JP2020100132A - Composite uneven plate material by high frequency - Google Patents
Composite uneven plate material by high frequency Download PDFInfo
- Publication number
- JP2020100132A JP2020100132A JP2019034512A JP2019034512A JP2020100132A JP 2020100132 A JP2020100132 A JP 2020100132A JP 2019034512 A JP2019034512 A JP 2019034512A JP 2019034512 A JP2019034512 A JP 2019034512A JP 2020100132 A JP2020100132 A JP 2020100132A
- Authority
- JP
- Japan
- Prior art keywords
- board
- wood
- plate material
- uneven
- wooden
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 78
- 239000002131 composite material Substances 0.000 title claims abstract description 28
- 239000002023 wood Substances 0.000 claims abstract description 94
- 238000000034 method Methods 0.000 claims abstract description 34
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- 230000006835 compression Effects 0.000 claims description 31
- 238000007906 compression Methods 0.000 claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 238000001816 cooling Methods 0.000 claims description 15
- 230000002093 peripheral effect Effects 0.000 claims description 10
- 238000011084 recovery Methods 0.000 claims description 10
- 239000010875 treated wood Substances 0.000 claims description 9
- 238000003825 pressing Methods 0.000 claims description 7
- 239000004744 fabric Substances 0.000 claims description 6
- 230000003746 surface roughness Effects 0.000 claims description 4
- 238000005452 bending Methods 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 7
- 230000003796 beauty Effects 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 241000219000 Populus Species 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 235000008577 Pinus radiata Nutrition 0.000 description 4
- 241000218621 Pinus radiata Species 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003245 working effect Effects 0.000 description 2
- 239000004831 Hot glue Substances 0.000 description 1
- NEAPKZHDYMQZCB-UHFFFAOYSA-N N-[2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]ethyl]-2-oxo-3H-1,3-benzoxazole-6-carboxamide Chemical compound C1CN(CCN1CCNC(=O)C2=CC3=C(C=C2)NC(=O)O3)C4=CN=C(N=C4)NC5CC6=CC=CC=C6C5 NEAPKZHDYMQZCB-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000007688 edging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- SFMJNHNUOVADRW-UHFFFAOYSA-N n-[5-[9-[4-(methanesulfonamido)phenyl]-2-oxobenzo[h][1,6]naphthyridin-1-yl]-2-methylphenyl]prop-2-enamide Chemical compound C1=C(NC(=O)C=C)C(C)=CC=C1N1C(=O)C=CC2=C1C1=CC(C=3C=CC(NS(C)(=O)=O)=CC=3)=CC=C1N=C2 SFMJNHNUOVADRW-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27K—PROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
- B27K5/00—Treating of wood not provided for in groups B27K1/00, B27K3/00
- B27K5/001—Heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27K—PROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
- B27K5/00—Treating of wood not provided for in groups B27K1/00, B27K3/00
- B27K5/007—Treating of wood not provided for in groups B27K1/00, B27K3/00 using pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27K—PROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
- B27K5/00—Treating of wood not provided for in groups B27K1/00, B27K3/00
- B27K5/0085—Thermal treatments, i.e. involving chemical modification of wood at temperatures well over 100°C
- B27K5/009—Thermal treatments, i.e. involving chemical modification of wood at temperatures well over 100°C using a well-defined temperature schedule
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Forests & Forestry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical And Physical Treatments For Wood And The Like (AREA)
Abstract
Description
本発明は、木板加工技術分野に属し、特に高周波による複合凹凸板材に関する。 The present invention belongs to the technical field of wood board processing, and particularly relates to a composite uneven board material by high frequency.
従来の板材は、金型を使用したり、彫刻したりするなどで凹凸効果を実現する方法はいろいろあるが、従来の方法では、一般的に予め設定された金型を使用して凹凸効果を実現し、木材本来の天然の木目を表現することができなく、木板それぞれの図文がいずれも類似しており、人加工の痕跡が明らかであり、各木板にランダムに凹凸の木目が現れる特徴を表現することができなく、それとともに金型と彫刻の作製過程が複雑で、コストが高く、また、従来の凹凸効果を実現する方法は、いずれも板材の密度に限定され、密度が不十分な場合に凹凸板材の作製に用いることができない。 There are various methods for achieving the unevenness effect on the conventional plate material by using a mold or engraving, but in the conventional method, the unevenness effect is generally obtained by using a preset mold. It was realized that the original natural wood grain of wood could not be expressed, the drawings of each wooden board were similar, the traces of human processing were obvious, and the uneven wood grain appeared randomly on each wooden board. In addition, the manufacturing process of the mold and engraving is complicated, and the cost is high, and the conventional methods for realizing the uneven effect are limited to the density of the plate material and the density is insufficient. In other cases, it cannot be used for producing the uneven plate material.
上記技術的問題を解決するために、本発明は、高周波による複合凹凸板材を提供する。 In order to solve the above technical problems, the present invention provides a composite uneven plate material by high frequency.
本発明の具体的な技術的解決手段は以下のとおりである。 The specific technical solution of the present invention is as follows.
本発明に係る高周波による複合凹凸板材は、少なくとも1つの側面に凹凸木目を有する。 それは主に次のステップで作製される。 The high-frequency composite uneven plate material according to the present invention has uneven wood grain on at least one side surface. It is mainly made in the following steps.
a. 前処理:密度が0.5kg/m3を超えない木板を含水率8%−18%、厚さ2cm以下に処理し、
b. 加熱処理:前処理されたN枚の木板を選択して重ねて接触させ、N≧2、前処理された木板を木板の温度60℃−80℃に高周波で加熱し、2−3min保温し、
c. 加圧処理:加熱処理された木板を予め設定された圧縮率Sで圧縮し、好ましくは、予め設定された圧縮率を10%−70%にし、N枚の木板が接触した厚さをU1、加圧後の厚さをU2と仮定すると、P=U1/U1。
d. 硬化処理:予め設定された圧縮率が変わらない条件で、加圧処理された木板を200-240℃に高周波加熱し、4-6min保温する。
e. 降温処理:加圧処理された木板を従来の圧縮率で傾斜して降温し、
f. 養生処理:降温処理された木板を8−10日間常温で放置し、高周波による複合凹凸板材を得る
a. Pretreatment: A wooden board whose density does not exceed 0.5 kg/m 3 is treated to have a water content of 8%-18% and a thickness of 2 cm or less,
b. Heat treatment: N pretreated wood boards are selected and overlapped and brought into contact with each other, and N≧2, the pretreated wood boards are heated to a wood board temperature of 60° C. to 80° C. with high frequency and kept warm for 2-3 minutes,
c. Pressure treatment: The heat-treated wood board is compressed at a preset compression rate S, preferably the preset compression rate is set to 10%-70%, and the thickness at which N pieces of wood boards contact is U1, Assuming that the thickness after pressing is U2, P=U1/U1.
d. Curing treatment: The pressure-treated wooden board is heated to 200-240°C by high frequency under a condition that the preset compressibility does not change, and kept warm for 4-6 minutes.
e. Temperature drop treatment: The pressure-treated wooden board is inclined at the conventional compression rate to lower the temperature,
f. Curing treatment: Leave the temperature-decreased wood board at room temperature for 8-10 days to obtain high-frequency composite uneven board material.
ここで、木板の木目方向は、その厚さ方向に垂直である。本発明で作製した凹凸板材の凹凸木目は、ランダム性を有し、木材本来の天然の特性を保ち、彫刻したり、金型を使用したりするなどの煩わしい加工工程は必要がなく、一度に圧縮すると、m個の形状の異なる凹凸面が発生する。凹凸面の数m、m=2*(o−1)(o≧2、oは板の数を表す)とし、そのうち片面に凹凸木目を持つ凹凸板は2つがあり、両面に凹凸木目を持つ凹凸板はm−2個があり、本発明の方法で作製した凹凸板材は、必要に応じて片面に凹凸木目または両面に凹凸木目を持つことができ、木板本来の美しさを増す。本発明で提供される作製方法は簡単であり、上記のいくつかのステップにより、複数の木材を凹凸木目を持つ凹凸板材にプレス加工することができ、またホルムアルデヒドとキシレンの含有量をゼロにすることができる。 Here, the grain direction of the wood board is perpendicular to the thickness direction. The uneven wood grain of the uneven plate material produced in the present invention has randomness, keeps the original natural characteristics of wood, engraving, and does not require a troublesome processing step such as using a mold, and at a time. When compressed, m uneven surfaces having different shapes are generated. Number of uneven surfaces m, m=2*(o-1) (o≧2, o represents the number of boards), of which there are two uneven boards with uneven wood grain on one side, and uneven wood texture on both sides There are m-2 uneven plates, and the uneven plate material produced by the method of the present invention can have uneven wood grain on one side or uneven wood grain on both sides as needed, which enhances the original beauty of the wood board. The manufacturing method provided by the present invention is simple, and by the above-mentioned several steps, it is possible to press a plurality of woods into an uneven plate material having uneven wood grain, and to reduce the content of formaldehyde and xylene to zero. be able to.
好ましくは、ステップb加熱処理前に選択したN枚の木板は、1枚の板材で切断され得て、N枚の木板の厚さは同じだったり、異なったりしてもよく、木目方向または斜面(5%など)に沿って切断することができる。好ましくは、不完全鋸断(図3に示す)であり、3枚の木板を接続させるように木板の縁に0.5−1cm空け、それにより圧縮後の上下木板の位置ずれを防止することができ、本方法で作製した凹凸板材は、凹凸木目をより均一に確保でき、輸送しやすい。 Preferably, the N wood boards selected before the heat treatment in step b can be cut in one board, the thickness of the N wood boards may be the same or different, the grain direction or the slope. It can be cut along (such as 5%). Preferably, it is incomplete sawing (shown in FIG. 3), leaving 0.5-1 cm on the edge of the wood board so as to connect the three wood boards, thereby preventing displacement of the upper and lower wood boards after compression. The uneven plate material produced by this method can secure the uneven wood grain more uniformly and is easy to transport.
好ましくは、隣接する木板の縁0.5−1cmにホットメルト接着フィルムを設置することで、圧縮後の上下木板の位置ずれを防止することができ、本方法で作製した凹凸板材は、凹凸木目をより均一に確保でき、輸送しやすい。 Preferably, by installing a hot melt adhesive film on the edge of the adjacent wood boards 0.5-1 cm, it is possible to prevent the upper and lower wood boards from being displaced after compression, and the uneven board material produced by this method has uneven wood grain. Can be secured more uniformly and is easy to transport.
さらに改良して、ステップa前処理された木板の表面粗さは2.5μmを超えない。 With a further improvement, the surface roughness of the wooden board pre-treated with step a does not exceed 2.5 μm.
本発明は、木板の表面粗さを限定することで、隣接する2枚の木板が圧縮されて噛み合って離れにくくなることを回避することができる。 According to the present invention, by limiting the surface roughness of the wooden board, it is possible to prevent two adjacent wooden boards from being compressed, meshed with each other, and difficult to separate.
さらに改良して、加熱処理過程では、木材の中間領域と周囲領域を高周波で加熱し、中間領域の高周波数と周囲領域の高周波数比は1:0.88−0.94であり、硬化処理では、加熱圧縮処理された木材の中間領域と周囲領域を高周波でそれぞれ加熱し、中間領域の高周波数と周囲領域の高周波数比は1:0.93−0.96である。 Further improving, in the heat treatment process, the middle region and the peripheral region of the wood are heated with high frequency, and the high frequency ratio of the middle region and the peripheral region is 1:0.88-0.94, Then, the middle region and the peripheral region of the heat-compressed wood are each heated with a high frequency, and the high frequency ratio of the middle region and the peripheral region is 1:0.93-0.96.
本発明は、以上の限定により、外層木板が焦げて内層木板の温度が要求を満たさない圧縮に失敗することを回避することができる。 According to the present invention, due to the above limitation, it is possible to prevent the outer layer wood board from being scorched and the compression of the inner layer wood board failing to meet the requirement.
さらに改良して、ステップbでは、N枚の木板のうちいずれか2枚の木板の密度差が0.15kg/m3を超えない。 As a further improvement, in step b, the density difference between any two of the N wooden boards does not exceed 0.15 kg/m 3 .
本発明は、加熱処理時のいずれか2枚の木板の密度差を具体的に限定することで、圧縮後の木板の凹凸木目の深さを向上させることができる。 INDUSTRIAL APPLICABILITY The present invention can improve the depth of the uneven grain of the compressed wood plate by specifically limiting the density difference between any two wood plates during the heat treatment.
さらに改良して、ステップd降温処理では、具体的に以下のステップを含む。 With further improvement, the step d temperature reduction processing specifically includes the following steps.
水冷技術で硬化処理された木板表面を5−15℃/minの速度で木板平均温度70−90℃まで冷却し、水冷技術の水流速は4.5−5m/sであり、木板表面温度120−130℃まで冷却する時、風冷却を行い、風速が9.2−9.7m/sであり、風の温度が55−60℃であり、風向と木板の上下面とのなす角度がいずれも55−58°である。 The surface of the wooden board hardened by the water cooling technique is cooled to a wooden board average temperature of 70-90°C at a rate of 5-15°C/min, the water flow rate of the water cooling technique is 4.5-5m/s, and the wooden board surface temperature is 120°C. When cooling to −130° C., wind cooling is performed, the wind speed is 9.2 to 9.7 m/s, the temperature of the wind is 55 to 60° C., and the angle between the wind direction and the upper and lower surfaces of the wooden board is Is also 55-58°.
本発明は、以上の方法で降温を行うことで、凹凸板材の変形回復率を0.5%まで低下することができる。 In the present invention, the deformation recovery rate of the concavo-convex plate material can be reduced to 0.5% by lowering the temperature by the above method.
さらに改良して、ステップaの前処理では、各木板を横方向に重ねて接触させることと、縦方向に配列して接触させることと、両者を任意に組み合わせることとを含み、好ましくは、木板の圧縮方向を3つとし、それぞれの圧縮方向に少なくとも2枚の木板を用意することである。 Further improvement, the pretreatment of step a includes stacking and contacting the wooden boards in the lateral direction, arranging them in the vertical direction and contacting each other, and optionally combining the both, and preferably the wooden boards. There are three compression directions, and at least two wood boards are prepared in each compression direction.
本発明で提供される方法は、横方向に重ねて配列した木板を圧縮したり、複数の木板を縦方向に配列して圧縮したりしてもよいし、または横方向に重ねて配列することと縦方向に配列することを組み合わせてもよい。3つのパターンでプレス加工した凹凸木目は、いずれも異なり、各木板のいずれかの側面に凹凸木目が形成され、余分な縁取りや小さな木板を接触させて凹凸木目をプレス加工し、無駄を省くことができる。 The method provided by the present invention may be performed by compressing wooden boards that are arranged in a lateral direction in parallel, or by compressing wooden boards that are arranged in a vertical direction, or by arranging them in a lateral direction. And the arrangement in the vertical direction may be combined. The uneven wood grain pressed by the three patterns is different, and uneven wood grain is formed on either side of each wood board, and extra edging or a small wood board is contacted to press the uneven wood texture to save waste. You can
さらに改良して、各木板の間を重ねて接触させる場合、高圧高温処理された木板の圧縮率をPとし、各木板の密度をそれぞれρ1、ρ2…ρnと仮定すると、各木板の平均密度をρ~とし、ρ~とPは以下の条件を満たす。
0.4kg/m3≦ρ~<0.5kg/m3、10%<P≦40%、
0.3kg/m3≦ρ~<0.4kg/m3、40%<P≦60%、
ρ~<0.3kg/m3、60%<P≦70%。
When further improving and making contact between the wooden boards in an overlapping manner, assuming that the compressibility of the high-pressure and high-temperature treated wooden boards is P and the densities of the respective wooden boards are ρ1, ρ2... ρn, the average density of each wooden board is ρ , And ρ~ and P satisfy the following conditions.
0.4 kg/m 3 ≦ρ˜<0.5 kg/m 3 , 10%<P≦40%,
0.3 kg/m 3 ≦ρ˜<0.4 kg/m 3 , 40%<P≦60%,
ρ~<0.3 kg/m 3 , 60%<P≦70%.
本発明は、以上の方法により、木板の密度に応じて圧縮率を調整することができ、圧縮率が小さすぎて凹凸木目をプレス加工できなかったり、圧縮率が大きすぎて凹凸木目が深すぎたり、見栄えが悪かったり、ひび割れが生じたりすることを回避することができる。 The present invention, by the above method, the compression rate can be adjusted according to the density of the wooden board, the compression rate is too small to press the uneven wood grain, or the compression rate is too large and the uneven wood grain is too deep. It is possible to avoid the appearance, the unattractive appearance, and the occurrence of cracks.
さらに改良して、ステップcの加圧処理された木板の厚さが1cm以下の場合に、前処理された木板の上面または下面に電気絶縁布を被覆する。 As a further improvement, when the thickness of the pressure-treated wood board in step c is 1 cm or less, the upper or lower surface of the pre-treated wood board is coated with an electrically insulating cloth.
本発明は、前処理された木板の上面と下面に電気絶縁布を被覆することにより、高周波加熱時に発生する強いアークにより設備が焼損することを回避することができる。 According to the present invention, by covering the upper surface and the lower surface of the pretreated wood board with an electric insulating cloth, it is possible to prevent the equipment from being burned by a strong arc generated during high frequency heating.
さらに改良して、複合凹凸板材を14日間放置した後の変形回復率は0.5%未満であり、曲げ強度は80−100MPaである。 After further improvement, the deformation recovery rate after leaving the composite concavo-convex plate material for 14 days is less than 0.5%, and the bending strength is 80-100 MPa.
さらに改良して、複合凹凸板材の凹凸木目の深さは400−10000μmである。 With further improvement, the depth of the uneven grain of the composite uneven plate member is 400 to 10000 μm.
さらに改良して、木板を作製するための原料は、ポプラ、しなのきとラジアータパインの中の1種または複数種から選択する。 With further refinement, the raw material for making wood boards is selected from one or more of poplar, shinanoki and radiata pine.
本発明が提供する材料は、空母内部倉庫、軍艦内部倉庫、クルーズ船内部倉庫、床、ドアまたはキャビネットを製造するために用いることができる。本発明が提供する方法で製造した材料は、環境に優しく、安全であり、人体に何の傷害も生じない。 The materials provided by the present invention can be used to manufacture aircraft carrier internal warehouses, warship internal warehouses, cruise ship internal warehouses, floors, doors or cabinets. The material produced by the method provided by the present invention is environmentally friendly, safe and does not cause any injury to human body.
本発明で作製した凹凸板材の凹凸木目はランダム性を有し、木材本来の天然の特性を保ち、彫刻したり、金型を使用したりするなどの煩わしい加工工程は必要がなく、本発明の方法で作製した凹凸板材は、必要に応じて片面に凹凸木目または両面に凹凸木目を持つことができ、木板本来の美しさを増す。 The uneven wood grain of the uneven plate material produced in the present invention has randomness, maintains the original natural characteristics of wood, engraving, there is no need for complicated processing steps such as using a mold, the present invention The concavo-convex plate material produced by the method can have concavo-convex wood grain on one side or concavo-convex wood grain on both sides, if necessary, to increase the original beauty of the wooden board.
(実施例1ないし7)
本発明の実施例1−7に係る7種類の凹凸板材は、いずれも以下のステップで作製される。
(Examples 1 to 7)
Each of the seven types of uneven plate materials according to Examples 1-7 of the present invention is manufactured by the following steps.
a. 前処理:密度が0.5kg/m3を超えない木板を含水率8%−18%、厚さ2cm以下に処理し、前処理木板を作製し、
b. 加熱処理:前処理されたN枚の木板を選択して重ねて接触させ、N≧2、前処理された木板を木板の温度80℃−100℃に高周波で加熱し、2−3min保温し、
c. 加圧処理:加熱処理された木板を予め設定された圧縮率Sで圧縮し、好ましくは、予め設定された圧縮率を10%−70%にし、N枚の木板が接触した厚さをU1、加圧後の厚さをU2と仮定すると、P=U2/U1。
d. 硬化処理:予め設定された圧縮率が変わらない条件で、加圧処理された木板を200-240℃に高周波加熱し、4-6min保温する。
e. 降温処理:加圧処理された木板を従来の圧縮率で傾斜して降温し、
f. 養生処理:降温処理された木板を8−10日間常温で放置し、高周波による複合凹凸板材を得る。
a. Pretreatment: A wooden board having a density not exceeding 0.5 kg/m 3 is treated to have a water content of 8%-18% and a thickness of 2 cm or less to prepare a pretreated wooden board.
b. Heat treatment: N pretreated wood boards are selected and brought into contact with each other, and N≧2, the pretreated wood boards are heated to a wood board temperature of 80° C. to 100° C. with high frequency, and kept warm for 2-3 minutes,
c. Pressure treatment: The heat-treated wood board is compressed at a preset compression rate S, preferably the preset compression rate is set to 10%-70%, and the thickness at which N pieces of wood boards contact is U1, Assuming that the thickness after pressing is U2, P=U2/U1.
d. Curing treatment: The pressure-treated wooden board is subjected to high-frequency heating at 200 to 240° C. under a condition that the preset compression rate does not change, and is kept warm for 4 to 6 minutes.
e. Temperature drop treatment: The pressure-treated wooden board is inclined at the conventional compression rate to lower the temperature,
f. Curing treatment: The temperature-decreased wooden board is left at room temperature for 8 to 10 days to obtain a high-frequency composite uneven board material.
ステップaで前処理された板の表面粗さは2.5μm以下である。 The surface roughness of the plate pretreated in step a is 2.5 μm or less.
加熱処理では,木材の中間領域と周囲領域を高周波でそれぞれ加熱し,中間領域の高周波数と周囲領域の高周波数比は1:0.88−0.94である。硬化処理では、加熱圧縮処理された木材の中間領域と周囲領域を高周波でそれぞれ加熱し,中間領域の高周波数と周囲領域の高周波数比は1:0.93−0.96である。 In the heat treatment, the middle region and the surrounding region of the wood are heated with high frequency, respectively, and the high frequency ratio of the middle region and the surrounding region is 1:0.88-0.94. In the hardening process, the middle region and the surrounding region of the heat-compressed wood are heated with high frequency, respectively, and the high frequency ratio of the middle region and the surrounding region is 1:0.93-0.96.
ステップbのN枚の木板のうちいずれか2枚の木板の密度差は0.15kg/m3以下である。 The density difference between any two of the N wooden boards in step b is 0.15 kg/m 3 or less.
ステップd降温処理は、具体的に以下のステップを含む。
水冷技術で硬化処理された木板表面を5−15℃/minの速度で木板平均温度70−90℃まで冷却し、水冷技術の水流速は4.5−5m/sであり、木板表面温度120−130℃まで冷却する時、風冷却を行い、風速が9.2−9.7m/sであり、風の温度が55−60℃であり、風向と木板の上下面とのなす角度がいずれも55−58°である。
The step d temperature reduction processing specifically includes the following steps.
The surface of the wooden board hardened by the water cooling technique is cooled to a wooden board average temperature of 70-90°C at a rate of 5-15°C/min, the water flow rate of the water cooling technique is 4.5-5m/s, and the wooden board surface temperature is 120°C. When cooling to −130° C., wind cooling is performed, the wind speed is 9.2 to 9.7 m/s, the temperature of the wind is 55 to 60° C., and the angle between the wind direction and the upper and lower surfaces of the wooden board is Is also 55-58°.
各木板の間を重ねて接触させる場合、高圧高温処理された木板の圧縮率をPとし、各木板の密度をそれぞれρ1、ρ2…ρnと仮定すると、各木板の平均密度をρ~とし、ρ~とPは以下の条件を満たす。
0.4kg/m3≦ρ~<0.5kg/m3、10%<P≦40%、
0.3kg/m3≦ρ~<0.4kg/m3、40%<P≦60%、
ρ~<0.3kg/m3、60%<P≦70%。
ここで、実施例1−7の具体的なパラメータを表1に示す。
When the wooden boards are brought into contact with each other in an overlapping manner, assuming that the compressibility of the high-pressure and high-temperature treated wooden boards is P and the densities of the respective wooden boards are ρ1, ρ2... ρn, the average density of each wooden board is ρ~, ρ~ And P satisfy the following conditions.
0.4 kg/m 3 ≦ρ˜<0.5 kg/m 3 , 10%<P≦40%,
0.3 kg/m 3 ≦ρ˜<0.4 kg/m 3 , 40%<P≦60%,
ρ~<0.3 kg/m 3 , 60%<P≦70%.
Here, Table 1 shows specific parameters of Example 1-7.
表1:実施例1−7の具体的なパラメータ
(実施例8)
本発明の実施例8に係る高周波による複合凹凸板材は、以下のステップで作製される。
(Example 8)
The high-frequency composite uneven plate material according to Example 8 of the present invention is manufactured through the following steps.
a. 前処理:密度が0.5kg/m3を超えない木板を含水率8%−18%、厚さ2cm以下に処理し、
b. 加熱処理:前処理された3枚の木板を接触させて配置し、3枚の木板の密度がそれぞれ0.46kg/m3、0.39kg/m3、0.43kg/m3であり、木板の含水率をそれぞれ9%、11%、13%、厚さをそれぞれ0.6cm、0.8cm、0.4cmに制御し、前処理された木板を木板の温度100℃に高周波加熱し、加熱時間を3minとする。
c. 加圧処理:加熱処理された木板を予め設定された圧縮率Sで圧縮し、予め設定された圧縮率を10%とし、N枚の木板を接触させた厚さをU1、加圧後の厚さをU2とすると、P=U1/U1とする。
d. 硬化処理:予め設定された圧縮率が変わらない条件で、加圧処理された木板を2240℃に高周波加熱し、5min保温する。
e. 降温処理:加圧処理された木板を低温条件で強制的に一定時間冷却する。
f. 養生処理:降温処理された木板を12日間常温で放置し、高周波による複合凹凸板を得る。
a. Pretreatment: A wooden board whose density does not exceed 0.5 kg/m 3 is treated to have a water content of 8%-18% and a thickness of 2 cm or less,
b. Heat treatment: pretreated three contacting the wood board was placed, respectively the density of three wooden board 0.46kg / m 3, 0.39kg / m 3, a 0.43 kg / m 3, wooden board Of water content of 9%, 11%, 13% and thickness of 0.6cm, 0.8cm, 0.4cm respectively, and preheated wood board is heated at high temperature of 100℃ and heated. The time is 3 min.
c. Pressure treatment: The heat-treated wooden board is compressed at a preset compression rate S, the preset compression rate is set to 10%, the thickness at which N wooden boards are brought into contact is U1, and the thickness after pressing is Let P be U2 and P=U1/U1.
d. Curing treatment: The pressure-treated wooden board is heated to 2240° C. at a high frequency under a condition that the preset compression rate does not change and is kept warm for 5 minutes.
e. Cooling treatment: The pressure-treated wooden board is forcibly cooled under a low temperature condition for a certain period of time.
f. Curing treatment: The temperature-decreased wooden board is left for 12 days at room temperature to obtain a high-frequency composite uneven board.
ここで、ステップe降温処理は、具体的に以下のステップを含む。
e1:ステップdの高温処理された木板を95℃の環境に8min配置し、第1の降温板を得る。
e2:ステップe1の処理された第1の降温木板を75℃の環境に15min配置し、第1の降温板を得る。
e3:ステップe2の処理された第2の降温木板を45℃の環境に20min配置し、第1の降温板を得る。
Here, the step e temperature lowering process specifically includes the following steps.
e1: The high temperature-treated wood board of step d is placed in an environment of 95° C. for 8 minutes to obtain a first temperature dropping board.
e2: The first temperature-decreasing wood board treated in step e1 is placed in an environment of 75° C. for 15 minutes to obtain a first temperature-decreasing board.
e3: The second temperature-decreasing wood board treated in step e2 is placed in an environment of 45° C. for 20 minutes to obtain a first temperature-decreasing board.
ここで、木板を作製するための原料は、ポプラ、しなのきとラジアータパインからそれぞれ選択する。 Here, the raw materials for producing the wood board are selected from poplar, Shinanoki and radiata pine.
ここで、ステップcの加圧処理された3枚の木板の総厚さは0.9cmであり、前処理された木板の上面には電気絶縁布が被覆される。 Here, the total thickness of the pressure-treated three wooden boards in step c is 0.9 cm, and the upper surface of the pretreated wooden boards is covered with an electrically insulating cloth.
(対照例1ないし14)
対照例1−14に係る14種類の高周波による複合凹凸板材は、パラメータにおいて実施例3と違い、具体的なパラメータを表2と表3に示す。
(Controls 1 to 14)
The 14 types of high-frequency composite concavo-convex plate materials according to Comparative Example 1-14 are different from Example 3 in parameters, and specific parameters are shown in Tables 2 and 3.
表2:対照例1−7の具体的なパラメータ
表3:対照例8−14の具体的なパラメータ
表4:対照例15−18の具体的なパラメータ
ここで、加熱温度1と保温時間1は、加熱加圧処理時の温度と時間であり、加熱温度2と保温時間2は、硬化時の温度と時間であり、含水率は、当該木板の平均含水率であり。当該木板上に5つの点を測定点として均一に選び、それぞれの点の含水率を測定し、平均含水率は、5つ点の含水率の和を5で割った値である。実施例1における2枚の木板は、ポプラとしなのきからそれぞれ選択して作製され、実施例1以外のすべての試験例及び対照例の3枚の木板は、ポプラ、しなのきとラジアータパインをそれぞれ採用して作製される。 Here, the heating temperature 1 and the heat retention time 1 are the temperature and time at the time of heat and pressure treatment, the heating temperature 2 and the heat retention time 2 are the temperature and time at the time of curing, and the water content is the average of the wood boards. Moisture content. Five points were uniformly selected as measurement points on the wooden board, the water content of each point was measured, and the average water content is the value obtained by dividing the sum of the water content of the five points by 5. The two wood boards in Example 1 were made by selecting from poplar and non-wood, respectively, and the three wood boards of all test examples and control examples other than Example 1 were poplar, Shinanoki and radiata pine. Each is adopted and produced.
(対照例19)
対照例19に係る凹凸板材は、以下のステップで作製される。
(Control example 19)
The concavo-convex plate material according to Comparative Example 19 is manufactured by the following steps.
a. 前処理:密度が0.5kg/m3を超えない木板を含水率8%−18%、厚さ2cm以下に処理し、
b. 加熱処理:前処理された3枚の木板を接触させて配置し、3枚の木板の密度がそれぞれ0.46kg/m3、0.39kg/m3、0.43kg/m3であり、木板の含水率をそれぞれ9%、11%、13%、厚さをそれぞれ0.6cm、0.8cm、0.4cmに制御し、前処理された木板を木板の温度100℃に高周波加熱し、加熱時間を3minとする。
c. 加圧処理:加熱処理された木板を予め設定された圧縮率Sで圧縮し、予め設定された圧縮率を10%とし、N枚の木板を接触させた厚さをU1、加圧後の厚さをU2とすると、P=U2/U1とする。
d. 硬化処理:予め設定された圧縮率が変わらない条件で、加圧処理された木板を240℃に高周波加熱し、5min保温する。
e. 降温処理:加圧処理された木板を低温条件で強制的に一定時間冷却する。
f. 養生処理:降温処理された木板を12日間常温で放置し、高周波による複合凹凸板を得る。
a. Pretreatment: A wooden board whose density does not exceed 0.5 kg/m 3 is treated to have a water content of 8%-18% and a thickness of 2 cm or less,
b. Heat treatment: pretreated three contacting the wood board was placed, respectively the density of three wooden board 0.46kg / m 3, 0.39kg / m 3, a 0.43 kg / m 3, wooden board Of water content of 9%, 11%, 13% and thickness of 0.6cm, 0.8cm, 0.4cm respectively, and preheated wood board is heated at high temperature of 100℃ and heated. The time is 3 min.
c. Pressure treatment: The heat-treated wooden board is compressed at a preset compression rate S, the preset compression rate is set to 10%, the thickness at which N wooden boards are brought into contact is U1, and the thickness after pressing is Suppose U2, then P=U2/U1.
d. Curing treatment: The pressure-treated wooden board is heated to 240° C. with high frequency under a condition that the preset compression rate does not change and is kept for 5 minutes.
e. Cooling treatment: The pressure-treated wooden board is forcibly cooled under a low temperature condition for a certain period of time.
f. Curing treatment: The temperature-decreased wooden board is left for 12 days at room temperature to obtain a high-frequency composite uneven board.
ここで、木板を作製するための原料は、ポプラ、しなのきとラジアータパインからそれぞれ選択する。 Here, the raw materials for producing the wood board are selected from poplar, Shinanoki and radiata pine.
冷却処理ステップの実施例5は以下のとおりである。 Example 5 of the cooling process step is as follows.
そのうち、ステップcの加圧処理された3枚の木板の総厚さは0.9dmであり,前処理された木板の上下面に電気絶縁布が被覆される。 Among them, the total thickness of the pressure-treated three wooden boards in step c is 0.9 dm, and the upper and lower surfaces of the pretreated wooden boards are covered with the electric insulating cloth.
(実施例1)
凹凸板材のプレス加工効果試験は以下のとおりである。
(Example 1)
The press working effect test of the uneven plate material is as follows.
実施例1−7、対照例1−11と中国特許CN107901178Aで作製した凹凸環境保護型扉板を試験1−7組、対照1−11組と陽性1組とし、各組の凹凸板材の凹凸効果を評価し、各組に5つの平行なサンプルを例とし、結果を平均した値となり、考察結果を表5に示す。 The concavo-convex environmental protection type door plates made in Example 1-7, Control Example 1-11 and Chinese Patent CN107901178A were set as Test 1-7 sets, Control 1-11 sets and Positive 1 set, and the concavo-convex effect of the concavo-convex plate materials of each set Was evaluated, and five parallel samples were used for each set as an example, and the results were averaged. The results of consideration are shown in Table 5.
表5:各群の凹凸板材のプレス加工効果
表5からわかるように、木板の含水率、厚さ、密度、加熱時間、加熱温度は、いずれも凹凸板材のプレス加工効果に顕著に影響を及ぼし、木材の含水率8−18%、厚さ2cm以内、密度0.5kg/m3以下、加熱時間2−3min、加熱温度80℃−100℃のように制御する限り、凹凸板材は木目が明瞭で、密度が均一で、亀裂と膨張現象がないように作製することができる。加熱温度と時間が上昇し続けると、投入と産出は比例せず、本発明の方法で作製した凹凸板材は、凹凸木目がいずれも一致せず、特異性を持ち、また片面に凹凸木目を持つ凹凸板材(図1に示す)と両面に凹凸木目を持つ凹凸板材(図2に示す)を作製することができる。 As can be seen from Table 5, the water content, thickness, density, heating time, and heating temperature of the wooden board all significantly affect the press working effect of the uneven plate material, and the water content of the wood is 8-18%, and the thickness is As long as it is controlled within 2 cm, the density is 0.5 kg/m 3 or less, the heating time is 2-3 min, and the heating temperature is 80° C.-100° C., the uneven plate material has a clear wood grain, a uniform density, and cracks and expansion phenomena. It can be made so that it does not exist. When the heating temperature and time continue to rise, the input and the output are not proportional, the uneven plate material produced by the method of the present invention does not have any uneven wood grain, has peculiarity, and has uneven wood grain on one side An uneven plate material (shown in FIG. 1) and an uneven plate material (shown in FIG. 2) having uneven wood grain on both sides can be produced.
(実施例2)
変形回復率の考察は以下のとおりである。
(Example 2)
The consideration of the deformation recovery rate is as follows.
実施例3−5、対照例12−15と中国特許CN101195291Bで作製した表面凹凸型装飾板材の作製方法で作製した凹凸板材を、実験8−10組、対照12−15組と陽性2組とし、各組の凹凸板材の圧縮前、作製完了後の厚さと作製完了後30日間放置後の厚さをそれぞれ考察し、変形回復率Rを計算し、その結果を表6に示す。 Example 3-5, Comparative Example 12-15 and the uneven plate material produced by the method for producing the surface uneven type decorative plate material produced in Chinese Patent CN101195291B were set as Experiment 8-10 sets, Control 12-15 sets and two positive sets, The thickness of each set of concavo-convex plate materials before compression, after completion of production and after leaving for 30 days after completion of production were considered, and the deformation recovery rate R was calculated. The results are shown in Table 6.
R=Tr−Tc/T0−Tc、ここで、Trは、30日間放置後の凹凸板材の厚さであり、Tcは、圧縮後の凹凸板材の厚さであり、T0は圧縮前の凹凸板材の厚さである。 R=Tr−Tc/T 0 −Tc, where Tr is the thickness of the uneven plate material after standing for 30 days, Tc is the thickness of the uneven plate material after compression, and T 0 is the value before compression. The thickness of the uneven plate material.
表6:変形回復率の考察結果
表6からわかるように、降温方法は、凹凸板材の変形回復率に顕著に影響を及ぼし、本発明で提供される降温処理の方法と養生時間は、凹凸板材の変形回復率を顕著に低下することができ、降温処理のパラメータが変更されるか、又は養生時間が短い場合、凹凸板材の変形回復率を顕著に向上させ、本発明で作製した凹凸板材の変形回復率は、陽性2組の凹凸板材より顕著に低い。 As can be seen from Table 6, the temperature lowering method significantly affects the deformation recovery rate of the uneven plate material, and the temperature lowering method and the curing time provided in the present invention significantly reduce the deformation recovery rate of the uneven plate material. When the parameters of the temperature lowering treatment are changed or the curing time is short, the deformation recovery rate of the uneven plate material is remarkably improved, and the deformation recovery rate of the uneven plate material produced in the present invention is 2 positive. Remarkably lower than uneven plate material.
(試験例3)
性能指標の考察は以下のとおりである。
(Test Example 3)
The consideration of the performance index is as follows.
実施例5−7と中国特許CN101195291Bで作製した表面凹凸型装飾板材の作製方法で作製した凹凸板材を、試験11−13組と陽性3組とし、各組の凹凸板材の性能指標を考察し、その結果を表7に示す。 The concavo-convex plate materials produced by the method for producing the surface irregularity type decorative plate material produced in Example 5-7 and Chinese Patent CN101195291B were tested 11-13 sets and positive 3 sets, and the performance index of the concavo-convex plate material of each set was considered, The results are shown in Table 7.
表7:高温減圧処理の各パラメータの考察
表7から分かるように、予め設定された圧縮率は、密度と密接に関連付ける。本発明で提供される方法で圧縮率を設定し、作製した凹凸板材の各性能指標は良好であり、予め設定された圧縮率と密度が一致しない(本発明で提供される方法で設定されていない)場合、凹凸板材の各性能指標を顕著に低下し、本発明で作製した凹凸板材は、テンプレートを用いて作製した凹凸板材と比較して比重及びその他の指標がより良好である。 As can be seen from Table 7, the preset compression ratio is closely related to the density. The compressibility was set by the method provided by the present invention, each performance index of the uneven plate material produced was good, and the preset compressibility and the density did not match (set by the method provided by the present invention. If not), the respective performance indexes of the uneven plate material are remarkably lowered, and the uneven plate material manufactured according to the present invention has better specific gravity and other indexes as compared with the uneven plate material manufactured using the template.
(試験例4)
焦げ度試験は以下のとおりである。
(Test Example 4)
The charring test is as follows.
実施例8と対照例16−18の方法で作製した凹凸板材を、試験14組と対照16−18組とし、各組の凹凸板材の表裏両面の焦げ度を考察し、その結果を表8に示す。 The concavo-convex plate materials produced by the methods of Example 8 and Comparative Examples 16-18 were used as a test 14 sets and a control 16-18 set, and the scorching degree of both the front and back surfaces of the concavo-convex plate materials of each set was considered, and the results are shown in Table 8. Show.
焦げ度(%)=凹凸板材の表裏両面の焦げ度面積/凹凸板材の表裏両面の表面積。 Burntness (%) = burnt area on both the front and back surfaces of the uneven plate material/surface area on both the front and back surfaces of the uneven plate material.
表8:焦げ度試験の結果
表8からわかるように、加圧処理された木板の厚さが1cm以下の場合、前処理された木板の上面または下面に電気絶縁布を被覆する必要があり、熱圧縮処理と昇温圧縮処理の過程では、中間領域の高周波数と周囲領域の高周波数比は1:0.88−0.94であり、硬化処理では、中間領域の高周波数と周囲領域の高周波数の比は1:0.93−0.96であり、そうでない場合には焦げや機器の損傷が生じるおそれがある。 As can be seen from Table 8, when the thickness of the pressure-treated wood board is 1 cm or less, it is necessary to cover the upper surface or the lower surface of the pre-processed wood board with an electrically insulating cloth. In the process of, the high frequency ratio of the intermediate region to the high frequency of the peripheral region is 1:0.88-0.94, and in the curing process, the ratio of the high frequency of the intermediate region to the high frequency of the peripheral region is 1:0. It is 0.93-0.96, and if not, there is a risk that charring or equipment damage will occur.
(試験例5)
実施例4−5と対照例16の方法で凹凸板材を作製し、隣接する2枚の木板を引き離すために用いる引張力を計算し、その結果を表9に示す。
(Test Example 5)
A concavo-convex plate material was produced by the method of Examples 4-5 and Comparative Example 16, and the tensile force used to separate two adjacent wooden boards was calculated. The results are shown in Table 9.
表9:各群の凹凸板材プレス加工後の分離引張力の試験結果
表9からわかるように、木板の表面摩擦力を限定することで、プレス加工後の2枚の木板を引き離すために用いる引張力を顕著に低減でき、木板の表面摩擦力が2.5μmを超えると、2枚の木板を分離するために比較的大きい引張力が必要となる。 As can be seen from Table 9, by limiting the surface friction force of the wooden board, the tensile force used to separate the two pressed wooden boards can be significantly reduced, and the surface friction force of the wooden board exceeds 2.5 μm. Therefore, a relatively large tensile force is required to separate the two wooden boards.
Claims (10)
b.加熱処理:前処理されたN枚の木板を選択して重ねて接触させ、N≧2、前処理された木板を木板の温度60℃−80℃に高周波で加熱し、2−3min保温し、
c. 加圧処理:加熱処理された木板を予め設定された圧縮率Sで圧縮し、好ましくは、予め設定された圧縮率を10%−70%にし、N枚の木板が接触した厚さをU1、加圧後の厚さをU2と仮定すると、P=U1/U1、
d.硬化処理:加圧処理された木板を予め設定された圧縮率が変わらない条件で、木板を200−240℃に高周波で加熱し、4−6min保温し、
e.降温処理:加圧処理された木板を従来の圧縮率で傾斜して降温し、
f.養生処理:降温処理された木板を8−10日間常温で放置し、高周波による複合凹凸板材を得る
というステップで作製される少なくとも1つの側面に凹凸木目を持つことを特徴とする高周波による複合凹凸板材。 a. Pretreatment: Select a wood board with a density of 0.5 kg/m 3 or less, and control the water content of the wood board to 8-18% and the thickness within 2 cm,
b. Heat treatment: N pretreated wood boards are selected and overlapped and brought into contact with each other, and N≧2, the pretreated wood boards are heated to a wood board temperature of 60° C. to 80° C. with high frequency and kept warm for 2-3 minutes,
c. Pressure treatment: The heat-treated wood board is compressed at a preset compression rate S, preferably the preset compression rate is set to 10%-70%, and the thickness at which N pieces of wood boards contact is U1, Assuming the thickness after pressing is U2, P=U1/U1,
d. Curing treatment: The pressure-treated wood board is heated to 200-240° C. with high frequency under a condition that the preset compression rate does not change, and is kept warm for 4-6 minutes,
e. Temperature drop treatment: The pressure-treated wooden board is inclined at the conventional compression rate to lower the temperature,
f. Curing treatment: leaving the temperature-decreased wood board at room temperature for 8-10 days to obtain a high-frequency composite uneven board material, which is produced by the step of having high-frequency composite uneven board material having at least one side surface ..
a.水冷技術で硬化処理された木板表面を5−15℃/minの速度で木板平均温度70−90℃まで冷却し、水冷技術の水流速は4.5−5m/sであり、木板表面温度120−130℃まで冷却する時、風冷却を行い、風速が9.2−9.7m/sであり、風の温度が55−60℃であり、風向と木板の上下面とのなす角度がいずれも55−58°である
というステップを含むことを特徴とする請求項1に記載の高周波による複合凹凸板材。 In the step d temperature decreasing process, specifically,
a. The surface of the wooden board hardened by the water cooling technique is cooled to a wooden board average temperature of 70-90°C at a rate of 5-15°C/min, the water flow rate of the water cooling technique is 4.5-5m/s, and the wooden board surface temperature is 120°C. When cooling to −130° C., wind cooling is performed, the wind speed is 9.2 to 9.7 m/s, the temperature of the wind is 55 to 60° C., and the angle between the wind direction and the upper and lower surfaces of the wooden board is The high-frequency composite uneven plate material according to claim 1, further comprising a step of 55° to 58°.
0.4kg/m3≦ρ~<0.5kg/m3、10%<P≦40%、
0.3kg/m3≦ρ~<0.4kg/m3、40%<P≦60%、
ρ~<0.3kg/m3、60%<P≦70%
という条件を満たすことを特徴とする請求項6に記載の高周波による複合凹凸板材。 When the wooden boards are brought into contact with each other in an overlapping manner, assuming that the compressibility of the high-pressure and high-temperature treated wooden boards is P and the densities of the respective wooden boards are ρ1, ρ2... ρn, the average density of each wooden board is ρ~, ρ~ And P are
0.4 kg/m 3 ≦ρ˜<0.5 kg/m 3 , 10%<P≦40%,
0.3 kg/m 3 ≦ρ˜<0.4 kg/m 3 , 40%<P≦60%,
ρ~<0.3 kg/m 3 , 60%<P≦70%
The composite concavo-convex plate material by high frequency according to claim 6, which satisfies the following condition.
The high-frequency composite uneven plate material according to claim 1, wherein the depth of the uneven grain of the composite uneven plate material is 400-10000 m.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811575028.2A CN109366658B (en) | 2018-12-21 | 2018-12-21 | Composite concave-convex plate based on high frequency |
CN201811575028.2 | 2018-12-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020100132A true JP2020100132A (en) | 2020-07-02 |
JP6803419B2 JP6803419B2 (en) | 2020-12-23 |
Family
ID=65371255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019034512A Active JP6803419B2 (en) | 2018-12-21 | 2019-02-27 | Manufacturing method of composite uneven plate material by high frequency |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6803419B2 (en) |
CN (1) | CN109366658B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109773905B (en) * | 2019-03-11 | 2022-02-08 | 王凯 | Electric heating composite material based on high-frequency glue-free compaction technology |
CN109834776B (en) * | 2019-03-11 | 2021-10-15 | 广平凯王压密科技有限公司 | Crushed wood compaction material and method based on high-frequency glue-free compaction technology |
CN109877929B (en) * | 2019-03-11 | 2020-12-15 | 王凯 | Rotten wood compacting material and method based on high-frequency glue-free compacting technology |
CN116214645A (en) * | 2023-02-28 | 2023-06-06 | 广平凯王压密科技有限公司 | Preparation process of fixed-length compaction plate based on high frequency |
CN116277320A (en) * | 2023-02-28 | 2023-06-23 | 广平凯王压密科技有限公司 | Fixed-length compacting plate based on high frequency |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07148713A (en) * | 1993-11-29 | 1995-06-13 | Ibiden Co Ltd | Wood building material and production of wood building material |
JPH11291207A (en) * | 1998-04-13 | 1999-10-26 | Kisen Kk | Grain board and its production |
CN101791811A (en) * | 2010-03-30 | 2010-08-04 | 嘉汉林业(广州)有限公司 | Combined lumber and fabrication technique thereof |
CN201872210U (en) * | 2010-03-30 | 2011-06-22 | 嘉汉林业(广州)有限公司 | Combined batten |
JP2012139971A (en) * | 2011-01-06 | 2012-07-26 | Fukuoka Prefecture | Plate material with artificially grained surface, and method for manufacturing the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1228174C (en) * | 2000-12-30 | 2005-11-23 | 德华建材(苏州)有限公司 | Making process of artificial square pillar timber |
US6423955B1 (en) * | 2001-07-13 | 2002-07-23 | Heatwave Technologies Inc. | High frequency dielectric heating system |
JP2011189571A (en) * | 2010-03-12 | 2011-09-29 | Olympus Corp | Method of manufacturing compressed wood product |
CN103753664B (en) * | 2013-02-04 | 2016-08-31 | 中国林业科学研究院木材工业研究所 | A kind of compressed wood and preparation method thereof |
CN103507131A (en) * | 2013-10-25 | 2014-01-15 | 安吉恒丰竹木产品有限公司 | High-efficiency softening method before recombinant bamboo slicing |
CN105599096A (en) * | 2016-01-21 | 2016-05-25 | 中山市大涌镇生产力促进中心 | Manufacturing method of solid wood furniture bent parts |
-
2018
- 2018-12-21 CN CN201811575028.2A patent/CN109366658B/en active Active
-
2019
- 2019-02-27 JP JP2019034512A patent/JP6803419B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07148713A (en) * | 1993-11-29 | 1995-06-13 | Ibiden Co Ltd | Wood building material and production of wood building material |
JPH11291207A (en) * | 1998-04-13 | 1999-10-26 | Kisen Kk | Grain board and its production |
CN101791811A (en) * | 2010-03-30 | 2010-08-04 | 嘉汉林业(广州)有限公司 | Combined lumber and fabrication technique thereof |
CN201872210U (en) * | 2010-03-30 | 2011-06-22 | 嘉汉林业(广州)有限公司 | Combined batten |
JP2012139971A (en) * | 2011-01-06 | 2012-07-26 | Fukuoka Prefecture | Plate material with artificially grained surface, and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
CN109366658B (en) | 2020-12-15 |
CN109366658A (en) | 2019-02-22 |
JP6803419B2 (en) | 2020-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6803419B2 (en) | Manufacturing method of composite uneven plate material by high frequency | |
CN103481348B (en) | Integral reinforced solid wood section bar and manufacturing method thereof | |
US20110262685A1 (en) | Type of surface-reinforced solid wood section material and its manufacturing method | |
WO2007033588A1 (en) | Manufacturing process of a composite bamboo board | |
CN105196368A (en) | Manufacturing method of bamboo-wood composite laminated timber | |
CN108214729B (en) | Surface layer enhanced plywood and preparation method thereof | |
CN106863512B (en) | The preparation method of outdoor timber recombinant material | |
CN103085148A (en) | Manufacturing method for bamboo fiber bamboo board | |
CN102248569A (en) | Oriented shaving box board and machining process thereof | |
CN113815080B (en) | Thermal-modification deformation-resistant household door plate and production process thereof | |
CN109877929B (en) | Rotten wood compacting material and method based on high-frequency glue-free compacting technology | |
JP6785327B2 (en) | Non-adhesive compression method using high frequency of hardwood | |
CN107379162A (en) | A kind of recombined bamboo plate production technology | |
KR20120004665A (en) | Fiber board slate and manufacturing apparatus thereof | |
CN103586959A (en) | Method for processing bamboo miscellaneous wood mixed decorative sheet | |
KR101001139B1 (en) | Fiber board slate and manufacturing method thereof | |
JP6893043B2 (en) | Manufacturing method of electric heating composite material based on high frequency non-adhesive consolidation technology | |
CN208359625U (en) | A kind of mosquito repellent ornament materials | |
JP2020100131A (en) | Method for manufacturing non-adhesive composite material of mixed material by high-frequency wave | |
JP6785326B2 (en) | Manufacturing method of new hardwood without adhesive compression by high frequency | |
CN202130217U (en) | anaglyptic wood board | |
JP2020100133A (en) | Unbonded composite of admixture by high frequency | |
CN203334900U (en) | Solid wood compound door board | |
CN115648378B (en) | Paving, hot-pressing and moisture-removing method for oriented strand boards made of bamboo | |
CN100336660C (en) | Bamboo material transversal surface functional composite board and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201006 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201130 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6803419 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |