JP2020105067A - Silicon carbide-containing article and method for producing the same - Google Patents
Silicon carbide-containing article and method for producing the same Download PDFInfo
- Publication number
- JP2020105067A JP2020105067A JP2019215791A JP2019215791A JP2020105067A JP 2020105067 A JP2020105067 A JP 2020105067A JP 2019215791 A JP2019215791 A JP 2019215791A JP 2019215791 A JP2019215791 A JP 2019215791A JP 2020105067 A JP2020105067 A JP 2020105067A
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- powder
- diboride
- modeling
- chromium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 107
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 100
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 230000008018 melting Effects 0.000 claims abstract description 43
- 238000002844 melting Methods 0.000 claims abstract description 43
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 38
- 239000010703 silicon Substances 0.000 claims abstract description 38
- 229910052751 metal Inorganic materials 0.000 claims abstract description 36
- 239000002184 metal Substances 0.000 claims abstract description 36
- 238000000859 sublimation Methods 0.000 claims abstract description 17
- 230000008022 sublimation Effects 0.000 claims abstract description 17
- 239000000843 powder Substances 0.000 claims description 143
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 51
- UHPOHYZTPBGPKO-UHFFFAOYSA-N bis(boranylidyne)chromium Chemical compound B#[Cr]#B UHPOHYZTPBGPKO-UHFFFAOYSA-N 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 28
- 238000002156 mixing Methods 0.000 claims description 10
- NUEWEVRJMWXXFB-UHFFFAOYSA-N chromium(iii) boride Chemical compound [Cr]=[B] NUEWEVRJMWXXFB-UHFFFAOYSA-N 0.000 claims description 9
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 239000000463 material Substances 0.000 description 58
- 239000002245 particle Substances 0.000 description 31
- 230000005496 eutectics Effects 0.000 description 25
- 239000000203 mixture Substances 0.000 description 16
- 230000007246 mechanism Effects 0.000 description 15
- 239000013078 crystal Substances 0.000 description 11
- 238000001878 scanning electron micrograph Methods 0.000 description 10
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 9
- 229910033181 TiB2 Inorganic materials 0.000 description 9
- 238000005452 bending Methods 0.000 description 9
- 239000011812 mixed powder Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000011800 void material Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000000879 optical micrograph Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 238000007493 shaping process Methods 0.000 description 5
- 239000011863 silicon-based powder Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 230000003028 elevating effect Effects 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910007948 ZrB2 Inorganic materials 0.000 description 2
- 239000006061 abrasive grain Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- VWZIXVXBCBBRGP-UHFFFAOYSA-N boron;zirconium Chemical compound B#[Zr]#B VWZIXVXBCBBRGP-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 229910052580 B4C Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000446313 Lamella Species 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- -1 borides Chemical class 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- AUVPWTYQZMLSKY-UHFFFAOYSA-N boron;vanadium Chemical compound [V]#B AUVPWTYQZMLSKY-UHFFFAOYSA-N 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
この発明は、高耐熱、高熱伝導、軽量高剛性などの材料的特徴を持つ炭化珪素系の材料を用いた物品、特に付加造形法である粉末床溶融結合法により製造される物品、及びその製造方法に関するものである。 The present invention relates to an article using a silicon carbide-based material having material characteristics such as high heat resistance, high heat conduction, and lightweight and high rigidity, particularly an article manufactured by a powder bed fusion bonding method which is an additive molding method, and manufacturing thereof. It is about the method.
少量多品種や複雑な形状を有する金属部品を作製するために、粉末床溶融結合法を用いた三次元造形技術の開発が進められている。この技術は、粉末状の造形材料の層に、造形対象物の三次元形状データから生成したスライスデータに基づいてエネルギービームを走査させ、造形材料を局所的に溶融/固化させる工程を、複数層について繰り返し行うことにより、立体物を形成するものである。エネルギービームとして、レーザビームや電子ビームなどが用いられる。 Development of a three-dimensional modeling technique using a powder bed fusion bonding method is under way in order to produce a small number of various kinds and a metal part having a complicated shape. In this technique, a layer of powdered modeling material is scanned with an energy beam based on slice data generated from three-dimensional shape data of a modeling target, and the step of locally melting/solidifying the modeling material is performed in a plurality of layers. Is repeated to form a three-dimensional object. A laser beam, an electron beam, or the like is used as the energy beam.
また、近年は、このような三次元造形技術を用いて、加工が難しい炭化珪素などのセラミックス材料の造形が検討されている。しかし、炭化物、硼化物、窒化物などのセラミックスには、その多くがエネルギーを急激に与えると溶融せずに昇華してしまう、あるいは、溶融固化時に結晶化せずに脆くなってしまう、などの技術上の課題がある。軽量性、耐摩耗性、耐熱衝撃、化学安定性などに優れ、幅広い分野での用途が期待されている炭化珪素は、常圧で融点を持たず、2545℃付近(温度の値は2700℃など諸説あり)で昇華してしまう材料である。特許文献1には、共晶や包晶などの過渡液相焼結を利用して造形し得る粉末の候補が開示されている。炭化珪素からなる造形物を作製する粉末の候補として、炭化珪素と酸化アルミニウムと希土類酸化物とシリカの混合物、炭化珪素と窒化アルミニウムと希土類酸化物の混合物、炭化珪素と金属ゲルマニウムとの混合物が例示されている。 Further, in recent years, using such a three-dimensional modeling technique, modeling of a ceramic material such as silicon carbide, which is difficult to process, has been studied. However, many ceramics such as carbides, borides, and nitrides do not melt but sublimate when rapidly given energy, or they become brittle without being crystallized during melting and solidification. There are technical challenges. Silicon carbide, which has excellent lightness, abrasion resistance, thermal shock resistance, chemical stability, etc. and is expected to be used in a wide range of fields, has no melting point at normal pressure and has a melting point of around 2545°C (temperature value of 2700°C, etc.). It is a material that will be sublimated under various theories). Patent Document 1 discloses a candidate of a powder that can be formed by utilizing transient liquid phase sintering such as eutectic or peritectic. As a powder candidate for forming a shaped article made of silicon carbide, a mixture of silicon carbide, aluminum oxide, a rare earth oxide and silica, a mixture of silicon carbide, aluminum nitride and a rare earth oxide, and a mixture of silicon carbide and metal germanium are exemplified. Has been done.
特許文献1に記載されている粉末は、共晶とするために炭化珪素と混合する材料として、シリカ、または、窒化アルミニウム、または、金属ゲルマニウムを必須材料としている。しかし、シリカは1900℃で一酸化珪素と酸素に分解する。また、窒化アルミニウムは2200℃で昇華する。金属ゲルマニウムも2400℃以下で沸騰するなど、2545℃の昇華点を持つ炭化珪素と同時に加熱しても、炭化珪素が溶融する前に揮発する可能性が高い。また、造形物の強度についての開示はないが、粉末が部分的に接合した、強度の低い造形物ができてしまうと推測される。 The powder described in Patent Document 1 uses silica, aluminum nitride, or metal germanium as an essential material as a material mixed with silicon carbide to form a eutectic. However, silica decomposes into silicon monoxide and oxygen at 1900°C. Also, aluminum nitride sublimes at 2200°C. Even when germanium metal is heated at the same time as silicon carbide having a sublimation point of 2545° C. such as boiling at 2400° C. or less, it is highly likely that the silicon carbide is volatilized before melting. Moreover, although there is no disclosure about the strength of the shaped article, it is presumed that a shaped article having a low strength, in which the powders are partially bonded, will be formed.
本開示の目的は、上記課題に鑑みてなされたものであり、三次元造形技術を用いて製造されながら十分な機械強度を有する、炭化珪素を主成分とする造形物を提供することである。また、そのような造形物の製造方法を提供することである。 The object of the present disclosure has been made in view of the above problems, and is to provide a shaped product containing silicon carbide as a main component, which has sufficient mechanical strength while being manufactured using a three-dimensional shaping technique. Moreover, it is providing the manufacturing method of such a molded article.
本開示にかかる物品は、炭化珪素、炭化珪素の昇華点よりも低い融点を持つ硼化金属、および金属シリコンを含むことを特徴とする。 The article according to the present disclosure is characterized by containing silicon carbide, metal boride having a melting point lower than the sublimation point of silicon carbide, and metal silicon.
また、本開示にかかる物品の製造方法は、炭化珪素を含む粉末と、および炭化珪素の昇華点よりも低い融点を持つ硼化金属を含む粉末とが混合された粉末を用いて粉末層を形成する工程と、前記形成された粉末層に、造形対象物の形状データに基づいてエネルギービームを走査して照射することにより、前記粉末の溶融、固化を行う工程と、を繰り返し行うことにより造形物を形成し、更に、形成された造形物に金属シリコンを含浸させる工程を有することを特徴とする。 Further, in the method for manufacturing an article according to the present disclosure, a powder layer is formed by using a powder in which a powder containing silicon carbide and a powder containing metal boride having a melting point lower than the sublimation point of silicon carbide are mixed. And the step of melting and solidifying the powder by irradiating the formed powder layer with an energy beam based on the shape data of the object to be shaped and irradiating the shaped object And forming a formed article, and further impregnating the formed article with metallic silicon.
上述した本発明の特徴によれば、三次元造形技術を用いて製造されながら十分な機械強度を有する、炭化珪素を主成分とする造形物を提供することができる。 According to the features of the present invention described above, it is possible to provide a shaped article containing silicon carbide as a main component, which has sufficient mechanical strength while being manufactured by using the three-dimensional shaping technique.
以下、添付した図面を参照して本開示の実施の形態を説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings.
まず、本開示の製造方法に適用可能な造形装置を、図1を用いて説明する。造形装置は、ガス導入機構113、および排気機構114により、内部の雰囲気を制御することのできるチャンバー101を有している。チャンバー101の内部には、立体物を造形するための造形容器120と、造形材料である粉末(以下、単に「造形材料」または「粉末」と記述する場合がある。)を造形容器120に敷き詰めて粉末層111を形成するための粉末層形成機構106を有している。 First, a modeling apparatus applicable to the manufacturing method of the present disclosure will be described with reference to FIG. 1. The modeling apparatus has a chamber 101 whose internal atmosphere can be controlled by a gas introduction mechanism 113 and an exhaust mechanism 114. Inside the chamber 101, a modeling container 120 for modeling a three-dimensional object, and a powder as a modeling material (hereinafter sometimes simply referred to as “modeling material” or “powder”) are spread over the modeling container 120. And a powder layer forming mechanism 106 for forming the powder layer 111.
排気機構114は、圧力を調整するために、バタフライバルブ等の圧力調整機構を備えていてもよいし、ガス供給とそれに伴う圧力上昇によるチャンバー内の雰囲気を調整することができる構成(一般にブロー置換と呼ぶ)であってもよい。 The exhaust mechanism 114 may be provided with a pressure adjusting mechanism such as a butterfly valve in order to adjust the pressure, and is configured to adjust the atmosphere in the chamber due to the gas supply and the accompanying pressure rise (generally, blow replacement). Called).
造形容器120の底部は、昇降機構108によって鉛直方向における位置を変えることができる造形ステージ107で構成されている。昇降機構108の移動方向および移動量は、制御部(不図示)によって制御され、形成する粉末層111の層厚に応じて造形ステージ107の移動量が決められる。造形ステージ107の造形面側には、ベースプレート109を設置するための構造(不図示)が設けられている。ベースプレート109は、ステンレスなど溶融可能な材料からなるプレートであり、1層目の粉末層を溶融固化する時に造形材料とともにその表面が溶融され、造形物をベースプレートに固定することが可能となる。従って、造形の間に、ベースプレート109上における造形物の位置がずれないよう保持することができる。造形が完了した後に、ベースプレート109は、造形物から機械的に切り離される。 The bottom of the modeling container 120 is configured by a modeling stage 107 whose position in the vertical direction can be changed by the elevating mechanism 108. The moving direction and the moving amount of the elevating mechanism 108 are controlled by a controller (not shown), and the moving amount of the modeling stage 107 is determined according to the layer thickness of the powder layer 111 to be formed. A structure (not shown) for installing the base plate 109 is provided on the modeling surface side of the modeling stage 107. The base plate 109 is a plate made of a meltable material such as stainless steel. When the first powder layer is melted and solidified, the surface of the base plate 109 is melted together with the molding material, and the molded object can be fixed to the base plate. Therefore, the position of the modeled object on the base plate 109 can be held so as not to shift during modeling. After the modeling is complete, the base plate 109 is mechanically separated from the modeled object.
粉末層形成機構106は、粉末材料を収容する粉末収容部と、粉末材料を造形容器120に供給する供給機構を有している。さらに、ベースプレート109上に粉末層を設定した厚さに均すためのスキージおよびローラのいずれか一方を有していてもよいし、両方を有していてもよい。 The powder layer forming mechanism 106 has a powder container for containing the powder material and a supply mechanism for supplying the powder material to the modeling container 120. Further, either one or both of a squeegee and a roller for leveling the powder layer to a set thickness may be provided on the base plate 109.
造形装置は、さらに、造形材料を溶融させるためのエネルギービーム源102と、エネルギービーム112を2軸で走査させるための走査ミラー103A、103Bと、エネルギービームを照射部に集光させるための光学系104を備えている。エネルギービーム112はチャンバー101の外側から照射されるため、チャンバー101には、エネルギービーム112を内部に導入するための導入窓105が設けられている。エネルギービームのパワー密度や走査位置は、不図示の制御部が取得した造形対象物の三次元形状データや造形材料の特性に従って、制御部によって制御される。また、粉末層111の表面近傍で焦点を結んでビーム径が適切な大きさになるよう、あらかじめ造形容器120、光学系104の位置を調整しておく。表面におけるビーム径は、造形精度に影響するため、30〜100μmとするのが好ましい。 The modeling apparatus further includes an energy beam source 102 for melting the modeling material, scanning mirrors 103A and 103B for scanning the energy beam 112 in two axes, and an optical system for condensing the energy beam on the irradiation section. It is equipped with 104. Since the energy beam 112 is irradiated from the outside of the chamber 101, the chamber 101 is provided with an introduction window 105 for introducing the energy beam 112 into the inside. The power density and the scanning position of the energy beam are controlled by the control unit according to the three-dimensional shape data of the modeling target and the characteristics of the modeling material acquired by the control unit (not shown). In addition, the positions of the modeling container 120 and the optical system 104 are adjusted in advance so that the beam diameter becomes an appropriate size by focusing near the surface of the powder layer 111. Since the beam diameter on the surface affects the modeling accuracy, it is preferably 30 to 100 μm.
次に、本開示の製造方法を説明する。まず、ベースプレート109をステージ107に設置し、チャンバー101の内部を、ガス導入機構113を介して導入された窒素やアルゴンなどの不活性ガスで置換する。置換が終了すると、ベースプレート109上に粉末層形成機構106により、粉末層111を形成する。粉末層111は、造形対象物の三次元形状データから生成したスライスデータのスライスピッチ、即ち、積層ピッチに応じた厚さで形成される。 Next, the manufacturing method of the present disclosure will be described. First, the base plate 109 is installed on the stage 107, and the inside of the chamber 101 is replaced with an inert gas such as nitrogen or argon introduced through the gas introduction mechanism 113. When the replacement is completed, the powder layer forming mechanism 106 forms the powder layer 111 on the base plate 109. The powder layer 111 is formed with a slice pitch of the slice data generated from the three-dimensional shape data of the modeling target, that is, a thickness corresponding to the stacking pitch.
本開示で造形に使用される粉末は、炭化珪素の粉末を主成分とするものであり、更に、炭化珪素の昇華点より低い融点を持つ硼化金属の粉末との混合粉末である。なお、炭化珪素の特性を大きく損なうことがなければ上記以外の化合物からなる粉末が含まれていても構わない。炭化珪素および硼化金属の粉末粒子のサイズは、小さすぎると凝集して均一な厚みの粉末層が形成できず、大きすぎると溶融させるのに高いエネルギーが必要となって造形が困難となってしまうため、3μm〜100μmの粒子径が好ましく、5μm〜50μmの粒子径がより好ましい。また、粉末層の1層あたりの厚さは、造形精度に影響するため、30〜100μm程度が好適である。 The powder used for modeling in the present disclosure is mainly composed of powder of silicon carbide, and is a mixed powder with powder of metal boride having a melting point lower than the sublimation point of silicon carbide. It should be noted that powders of compounds other than the above may be included as long as the characteristics of silicon carbide are not significantly impaired. If the size of the powder particles of silicon carbide and metal boride is too small, the powder particles cannot be aggregated to form a powder layer having a uniform thickness, and if the size is too large, high energy is required to melt the powder layer, which makes modeling difficult. Therefore, a particle size of 3 μm to 100 μm is preferable, and a particle size of 5 μm to 50 μm is more preferable. Further, the thickness of each powder layer affects the modeling accuracy, and is therefore preferably about 30 to 100 μm.
ここで、本開示における、粉末の粒子径の測定方法について説明する。粉末に含まれる粒子径はある範囲に分布を持っており、中央値、最大粒子径が規定されている。SiCは、すでに業界で標準化された粒子径の評価方法に従い、JIS R 6001−2「研削といし用研削材の粒度」に従って電気抵抗法により測定する。一硼化クロム、二硼化クロムなどのSiC以外の粒子径については、JIS Z 8832「粒子径分布測定方法−電気的検知帯法」に従って測定する。 Here, a method of measuring the particle size of the powder in the present disclosure will be described. The particle size contained in the powder has a distribution in a certain range, and the median value and the maximum particle size are defined. SiC is measured by the electrical resistance method according to JIS R 6001-2 "Grain size of grinding wheel abrasives" according to the particle size evaluation method already standardized in the industry. The particle size other than SiC, such as chromium monoboride and chromium diboride, is measured according to JIS Z 8832 "Particle size distribution measuring method-electric detection zone method".
次に、エネルギービーム112をスライスデータに従って走査し、粉末層111の所定領域の粉末にエネルギービーム112を照射して溶融させる。エネルギービーム源102には、造形材料が50%以上の高い吸収率を有する波長のエネルギーを出力できるものを用いるのが好ましい。特に、造形の際に溶融した硼化金属が炭化珪素の周りを包み込む状態を作り出すため、硼化金属が高い吸収率を有する波長域のエネルギービームを使用するのが好ましい。造形材料が二硼化クロムである場合、波長1000〜1120nmの半導体ファイバーレーザが好適である。 Next, the energy beam 112 is scanned according to the slice data, and the powder in a predetermined region of the powder layer 111 is irradiated with the energy beam 112 to be melted. As the energy beam source 102, it is preferable to use an energy beam source capable of outputting energy having a wavelength having a high absorptance of 50% or more. In particular, it is preferable to use an energy beam in the wavelength range in which the metal boride has a high absorptivity because the molten metal boride wraps around the silicon carbide during shaping. When the modeling material is chromium diboride, a semiconductor fiber laser having a wavelength of 1000 to 1120 nm is suitable.
エネルギービーム112は、エネルギービームを照射された領域の粉末が、数msecの間に溶融および固化して粒子が互いに結合するレベルのエネルギー強度とするのが好ましい。粉末層が積層されている場合は、エネルギービーム112の照射側の最表面に位置する粉末層だけでなく、エネルギービーム112が照射されている粉末層の直下の粉末層もある程度溶融凝固させることが、造形には必要である。直下の粉末層の溶融が不十分だと、造形は層毎に剥離し易くなり、強度の低い造形物となってしまう。なお、ベースプレート109の直上に敷いた最初の粉末層の溶融固化時には、ベースプレート109の表面が同時に溶融されるよう、ベースプレートの熱容量、熱伝導などを考慮しエネルギービームの照射条件を調整する。 It is preferable that the energy beam 112 has an energy intensity at a level at which the powder in the area irradiated with the energy beam is melted and solidified within a few msec and the particles are bonded to each other. When the powder layers are laminated, not only the powder layer located on the outermost surface on the irradiation side of the energy beam 112 but also the powder layer immediately below the powder layer irradiated with the energy beam 112 can be melted and solidified to some extent. , It is necessary for modeling. If the powder layer immediately below is insufficiently melted, the modeling tends to peel off layer by layer, resulting in a molded article having low strength. When the first powder layer laid directly on the base plate 109 is melted and solidified, the irradiation condition of the energy beam is adjusted in consideration of the heat capacity and heat conduction of the base plate 109 so that the surface of the base plate 109 is melted at the same time.
続いて、昇降機構108により造形ステージ107を積層ピッチ分だけ降下させた後、エネルギービームを走査させた層の上に粉末を敷きつめて新たな粉末層を形成し、エネルギービーム112の走査および照射を行なう。前述したように、新たな粉末層にエネルギービーム112を照射する際に、先にエネルギービーム112が走査された層の一部(具体的には、新たな粉末層と接する部分)が再度溶融固化される。新たな粉末層の、エネルギービーム112が照射される領域の直下がすでに溶融固化された領域である場合、新たな粉末層のビーム照射領域は、先に溶融固化された領域の一部の溶融した材料と混じり合って固化し、互いに接合する。これらの操作を繰り返せば、エネルギービーム112によって層毎に溶融固化された領域が一体となった造形物110を形成することができる。 Subsequently, the elevating mechanism 108 lowers the modeling stage 107 by the stacking pitch, and then spreads the powder on the layer scanned with the energy beam to form a new powder layer, and the energy beam 112 is scanned and irradiated. To do. As described above, when the new powder layer is irradiated with the energy beam 112, a part of the layer scanned by the energy beam 112 (specifically, the part in contact with the new powder layer) is melted and solidified again. To be done. When the region of the new powder layer immediately below the region irradiated with the energy beam 112 is the region already melted and solidified, the beam irradiation region of the new powder layer is a part of the region previously melted and solidified. It mixes with the material, solidifies, and bonds to each other. By repeating these operations, it is possible to form the modeled article 110 in which the regions melted and solidified for each layer by the energy beam 112 are integrated.
造形物110は、ベースプレート109に接合しているため、ベースプレートごとチャンバー101より取り出す。その後、ダイヤモンドなどの砥粒を付着したワイヤーソーやディスクブレードなどにより、ベースプレート109と造形物110を切断し、分離し、造形物110を得ることができる。 Since the molded article 110 is bonded to the base plate 109, it is taken out of the chamber 101 together with the base plate. After that, the base plate 109 and the modeled article 110 are cut and separated by a wire saw or a disc blade to which abrasive grains such as diamond are attached, whereby the modeled article 110 can be obtained.
次に、造形物に金属シリコンを含ませる工程の一例について図2を用いて説明する。金属シリコンの融点(1414℃)でも、揮発、変質等のないグラファイトなどの材料からなるるつぼ201の底に、粒径の揃った耐熱球状物202を二層以上の厚みにならないように敷き、その上に造形物110を置く。耐熱球状物202は、含浸工程中に造形物110から染み出した金属シリコンの固化物により、るつぼ201と造形物110が強く固着しないよう、隙間を生じさせる効果がある。 Next, an example of the step of including metallic silicon in the modeled article will be described with reference to FIG. Even if the melting point of metal silicon (1414° C.), a heat-resistant spherical material 202 having a uniform particle size is laid on the bottom of a crucible 201 made of a material such as graphite that does not volatilize or deteriorate so that the thickness does not exceed two layers. The model 110 is placed on top. The heat-resistant spherical material 202 has an effect of forming a gap so that the crucible 201 and the molded article 110 are not strongly fixed to each other by the solidified product of metallic silicon that has exuded from the molded article 110 during the impregnation step.
さらに、予め造形物110の空隙率を形状と質量から導出し、空隙に相当する量よりも多めに金属シリコン粉203を造形物上に載せる。その後、るつぼ201ごと真空熱処理炉に入れ、炉内をアルゴンに置換し、適宜減圧して、室温から金属シリコンの融点である1414℃を超える温度、例えば1500℃まで加熱する。融点を超え液状化した金属シリコンは造形物の空隙に浸み込む。その後、冷却し室温になったところでドライエアを導入して大気圧にし、真空熱処理炉からるつぼを取り出す。冷却時は、金属シリコンの融点付近の温度では、場所により凝固のタイミングが異なることで発生する歪みや応力を防ぐため温度変化率を小さくする。造形物110から染み出した金属シリコンの固形物により、造形物表面に付着した耐熱球状物202を取り除き、さらに、研削、研磨等で形状、表面を整え、所望の物品を得ることができる。 Further, the porosity of the modeled article 110 is derived in advance from the shape and mass, and the metallic silicon powder 203 is placed on the modeled article in an amount larger than the amount corresponding to the voids. Then, the crucible 201 is placed in a vacuum heat treatment furnace, the atmosphere in the furnace is replaced with argon, the pressure is appropriately reduced, and heating is performed from room temperature to a temperature higher than 1414° C. which is the melting point of metallic silicon, for example, 1500° C. The liquefied metallic silicon exceeding the melting point penetrates into the voids of the modeled object. After that, when cooled to room temperature, dry air is introduced to bring it to atmospheric pressure, and the crucible is taken out of the vacuum heat treatment furnace. At the time of cooling, at a temperature near the melting point of metallic silicon, the rate of temperature change is reduced in order to prevent distortion and stress that occur due to different solidification timing depending on the location. The heat-resistant spherical material 202 adhering to the surface of the modeled object can be removed by the solid substance of metallic silicon exuded from the modeled object 110, and the shape and surface can be further adjusted by grinding, polishing or the like to obtain a desired article.
[本開示で使用する粉末材料]
本開示は、炭化珪素の粉末と、炭化珪素と共晶もしくは亜共晶を生成し、炭化珪素の昇華点より低い融点を持つ硼化金属の粉末とを混合して造形粉末とする。このような造形粉末を用いて、炭化珪素と硼化金属との共晶もしくは亜共晶を含む造形物を作製することにより、炭化珪素単体に迫る強度の造形物を実現する。
[Powder Material Used in the Present Disclosure]
In the present disclosure, a powder of silicon carbide and a powder of metal boride having a melting point lower than the sublimation point of silicon carbide, which forms eutectic or hypoeutectic with silicon carbide, are mixed to form a modeling powder. By using such a modeling powder to fabricate a modeled product containing a eutectic or a hypoeutectic of silicon carbide and metal boride, a modeled product having a strength approaching that of silicon carbide is realized.
ここで、共晶/亜共晶について、以下に説明する。 Here, the eutectic/hypoeutectic will be described below.
金属などの材料X、材料Yの混合物では、融点がそれぞれの材料の融点よりも低くなる材料比率がある。その時、融点が最も低くなる時の材料比率を共晶組成、その融点を共晶温度という。 In the case of the mixture of the material X and the material Y such as metal, there is a material ratio in which the melting point is lower than the melting point of each material. At that time, the material ratio when the melting point becomes the lowest is called the eutectic composition, and the melting point is called the eutectic temperature.
共晶組成において、融点以上の温度では材料Xと材料Yは共に液相であり、融点より低い温度では、材料Xと材料Yが同時に析出する。そのため、材料X、材料Yは細かい析出相で構成され、ラメラ状などと呼ばれる層状の構造で強度の大きい共晶体になる。 In the eutectic composition, both the material X and the material Y are in a liquid phase at a temperature equal to or higher than the melting point, and the material X and the material Y are simultaneously precipitated at a temperature lower than the melting point. Therefore, the material X and the material Y are composed of a fine precipitation phase, and become a eutectic body having a layered structure called lamella and having a high strength.
次に、材料X、材料Yの混合物で共晶組成よりも材料Xを多く含む場合を考えてみる。この場合は、融点以上で液相であるが、融点より下がるとまず材料Xが固化し、共晶温度までは材料Xが析出(初晶と呼ぶ)する。そして、共晶温度まで下がった時には、析出した材料Xの結晶を除いた液相の部分は、共晶組成になっており、その状態から共晶温度以下に下げると、材料Xと材料Yが同時に析出する。つまり、もともと共晶組成から出発した場合に比べ、材料Xの析出が早く始まる分だけ結晶が大きく成長したものが混ざった構造になる。共晶組成よりも材料Yが多い場合は、材料Yの結晶が大きく成長する。それらの状態を亜共晶と呼ぶ。共晶や亜共晶は、造形物の断面を走査型電子顕微鏡で観察することで確認することができる。 Next, consider a case where the mixture of the material X and the material Y contains more material X than the eutectic composition. In this case, the material is in a liquid phase above the melting point, but when it falls below the melting point, the material X first solidifies and the material X precipitates (called primary crystal) up to the eutectic temperature. When the temperature falls to the eutectic temperature, the liquid phase portion excluding the precipitated crystal of the material X has a eutectic composition. Precipitates at the same time. In other words, compared with the case where the eutectic composition is originally used, the structure in which the crystals of which the crystal grows large as much as the precipitation of the material X starts earlier is mixed. When the material Y is more than the eutectic composition, the crystal of the material Y grows large. Those states are called hypoeutectic. The eutectic and hypoeutectic can be confirmed by observing the cross section of the shaped article with a scanning electron microscope.
本発明者らは、炭化珪素に近い物性を得るため、共晶もしくは、炭化珪素の結晶が大きな亜共晶の状態を得ることのできる、粉末の組成や粒子径などの条件について検討した。 The present inventors have examined conditions such as a powder composition and a particle size capable of obtaining a eutectic state or a state of a large eutectic crystal of silicon carbide in order to obtain physical properties close to those of silicon carbide.
以下、実施例および比較例を用いて本発明をさらに詳細に説明する。本発明は、その要旨を超えない限り、下記の実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples unless it exceeds the gist.
(粉末1)
炭化珪素として、粒子径の中央値が14.7μmの炭化珪素粉末(大平洋ランダム株式会社製、商品名NC#800)を用意した。混合する硼化クロムとして、融点が2200℃の二硼化クロム粉末(日本新金属株式会社製、商品名CrB2−O、粒子径の中央値は約5μm)を用意した。それら粉末を、共晶または亜共晶が生成される組成粉末となるように、モル比で、炭化珪素:二硼化クロム=7:3に調合し、ボールミルにて混合して粉末1とした。モル比の決め方や混合の仕方は、他の粉末も同様である。ここでいう粒子径の中央値とは、メジアン径と同義であり、その粉末における頻度の累積が50%となる粒子径を意味する。粒子径分布の測定は、周知のレーザ回折法或いは散乱法により行うことができる。
(Powder 1)
As silicon carbide, a silicon carbide powder (manufactured by Taihei Random Co., Ltd., trade name NC#800) having a median particle diameter of 14.7 μm was prepared. As the chromium boride to be mixed, chromium diboride powder having a melting point of 2200° C. (manufactured by Nippon Shinkin Co., Ltd., trade name CrB2-O, median particle diameter is about 5 μm) was prepared. These powders were mixed at a molar ratio of silicon carbide:chromium diboride=7:3 so as to form a composition powder in which a eutectic crystal or a hypoeutectic crystal was formed, and mixed by a ball mill to obtain powder 1. .. The method for determining the molar ratio and the method for mixing are the same for the other powders. The median value of the particle size as used herein has the same meaning as the median size, and means the particle size at which the cumulative frequency of the powder is 50%. The particle size distribution can be measured by a well-known laser diffraction method or scattering method.
(粉末2)
粉末1と同様の炭化珪素粉末と、融点が2400℃の二硼化バナジウム粉末(粒子径の中央値が約4μm、日本新金属株式会社製、商品名VB2−O)とを、炭化珪素:二硼化バナジウム=1:1のモル比で調合して混合し、粉末2とした。
(Powder 2)
A silicon carbide powder similar to that of Powder 1 and vanadium diboride powder having a melting point of 2400° C. (median particle diameter of about 4 μm, manufactured by Nippon Shinkin Co., Ltd., trade name VB2-O) were used. Powder 2 was prepared by mixing at a molar ratio of vanadium boride=1:1 and mixed to obtain powder 2.
(粉末3)
粉末1と同様の炭化珪素粉末と、融点が2100℃の一硼化クロム粉末(日本新金属株式会社製、商品名CrB−O、粒子径の中央値が約9μm)とを、モル比で炭化珪素:一硼化クロム=3:1に調合して混合し、粉末3とした。
(Powder 3)
The same silicon carbide powder as powder 1 and chromium monoboride powder having a melting point of 2100° C. (manufactured by Nippon Shinkin Co., Ltd., trade name CrB-O, median particle size of about 9 μm) are carbonized at a molar ratio. Silicon:chromium monoboride=3:1 was prepared and mixed to obtain powder 3.
(粉末4)
粉末1と同様の炭化珪素粉末と、融点が2920℃の二硼化チタン粉末(日本新金属株式会社製、商品名TiB2−N、粒子径の中央値が約4μm)を、炭化珪素:二硼化チタン=1:1のモル比で調合して混合し、粉末4とした。
(Powder 4)
Silicon carbide powder similar to powder 1 and titanium diboride powder having a melting point of 2920° C. (manufactured by Nippon Shinkin Co., Ltd., trade name TiB2-N, median particle diameter of about 4 μm) were used as silicon carbide: Powder 4 was prepared by mixing and mixing titanium oxide at a molar ratio of 1:1.
(粉末5)
粉末1と同様の炭化珪素粉末と、融点が3200℃の二硼化ジルコニウム(日本新金属株式会社製、商品名ZrB2−O、粒子径の中央値が約5μm)を、炭化珪素:二硼化ジルコニウム=1:1のモル比で調合して混合し、粉末5とした。
(Powder 5)
Silicon carbide powder similar to powder 1 and zirconium diboride having a melting point of 3200° C. (manufactured by Nippon Shinkin Co., Ltd., trade name ZrB2-O, median particle diameter of about 5 μm) were used as silicon carbide: diboride. Powder 5 was prepared by mixing and mixing zirconium at a molar ratio of 1:1.
表1に、各粉末の組成をまとめて示す。 Table 1 summarizes the composition of each powder.
[粉末材料を用いた造形物の作製]
上述した粉末1〜5を材料とし図1に示す造形装置とを用いて造形を行った。具体的には、粉末ごとに、ステンレス製のベースプレート109の上に、底面積を4mm×40mmとする直方体の造形物を4つ作製した。造形終了後の4つの造形物110とベースプレート109の斜視図を図3に示す。
[Manufacturing of shaped object using powder material]
Modeling was performed using the above powders 1 to 5 as materials and the modeling apparatus shown in FIG. Specifically, for each powder, four rectangular parallelepiped shaped objects having a bottom area of 4 mm×40 mm were manufactured on a stainless steel base plate 109. FIG. 3 shows a perspective view of the four modeling objects 110 and the base plate 109 after the completion of modeling.
エネルギービーム源102には、波長1070nmの半導体ファイバーレーザを用い、レーザパワー100W、照射ピッチ50μmで粉末層に照射した。また、粉末材料の種類によって造形に適した照射エネルギーが異なるため、予め、走査速度は、100mm/sec〜1000mm/secの間で条件だしをして、材料ごとに最適な走査速度に設定した。粉末層の厚さ(積層ピッチ)を30μmとして300層の造形を試みた。 As the energy beam source 102, a semiconductor fiber laser having a wavelength of 1070 nm was used, and the powder layer was irradiated with a laser power of 100 W and an irradiation pitch of 50 μm. Further, since the irradiation energy suitable for modeling differs depending on the type of powder material, the scanning speed was set in advance between 100 mm/sec and 1000 mm/sec, and the optimum scanning speed was set for each material. An attempt was made to form 300 layers with a powder layer thickness (lamination pitch) of 30 μm.
しかし、二硼化チタンを含む粉末4を用いた造形と二硼化ジルコニウムを含む粉末5を用いた造形は、それぞれ粉末層を形成する途中に造形済みの部分が剥がれ始め、造形を続行できなくなってしまったため、その時点で終了とした。粉末1、粉末2、および粉末3を用いた造形については、それぞれ高さが約9mmの直方体が得られた。 However, in the modeling using the powder 4 containing titanium diboride and the modeling using the powder 5 containing zirconium diboride, the molded part begins to come off during the formation of the powder layer, and the modeling cannot be continued. I ended it at that point because it ended. As for the shaping using the powder 1, the powder 2, and the powder 3, a rectangular parallelepiped having a height of about 9 mm was obtained.
次に、切断装置として、ムサシノ電子株式会社製ワイヤーソーCS−203(商品名)を使用し、ダイヤモンド砥粒を付着したφ0.4mmのワイヤーソーで造形物110とベースプレート109とを切り離した。 Next, as a cutting device, a wire saw CS-203 (trade name) manufactured by Musashino Electronics Co., Ltd. was used, and the modeled object 110 and the base plate 109 were separated with a wire saw of φ0.4 mm to which diamond abrasive grains were attached.
ここで、粉末1を材料粉末とした造形物をサンプル1(比較例1)、粉末2を材料粉末とした造形物をサンプル2(比較例2)、粉末3を材料粉末とした造形物をサンプル3(比較例3)として、各々4個ずつの試料を得た。なお、粉末4を材料粉末とした造形と粉末5を材料粉末とした造形は、上述の通り未完了で終わったが、付番としてそれぞれ比較例4としてサンプル4、比較例5としてサンプル5を割り当てた。 Here, a modeled object using the powder 1 as the material powder is a sample 1 (Comparative example 1), a modeled object using the powder 2 as the material powder is sample 2 (Comparative example 2), and a modeled object using the powder 3 as the material powder is a sample. As 3 (Comparative Example 3), 4 samples each were obtained. The modeling using the powder 4 as the material powder and the modeling using the powder 5 as the material powder were not completed as described above. However, as the numbering, the sample 4 is assigned as the comparative example 4 and the sample 5 is assigned as the comparative example 5. It was
サンプル1〜5を、エネルギー分散型X線分析(EDX)により含まれている元素を同定し、また、X線回折(XRD)により分子の構造を同定した。サンプル1は、表面の酸化に起因すると予想される若干の酸化物があるものの、それを無視すれば原料粉末の炭化珪素と二硼化クロムで構成されていることがわかった。同様にサンプル2は、炭化珪素と二硼化バナジウムで構成されていることがわかった。 In Samples 1 to 5, the contained elements were identified by energy dispersive X-ray analysis (EDX), and the molecular structure was identified by X-ray diffraction (XRD). Although Sample 1 had some oxides that are expected to be caused by the oxidation of the surface, it was found that it was composed of the raw material powders of silicon carbide and chromium diboride if they were ignored. Similarly, Sample 2 was found to be composed of silicon carbide and vanadium diboride.
また、FIB−SEMにより、炭化珪素、硼化金属がどのように部材に分布しているかを調べた。FIB−SEMとは、FIB(集束イオンビーム)で試料を掘削しながら露出した試料表面或いは断面をSEM(走査型電子顕微鏡)で繰り返し観察し、そのSEM画像群をコンピュータで処理することで試料構造を三次元で観察することができるシステムである。 Further, it was examined by FIB-SEM how silicon carbide and metal boride were distributed in the member. FIB-SEM is a sample structure in which the exposed sample surface or cross section is repeatedly observed with a SEM (scanning electron microscope) while the sample is being drilled with a FIB (focused ion beam), and the SEM image group is processed by a computer. It is a system that can observe 3D in three dimensions.
図4に、サンプル1のある断面におけるSEM画像を示す。最も色の濃い部分10が空隙であり、最も色の薄い領域12が二硼化クロムで構成されており、領域10と領域12との間の濃さの領域11が炭化珪素で構成されていた。炭化珪素の領域11と二硼化クロムの領域12との境界は複雑な形状をしており、少なくとも一方の材料が溶融していることが推測できた。また、SEM画像で観察された炭化珪素の領域11と二硼化クロムの領域12の分布から、共晶・亜共晶が形成されていることが確認できた。 FIG. 4 shows an SEM image of a cross section of Sample 1. The darkest portion 10 was a void, the lightest colored region 12 was composed of chromium diboride, and the darkened region 11 between the regions 10 and 12 was composed of silicon carbide. .. The boundary between the silicon carbide region 11 and the chromium diboride region 12 had a complicated shape, and it could be inferred that at least one material was molten. Further, it was confirmed from the distribution of the silicon carbide region 11 and the chromium diboride region 12 observed in the SEM image that a eutectic/hypoeutectic crystal was formed.
サンプル1について得られたSEM画像群について、この色の濃度で領域を識別し、炭化珪素で構成された領域11を繋ぎ合わせた三次元構造を図5に表わした。また、二硼化クロムで構成された領域12を繋ぎ合わせた三次元構造を図6に表した。 In the SEM image group obtained for the sample 1, the region was identified by the density of this color, and the three-dimensional structure in which the regions 11 made of silicon carbide were connected was shown in FIG. A three-dimensional structure in which the regions 12 made of chromium diboride are connected together is shown in FIG.
図5と図6から、サンプル1中の炭化珪素、硼化クロムは、それぞれ三次元網目構造になっており、互いに複雑に絡み合う構造となっていることが理解できた。FIB−SEMを用いて三次元網目構造を確認した範囲は、60μm×45μm×160μmで、原料の炭化珪素、二硼化クロムそれぞれ粉末の粒子径の中央値を大きく超えていることから、それらの材料は造形中に溶融し、連結していると推測された。 From FIG. 5 and FIG. 6, it can be understood that the silicon carbide and the chromium boride in Sample 1 each have a three-dimensional network structure and are intricately entwined with each other. The range in which the three-dimensional network structure was confirmed using FIB-SEM was 60 μm×45 μm×160 μm, which was much larger than the median value of the particle diameters of the raw materials silicon carbide and chromium diboride. The material was suspected to have melted and connected during shaping.
次に、造形物110に含まれる空隙を算出した。造形物の端部やプレートとの結合部、最表面などを除けば、熱伝導が大きくは異ならないため、空隙は平均的に入っていると考えられた。そこで、空隙率は、ある断面において、造形物の端部やプレートとの接合部、最表面などを除く平均的な空隙を有する部分の光学顕微鏡画像を取得し、2.44mm×1.63mmの領域に相当する視野において、空隙に相当する色の濃い部分が、視野内に占める割合とした。図7にサンプル1のある断面における、平均的な空隙を有する領域の光学顕微鏡画像を示した。平均的な空隙率を有すると推測される複数個所(10箇所以上)それぞれについて、濃度で閾値を設定して画像分析で閾値よりも濃度が高い部分を空隙と判断して全体の面積との面積比率で空隙率を算出し、それらを平均したところ、約30%が空隙率であると算出された。 Next, the voids included in the modeled article 110 were calculated. Except for the edges of the modeled object, the joints with the plate, and the outermost surface, the heat conduction did not differ greatly, so it was considered that the voids were contained on average. Therefore, for the porosity, an optical microscope image of a portion having an average void except for an end portion of a modeled object, a joint portion with a plate, and an outermost surface in a certain cross section is obtained, and the void ratio is 2.44 mm×1.63 mm. In the visual field corresponding to the region, the dark-colored portion corresponding to the voids was taken as the ratio occupied in the visual field. FIG. 7 shows an optical microscope image of a region having an average void in a cross section of Sample 1. For each of a plurality of places (10 or more) that are assumed to have an average porosity, a threshold value is set for the density, and a portion having a density higher than the threshold value is judged to be a void by image analysis, and the area of the entire area. When the porosity was calculated by the ratio and they were averaged, it was calculated that about 30% was the porosity.
[作製された造形物に金属シリコンを含ませる工程]
次に、造形物110に金属シリコンを含ませた。図2で示すように、グラファイトでできたるつぼ201の底に、φ1mmのアルミナ球状体202を二層以上の厚みにならないように敷き、その上に造形物110を1個置いた。
[Process of including metallic silicon in the manufactured model]
Next, the molded article 110 was made to contain metallic silicon. As shown in FIG. 2, a 1-mm diameter alumina spherical body 202 was laid on the bottom of a crucible 201 made of graphite so as not to have a thickness of two or more layers, and one shaped article 110 was placed thereon.
さらに、先に算出した空隙率に相当する体積の1.5倍の金属シリコン粉末203(比重2.33、粒径〜45μm)を造形物110上に載せた。 Further, 1.5 times the volume of the metal silicon powder 203 (specific gravity 2.33, particle size ~45 μm) corresponding to the porosity calculated above was placed on the model 110.
その後、真空熱処理炉(不図示)にるつぼ201ごと入れ、炉内をアルゴンに置換してから、室温から温度上昇率300℃/hで1000℃まで加熱、2時間保持した。その後、40分で絶対圧1.5kPaまで減圧しながら温度上昇率300℃/hで1200℃まで加熱、引き続き、温度上昇率120℃/hで1500℃まで加熱、2時間保持した。 After that, the crucible 201 was placed in a vacuum heat treatment furnace (not shown), and the inside of the furnace was replaced with argon. Then, the temperature was raised from room temperature to 1000° C. at a temperature increase rate of 300° C./h and kept for 2 hours. Then, the temperature was increased to 1200° C. at a temperature increase rate of 300° C./h while the pressure was reduced to an absolute pressure of 1.5 kPa in 40 minutes, and subsequently, the temperature increase rate was increased to 120° C. to 1500° C. and maintained for 2 hours.
その後、金属シリコンの融点直上の1424℃まで120℃/hで温度を下げ、6℃/hで1400℃まで徐冷した。 After that, the temperature was lowered at 120° C./h to 1424° C. just above the melting point of the metallic silicon, and then gradually cooled to 1400° C. at 6° C./h.
引き続き、300℃/hで冷却し、70℃以下になったところでドライエアを導入し大気圧にし、真空熱処理炉からるつぼ201を取り出した。 Then, it cooled at 300 degreeC/h, and when it became 70 degreeC or less, dry air was introduce|transduced and it was set as atmospheric pressure and the crucible 201 was taken out from the vacuum heat treatment furnace.
上記の手法で、サンプル1の2個、サンプル2の2個、サンプル3の2個の計6個に金属シリコンを含ませた。サンプル1に金属シリコンを含ませたものをサンプル6(実施例1)、サンプル2に金属シリコンを含ませたものをサンプル7(実施例2)、サンプル3に金属シリコンを含ませたものをサンプル8(実施例3)とする。 By the above-mentioned method, metallic silicon was included in two pieces of sample 1, two pieces of sample 2, and two pieces of sample 3 in total. Sample 1 containing metal silicon was sample 6 (Example 1), sample 2 containing metal silicon was sample 7 (Example 2), sample 3 was containing metal silicon. 8 (Example 3).
さらに、造形物に金属シリコンを含ませた工程において造形物110の表面に付着したアルミナ球状体を脱離し、研磨で形状、表面を整え、大きさおよそ4mm×40mm×9mmの金属シリコンを含む物品を得た。 Further, in the step of including the metallic silicon in the shaped article, the alumina spheres adhering to the surface of the shaped article 110 are detached, the shape and surface are adjusted by polishing, and an article containing metallic silicon having a size of about 4 mm×40 mm×9 mm. Got
[物品の特性]
次に、サンプル1、サンプル2、サンプル3、サンプル6、サンプル7、サンプル8について、JIS規格にあるファインセラミックスの室温曲げ強さ試験方法(JIS R 1601)に準拠した三点曲げ試験を行なった。また、それらサンプルについて、破断面を研磨し、研磨した断面の光学顕微鏡画像から空隙率を算出した。
[Characteristics of goods]
Next, sample 1, sample 2, sample 3, sample 6, sample 7, and sample 8 were subjected to a three-point bending test in accordance with the JIS standard fine room temperature bending strength test method (JIS R 1601). .. Further, the fracture surface of each of these samples was polished, and the porosity was calculated from the optical microscope image of the polished cross section.
サンプル6のSEM画像を図8に示す。組成分析を行ったところ、ある程度の面積を占めている部分のうち、色が最も濃い領域11が炭化珪素、最も薄い領域12が二硼化クロム、それらの中間の濃度の領域13が金属シリコンであった。また、各材料の間にわずかに島状に存在する黒い部分10が空隙である。サンプル1と同様にして、サンプル6の断面における光学顕微鏡画像から空隙率を算出した。図9に空隙率の算出に用いた、サンプル6の平均的な空隙率を有する断面の光学顕微鏡画像を示す。濃度で閾値を設定して、画像分析で閾値よりも濃度が高い部分を空隙と判断して全体の面積との面積比率で空隙率を算出した。また、サンプル1と同様にして、SEM像から共晶・亜共晶が形成されているか否かを判断した。 The SEM image of Sample 6 is shown in FIG. When the composition analysis was performed, among the parts occupying a certain area, the darkest region 11 was silicon carbide, the thinnest region 12 was chromium diboride, and the region 13 having an intermediate concentration between them was metallic silicon. there were. Further, the black portions 10 that are slightly island-shaped between the respective materials are voids. In the same manner as in Sample 1, the porosity was calculated from the optical microscope image in the cross section of Sample 6. FIG. 9 shows an optical microscope image of a cross section of Sample 6 having an average porosity, which was used for calculating the porosity. A threshold value was set based on the density, and a portion having a higher density than the threshold value was judged to be a void by image analysis, and the void ratio was calculated by the area ratio with the entire area. Further, in the same manner as in Sample 1, it was determined from the SEM image whether eutectic/hypoeutectic was formed.
他のサンプルも、サンプル1、6と同様に空隙率を算出し、共晶・亜共晶が形成されているか否かを判断した。結果を表2に記す。 The porosity of the other samples was calculated in the same manner as in Samples 1 and 6, and it was determined whether or not eutectic/hypoeutectic crystals were formed. The results are shown in Table 2.
総合判定として、4mm×40mm×9mmの形状で造形できなかったものを「C」とした。また、造形できたが空隙率が30%程度あり、十分な曲げ強度が得られなかったものを「B」とした。このようなものであってもフィルタなどの用途が考えられる。また、焼結セラミックスなみの曲げ強度(100MPa以上)が得られたものは、多種用途での利用が考えられるため「A」とした。 As a comprehensive judgment, a product having a shape of 4 mm×40 mm×9 mm that could not be formed was designated as “C”. In addition, what was able to be molded but had a porosity of about 30% and could not obtain sufficient bending strength was designated as "B". Even such a thing can be considered to be used as a filter or the like. In addition, a material obtained with a bending strength (100 MPa or more) similar to that of sintered ceramics is considered to be used for various purposes, and thus is designated as “A”.
次に、サンプル1、サンプル2、サンプル3が造形できた理由と、サンプル4、5が造形できなかった理由について考察する。 Next, the reason why the sample 1, the sample 2, and the sample 3 could be modeled and the reason why the samples 4, 5 could not be modeled will be considered.
まず、炭化珪素と炭化珪素の昇華点(2545℃)よりも融点の低い二硼化クロム(融点2200℃)との混合粉末で造形をしたサンプル1が、造形物が得られた理由を考察する。炭化珪素と二硼化クロムの混合粉末にレーザビームを照射し、温度を上昇させていくと、まず二硼化クロムが融点に達して溶融する。すると、炭化珪素の粒子の表面が、溶融した二硼化クロムによって覆われた状態となると推測される。炭化珪素は単体では昇華するが、二物質の界面では溶融すると考えられ、炭化珪素と二硼化クロムの溶融物との界面から、炭化珪素の溶融が進展する。もし、温度が上昇して炭化珪素の昇華点に達したとしても、揮発した炭化珪素が、溶融した二硼化クロムに溶け込むことにより揮発が抑制されると推察される。従って、レーザビーム照射により、炭化珪素の昇華点を超えて高温になったとしても、炭化珪素と二硼化クロムとが溶融した状態は維持される。その後、レーザビームの照射時間が終了して照射領域の温度が下降に転じると、炭化珪素と二硼化クロムがそれぞれ析出しはじめ、両物質が隙間なく混合した図4の状態になったと推測される。炭化珪素と二硼化バナジウムの混合粉末を用いたサンプル2、炭化珪素と一硼化クロムの混合粉末を用いたサンプル3についても同様であると考えられる。 First, consideration will be given to the reason why the modeled product was obtained from Sample 1, which was molded with a mixed powder of silicon carbide and chromium diboride (melting point 2200° C.) having a lower melting point than the sublimation point (2545° C.) of silicon carbide. .. When the mixed powder of silicon carbide and chromium diboride is irradiated with a laser beam and the temperature is raised, the chromium diboride first reaches the melting point and melts. Then, it is presumed that the surface of the particles of silicon carbide is covered with the molten chromium diboride. It is considered that silicon carbide sublimes as a simple substance but melts at the interface between two substances, and the melting of silicon carbide progresses from the interface between the silicon carbide and the melt of chromium diboride. Even if the temperature rises and reaches the sublimation point of silicon carbide, it is presumed that the volatilized silicon carbide dissolves in the molten chromium diboride to suppress volatilization. Therefore, even if the laser beam irradiation raises the temperature beyond the sublimation point of silicon carbide, the molten state of silicon carbide and chromium diboride is maintained. After that, when the irradiation time of the laser beam was finished and the temperature of the irradiation region started to drop, it was presumed that silicon carbide and chromium diboride began to precipitate, respectively, and both substances were mixed without any gap, resulting in the state of FIG. It It is considered that the same applies to Sample 2 using a mixed powder of silicon carbide and vanadium diboride and Sample 3 using a mixed powder of silicon carbide and chromium monoboride.
次に、炭化珪素と炭化珪素の昇華点よりも融点の高い硼化金属である二硼化チタン(融点2920℃)との混合粉末で造形したサンプル4では、望みの造形物が得られなかった理由を考察する。炭化珪素と二硼化チタンの混合物にレーザビームを照射することにより温度が上昇していくと、二硼化チタンの融点より先に、炭化珪素の昇華点に達する。そのため、先に炭化珪素の昇華が始まり、その後に二硼化チタンが溶融し始める。炭化珪素の粒子の表面では、昇華気体により溶融した二硼化チタンと炭化珪素粉末の接触が阻害され、それらの接触は非常に限定的なものとなる。そして、二硼化チタンが溶融している間は、炭化珪素も昇華し続けるため、両物質の接触面積は増えることがない。このように、炭化珪素の溶融は非常に限定的となり、冷却してもほとんど析出しない。従って、サンプル1〜3のような共晶または亜共晶が密に絡み合った状態の造形物とはならず、炭化珪素と二硼化チタンとの境界部の結合が弱く、脆い造形物になってしまったと考えられる。 Next, in the case of the sample 4 formed with the mixed powder of silicon carbide and titanium diboride (melting point 2920° C.), which is a metal boride having a melting point higher than the sublimation point of silicon carbide, the desired shaped object was not obtained. Examine the reason. When the temperature is raised by irradiating the mixture of silicon carbide and titanium diboride with the laser beam, the sublimation point of silicon carbide is reached before the melting point of titanium diboride. Therefore, sublimation of silicon carbide starts first, and then titanium diboride starts to melt. On the surface of the silicon carbide particles, contact between the molten titanium diboride and the silicon carbide powder is hindered by the sublimation gas, and the contact between them is very limited. Then, while the titanium diboride is melted, the silicon carbide also continues to sublime, so that the contact area between the two substances does not increase. In this way, the melting of silicon carbide is very limited and hardly precipitates even when cooled. Therefore, the eutectic or hypoeutectic like sample 1 to 3 is not a densely entangled modeled product, and the bond at the boundary between silicon carbide and titanium diboride is weak, resulting in a brittle modeled product. It is thought that it has gone.
以上の仮説と前述の実験結果とにより、炭化珪素粉末と、炭化珪素の昇華点よりも低い融点を持つ硼化金属粉末と、を含む粉末材料で造形を行うと、共晶もしくは亜共晶が隙間なく絡み合った状態となり、境界部の結合が強く造形できたと考えられる。 Based on the above hypothesis and the above experimental results, when modeling is performed with a powder material containing silicon carbide powder and metal boride powder having a melting point lower than the sublimation point of silicon carbide, a eutectic or hypoeutectic crystal is formed. It is considered that the entanglement was made without any gaps, and the bond at the boundary was strongly modeled.
次に、サンプル1、2、3とそれらに金属シリコンを含ませたサンプル6、7、8について考察する。造形直後の造形物110に含まれる空隙に金属シリコンを含ませることによって、30%程度あった空隙率がほとんどなくなっていた(1%以下)ことから、造形直後の造形物110のほとんどの空隙は三次元的に連通していたと推察される。 Next, samples 1, 2, and 3 and samples 6, 7 and 8 in which they are made to contain metallic silicon will be considered. By including metallic silicon in the voids included in the modeled article 110 immediately after the modeling, the void ratio of about 30% was almost eliminated (1% or less). Therefore, most of the voids in the modeled article 110 immediately after modeling It is presumed that they were communicating three-dimensionally.
また、曲げ強度が20〜30倍程度向上しており、金属シリコンの曲げ強度(一般には200MPa程度と言われている)よりも高くなっていた。金属シリコンの三次元構造体そのものは物品の30%程度の体積を占めていると考えられるので、金属シリコンを含ませたことによる曲げ強度の向上は、200MPa×30%=60MPa程度と見積もられる。ところが実際には、造形したままの状態における曲げ強度5MPaから230MPaへと、強度が225MPaも向上していた。これは、炭化珪素、二硼化クロム(もしくは二硼化バナジウム、一硼化クロム)、金属シリコンのそれぞれからなる3次元構造が互いに接触し、三次元的に絡み合う構造となっていることにより単純には予見し得ない曲げ強度を実現しているものと推察される。また、金属シリコンが空隙を埋めることで亀裂の発生、および進展を防いでいることも強度向上に寄与しているものと推察できる。 Further, the bending strength was improved about 20 to 30 times, which was higher than the bending strength of metallic silicon (generally said to be about 200 MPa). Since it is considered that the three-dimensional structure of metallic silicon itself occupies about 30% of the volume of the article, the improvement in bending strength due to the inclusion of metallic silicon is estimated to be about 200 MPa×30%=60 MPa. However, actually, the bending strength in the as-molded state was increased from 5 MPa to 230 MPa, and the strength was improved by 225 MPa. This is because the three-dimensional structures of silicon carbide, chromium diboride (or vanadium diboride, chromium monoboride), and metallic silicon are in contact with each other and are entangled three-dimensionally. It is surmised that it has realized a bending strength that cannot be foreseen. Moreover, it can be inferred that the fact that the occurrence and development of cracks is prevented by filling the voids with metallic silicon also contributes to the improvement in strength.
[炭化珪素の粉末と金属硼化物の粉末との混合比]
次に、炭化珪素の粉末と二硼化クロムの粉末とを混合した粉末を用いて、造形物に適した炭化珪素と二硼化クロムの混合比を調べた。炭化珪素の粉末、二硼化クロムの粉末には、粉末1と同様の粉末を使用した。
[Mixing ratio of powder of silicon carbide and powder of metal boride]
Next, using a powder obtained by mixing a powder of silicon carbide and a powder of chromium diboride, a mixing ratio of silicon carbide and chromium diboride suitable for a molded article was examined. As the powder of silicon carbide and the powder of chromium diboride, the same powder as powder 1 was used.
炭化珪素と二硼化クロムの混合粉末全体を100%として、二硼化クロムの粉末を、モル比率で7.0%、10%、30%、50%、65%、70%ずつ含有したものを、それぞれ粉末6〜11とした。これら粉末を用いて、粉末1〜5を用いた造形と同様にして物品を作製したサンプル9乃至14を、それぞれ比較例6乃至11とした。 The total content of the mixed powder of silicon carbide and chromium diboride is 100%, and the chromium diboride powder is contained in a molar ratio of 7.0%, 10%, 30%, 50%, 65% and 70%, respectively. Were designated as powders 6 to 11, respectively. Samples 9 to 14 in which articles were manufactured using these powders in the same manner as the molding using powders 1 to 5 were Comparative Examples 6 to 11, respectively.
炭化珪素の比率が大きい粉末6は、30層造形したところで、次の粉末層を形成する際に前の粉末層、即ち最上層が剥がれてしまった。造形の継続はできたが、新たな粉末層を形成する毎に同様の現象が起き、結果的に造形を続けることができなくなった。一方、二硼化クロムの比率が大きい粉末11は、造形中に表面にボール状の突起ができてしまい、粉末層の形成時にローラがその突起に当たり最上層が剥がれてしまい、造形の継続が不可能であった。後にボール状の突起を分析したところ、二硼化クロムが主成分であることがわかった。これは、溶融した二硼化クロムの純度が上がったため、表面に形成される液滴の表面張力が大きくなり凝集して径が大きくなったものが固化したものと考えられる。 With respect to the powder 6 having a large proportion of silicon carbide, when 30 layers were formed, the previous powder layer, that is, the uppermost layer was peeled off when the next powder layer was formed. Although the modeling could be continued, the same phenomenon occurred each time a new powder layer was formed, and as a result, modeling could not be continued. On the other hand, the powder 11 having a large ratio of chromium diboride has a ball-shaped projection on the surface during modeling, and the roller comes into contact with the projection during the formation of the powder layer, and the uppermost layer is peeled off. It was possible. Later analysis of the ball-shaped protrusions revealed that chromium diboride was the main component. It is considered that this is because the purity of the molten chromium diboride increased, so that the surface tension of the droplets formed on the surface increased and aggregated to increase the diameter, which solidified.
また、サンプル10〜13と同様に作製したサンプルそれぞれに金属シリコンを含ませる工程を行ない、サンプル15〜18を作製した。金属シリコンを含ませる工程は、問題なく行うことができた。サンプル15〜18をそれぞれ実施例4乃至7とした。また、造形できたそれぞれのサンプルに対し、前述の例と同様に、3点曲げ試験と空隙率の算出を行なった。 In addition, samples 15 to 18 were manufactured by performing a step of including metallic silicon in each of the samples manufactured similarly to the samples 10 to 13. The step of incorporating metallic silicon could be performed without any problems. Samples 15 to 18 were designated as Examples 4 to 7, respectively. Further, for each of the formed samples, the three-point bending test and the porosity were calculated in the same manner as in the above example.
結果を表3に示す。モル比率の欄には、(炭化珪素のモル%)/(二硼化クロムのモル%)の値を示している。 The results are shown in Table 3. In the column of molar ratio, the value of (mol% of silicon carbide)/(mol% of chromium diboride) is shown.
混合粉末全体を100%として、炭化珪素と二硼化クロムとのモル比が、炭化珪素:二硼化クロム=90:10〜35:65の範囲にある粉末が造形に適していることがわかった。すなわち、炭化珪素と二硼化クロムのモル比率が、0.54≦炭化珪素/二硼化クロム≦9.00の範囲の混合粉末が、造形に適していることがわかった。さらに、造形物に金属シリコンを含ませることで得られる物品の曲げ強度が想像していた以上に向上することも確認できた。 It was found that a powder having a molar ratio of silicon carbide to chromium diboride in the range of silicon carbide:chromium diboride=90:10 to 35:65 is suitable for modeling, with the entire mixed powder being 100%. It was That is, it was found that a mixed powder having a molar ratio of silicon carbide and chromium diboride in the range of 0.54≦silicon carbide/chromium diboride≦9.00 was suitable for modeling. Furthermore, it was confirmed that the bending strength of the article obtained by including metallic silicon in the shaped article was improved more than expected.
上述の実施例では、炭化珪素と二硼化クロムを中心に、炭化珪素と一硼化クロム、炭化珪素と二硼化バナジウム等の二成分系で検討を行なったが、硼化チタン、硼化ランタン、炭化ホウ素、などの各種ホウ素含有物を、主たる特性を変えない範囲で適宜添加することは本件を逸脱するものではない。比重を下げる、強度を上げるなど有効な場合があり、適宜用いることが可能である。 In the above-mentioned embodiments, the two-component system such as silicon carbide and chromium diboride, silicon carbide and chromium monoboride, silicon carbide and vanadium diboride, etc. were investigated. It does not depart from the present case to appropriately add various boron-containing substances such as lanthanum and boron carbide within a range that does not change the main characteristics. In some cases, it is effective to reduce the specific gravity and increase the strength, and it can be used appropriately.
さらに、上述の実施例では、二硼化クロムに粒子径の中央値が5μmの粉末、一硼化クロムに粒子径の中央値が9μmの粉末を使用したが、これは単に商流で入手できる粉末を用いたためで、他の粒径の利用を制限するものではない。但し、混合する硼化金属は、溶融し易いように炭化珪素の粒径より小さく、10μm以下の粒径であることが好ましい。 Further, in the above-mentioned examples, a powder having a median particle diameter of 5 μm was used for chromium diboride, and a powder having a median particle diameter of 9 μm was used for chromium monoboride. The use of powder does not limit the use of other particle sizes. However, the metal boride to be mixed is preferably smaller than the particle size of silicon carbide and has a particle size of 10 μm or less so that it is easily melted.
また、上述の実施例では、レーザによる粉末床溶融結合法により造形を行ったが、この手法に限ることはなく、同じような熱履歴を経る三次元造形方法の他の手法にも応用できる。たとえば、電子ビームによる粉末床溶融結合法、さらには、ガスと材料粉末を同時に噴出し、レーザで溶融する指向エネルギー堆積法にも応用できる。 Further, in the above-mentioned embodiment, the molding was performed by the powder bed fusion bonding method using the laser, but the present invention is not limited to this method, and can be applied to other methods of the three-dimensional modeling method that undergoes similar thermal history. For example, it can be applied to a powder bed fusion bonding method using an electron beam, and also to a directed energy deposition method in which a gas and a material powder are simultaneously ejected and melted by a laser.
また、上述の実施例では、造形物に金属シリコンを含ませる工程では、金属シリコン粉末を造形物上に載せて溶融さたが、金属シリコン粉末のかわりに金属シリコンウェハ、金属シリコンのペレットなどを用いてもよいし、さらには、MI法と呼ばれる金属シリコン溶融体中に造形物を浸漬し、引き上げる方法を用いてもよい。 Further, in the above-mentioned embodiment, in the step of including the metallic silicon in the shaped article, the metallic silicon powder was placed on the shaped article and melted, but instead of the metallic silicon powder, a metallic silicon wafer, metallic silicon pellets, etc. It may be used, and further, a method called a MI method in which a shaped article is dipped in a metal silicon melt and then pulled up may be used.
従来は三次元造形法によっては困難であった炭化珪素の造形が可能になる。例えば、炭化珪素と硼化金属の共晶造形物を使うことで、耐熱温度、熱伝導率が高く、物理的強度が高いことが利点になる熱交換器、エンジンノズル、ステージ等への利用が可能である。 It becomes possible to form silicon carbide, which has been difficult by the conventional three-dimensional modeling method. For example, by using a eutectic shaped product of silicon carbide and metal boride, it can be used for heat exchangers, engine nozzles, stages, etc., which have the advantages of high heat resistance, high thermal conductivity, and high physical strength. It is possible.
101 チャンバー
102 エネルギービーム源
103A、103B 走査ミラー
104 光学系
105 導入窓
106 粉体層形成機構
107 造形ステージ
108 昇降機構
109 ベースプレート
110 造形物
111 粉体層
112 エネルギービーム
113 ガス導入機構
120 造形容器
201 るつぼ
202 耐熱球状物
203 金属シリコン粉末
101 Chamber 102 Energy Beam Source 103A, 103B Scanning Mirror 104 Optical System 105 Introducing Window 106 Powder Layer Forming Mechanism 107 Modeling Stage 108 Elevating Mechanism 109 Base Plate 110 Modeling Object 111 Powder Layer 112 Energy Beam 113 Gas Injecting Mechanism 120 Modeling Container 201 Crucible 202 heat-resistant spherical material 203 metal silicon powder
Claims (8)
形成された前記粉末層に、造形対象物の形状データに基づいてエネルギービームの走査及び照射を同時に行うことにより、前記炭化珪素を含む粉末と前記炭化珪素の昇華点よりも低い融点を持つ硼化金属を含む粉末の溶融及び固化を行う工程と、
を繰り返し行うことにより造形物を形成し、
更に、前記造形物に金属シリコンを含ませる工程を有することを特徴とする物品の製造方法。 Forming a powder layer using a powder obtained by mixing powder containing silicon carbide and powder containing metal boride having a melting point lower than the sublimation point of silicon carbide;
By simultaneously scanning and irradiating the formed powder layer with an energy beam based on the shape data of a molding target, the powder containing the silicon carbide and the boride having a melting point lower than the sublimation point of the silicon carbide are formed. A step of melting and solidifying powder containing metal,
Formed by repeating the process,
Furthermore, the manufacturing method of the article characterized by including the process of including metallic silicon in the said modeling thing.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/720,328 US20200198007A1 (en) | 2018-12-25 | 2019-12-19 | Article including silicon carbide and method of manufacturing same |
CN201911321354.5A CN111377741B (en) | 2018-12-25 | 2019-12-20 | Articles including silicon carbide and methods of making the same |
US17/833,039 US20220324019A1 (en) | 2018-12-25 | 2022-06-06 | Article including silicon carbide and method of manufacturing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018241871 | 2018-12-25 | ||
JP2018241871 | 2018-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020105067A true JP2020105067A (en) | 2020-07-09 |
Family
ID=71448120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019215791A Pending JP2020105067A (en) | 2018-12-25 | 2019-11-28 | Silicon carbide-containing article and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020105067A (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6487563A (en) * | 1987-09-30 | 1989-03-31 | Nippon Steel Corp | Nonoxide type composite ceramic sintered body |
JPH0497952A (en) * | 1990-08-09 | 1992-03-30 | Eagle Ind Co Ltd | Silicon carbide-based composite body |
JPH09221367A (en) * | 1996-02-15 | 1997-08-26 | Chichibu Onoda Cement Corp | Conductive silicon carbide material composite material and its production |
JP2010536694A (en) * | 2007-08-14 | 2010-12-02 | ザ・ペン・ステート・リサーチ・ファンデーション | 3D printing of near net shape products |
WO2016093360A1 (en) * | 2014-12-12 | 2016-06-16 | 国立大学法人京都大学 | Silicon carbide fiber reinforced silicon carbide composite material |
JP2016525993A (en) * | 2013-04-25 | 2016-09-01 | ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation | Additional production of ceramic turbine components by partial transient liquid phase bonding using metal binder |
JP2017127997A (en) * | 2016-01-18 | 2017-07-27 | 国立研究開発法人産業技術総合研究所 | Powder for molding |
JP2019064226A (en) * | 2017-10-04 | 2019-04-25 | キヤノン株式会社 | Molding method and powder material for molding |
-
2019
- 2019-11-28 JP JP2019215791A patent/JP2020105067A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6487563A (en) * | 1987-09-30 | 1989-03-31 | Nippon Steel Corp | Nonoxide type composite ceramic sintered body |
JPH0497952A (en) * | 1990-08-09 | 1992-03-30 | Eagle Ind Co Ltd | Silicon carbide-based composite body |
JPH09221367A (en) * | 1996-02-15 | 1997-08-26 | Chichibu Onoda Cement Corp | Conductive silicon carbide material composite material and its production |
JP2010536694A (en) * | 2007-08-14 | 2010-12-02 | ザ・ペン・ステート・リサーチ・ファンデーション | 3D printing of near net shape products |
JP2016525993A (en) * | 2013-04-25 | 2016-09-01 | ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation | Additional production of ceramic turbine components by partial transient liquid phase bonding using metal binder |
WO2016093360A1 (en) * | 2014-12-12 | 2016-06-16 | 国立大学法人京都大学 | Silicon carbide fiber reinforced silicon carbide composite material |
JP2017127997A (en) * | 2016-01-18 | 2017-07-27 | 国立研究開発法人産業技術総合研究所 | Powder for molding |
JP2019064226A (en) * | 2017-10-04 | 2019-04-25 | キヤノン株式会社 | Molding method and powder material for molding |
Non-Patent Citations (1)
Title |
---|
KYOUNG-WOO PARK, SUNG-GI HUR, JUN-KU AHN, NAK-JIN SEONG, AND SOON-GIL YOON: "High-Resistivity Thin-Film Resistors Grown Using CrB2-Si-SiC Materials by Radio-Frequency Magnetron", IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 57, no. 6, JPN6023029008, 2010, pages 1475 - 1480, XP011307244, ISSN: 0005108253 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7362718B2 (en) | Modeling methods and powder materials for modeling | |
JP7072058B2 (en) | Additional manufacturing parts and their manufacturing methods | |
EP3313617B1 (en) | Methods of making metal bond abrasive articles and metal bond abrasive articles | |
CN113195184B (en) | Inorganic material powder and method for producing structure | |
JP7483840B2 (en) | Powdered materials for additive manufacturing, structures, semiconductor manufacturing equipment parts, and semiconductor manufacturing equipment | |
US20120237745A1 (en) | Ceramic or glass-ceramic article and methods for producing such article | |
JP2004525050A (en) | Thermal conductive material | |
US20220324019A1 (en) | Article including silicon carbide and method of manufacturing same | |
CN104603084A (en) | Metal-carbon composite material, method for producing metal-carbon composite material and sliding member | |
US12109644B2 (en) | Method of manufacturing metal articles | |
WO2021132291A1 (en) | Method for manufacturing article having silicon carbide as main component, and raw-material powder used in said method | |
Wright et al. | Selective laser melting of prealloyed high alloy steel powder beds | |
JP2019084823A (en) | Material powder for additional molding, structure, semiconductor manufacturing device component, and semiconductor manufacturing device | |
JP2020105067A (en) | Silicon carbide-containing article and method for producing the same | |
JP2020007170A (en) | Manufacturing method of three-dimensional object using powder bed fusion method | |
JP2019181930A (en) | Ceramic powder, ceramic powder production method and production method of ceramic structure using ceramic powder | |
JP2021102548A (en) | Method for manufacturing article having silicon carbide as main component, and raw-material powder used in the same | |
JP2017150040A (en) | Aluminum alloy-ceramic composite material and manufacturing method of aluminum alloy-ceramic composite material | |
JP2019111684A (en) | Method for producing molding | |
CN114585596B (en) | Method for manufacturing ceramic article, liquid containing metal component, kit for manufacturing ceramic article and ceramic article | |
WO2004096469A1 (en) | A metal powder composition | |
JP2024125169A (en) | Powder, article, and method for manufacturing article | |
CN118577804A (en) | Powder, article and method of manufacturing article | |
JP2023072682A (en) | Ceramic structure and method for manufacturing the same | |
CN118510722A (en) | Method for shaping graphite and graphite shaped article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230718 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231128 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20231213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240326 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240730 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240829 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20241022 |