JP2020181719A - Surge protective element and manufacturing method thereof - Google Patents
Surge protective element and manufacturing method thereof Download PDFInfo
- Publication number
- JP2020181719A JP2020181719A JP2019084156A JP2019084156A JP2020181719A JP 2020181719 A JP2020181719 A JP 2020181719A JP 2019084156 A JP2019084156 A JP 2019084156A JP 2019084156 A JP2019084156 A JP 2019084156A JP 2020181719 A JP2020181719 A JP 2020181719A
- Authority
- JP
- Japan
- Prior art keywords
- sealing
- insulating tube
- pair
- electrode
- protective element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Thermistors And Varistors (AREA)
Abstract
Description
本発明は、落雷等で発生するサージから様々な機器を保護し、事故を未然に防ぐのに使用するサージ防護素子及びその製造方法に関する。 The present invention relates to a surge protective element used to protect various devices from surges generated by lightning strikes and the like and to prevent accidents, and a method for manufacturing the same.
電話機、ファクシミリ、モデム等の通信機器用の電子機器が通信線との接続する部分、電源線、アンテナ或いはCRT、液晶テレビおよびプラズマテレビ等の画像表示駆動回路等、雷サージや静電気等の異常電圧(サージ電圧)による電撃を受けやすい部分には、異常電圧によって電子機器やこの機器を搭載するプリント基板の熱的損傷又は発火等による破壊を防止するために、サージ防護素子が接続されている。 Abnormal voltages such as lightning surges and static electricity in parts where electronic devices for communication devices such as telephones, facsimiles, and modems connect to communication lines, power lines, antennas or CRTs, image display drive circuits such as LCD TVs and plasma TVs, etc. A surge protective element is connected to a portion susceptible to electric shock due to (surge voltage) in order to prevent thermal damage or ignition of an electronic device or a printed substrate on which the device is mounted due to an abnormal voltage.
従来、例えば特許文献1には、ガラス管内で対向する金属部材の間に導電被覆した部材を挟んだマイクロギャップ式サージ防護素子が記載されている。このマイクロギャップ式サージ防護素子では、導電被覆した部材の中央に数μm〜数十μmのスリット(ギャップ)を設け、規定の電圧以下では対向する金属部材間に電流が流れない構造となっている。そして、設定した電圧を超えると、スリット間にアーク放電が発生し、対向する金属部材間に電流が流れるようになっている。 Conventionally, for example, Patent Document 1 describes a microgap type surge protective element in which a conductively coated member is sandwiched between opposing metal members in a glass tube. This microgap type surge protection element has a structure in which a slit (gap) of several μm to several tens of μm is provided in the center of the conductively coated member so that current does not flow between opposing metal members below a specified voltage. .. When the voltage exceeds the set voltage, an arc discharge is generated between the slits, and a current flows between the opposing metal members.
このサージ防護素子は、ガラス管のガラス軟化による形状変化能と、金属との接合特性とを利用したデバイスであり、量産性にも優れていることから幅広い分野で活用されている。
また、特許文献2には、セラミックス又はガラス等で形成された円筒体と、電気絶縁性のリング状スペーサを介在させることにより所定距離の空間を隔てて対峙する一対の電極とを備えたサージ防護素子が記載されている。このようなサージ防護素子のように、対向電極をアルミナ等のセラミックス製円筒体で封止したサージ防護素子はアレスタと呼ばれている。
This surge protective element is a device that utilizes the shape-changing ability of a glass tube due to glass softening and the bonding characteristics with a metal, and is used in a wide range of fields because of its excellent mass productivity.
Further,
上記従来の技術には、以下の課題が残されている。
すなわち、ガラス被覆型マイクロギャップ式サージ防護素子は、ガラスと金属部材との接合性が良好であり、ガスの封止性や、大気や水分の遮断性等の優れた信頼性を有しているが、マイクロギャップを構成するスリット幅が狭いと共に、マイクロギャップ周辺を形成している導電性被覆の厚さが数十μmと薄いため、サージ耐量は1500A程度が限界であった。また、導電性被覆の成膜工程やマイクロギャップを形成するためのレーザ加工工程が必要であり、工程が複雑になると共に作製に時間が掛かり、高コスト化してしまう不都合があった。
The following problems remain in the above-mentioned conventional technique.
That is, the glass-coated microgap type surge protection element has good bondability between glass and a metal member, and has excellent reliability such as gas sealing property and air and moisture blocking property. However, since the width of the slit forming the microgap is narrow and the thickness of the conductive coating forming the periphery of the microgap is as thin as several tens of μm, the surge resistance is limited to about 1500 A. Further, a film forming process of the conductive coating and a laser processing process for forming a microgap are required, which has a disadvantage that the process becomes complicated, the production takes time, and the cost increases.
一方、アレスタ型サージ防護素子は、直径5mmの製品における耐量が2000Aであり、直径8mmの製品における耐量が5000Aであり、ガラス被覆型マイクロギャップ式サージ防護素子よりも高いサージ耐量特性を有している。このようなアレスタ型サージ防護素子は、高信頼性が要求される大型家電、太陽光発電及び上下水道といったインフラ設備向け等に採用されている。なお、アレスタ型サージ防護素子は、金属とセラミックスとの接合において、高価な接合剤(銀系ロウ材)や、ガラス製円筒部材より高価なアルミナ製円筒部材が必要となる。さらに、セラミックスと金属部との接合には非常に高い技術が必要であると共に、電極内部に電極補助材(グラファイト等)を設けたり、電極保護及び放電助長の目的で対向電極表面に誘電材料を付与したりする必要があり、製造工程が複雑となっている。そのため、製造費用がガラス被覆型マイクロギャップ式サージ防護素子と比べて大幅に上昇する傾向にあった。 On the other hand, the arrester type surge protective element has a withstand capacity of 2000 A in a product having a diameter of 5 mm and a withstand capacity of 5000 A in a product having a diameter of 8 mm, and has a surge tolerance characteristic higher than that of a glass-coated microgap type surge protective element. There is. Such arrester-type surge protective elements are used for large household appliances, solar power generation, water and sewage, and other infrastructure equipment that require high reliability. The arrester type surge protection element requires an expensive bonding agent (silver brazing material) or an alumina cylindrical member, which is more expensive than the glass cylindrical member, in joining the metal and the ceramics. Furthermore, very high technology is required for joining ceramics and metal parts, and an electrode auxiliary material (graphite, etc.) is provided inside the electrode, and a dielectric material is used on the surface of the counter electrode for the purpose of protecting the electrode and promoting discharge. It is necessary to give it, which complicates the manufacturing process. Therefore, the manufacturing cost tends to increase significantly as compared with the glass-coated microgap type surge protective element.
そのため、コスト的にガラス製円筒部材を用いることが要望されているが、図2に示すように、ガラス製の絶縁性管102内に互いに隙間を空けて一対の封止電極103を挿入した状態で、加熱し絶縁性管102と封止電極103とを接合させると、封止電極103の外周面と絶縁性管102との間に残存していた放電制御ガスが熱膨張して気泡Bとして閉じ込められてしまう場合がある。このように残った気泡Bの部分では、封止電極103と絶縁性管102とが接合されておらず、接合強度及び封止性が低下してしまう問題があった。また、放電制御ガスが封止電極103の外周面側に流れて一対の封止電極103の間の放電制御ガスが薄くなり、放電開始電圧Vsが低下してしまうおそれもあった。
Therefore, it is required to use a glass cylindrical member in terms of cost, but as shown in FIG. 2, a state in which a pair of
本発明は、前述の課題に鑑みてなされたもので、気泡の発生を抑制でき、高い接合強度及び封止性が得られると共に、閉じ込める放電制御ガスの量を一定にすることができるサージ防護素子及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and is a surge protective element capable of suppressing the generation of bubbles, obtaining high bonding strength and sealing property, and keeping the amount of discharge control gas to be confined constant. And its manufacturing method.
本発明は、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係るサージ防護素子は、ガラス製の絶縁性管と、前記絶縁性管の両端開口部を閉塞して内部に放電制御ガスを封止すると共に互いの対向面を離間させて対向配置した一対の封止電極とを備え、一対の前記封止電極が、前記対向面である内側の端面が外側の端面よりも面積の広い断面台形状に形成され、前記絶縁性管が、前記封止電極の外周面全体に接合されていることを特徴とする。 The present invention has adopted the following configuration in order to solve the above problems. That is, the surge protection element according to the first invention closes the glass insulating tube and the openings at both ends of the insulating tube to seal the discharge control gas inside and separate the facing surfaces from each other. The insulating tube is provided with a pair of sealing electrodes arranged so as to face each other, and the pair of sealing electrodes are formed in a trapezoidal cross section in which the inner end face, which is the facing surface, has a larger area than the outer end face. , It is characterized in that it is bonded to the entire outer peripheral surface of the sealing electrode.
このサージ防護素子では、一対の封止電極が、対向面である内側の端面が外側の端面よりも面積の広い断面台形状に形成され、絶縁性管が、封止電極の外周面全体に接合されているので、製作時の接合の際に、円柱状の封止電極に比べて封止電極の外周面と絶縁性管との間での気泡の発生を抑制でき、高い接合強度及び封止性が得られる。また、円柱状の封止電極に比べて封止電極の外周面と絶縁性管との接合面積が増えることで接合強度及び封止性が向上する。また、一対の封止電極が外側の端面に向けて外径が漸次小さくなるテーパ形状であるため、絶縁性管に対するアンカー効果によって一対の封止電極が互いに離間する方向への移動が制限され、一対の封止電極の隙間(ギャップ)が拡がることを防止できる。 In this surge protective element, a pair of sealing electrodes are formed in a trapezoidal cross-section whose inner end face, which is a facing surface, has a larger area than the outer end face, and an insulating tube is joined to the entire outer peripheral surface of the sealing electrode. Therefore, it is possible to suppress the generation of air bubbles between the outer peripheral surface of the sealing electrode and the insulating tube as compared with the columnar sealing electrode at the time of joining at the time of manufacturing, and the bonding strength and sealing are high. Sex is obtained. Further, the bonding strength and sealing property are improved by increasing the bonding area between the outer peripheral surface of the sealing electrode and the insulating tube as compared with the columnar sealing electrode. Further, since the pair of sealing electrodes has a tapered shape in which the outer diameter gradually decreases toward the outer end face, the movement of the pair of sealing electrodes in the direction in which they are separated from each other is restricted by the anchor effect on the insulating tube. It is possible to prevent the gap between the pair of sealing electrodes from expanding.
第2の発明に係るサージ防護素子の製造方法は、第1の発明のサージ防護素子を製造する方法であって、互いの対向面を離間させた状態で一対の封止電極をガラス製の絶縁性管内に挿入する封止電極挿入工程と、前記封止電極挿入工程後に前記絶縁性管を加熱して軟化させ前記絶縁性管と一対の前記封止電極とを接合させると共に一対の前記封止電極で前記絶縁性管の両端開口部を閉塞して内部に放電制御ガスを封止する電極接合工程とを有し、一対の前記封止電極を、前記対向面である内側の端面が外側の端面よりも面積の広い断面台形状に形成しておくことを特徴とする。 The method for manufacturing a surge protection element according to the second invention is a method for manufacturing a surge protection element according to the first invention, in which a pair of sealing electrodes are insulated from each other with their facing surfaces separated from each other. After the sealing electrode insertion step of inserting into the sex tube and the sealing electrode insertion step, the insulating tube is heated and softened to join the insulating tube and the pair of sealing electrodes, and the pair of sealing. It has an electrode joining step in which both ends of the insulating tube are closed with electrodes to seal the discharge control gas inside, and the pair of sealing electrodes are provided with the inner end faces, which are facing surfaces, on the outer side. It is characterized in that it is formed into a trapezoidal cross section having a larger area than the end face.
すなわち、このサージ防護素子の製造方法では、一対の封止電極を、対向面である内側の端面が外側の端面よりも面積の広い断面台形状に形成しておくので、接合が対向面側から外側の端面へと進行することで、絶縁性管と封止電極との接合面に放電制御ガスが残存し難く、気泡の発生を抑制することができる。
電極接合工程では、最初に絶縁性管と封止電極の対向面外縁との接触部分から接合が始まり、封止電極の外側の端面に向けて接合が進むと共に、絶縁性管と封止電極の外周面との間の放電制御ガスを外側の端面へと押し出すことで、絶縁性管と封止電極との接合面に放電制御ガスが残存し難くなる。また、最初に絶縁性管と封止電極の対向面外縁との接触部分から接合するため、一対の封止電極の間隙に閉じ込める放電制御ガスの量を一定にすることができる。
That is, in this method of manufacturing a surge protective element, since the pair of sealing electrodes are formed in a trapezoidal cross-section in which the inner end face, which is the facing surface, has a larger area than the outer end face, the bonding is from the facing surface side. By advancing to the outer end surface, it is difficult for the discharge control gas to remain on the joint surface between the insulating tube and the sealing electrode, and the generation of bubbles can be suppressed.
In the electrode joining step, the bonding starts from the contact portion between the insulating tube and the outer edge of the facing surface of the sealing electrode, and the bonding proceeds toward the outer end surface of the sealing electrode, and the insulating tube and the sealing electrode are joined. By pushing the discharge control gas between the outer peripheral surface and the outer end surface, it becomes difficult for the discharge control gas to remain on the joint surface between the insulating tube and the sealing electrode. Further, since the insulating tube is first joined from the contact portion between the outer edge of the facing surface of the sealing electrode, the amount of the discharge control gas confined in the gap between the pair of sealing electrodes can be kept constant.
第3の発明に係るサージ防護素子は、第2の発明において、前記封止電極挿入工程で、前記絶縁性管の内周面と前記封止電極の外周面との角度を2〜30°に設定することを特徴とする。
すなわち、このサージ防護素子の製造方法では、封止電極挿入工程で、絶縁性管の内周面と封止電極の外周面との角度を2〜30°に設定するので、電極接合工程でガラス管の絶縁性管が軟化した際に絶縁性管と封止電極の外周面との接合が対向面側から外側の端面に向けてスムーズに進むことができ、良好に放電制御ガスを押し出すことができる。
なお、上記角度が2°未満であると、放電制御ガスの押出効果が不十分になる場合があると共に、30°を越えると、外側の端部で絶縁性管と封止電極の外周面との隙間が大きくなり過ぎ、外側の端面での接合が不十分になるおそれがある。
In the second invention, the surge protective element according to the third invention makes the angle between the inner peripheral surface of the insulating tube and the outer peripheral surface of the
That is, in this method of manufacturing a surge protection element, the angle between the inner peripheral surface of the insulating tube and the outer peripheral surface of the sealing electrode is set to 2 to 30 ° in the sealing electrode insertion step, so that glass is used in the electrode joining step. When the insulating tube of the tube softens, the bonding between the insulating tube and the outer peripheral surface of the sealing electrode can proceed smoothly from the facing surface side toward the outer end surface, and the discharge control gas can be pushed out satisfactorily. it can.
If the angle is less than 2 °, the extrusion effect of the discharge control gas may be insufficient, and if it exceeds 30 °, the insulating tube and the outer peripheral surface of the sealing electrode are formed at the outer end. The gap between the two may become too large, resulting in insufficient bonding at the outer end face.
本発明によれば、以下の効果を奏する。
すなわち、本発明に係るサージ防護素子及びその製造方法によれば、一対の封止電極が、対向面である内側の端面が外側の端面よりも面積の広い断面台形状に形成され、絶縁性管が、封止電極の外周面全体に接合されているので、円柱状の封止電極に比べて封止電極の外周面と絶縁性管との接合面積が増えることで接合強度及び封止性が向上する。また、接合が対向面側から外側の端面へと進行することで、絶縁性管と封止電極との接合面に放電制御ガスが残存し難く、気泡の発生を抑制することができる。
したがって、本発明に係るサージ防護素子は、小型かつ安価で高信頼性の製品が要求される電気機器の電源回路部や通信回路部用などに好適である。特に、本発明のサージ防護素子は、基板実装用として静電気対策を含む幅広い用途に好適である。
According to the present invention, the following effects are obtained.
That is, according to the surge protective element and the manufacturing method thereof according to the present invention, the pair of sealing electrodes are formed in a trapezoidal cross section in which the inner end face, which is a facing surface, has a larger area than the outer end face, and is an insulating tube. However, since it is bonded to the entire outer peripheral surface of the sealing electrode, the bonding strength and sealing property are improved by increasing the bonding area between the outer peripheral surface of the sealing electrode and the insulating tube as compared with the columnar sealing electrode. improves. Further, since the bonding proceeds from the facing surface side to the outer end surface, the discharge control gas is unlikely to remain on the bonding surface between the insulating tube and the sealing electrode, and the generation of bubbles can be suppressed.
Therefore, the surge protection element according to the present invention is suitable for a power supply circuit section or a communication circuit section of an electric device that requires a compact, inexpensive, and highly reliable product. In particular, the surge protection element of the present invention is suitable for a wide range of applications including measures against static electricity for mounting on a substrate.
以下、本発明に係るサージ防護素子及びその製造方法の一実施形態を、図1を参照しながら説明する。なお、以下の説明に用いる図面では、各部材を認識可能又は認識容易な大きさとするために縮尺を適宜変更している。 Hereinafter, an embodiment of a surge protective element and a method for manufacturing the same according to the present invention will be described with reference to FIG. In the drawings used in the following description, the scale is appropriately changed in order to make each member recognizable or easily recognizable.
本実施形態のサージ防護素子1は、図1に示すように、ガラス製の絶縁性管2と、絶縁性管2の両端開口部を閉塞して内部に放電制御ガスを封止すると共に互いの対向面3aを離間させて対向配置した一対の封止電極3とを備えている。
上記一対の封止電極3は、対向面3aである内側の端面が外側の端面3bよりも面積の広い断面台形状に形成され、絶縁性管2が、封止電極3の外周面3d全体に接合されている。
As shown in FIG. 1, the surge protective element 1 of the present embodiment closes the
In the pair of sealing
上記絶縁性管2は、例えば円筒状であり、鉛ガラス等のガラス管で形成されている。
上記絶縁性管2内に封入される放電制御ガスは、不活性ガス等であって、例えばHe,Ar,Ne,Xe,Kr,SF6,CO2,C3F8,C2F6,CF4,H2,大気等及びこれらの混合ガスが採用される。
The insulating
The discharge control gas sealed in the insulating
上記封止電極3は、例えばジュメット線,42アロイ(Fe:58wt%、Ni:42wt%),Cu等で切頭円錐形状に形成されている。
各封止電極3には、外側に突出したリード線5の基端部が埋め込まれている。
また、封止電極3の外周面3dには、ガラスとの濡れ性を向上させるために亜酸化銅の膜が形成されている。
なお、封止電極3及びリード線5として、ジュメット線材で形成されたいわゆるスラグリードを採用しても構わない。
The sealing
A base end portion of a
Further, a cuprous oxide film is formed on the outer
As the sealing
本実施形態のサージ防護素子1の製造方法は、図1の(a)に示すように、互いの対向面3aを離間させた状態で一対の封止電極3をガラス製の絶縁性管2内に挿入する封止電極挿入工程と、図1の(b)に示すように、封止電極挿入工程後に絶縁性管2を加熱して軟化させ絶縁性管2と一対の封止電極3とを接合させると共に一対の封止電極3で絶縁性管2の両端開口部を閉塞して内部に放電制御ガスを封止する電極接合工程とを有している。
In the method for manufacturing the surge protection element 1 of the present embodiment, as shown in FIG. 1A, a pair of sealing
一対の封止電極3は、対向面3aである内側の端面が外側の端面3bよりも面積の広い断面台形状に形成しておく。
また、封止電極挿入工程で、絶縁性管2の内周面と封止電極3の外周面3dとの角度θを2〜30°に設定する。
The pair of sealing
Further, in the sealing electrode insertion step, the angle θ between the inner peripheral surface of the insulating
このように本実施形態のサージ防護素子1では、一対の封止電極3が、対向面3aである内側の端面が外側の端面3bよりも面積の広い断面台形状に形成され、絶縁性管2が、封止電極3の外周面3d全体に接合されているので、円柱状の封止電極3に比べて封止電極3の外周面3dと絶縁性管2との接合面積が増えることで接合強度及び封止性が向上する。また、一対の封止電極3が外側の端面3bに向けて外径が漸次小さくなるテーパ形状であるため、絶縁性管2に対するアンカー効果によって一対の封止電極3が互いに離間する方向への移動が制限され、一対の封止電極3の隙間(ギャップ)が拡がることを防止できる。
As described above, in the surge protection element 1 of the present embodiment, the pair of sealing
また、本実施形態のサージ防護素子1の製造方法では、一対の封止電極3を、対向面3aである内側の端面が外側の端面3bよりも面積の広い断面台形状に形成しておくので、接合が対向面3a側から外側の端面3bへと進行することで、絶縁性管2と封止電極3との接合面に放電制御ガスが残存し難く、気泡の発生を抑制することができる。
Further, in the method of manufacturing the surge protection element 1 of the present embodiment, the pair of sealing
すなわち、電極接合工程では、最初に絶縁性管2と封止電極3の対向面外縁3cとの接触部分から接合が始まり、封止電極3の外側の端面3bに向けて接合が進むと共に、絶縁性管2と封止電極3の外周面3dとの間の放電制御ガスを外側の端面3bへと(図中の矢印方向)押し出すことで、絶縁性管2と封止電極3との接合面に放電制御ガスが残存し難くなる。また、最初に絶縁性管2と封止電極3の対向面外縁3cとの接触部分から接合するため、一対の封止電極3の間隙に閉じ込める放電制御ガスの量を一定にすることができる。
That is, in the electrode bonding step, the bonding starts from the contact portion between the insulating
また、封止電極挿入工程で、絶縁性管2の内周面と封止電極3の外周面3dとの角度θを2〜30°に設定するので、電極接合工程でガラス管の絶縁性管2が軟化した際に絶縁性管2と封止電極3の外周面3dとの接合が対向面3a側から外側の端面3bに向けてスムーズに進むことができ、良好に放電制御ガスを押し出すことができる。
Further, since the angle θ between the inner peripheral surface of the insulating
なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
1…サージ防護素子、2…絶縁性管、3…封止電極、3a…(封止電極の)対向面、3b…(封止電極の)外側の端面、3d…(封止電極の)外周面 1 ... Surge protective element, 2 ... Insulating tube, 3 ... Sealing electrode, 3a ... Facing surface (of sealing electrode), 3b ... Outer end surface (of sealing electrode), 3d ... Outer circumference (of sealing electrode) surface
Claims (3)
前記絶縁性管の両端開口部を閉塞して内部に放電制御ガスを封止すると共に互いの対向面を離間させて対向配置した一対の封止電極とを備え、
一対の前記封止電極が、前記対向面である内側の端面が外側の端面よりも面積の広い断面台形状に形成され、
前記絶縁性管が、前記封止電極の外周面全体に接合されていることを特徴とするサージ防護素子。 Insulated glass tube and
It is provided with a pair of sealing electrodes which are arranged so as to seal the discharge control gas inside by closing the openings at both ends of the insulating tube and to separate the facing surfaces from each other.
The pair of sealing electrodes are formed in a trapezoidal cross section in which the inner end face, which is the facing surface, has a larger area than the outer end face.
A surge protective element characterized in that the insulating tube is joined to the entire outer peripheral surface of the sealing electrode.
互いの対向面を離間させた状態で一対の封止電極をガラス製の絶縁性管内に挿入する封止電極挿入工程と、
前記封止電極挿入工程後に前記絶縁性管を加熱して軟化させ前記絶縁性管と一対の前記封止電極とを接合させると共に一対の前記封止電極で前記絶縁性管の両端開口部を閉塞して内部に放電制御ガスを封止する電極接合工程とを有し、
一対の前記封止電極を、前記対向面である内側の端面が外側の端面よりも面積の広い断面台形状に形成しておくことを特徴とするサージ防護素子の製造方法。 The method for manufacturing the surge protective element according to claim 1.
A sealing electrode insertion step of inserting a pair of sealing electrodes into a glass insulating tube with the facing surfaces separated from each other.
After the sealing electrode insertion step, the insulating tube is heated and softened to join the insulating tube and the pair of sealing electrodes, and the pair of sealing electrodes close both ends of the insulating tube. It has an electrode joining process that seals the discharge control gas inside.
A method for manufacturing a surge protective element, characterized in that the pair of sealing electrodes are formed in a trapezoidal cross-section in which the inner end face, which is the facing surface, has a larger area than the outer end face.
前記封止電極挿入工程で、前記絶縁性管の内周面と前記封止電極の外周面との角度を2〜30°に設定することを特徴とするサージ防護素子の製造方法。 In the method for manufacturing a surge protective element according to claim 2,
A method for manufacturing a surge protective element, characterized in that the angle between the inner peripheral surface of the insulating tube and the outer peripheral surface of the sealing electrode is set to 2 to 30 ° in the sealing electrode insertion step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019084156A JP2020181719A (en) | 2019-04-25 | 2019-04-25 | Surge protective element and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019084156A JP2020181719A (en) | 2019-04-25 | 2019-04-25 | Surge protective element and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020181719A true JP2020181719A (en) | 2020-11-05 |
Family
ID=73024603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019084156A Pending JP2020181719A (en) | 2019-04-25 | 2019-04-25 | Surge protective element and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020181719A (en) |
-
2019
- 2019-04-25 JP JP2019084156A patent/JP2020181719A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6769086B2 (en) | Surge protection element | |
JP6853447B2 (en) | Surge protection element | |
JP2020181719A (en) | Surge protective element and manufacturing method thereof | |
JP5305011B2 (en) | Surge absorber and manufacturing method thereof | |
JP2020181721A (en) | Manufacturing method of surge protective element | |
JP2020181720A (en) | Surge protective element and manufacturing method thereof | |
JP7022390B2 (en) | Surge protection element and its manufacturing method | |
JP2020181722A (en) | Surge protection element | |
JP7459767B2 (en) | surge protection element | |
JP2020087715A (en) | Surge protective element and method of manufacturing the same | |
JP2020155296A (en) | Surge protective element and manufacturing method therefor | |
TW498584B (en) | Surge absorber and manufacturing method thereof | |
JP2020161270A (en) | Manufacturing method of surge protective element | |
JP6094882B2 (en) | surge absorber | |
JP2020161271A (en) | Manufacturing method of surge protective element | |
JP4265321B2 (en) | surge absorber | |
JP3134912B2 (en) | surge absorber | |
JP2020004578A (en) | Surge protection element | |
JP2020004579A (en) | Surge protection element | |
TW202002439A (en) | Surge protection component and manufacturing method thereof capable of forming very narrow clearance with low cost | |
JP2020004577A (en) | Surge protection element | |
JP6795783B2 (en) | Surge protection element | |
JPH06310252A (en) | Surge absorber | |
JP2024114592A (en) | Surge protective element | |
TW202007034A (en) | Surge protection element and manufacturing method thereof easily dispose the functional portion containing a conductive material between the sealing electrodes |