 1a of the ultrasonic transducer 1 is provided so as to be flush with the surface of the flexible sheet, and is exposed to the eyelid 21 or the cornea 22 side in a non-projecting state. The flexible sheet 2 can be measured by sliding the flexible rubber-like material on the eyelid 21 or the cornea 22 without the ultrasonic transducer 1 alone directly hitting the eyelid 21 or the cornea 22. Further, unlike the conventional case, the ultrasonic transducer 1 does not tilt and hit.
柔軟シート2は、図2に示すように、超音波トランスデューサ1を中心にして左右対称に細長く伸びている。左右対称に伸びる細長い部分は、指で押さえながら超音波トランスデューサ1を移動させることができる。その細長い部分の寸法は特に限定されないが、幅が3〜10mm程度であり、全体長さが3〜6mm程度であることが好ましい。 As shown in FIG. 2, the flexible sheet 2 is elongated symmetrically about the ultrasonic transducer 1. The ultrasonic transducer 1 can be moved while pressing the elongated portions extending symmetrically in the left-right direction with a finger. The dimension of the elongated portion is not particularly limited, but the width is preferably about 3 to 10 mm and the entire length is preferably about 3 to 6 mm.
(コンピュータ部)
コンピュータ部5は、水晶体23の厚さデータと受信した反射信号とで水晶体23の音速を算出し、記憶された音速とヤング率との相関関係に基づいて、水晶体23のヤング率を演算する部分である。コンピュータ部5は、トランスデューサ10を有した超音波測定装置が通常有する他の装置を含んでいてもよいし、接続されていてもよい。そうした他の装置としては、表示装置(ディスプレイ)、パルサレシーバ、プリアンプ、パルスジェネレータ、バッテリー、電源等を挙げることができる。
(Computer section)
The computer unit 5 calculates the sound velocity of the lens 23 based on the thickness data of the lens 23 and the received reflection signal, and calculates the Young's modulus of the lens 23 based on the stored correlation between the sound velocity and the Young's modulus. Is. The computer unit 5 may include or be connected to other devices that an ultrasonic measurement device having the transducer 10 normally has. Examples of such other devices include a display device (display), a pulser receiver, a preamplifier, a pulse generator, a battery, and a power supply.
音速とヤング率との相関関係を示す検量線を予め作成しておき、その係数を数式に入れて、測定した音速結果から水晶体23の硬さを測定することができる。音速は硬い物質を通る場合の方が柔らかい物質を通る場合よりも速いので、後述の実験1,2に示すように、硬さ(ヤング率)と相関する水晶体23の音速を計測することにより、患者の水晶体23の音速を低侵襲で簡単に測定するだけで、水晶体23の加齢変化を評価することができる。こうした簡便な方法での加齢変化の評価手段は、老眼や白内障等の加齢により生じる眼の変化や薬の効果等を経時的に評価することができる。 The hardness of the crystalline lens 23 can be measured from the measured sound velocity result by previously creating a calibration curve showing the correlation between the sound velocity and the Young's modulus and inserting the coefficient into a mathematical formula. Since the sound velocity is faster when passing through a hard substance than when passing through a soft substance, as shown in Experiments 1 and 2 described below, by measuring the sound velocity of the crystalline lens 23 that correlates with hardness (Young's modulus), By simply measuring the sound velocity of the lens 23 of the patient with minimal invasiveness, the age-related change of the lens 23 can be evaluated. With such a simple method for evaluating aging changes, it is possible to evaluate with time the changes in the eyes and the effects of drugs caused by aging such as presbyopia and cataract.
なお、水晶体23の厚さデータは、例えば光干渉断層法(OCT)等の測定手段で正確に測定した水晶体23の厚さデータである。得られた厚さデータは、コンピュータ部5が有するデータ入力部6に入力される。本発明は、他の装置で正確に測定した水晶体23の厚さを予め入力した後に、加齢変化で一定ではなくなっている水晶体23の音速を測定する点に特徴がある。現在の臨床で使用される超音波測定装置は、眼軸長・硝子体長・前房深度を計測する目的で使用されているが、これは各組織を通過する音速が一定である条件で計測されている点で本発明とは異なっている。 The thickness data of the crystalline lens 23 is the thickness data of the crystalline lens 23 that is accurately measured by a measuring unit such as optical coherence tomography (OCT). The obtained thickness data is input to the data input unit 6 included in the computer unit 5. The present invention is characterized in that after the thickness of the crystalline lens 23 accurately measured by another device is input in advance, the sound velocity of the crystalline lens 23 that is not constant due to aging change is measured. The ultrasonic measuring device currently used in clinical practice is used for the purpose of measuring axial length, vitreous length, and anterior chamber depth, but this is measured under the condition that the speed of sound passing through each tissue is constant. Is different from the present invention in that.
(ジェルパッド)
水晶体硬度測定装置30は、探触子部10とまぶた21又は角膜22との間に設けられるジェルパッド8を備えていることが好ましい。ジェルパッド8を探触子部10とまぶた21又は角膜22との間に設けることにより、眼に向けて送信した送信信号による不感帯を避けるとともに、送信信号内に測定データが重なって水晶体23からの反射信号が測定不可能になることを防ぐことができる。なお、ジェルパッド8は、エコーゲルパッドとも呼ばれているものである。
(Gel pad)
The lens hardness measuring device 30 preferably includes the gel pad 8 provided between the probe unit 10 and the eyelid 21 or the cornea 22. By providing the gel pad 8 between the probe unit 10 and the eyelid 21 or the cornea 22, the dead zone due to the transmission signal transmitted toward the eye is avoided, and the measurement data is overlapped in the transmission signal and the It is possible to prevent the reflected signal from becoming unmeasurable. The gel pad 8 is also called an echo gel pad.
ジェルパッド8を用いて測定することにより、探触子部10をまぶた21や角膜22の上に直接接触させず、ジェルパッド8上を走査させることになるので、低侵襲の測定手段として好ましい。ジェルパッド8は、超音波検査に使用する音響結合用高分子ゲルからなるシート状物であれば各種のものを使用することができる。例えば、柔軟性のあるウレタンゲル等を主材料にした市販のものを任意に選択して使用することができる。ジェルパッド8には、粘着性のあるものや粘着性のないものがあるが、それらは使用態様に応じて任意に選択することができる。ジェルパッド8の厚さは、例えば3mm〜20mmの範囲で市販されており、それらを選択して用いることができる。ジェルパッド8の使用は、グリセリン等の接触媒質に使用を不要とすることができる。 By using the gel pad 8 for measurement, the probe unit 10 is scanned directly on the eyelid 21 or the cornea 22 without directly contacting it, which is preferable as a minimally invasive measurement means. As the gel pad 8, various sheets can be used as long as they are sheet-like materials made of a polymer gel for acoustic coupling used for ultrasonic inspection. For example, a commercially available product containing a flexible urethane gel or the like as a main material can be arbitrarily selected and used. The gel pad 8 may be adhesive or non-adhesive, but these can be arbitrarily selected according to the usage mode. The thickness of the gel pad 8 is commercially available in the range of, for example, 3 mm to 20 mm, and those can be selected and used. The use of the gel pad 8 can eliminate the need for a contact medium such as glycerin.
ジェルパッド8の使用は、探触子部10による測定で反射信号が送信信号に混ざって水晶体23の厚さを計測できないことを防ぐことができる点で有利である。こうした場合、ジェルパッド8を探触子部10と被測定体である水晶体23との間に介在させることにより、反射信号を遅らせて、送信信号に水晶体23の反射信号が混ざらないようにすることができる。最適な反射信号は、超音波探傷器でモニタリングしながらジェルパッド8上で探触子部10を走査して探すことができる。 The use of the gel pad 8 is advantageous in that it is possible to prevent the reflection signal from being mixed with the transmission signal in the measurement by the probe unit 10 and the thickness of the lens 23 cannot be measured. In such a case, by interposing the gel pad 8 between the probe unit 10 and the crystalline lens 23 as the measured object, the reflected signal is delayed so that the transmitted signal does not mix the reflected signal of the crystalline lens 23. You can The optimum reflected signal can be found by scanning the probe unit 10 on the gel pad 8 while monitoring with an ultrasonic flaw detector.
以下、実験例を挙げて本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to experimental examples.
[実験1]
図4は、豚眼の水晶体の写真とその音速測定(ex vivo)の結果を示すグラフである。測定した豚眼の水晶体は、全体の直径(いわゆる眼軸長)が36〜40mmの購入品であり、図4(A)は厚さ7mm・赤道径11mmの透明水晶体であり、図4(B)は図4(A)の水晶体を電子レンジ(700W、20秒)で電磁波を照射して擬似的に混濁化させた厚さ8mm・赤道径11mmの混濁水晶体である。
[Experiment 1]
FIG. 4 is a graph showing a photograph of a lens of a pig eye and the result of its sound velocity measurement (ex vivo). The measured pig eye lens is a purchased product having an overall diameter (so-called axial length) of 36 to 40 mm, and FIG. 4(A) is a transparent lens having a thickness of 7 mm and an equatorial diameter of 11 mm, and FIG. 4) is an opaque crystalline lens having a thickness of 8 mm and an equatorial diameter of 11 mm obtained by irradiating the crystalline lens of FIG. 4(A) with an electromagnetic wave (700 W, 20 seconds) to make it pseudo opaque.
厚さは、載置治具に水晶体23を載せ、水晶体23の上にジェルパッド8として厚さ10mmのエコーゲルパッド(市販品)を配置し、その上から本発明に係る水晶体硬度測定装置30で計測した。なお、厚さをライカ社製の前臨床研究用OCTイメージングシステム(Envis R−class)を用いて測定前に予め測定したが、水晶体硬度測定装置30で測定した結果と一致していた。音速測定は、水晶体23の厚さを計測しながら同時に行った。具体的には、探触子部10を構成する超音波トランスデューサ1の整合層11を水晶体23に接触させ、振動子12で発生させた超音波(周波数:10MHz)を水晶体23に入射させ、得られた反射信号を超音波探傷装置(菱電湘南エレクトロニクス株式会社製、型名:UI−27)で水晶体上部23aと水晶体下部23bとの伝搬時間差を計測して音速を得た。図4の縦軸は、最大値を100%としたときの超音波の受信強度の相対値(arb.unit)であり、横軸は、超音波が送信されたときを0にして反射信号が戻ってくるまでの時間である。 As for the thickness, the crystalline lens 23 is placed on a mounting jig, and an echo gel pad (commercially available product) having a thickness of 10 mm is arranged as the gel pad 8 on the crystalline lens 23. Measured. The thickness was measured in advance using a Leica OCT imaging system for preclinical research (Envis R-class), but it was in agreement with the result measured by the lens hardness measuring device 30. The sound velocity was measured simultaneously while measuring the thickness of the crystalline lens 23. Specifically, the matching layer 11 of the ultrasonic transducer 1 constituting the probe unit 10 is brought into contact with the crystalline lens 23, and the ultrasonic wave (frequency: 10 MHz) generated by the vibrator 12 is incident on the crystalline lens 23 to obtain the The reflected signal thus obtained was subjected to ultrasonic wave detection (manufactured by Ryoden Shonan Electronics Co., Ltd., model name: UI-27) to measure the propagation time difference between the lens upper part 23a and the lens lower part 23b to obtain the sound velocity. The vertical axis of FIG. 4 is the relative value (arb.unit) of the reception intensity of the ultrasonic wave when the maximum value is 100%, and the horizontal axis is 0 when the ultrasonic wave is transmitted and the reflected signal is It's time to return.
音速は、水晶体上部23aでの反射信号(第1ピーク)と水晶体下部23bでの反射信号(第2ピーク)との時間差を計測し、その時間差は超音波が水晶体23を往復した時間となる。すなわち、音速は、水晶体23の厚さを2倍した値を時間差で除して算出した。図4(A)では、反射信号の時間差が8.0秒なので、往復した距離(厚さ7.0mm×2)/8μ秒=1750m/sであった。図4(B)では、反射信号の時間差が7.6秒なので、往復した距離(厚さ8.0mm×2)/7.6μ秒=2150m/sであった。ここで音速は、音速(m/s)=水晶体厚×2(mm)/反射信号の時間差(μ秒)、で表される。 The sound velocity measures the time difference between the reflection signal (first peak) at the lens upper part 23a and the reflection signal at the lens lower part 23b (second peak), and the time difference is the time when the ultrasonic waves make a round trip to the lens 23. That is, the speed of sound was calculated by dividing the value obtained by doubling the thickness of the crystalline lens 23 by the time difference. In FIG. 4A, since the time difference between the reflected signals is 8.0 seconds, the reciprocating distance (thickness 7.0 mm×2)/8 μsec=1750 m/s. In FIG. 4B, since the time difference between the reflected signals is 7.6 seconds, the reciprocating distance (thickness 8.0 mm×2)/7.6 μsec=2150 m/s. Here, the speed of sound is expressed by the speed of sound (m/s)=thickness of crystalline lens×2 (mm)/time difference of reflected signal (μ seconds).
加齢変化が生じていない透明水晶体の音速は、1750m/sであり、擬似的に加齢変化を生じさせた混濁水晶体の音速は2150m/sであった。このように、加齢変化により水晶体の音速が変化するので、従来のような音速一定のもとで水晶体の硬度を評価する方法は、水晶体硬度測定としては正確ではなく、本発明の装置により、加齢変化による変化する水晶体の音速を正確に測定することにより、水晶体硬度を測定して評価することができる。 The sound velocity of the transparent crystalline lens that did not undergo age-related changes was 1750 m/s, and the acoustic velocity of the cloudy crystalline lens that caused pseudo-aging changes was 2150 m/s. Thus, since the sound velocity of the crystalline lens changes due to aging change, the method of evaluating the hardness of the crystalline lens under the constant sound velocity as in the conventional method is not accurate as the crystalline lens hardness measurement, and the device of the present invention, By accurately measuring the sound velocity of the lens that changes due to aging changes, the lens hardness can be measured and evaluated.
[実験2]
図5は、生後8週のラットの水晶体(7眼)と生後79週のラットの水晶体(6眼)の音速測定の結果を示すグラフである。図6は、図5で得られた音速とヤング率との関係を示すグラフである。音速は実験1と同じ方法で測定した。ヤング率は、水晶体を速度0.2mm/sで荷重1Nで子午線方向に押し込み、もとの厚さの15%押し込んだときの結果であり、特殊弾性計測装置で測定した。
[Experiment 2]
FIG. 5 is a graph showing the results of sound velocity measurement of the lens of a rat 8 weeks old (7 eyes) and the lens of a rat 79 weeks old (6 eyes). FIG. 6 is a graph showing the relationship between the sound velocity and Young's modulus obtained in FIG. The sound velocity was measured by the same method as in Experiment 1. The Young's modulus is the result when the crystalline lens is pushed in the meridian direction with a load of 1 N at a speed of 0.2 mm/s and 15% of the original thickness is pushed in, and measured with a special elasticity measuring device.
図5の結果より、生後8週のラットの水晶体の音速は、1780.6±43.3m/sであり、生後79週のラットの水晶体の音速は、2063.8±180.4m/sであった。生後8週のラットのヤング率は7.72±0.99kPaであり、生後79週のラットのヤング率は10.49±3.02kPaであった。別に測定したヤング率の結果と音速の結果とを図6にまとめた。音速とヤング率とに相関(r=0.73、p=0.01)が認められた。本発明によれば、音速とヤング率との相関関係を予めコンピュータに記憶させておくことにより、被験者の音速を測定するだけでヤング率(硬さ)を評価することができる。 From the results of FIG. 5, the sound velocity of the lens of the rat at 8 weeks of age is 1780.6±43.3 m/s, and the sound velocity of the lens of the rat at 79 weeks of age is 2063.8±180.4 m/s. there were. The Young's modulus of the 8-week-old rat was 7.72±0.99 kPa, and the Young's modulus of the 79-week-old rat was 10.49±3.02 kPa. The separately measured Young's modulus results and sound velocity results are summarized in FIG. A correlation (r=0.73, p=0.01) was recognized between the speed of sound and the Young's modulus. According to the present invention, the correlation between the sound velocity and the Young's modulus is stored in the computer in advance, so that the Young's modulus (hardness) can be evaluated only by measuring the sound velocity of the subject.
1 超音波トランスデューサ
1a 先端
2 柔軟シート
3 ケーブル
4 接続端子
5 コンピュータ部
6 厚さデータ入力部
7 記憶部
8 ジェルパッド
10 探触子部
11 整合層
12 振動子
13 ダンパー材
14 接着層
21 まぶた
22 角膜
23 水晶体
23a 水晶体上部
23b 水晶体下部
30 水晶体硬度測定装置
1 Ultrasonic Transducer 1a Tip 2 Flexible Sheet 3 Cable 4 Connection Terminal 5 Computer Section 6 Thickness Data Input Section 7 Memory Section 8 Gel Pad 10 Probe Section 11 Matching Layer 12 Transducer 13 Damper Material 14 Adhesive Layer 21 Eyelid 22 Cornea 23 crystalline lens 23a crystalline lens upper part 23b crystalline lens lower part 30 crystalline lens hardness measuring device
Claims (5)
The sound velocity is calculated by dividing the time difference between the reflection signal at the lower part of the lens and the reflection signal at the upper part of the lens and the thickness data, according to any one of claims 1 to 4. The described lens hardness measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019003912A JP7210010B2 (en) | 2019-01-12 | 2019-01-12 | Lens hardness measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019003912A JP7210010B2 (en) | 2019-01-12 | 2019-01-12 | Lens hardness measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020110382A true JP2020110382A (en) | 2020-07-27 |
JP7210010B2 JP7210010B2 (en) | 2023-01-23 |
Family
ID=71666171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019003912A Active JP7210010B2 (en) | 2019-01-12 | 2019-01-12 | Lens hardness measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7210010B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220019193A (en) * | 2020-08-07 | 2022-02-16 | 동국대학교 산학협력단 | Ultrasound testing apparatus for cataract diagnosis |
KR20230028657A (en) * | 2021-08-20 | 2023-03-02 | 동국대학교 산학협력단 | Ultrasound transducer for precise diagnosis of ophthalmic disease and ultrasound system using the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05300921A (en) * | 1992-04-24 | 1993-11-16 | Topcon Corp | Cataract operating device |
JP2005013425A (en) * | 2003-06-25 | 2005-01-20 | Nidek Co Ltd | Ultrasonic surgery apparatus |
CN102283680A (en) * | 2011-05-18 | 2011-12-21 | 中国医学科学院生物医学工程研究所 | Cataract crystalline lens hardness ultrasonic measurement system |
JP2013537085A (en) * | 2010-09-17 | 2013-09-30 | アルコン リサーチ, リミテッド | Balanced lens ultrasonic emulsification tip |
JP2014521389A (en) * | 2011-05-23 | 2014-08-28 | アルコン リサーチ, リミテッド | Lens ultrasonic emulsification and suction system and related user interface and method |
US20160128558A1 (en) * | 2014-11-10 | 2016-05-12 | University Of Houston System | Optical coherence elastography to assess biomechanics and detect progression of ocular and other tissues degenerative diseases |
-
2019
- 2019-01-12 JP JP2019003912A patent/JP7210010B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05300921A (en) * | 1992-04-24 | 1993-11-16 | Topcon Corp | Cataract operating device |
JP2005013425A (en) * | 2003-06-25 | 2005-01-20 | Nidek Co Ltd | Ultrasonic surgery apparatus |
JP2013537085A (en) * | 2010-09-17 | 2013-09-30 | アルコン リサーチ, リミテッド | Balanced lens ultrasonic emulsification tip |
CN102283680A (en) * | 2011-05-18 | 2011-12-21 | 中国医学科学院生物医学工程研究所 | Cataract crystalline lens hardness ultrasonic measurement system |
JP2014521389A (en) * | 2011-05-23 | 2014-08-28 | アルコン リサーチ, リミテッド | Lens ultrasonic emulsification and suction system and related user interface and method |
US20160128558A1 (en) * | 2014-11-10 | 2016-05-12 | University Of Houston System | Optical coherence elastography to assess biomechanics and detect progression of ocular and other tissues degenerative diseases |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220019193A (en) * | 2020-08-07 | 2022-02-16 | 동국대학교 산학협력단 | Ultrasound testing apparatus for cataract diagnosis |
KR102470241B1 (en) * | 2020-08-07 | 2022-11-25 | 동국대학교 산학협력단 | Ultrasound testing apparatus for cataract diagnosis |
KR20230028657A (en) * | 2021-08-20 | 2023-03-02 | 동국대학교 산학협력단 | Ultrasound transducer for precise diagnosis of ophthalmic disease and ultrasound system using the same |
KR102571779B1 (en) | 2021-08-20 | 2023-08-29 | 동국대학교 산학협력단 | Ultrasound transducer for precise diagnosis of ophthalmic disease and ultrasound system using the same |
Also Published As
Publication number | Publication date |
---|---|
JP7210010B2 (en) | 2023-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Walker et al. | A method of imaging viscoelastic parameters with acoustic radiation force | |
US5810731A (en) | Method and apparatus for elasticity imaging using remotely induced shear wave | |
CA2685886C (en) | Method and device for measuring a mean value of visco-elasticity of a region of interest | |
US11659994B2 (en) | Method and arrangement for eye pressure measurements | |
US11413007B2 (en) | Non-contact acoustic radiation force based (ARF-based) generation of broad bandwidth mechanical waves using air-coupled ultrasound | |
Shih et al. | Quantitative assessment of thin-layer tissue viscoelastic properties using ultrasonic micro-elastography with Lamb wave model | |
CA1318018C (en) | Method and device for noninvasive acoustic testing of elasticity of soft biological tissues | |
US7578789B2 (en) | Device and method for measuring the elasticity of a human or animal organ | |
US6117089A (en) | Method for noninvasive intracranial pressure measurement | |
CA3017627C (en) | Ultrasonic probe and ultrasonic detecting device provided with same | |
US7713201B2 (en) | Method and apparatus for shear property characterization from resonance induced by oscillatory radiation force | |
Zhang et al. | Noninvasive assessment of age-related stiffness of crystalline lenses in a rabbit model using ultrasound elastography | |
Harris | Progress in medical ultrasound exposimetry | |
Barannik et al. | Doppler ultrasound detection of shear waves remotely induced in tissue phantoms and tissue in vitro | |
JP7210010B2 (en) | Lens hardness measuring device | |
CN114451916A (en) | Sound transmission structure, elasticity detection device, probe, system and method | |
Kassou et al. | Dispersion characteristics of the flexural wave assessed using low frequency (50–150 kHz) point-contact transducers: A feasibility study on bone-mimicking phantoms | |
CN109875608B (en) | Elastography method | |
Zhang et al. | Measurement of quantitative viscoelasticity of bovine corneas based on lamb wave dispersion properties | |
JP2629734B2 (en) | Ultrasonic object inspection equipment | |
CN209899435U (en) | Probe for elastography | |
CN209899434U (en) | Elastography system | |
JP7295126B2 (en) | Methods for measuring ultrasonic attenuation parameters induced by harmonic elastography, probes and devices for carrying out the methods | |
Greenleaf et al. | Ultrasound stimulated vibro-acoustography | |
Greenleaf et al. | Measurement of mechanical properties of homogeneous tissue with ultrasonically induced shear waves |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220916 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7210010 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |