JP2020176294A - Method of inspecting electrodeposition drum material for producing metal foil or electrodeposition drum for producing metal foil - Google Patents
Method of inspecting electrodeposition drum material for producing metal foil or electrodeposition drum for producing metal foil Download PDFInfo
- Publication number
- JP2020176294A JP2020176294A JP2019078827A JP2019078827A JP2020176294A JP 2020176294 A JP2020176294 A JP 2020176294A JP 2019078827 A JP2019078827 A JP 2019078827A JP 2019078827 A JP2019078827 A JP 2019078827A JP 2020176294 A JP2020176294 A JP 2020176294A
- Authority
- JP
- Japan
- Prior art keywords
- metal foil
- electrodeposition drum
- electrodeposition
- drum
- voltages
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
本発明は、金属箔製造用電着ドラム材または金属箔製造用電着ドラムの検査方法に関する。 The present invention relates to an electrodeposition drum material for metal foil production or an inspection method for an electrodeposition drum for metal foil production.
多層配線基板、フレキシブル配線板等の配線基板の配線やリチウムイオン電池の集電体等の電子部品の導電部位には、多くの場合、銅箔が原料として利用されている。 Copper foil is often used as a raw material for wiring of wiring boards such as multilayer wiring boards and flexible wiring boards, and for conductive parts of electronic components such as current collectors of lithium ion batteries.
このような用途に利用される銅箔は、例えば、銅原料を硫酸溶液に溶解させた硫酸銅溶液中に、鉛やチタンなどの不溶性金属の陽極および陰極としての幅1m以上、直径数mのドラムを配置し、ドラムを回転させつつドラム上に銅を連続的に電析させ、析出した銅を連続的に剥離し、ロール状に巻き取ることにより、製造される。 A copper foil used for such an application has, for example, a width of 1 m or more and a diameter of several m as an anode and a cathode of an insoluble metal such as lead or titanium in a copper sulfate solution in which a copper raw material is dissolved in a sulfuric acid solution. It is manufactured by arranging a drum, continuously electrodepositing copper on the drum while rotating the drum, continuously peeling off the precipitated copper, and winding it into a roll.
ドラムの材料としては、耐食性に優れること、銅箔の剥離性に優れること、などの観点から、チタンが一般に使用されている。しかしながら、耐食性に優れたチタン材を用いた場合であっても、銅箔の製造を長期間にわたり行うと、硫酸銅溶液中でドラムを構成するチタン材の表面が徐々に腐食影響を受ける。そして、腐食影響を受けたドラム表面の状態は、銅箔の製造時に銅箔に転写される。 As a drum material, titanium is generally used from the viewpoints of excellent corrosion resistance and excellent peelability of copper foil. However, even when a titanium material having excellent corrosion resistance is used, if the copper foil is manufactured for a long period of time, the surface of the titanium material constituting the drum is gradually affected by corrosion in the copper sulfate solution. Then, the state of the drum surface affected by corrosion is transferred to the copper foil during the production of the copper foil.
金属材料の腐食は、その金属材料の有する結晶組織、結晶方位、欠陥、偏析、加工歪み、残留歪みなど金属組織に起因する様々な内質要因によって、腐食状態や腐食の程度が異なることが知られている。部位間で金属組織が不均質な金属材料を用いたドラムが、銅箔の製造に伴い腐食影響を受けた場合、ドラムの均質な面状態が維持できなくなり、ドラム表面に不均質な面が生じる。ドラム表面に生じた不均質な面は模様として識別できる。このような不均質な金属組織に起因する模様のうち、比較的面積の大きなマクロ組織に起因し、肉眼で判別できる模様を「マクロ模様」という。そして、ドラム表面に生じたマクロ模様も、銅箔の製造時に銅箔に転写され得る。 It is known that the corrosion state and degree of corrosion of a metal material differ depending on various internal factors caused by the metal structure such as crystal structure, crystal orientation, defects, segregation, processing strain, and residual strain of the metal material. Has been done. When a drum made of a metal material having a heterogeneous metal structure between parts is affected by corrosion during the production of copper foil, the uniform surface condition of the drum cannot be maintained and a heterogeneous surface is generated on the drum surface. .. The inhomogeneous surface generated on the drum surface can be identified as a pattern. Among the patterns caused by such an inhomogeneous metal structure, a pattern caused by a macrostructure having a relatively large area and which can be discriminated with the naked eye is called a "macro pattern". The macro pattern generated on the drum surface can also be transferred to the copper foil during the production of the copper foil.
したがって、高精度かつ均質な厚さの銅箔を製造するためには、ドラムを構成するチタン材のマクロ組織を均質にして、ドラムの均質な腐食を達成することにより、不均質なマクロ組織に起因したマクロ模様を低減することが、重要である。 Therefore, in order to produce a copper foil with high accuracy and uniform thickness, the macrostructure of the titanium material constituting the drum is homogenized to achieve homogeneous corrosion of the drum, thereby resulting in a heterogeneous macrostructure. It is important to reduce the resulting macro pattern.
特許文献1には、マクロ模様を抑制するために、質量%で、Cu:0.15%以上、0.5%未満、酸素:0.05%超、0.20%以下、Fe:0.04%以下を含み、残部チタンと不可避不純物からなり、平均結晶粒径が35μm未満のα相均質微細再結晶組織からなることを特徴とする、電解Cu箔製造ドラム用チタン板が提案されている。 In Patent Document 1, in order to suppress the macro pattern, Cu: 0.15% or more and less than 0.5%, oxygen: more than 0.05%, 0.20% or less, Fe: 0. A titanium plate for an electrolytic Cu foil manufacturing drum has been proposed, which comprises 04% or less, is composed of the balance titanium and unavoidable impurities, and is composed of an α-phase homogeneous fine recrystallized structure having an average crystal grain size of less than 35 μm. ..
ところで、ドラムに存在するマクロ模様は、一般に、表面を例えば600番のサンドペーパーで研磨した後の研磨まま状態にて、さらにはそれを硝酸約10%、弗酸約5%、残り水のエッチング液に数十秒〜数分間浸漬したエッチング状態にて、目視により確認される。あるいは、ドラムの品質検査は、成分分析、金属組織の結晶粒径、双晶等のミクロ組織の分析、集合組織の分析や、引張試験により行われる。これらの品質検査は、ドラムの一部分のみについて分析・評価が行われるため、さらに、ドラムの分析対象となる部分を採取することが必要となる。一方で、ドラムの定量的かつ非破壊的な検査は、いまだ知られていない。 By the way, the macro pattern existing on the drum is generally in the state of being polished after polishing the surface with, for example, No. 600 sandpaper, and further etching it with about 10% nitric acid, about 5% fluoroacid, and residual water. It is visually confirmed in an etched state immersed in the liquid for several tens of seconds to several minutes. Alternatively, the quality inspection of the drum is performed by component analysis, crystal grain size of the metal structure, analysis of the microstructure such as twins, analysis of the texture, and a tensile test. Since these quality inspections analyze and evaluate only a part of the drum, it is necessary to further collect the part to be analyzed of the drum. On the other hand, quantitative and non-destructive inspection of drums is still unknown.
特許文献2には、鋼板の焼き入れ層の深さを非破壊的に測定する鋼材の焼き入れ深さ測定装置が提案されている。 Patent Document 2 proposes a quenching depth measuring device for a steel material that nondestructively measures the depth of the quenching layer of a steel sheet.
しかしながら、上述したように、金属箔製造用電着ドラムの定量的かつ非破壊的な検査は、いまだ知られていない。また、特許文献2に記載の測定装置は、あくまでも鋼板の焼き入れ層の深さを非破壊的に測定する装置であって、金属箔製造用電着ドラムの品質の検査に適用可能には構成されていない。 However, as mentioned above, quantitative and non-destructive inspection of electrodeposited drums for metal foil production is not yet known. Further, the measuring device described in Patent Document 2 is a device that non-destructively measures the depth of the hardened layer of a steel sheet, and is configured to be applicable to the quality inspection of an electrodeposition drum for metal foil production. It has not been.
本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、非破壊的に金属箔製造用電着ドラム材または金属箔製造用電着ドラムの全体について品質検査することが可能な、金属箔製造用電着ドラム材または金属箔製造用電着ドラムの検査方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to non-destructively inspect the entire electrodeposition drum material for metal foil production or the entire electrodeposition drum for metal foil production. It is an object of the present invention to provide a method for inspecting a metal foil manufacturing electrodeposition drum material or a metal foil manufacturing electrodeposition drum.
本発明者らは、金属箔製造用電着ドラムの研磨ままの状態で存在するマクロ模様や、使用中の不均質な腐食に伴うマクロ模様の発生が、その金属材料の有する化学組成や、結晶組織、結晶方位、欠陥、偏析、加工歪み、残留歪みなどの金属組織に起因する様々な内質要因によって影響を受けることに着目した。そして、金属箔製造用電着ドラムの表面の部位ごとにおける電気抵抗が、これらの内質要因を総合して示し得ることを見出し、本発明に至った。 The present inventors have found that the macro pattern that exists in the as-polished state of the electrodeposition drum for metal foil production and the macro pattern that accompanies inhomogeneous corrosion during use are the chemical composition and crystals of the metal material. We focused on being affected by various internal factors caused by the metallic structure such as structure, crystal orientation, defects, segregation, processing strain, and residual strain. Then, they have found that the electric resistance at each part of the surface of the electrodeposition drum for metal foil production can collectively show these internal factors, and have arrived at the present invention.
上記知見に基づき完成された本発明の要旨は、以下の通りである。
(1) 工業用純チタンまたはチタン合金からなる金属箔製造用電着ドラム材または当該金属箔製造用電着ドラム材を備える金属箔製造用電着ドラムの表面に、一対の通電電極探針を接触させて定電流を供給し、前記定電流が供給された前記表面の複数個所について、電位検出探針の対を一定の探針間隔にて接触させることにより、前記表面の前記複数個所についての複数の電圧を検出する第1の工程と、
前記複数の電圧から選択されるいずれか2以上の前記電圧を比較する第2の工程と、を有する、金属箔製造用電着ドラム材または金属箔製造用電着ドラムの検査方法。
(2) 前記第1の工程において、前記複数の電圧を同時に検出する、(1)に記載の金属箔製造用電着ドラム材または金属箔製造用電着ドラムの検査方法。
(3) 前記第1の工程における前記電位検出探針の対の探針間隔が、前記工業用純チタンまたは前記チタン合金の平均結晶粒径に応じて決定される、(1)または(2)に記載の金属箔製造用電着ドラム材または金属箔製造用電着ドラムの検査方法。
(4) 前記第1の工程において、前記電位検出探針の対の探針間隔が、前記工業用純チタンまたは前記チタン合金の平均結晶粒径の200倍以上である、(1)〜(3)のいずれか一項に記載の金属箔製造用電着ドラム材または金属箔製造用電着ドラムの検査方法。
(5) 前記第2の工程において、前記複数の電圧から選択される2つの電圧の比を算出する、(1)〜(4)のいずれか一項に記載の金属箔製造用電着ドラム材または金属箔製造用電着ドラムの検査方法。
The gist of the present invention completed based on the above findings is as follows.
(1) A pair of current-carrying electrode probes are placed on the surface of an electrodeposition drum material for metal leaf production made of industrial pure titanium or a titanium alloy or an electrodeposition drum material for metal leaf production provided with the electrodeposition drum material for metal leaf production. By contacting and supplying a constant current, and contacting a pair of potential detection probes at a constant probe interval with respect to a plurality of locations on the surface to which the constant current is supplied, the plurality of locations on the surface can be contacted. The first step of detecting multiple voltages and
A method for inspecting an electrodeposition drum material for metal foil production or an electrodeposition drum for metal foil production, which comprises a second step of comparing any two or more of the voltages selected from the plurality of voltages.
(2) The method for inspecting a metal foil manufacturing electrodeposition drum material or a metal foil manufacturing electrodeposition drum according to (1), wherein the plurality of voltages are simultaneously detected in the first step.
(3) The distance between the pair of potential detection probes in the first step is determined according to the average crystal grain size of the industrial pure titanium or the titanium alloy, (1) or (2). The method for inspecting a metal foil manufacturing electrodeposition drum material or a metal foil manufacturing electrodeposition drum according to.
(4) In the first step, the distance between the pair of potential detection probes is 200 times or more the average crystal grain size of the industrial pure titanium or the titanium alloy, (1) to (3). The method for inspecting the electrodeposition drum material for metal foil production or the electrodeposition drum for metal foil production according to any one of ().
(5) The electrodeposition drum material for metal foil production according to any one of (1) to (4), which calculates the ratio of two voltages selected from the plurality of voltages in the second step. Or an inspection method for electrodeposited drums for manufacturing metal foil.
以上説明したように本発明によれば、非破壊的に金属箔製造用電着ドラム材または金属箔製造用電着ドラムの全体について品質検査することが可能な、金属箔製造用電着ドラム材または金属箔製造用電着ドラムの検査方法を提供することが可能となる。 As described above, according to the present invention, a metal foil manufacturing electrodeposition drum material or a metal foil manufacturing electrodeposition drum material capable of nondestructively inspecting the entire quality of the metal foil manufacturing electrodeposition drum material or the metal foil manufacturing electrodeposition drum material. Alternatively, it becomes possible to provide an inspection method for an electrodeposition drum for manufacturing a metal foil.
以下、図面を参照しつつ、本発明に係る金属箔製造用電着ドラム材または金属箔製造用電着ドラムの検査方法の好適な実施の形態について詳細に説明する。図1、図2は、本実施形態に係る金属箔製造用電着ドラム材または金属箔製造用電着ドラムの検査方法を説明するための概要図であり、図3、図4は、本実施形態に係る金属箔製造用電着ドラム材または金属箔製造用電着ドラムの検査方法における通電電極探針および電位検出探針の配置の一例を示す金属箔製造用電着ドラム材の表面の展開図である。 Hereinafter, a preferred embodiment of the method for inspecting the electrodeposition drum material for metal foil production or the electrodeposition drum for metal foil production according to the present invention will be described in detail with reference to the drawings. 1 and 2 are schematic views for explaining an inspection method of a metal foil manufacturing electrodeposition drum material or a metal foil manufacturing electrodeposition drum according to the present embodiment, and FIGS. 3 and 4 are the present embodiments. Development of the surface of the electrodeposition drum material for metal foil production showing an example of the arrangement of the energizing electrode probe and the potential detection probe in the inspection method of the electrodeposition drum material for metal foil production or the electrodeposition drum material for metal foil production according to the form. It is a figure.
本実施形態に係る金属箔製造用電着ドラム材または金属箔製造用電着ドラムの検査方法(以下、単に「本実施形態に係る検査方法」ともいう)は、工業用純チタンまたはチタン合金からなる金属箔製造用電着ドラム材または当該金属箔製造用電着ドラム材を備える金属箔製造用電着ドラムの表面に、一対の通電電極探針を接触させて定電流を供給し、上記定電流が供給された上記表面の複数個所について、電位検出探針の対を一定の探針間隔にて接触させることにより、上記表面の上記複数個所についての複数の電圧を検出する第1の工程と、
上記複数の電圧から選択されるいずれか2以上の上記電圧を比較する第2の工程と、を有する。
The inspection method for the metal foil manufacturing electrodeposition drum material or the metal leaf manufacturing electrodeposition drum according to the present embodiment (hereinafter, also simply referred to as “the inspection method according to the present embodiment”) is based on industrial pure titanium or a titanium alloy. A pair of energizing electrode probes are brought into contact with the surface of the electrodeposition drum material for metal foil production or the electrodeposition drum material for metal foil production provided with the electrodeposition drum material for metal leaf production to supply a constant current. The first step of detecting a plurality of voltages at the plurality of locations on the surface by contacting a pair of potential detection probes at a constant probe interval with respect to the plurality of locations on the surface to which the current is supplied. ,
It has a second step of comparing any two or more of the above voltages selected from the plurality of voltages.
(1. 金属箔製造用電着ドラム材および金属箔製造用電着ドラム)
まず、各工程の説明に先立ち、本実施形態に係る金属箔製造用電着ドラム材または金属箔製造用電着ドラムの検査方法の対象となり得る金属箔製造用電着ドラム1および金属箔製造用電着ドラム材10について説明する。
(1. Electroplated drum material for metal foil production and electrodeposition drum for metal foil production)
First, prior to the description of each step, the metal foil manufacturing electrodeposition drum 1 and the metal foil manufacturing electrodeposition drum 1 which can be the target of the inspection method of the metal foil manufacturing electrodeposition drum material or the metal foil manufacturing electrodeposition drum according to the present embodiment. The
金属箔製造用電着ドラム1は、円筒形状を有し、金属原料を溶解させた溶液中に浸漬されて、当該溶液中で回転しつつ、陰極として金属を連続的に電析させることにより、金属箔を製造するのに用いられる。金属箔製造用電着ドラム1は、工業用純チタンまたはチタン合金からなる円筒状の金属箔製造用電着ドラム材10を有する。
The electrodeposition drum 1 for producing a metal foil has a cylindrical shape, is immersed in a solution in which a metal raw material is dissolved, rotates in the solution, and continuously electrodeposits a metal as a cathode. Used to make metal foil. The metal foil manufacturing electrodeposition drum 1 has a cylindrical metal foil manufacturing
当該円筒状の金属箔製造用電着ドラム材10の表面は、金属箔の製造において徐々に腐食影響を受ける。そして、この腐食影響を受けた際に生じる金属箔製造用電着ドラム材10の表面11の状態は、電析する金属箔にも転写される。したがって、金属箔製造用電着ドラム材10の表面11の状態を検査することは、金属箔の品質を管理する上でも重要である。
The surface of the cylindrical metal foil manufacturing
なお、金属箔製造用電着ドラム1によって製造される金属箔については、特に限定されず、例えば銅箔、ニッケル箔、アルミニウム箔、鉄箔等であることができる。 The metal foil produced by the electrodeposition drum 1 for producing a metal foil is not particularly limited, and may be, for example, a copper foil, a nickel foil, an aluminum foil, an iron foil, or the like.
また、本実施形態に係る検査方法の対象となり得る金属箔製造用電着ドラム材10は、上記の金属箔製造用電着ドラム1を構成する円筒状の部材または加工前のチタン板でありうる。以下の説明では、金属箔製造用電着ドラム1について検査する例を挙げ、本実施形態に係る検査方法を説明するが、本発明が以下の説明に限定されず、金属箔製造用電着ドラム1に備え付けられていない状態の金属箔製造用電着ドラム材についても適用可能なことは、いうまでもない。
Further, the
(2. 第1の工程)
第1の工程では、図1、図2に示すように、まず、金属箔製造用電着ドラム1の表面11に、一対の通電電極探針20A、20Bを接触させて定電流Iを供給する。これにより、表面11の通電電極探針20A、20Bが接触したa−a’間において定電流Iが流れるとともに、所定の電位差が生じる。
(2. First step)
In the first step, as shown in FIGS. 1 and 2, first, a pair of energizing
なお、a−a’の方向は特に限定されず、例えば、図示のように金属箔製造用電着ドラム材10の最終圧延幅方向(ドラム1の軸方向)と平行であってもよいし、図示の態様に限定されず、金属箔製造用電着ドラム1を構成する金属箔製造用電着ドラム材10の最終圧延方向(ドラム1の円周方向)と平行であってもよいし。さらに、a−a’の方向は、金属箔製造用電着ドラム材10の最終圧延幅方向(ドラム1の軸方向)から所定の角度傾きを有していてもよい。
The direction of aa'is not particularly limited, and may be parallel to the final rolling width direction (axial direction of the drum 1) of the
次いで、定電流Iが供給された表面11の複数個所について、電位検出探針30A、30Bの対を一定の探針間隔Lにて接触させることにより、表面11の複数個所についての複数の電圧V1〜Vnを検出する。
Next, the pair of
ここで、表面11の複数個所についての複数の電圧V1〜Vnを検出する意義について説明する。本発明者らは、金属箔製造用電着ドラム1の研磨ままの状態で存在するマクロ模様や、使用中の不均質な腐食に伴うマクロ模様の発生が、その金属材料の有する結晶組織、結晶方位、欠陥、偏析、加工歪み、残留歪みなど化学組成や金属組織に起因する様々な内質要因によって影響を受けることに着目した。そして、金属箔製造用電着ドラム1の表面の部位ごとにおける電気抵抗が、これらの内質要因を総合して示し得ることを見出した。
Here, the significance of detecting a plurality of voltages V 1 to V n at a plurality of locations on the
例えば、化学組成については、金属箔製造用電着ドラム1の表面の電気抵抗率(μΩ・cm)は、O、N、Cの合計濃度、Fe、Cr、Ni、Moの合計濃度および水素濃度とそれぞれ正の一次相関を有すると推定される。 For example, regarding the chemical composition, the electrical resistivity (μΩ · cm) on the surface of the electrodeposition drum 1 for metal foil production is the total concentration of O, N, C, the total concentration of Fe, Cr, Ni, Mo and the hydrogen concentration. Is presumed to have a positive first-order correlation with each other.
また、金属組織については、金属箔製造用電着ドラム1の表面の電気抵抗率(μΩ・cm)は、ひずみ量とは正の一次相関を、電流方向とα相結晶構造のc軸とのなす角とは負の一次相関を有すると推測される。さらには、金属箔製造用電着ドラム1の表面の電気抵抗率(μΩ・cm)は、金属組織中における結晶粒径の逆数にも比例する(結晶粒径と反比例する)と推測される。なお、当然、金属箔製造用電着ドラム1の表面の電気抵抗率(μΩ・cm)は、金属箔製造用電着ドラム1の表面の温度とも相関する。 Regarding the metal structure, the electrical resistivity (μΩ · cm) on the surface of the electrodeposition drum 1 for metal foil production has a positive first-order correlation with the strain amount, and the current direction and the c-axis of the α-phase crystal structure. It is presumed that the angle of formation has a negative first-order correlation. Furthermore, it is presumed that the electrical resistivity (μΩ · cm) on the surface of the electrodeposition drum 1 for producing a metal foil is proportional to the reciprocal of the crystal grain size in the metal structure (inversely proportional to the crystal grain size). Naturally, the electrical resistivity (μΩ · cm) on the surface of the electrodeposition drum 1 for manufacturing metal foil also correlates with the temperature of the surface of the electrodeposition drum 1 for manufacturing metal foil.
以上、金属箔製造用電着ドラム1の表面の電気抵抗率(μΩ・cm)は、マクロ模様等の模様を生じさせる主な内質要因と相関を有することが推測された。したがって、金属箔製造用電着ドラムの表面の部位ごとにおける電気抵抗を把握することにより、金属箔製造用電着ドラムの表面の部位ごとにおける内質要因のばらつきを把握することが可能となる。 As described above, it is presumed that the electrical resistivity (μΩ · cm) on the surface of the electrodeposition drum 1 for manufacturing metal foil has a correlation with the main internal factors that cause patterns such as macro patterns. Therefore, by grasping the electric resistance of each part of the surface of the electrodeposition drum for metal foil production, it is possible to grasp the variation of the internal quality factor for each part of the surface of the electrodeposition drum for metal foil production.
そして、金属箔製造用電着ドラムの表面の部位ごとにおける電気抵抗は、定電流Iを供給した際に生じる当該部位ごとの電圧に対応する。したがって、表面11の通電電極探針20A、20Bが接触したa−a’間において、部位b1−b1’〜bn−bn’における電圧V1〜Vnを測定し、これらを比較することにより、金属箔製造用電着ドラムの表面の部位ごとにおける内質要因のばらつきを把握することが可能となり、ひいては、腐食の均一性および金属箔製造用電着ドラムの品質を評価することが可能となる。
The electrical resistance of each portion of the surface of the electrodeposition drum for manufacturing metal foil corresponds to the voltage of each portion generated when the constant current I is supplied. Thus, energizing the
例えば、図2中、部位bn−bn’においてマクロ模様等の不均質な部位12が存在する場合、部位bn−bn’における電圧Vnは他の部位における電圧と異なる値が検出され、当該部位bn−bn’に不均質な部位12が存在することを把握できる。
For example, in FIG. 2, part b n -b 'if
部位b1−b1’〜bn−bn’における電圧V1〜Vnの測定は、上述したようにbi−bi’間(iは、1〜nから選択される整数)について、電位検出探針30A、30Bの対を一定の探針間隔Lにて接触させることにより行われる。ここで、部位b1−b1’〜bn−bn’のいずれの部位から電圧V1〜Vnの測定が行われてもよい。この場合において、電圧V1〜Vnの測定の順序は特に限定されない。
Measurement of the voltage V 1 ~V n at the site b 1 -b 1 '~b n -b n' is b i -b i 'between as described above (i is an integer selected from 1 to n) for , The
あるいは、複数部位、例えば全ての部位b1−b1’〜bn−bn’について複数の電圧V1〜Vnの測定が同時に行われてもよい。このような場合、本実施形態に係る検査方法に要する時間が短縮される。また、金属箔製造用電着ドラム1の表面11の温度の時間経過に依存した変化を小さくすることができ、品質の検査の精度が向上する。
Alternatively, measurements of a plurality of voltages V 1 to V n may be performed simultaneously for a plurality of sites, for example, all sites b 1 − b 1 ′ to b n − b n ′. In such a case, the time required for the inspection method according to the present embodiment is shortened. In addition, the change in temperature of the
また、電圧Viを測定するための部位bi−bi’(iは、1〜nから選択される整数)の配列は、いかなるものであってもよい。例えば、図3に示すように、a−a’間において、ある測定対象の部位bi−bi’が、他の測定対象の部位bm−bm’(mは、1〜nから選択される整数)を結ぶ直線上に配置されてもよい。具体的には、複数の部位bi−bi’は、互いに平行かつ一直線上に配置されてもよい。 Also, site b i -b i 'for measuring the voltage V i (i is an integer selected from 1 to n) sequences may be any one. For example, as shown in FIG. 3 selection, 'between, a site b i -b i of the measuring object' a-a is a portion b m -b m '(m other measured from 1~n It may be arranged on a straight line connecting the integers). Specifically, a plurality of portions b i -b i 'may be disposed parallel and a straight line with each other.
あるいは、図4に示すように、複数の部位bi−bi’(iは、1〜nから選択される整数)の配列方向xは、各部位bi−bi’を結ぶ方向yiと交差してもよい。図4に示す態様では、配列方向xと、各部位bi−bi’を結ぶ方向yiとは直交しているが、これに限定されない。なお、図4に示す態様においては、複数の部位bi−bi’(iは、1〜nから選択される整数)について電圧V1〜Vnを測定するために、都度、通電電極探針20A、20Bを、表面11の複数の部位bi−bi’を結ぶ延長線上にある地点ai、ai’に接触させ、ai−ai’間に定電流Iを供給する。
Alternatively, as shown in FIG. 4, '(is i, an integer selected from 1 to n) array direction x of the respective parts b i -b i' multiple sites b i -b i direction y i connecting May intersect with. In the embodiment shown in FIG. 4, the arrangement direction x, but are perpendicular to the direction y i connecting each site b i -b i ', but is not limited thereto. In the embodiment shown in FIG. 4, (is i, an integer selected from 1 to n) multiple sites b i -b i 'in order to measure the voltage V 1 ~V n for each time, probe energizing
また、電位検出探針30A、30B間、すなわち、bi−bi’間の探針間隔Lは、一定であり、通常、同一である。これにより、得られる電圧V1〜Vnの比較が容易となる。
The
また、bi−bi’間の探針間隔Lは、特に限定されないが、例えばマクロ模様の大きさに応じて決定される。マクロ模様は、本発明者らの経験的に、2〜3mm程度である。そして、本発明者らは、探針間隔Lがマクロ模様の3%以上である際に十分有意に他の部位との電圧の差異を検出できることを見出した。したがって、探針間隔Lは、例えば67mm以下、好ましくは33mm以下であることができる。 Further, b i -b i 'tip spacing L between is not particularly limited, is determined according to the size of, for example, macro pattern. The macro pattern is empirically about 2 to 3 mm by the present inventors. Then, the present inventors have found that when the probe interval L is 3% or more of the macro pattern, the difference in voltage from other parts can be detected sufficiently significantly. Therefore, the probe spacing L can be, for example, 67 mm or less, preferably 33 mm or less.
また、bi−bi’間の探針間隔Lは、例えば、金属箔製造用電着ドラム材10を構成する工業用純チタンまたはチタン合金の平均結晶粒径に応じて決定されることができる。すなわち、金属箔製造用電着ドラム材10の表面11の電気抵抗は、測定部位における工業用純チタンまたはチタン合金の結晶粒界の数にも影響される。したがって、電気抵抗への結晶粒界の影響を平準化する観点から、探針間隔L内において、表面11に十分な数の結晶粒界が含まれることが好ましい。
Further, b i -b i 'tip spacing L between, for example, it is determined according to the average grain size of commercially pure titanium or a titanium alloy constituting the metal foil for producing
例えば、表面11において観察される結晶粒径が20〜40μmの範囲にある場合、2mmのマクロ模様中には、50〜100個程度の結晶粒界が存在することとなる。マクロ模様による電気抵抗への影響と結晶粒界の数による影響を十分に分離することを考慮すると、探針間隔L内において、表面11に少なくとも125個程度の結晶粒界が存在することが好ましい。このような観点から、探針間隔Lは、例えば平均結晶粒径の125倍以上、好ましくは140倍以上であることができる。
For example, when the crystal grain size observed on the
以上、bi−bi’間の探針間隔Lは、金属箔製造用電着ドラム材10を構成する工業用純チタンまたはチタン合金の平均結晶粒径および/またはマクロ模様の大きさに応じて決定することができる。そして、平均結晶粒径およびマクロ模様の大きさを同時に考慮すると、探針間隔Lは、例えば平均結晶粒径の125倍以上かつ67mm以下、好ましくは平均結晶粒径の140倍以上かつ33mm以下であることができる。
Above, b i -b i 'tip spacing L between, in response to the magnitude of the average crystal grain size and / or macro pattern commercially pure titanium or a titanium alloy constituting the metal foil for producing
以上のようにして、定電流Iが供給された表面11の複数個所について、複数の電圧V1〜Vnを検出する。
As described above, the plurality of points of the
(3. 第2の工程)
本工程では、検出された複数の電圧V1〜Vnから選択されるいずれか2以上の電圧を比較する。電圧同士の比較は、いかなる方法で行ってもよく、例えば、2つの電圧同士の差および/もしくは比、平均電圧との差および/もしくは比ならびに/または電圧の標準偏差等を算出することにより行ってもよい。
(3. Second step)
In this step, any two or more voltages selected from a plurality of detected voltages V 1 to V n are compared. The voltage-to-voltage comparison may be performed by any method, for example, by calculating the difference and / or ratio between the two voltages, the difference and / or ratio from the average voltage, and / or the standard deviation of the voltage. You may.
上述した中でも、電圧同士の比較は、複数の電圧V1〜Vnから選択される2つの電圧の比を算出することにより行うことが好ましい。これにより簡便かつ精度のよい電圧同士の比較が可能となる。 Among the above, comparison of voltage between is preferably carried out by calculating the ratio of the two voltages selected from a plurality of voltages V 1 ~V n. This makes it possible to make simple and accurate comparisons between voltages.
この場合において、比較される電圧同士は、隣接する部位における電圧であることが好ましい。すなわち、互いに最も近い位置にある部位における電圧について比較を行うことが好ましい。銅箔における模様の発生は、局所的な組織の変化に起因する。このため、離れた位置にある部位における電圧について比較するよりも、隣接する部位における電圧について比較を行うことにより、より精度よく局所的な組織の変化を検出することが可能となる。 In this case, the voltages to be compared are preferably voltages at adjacent portions. That is, it is preferable to compare the voltages at the sites closest to each other. The occurrence of patterns on copper foil is due to local tissue changes. For this reason, it is possible to detect local tissue changes more accurately by comparing the voltages at adjacent sites rather than comparing the voltages at distant sites.
具体的には、例えば図3、図4においては、部位bi−bi’(iは、1〜nから選択される整数)の電圧Viは、隣接する部位bi−1−bi−1’の電圧Vi−1および部位bi+1−bi+1’の電圧Vi+1とそれぞれ比較される。例えば、電圧を比により比較する場合、Vi/Vi−1およびVi+1/Vi(またはVi−1/ViおよびVi/Vi+1)が算出される。 Specifically, FIG. 3, in FIG. 4, for example, site b i -b i '(i is an integer selected from 1 to n) voltage V i of the site adjacent b i-1 -b i are respectively compared with the voltage V i + 1 -1 'voltage V i-1 and site b i + 1 -b i + 1 of the'. For example, when comparing the ratio of the voltage, V i / V i-1 and V i + 1 / V i (or V i-1 / V i and V i / V i + 1) is calculated.
このようにして、比較された電圧の評価については、金属箔製造用電着ドラム1によって製造される金属箔に要求される品質に応じて適宜設定できる。 In this way, the evaluation of the compared voltages can be appropriately set according to the quality required for the metal foil produced by the electrodeposition drum 1 for producing the metal foil.
一例を挙げると、Vi+1/Viについては、例えば0.95以上1.05以下の範囲、好ましくは0.97以上1.03以下の範囲、好ましくは0.98以上1.02以下の範囲内である場合に、部位同士が均質であると判断することができる。そして、この評価をi=1よりi=n−1まで行い、すべての部位同士が均質である場合に、金属箔製造用電着ドラム1として良好な品質を有すると評価することができる。 As an example, for V i + 1 / V i, for example, 0.95 to 1.05, preferably in the range from 0.97 or more 1.03 or less, preferably in the range of 0.98 or more 1.02 or less When it is inside, it can be judged that the parts are homogeneous. Then, this evaluation is performed from i = 1 to i = n-1, and when all the parts are homogeneous, it can be evaluated that the electrodeposition drum 1 for metal foil production has good quality.
以上の本実施形態に係る金属箔製造用電着ドラム材または金属箔製造用電着ドラムの検査方法によれば、非破壊的に金属箔製造用電着ドラム材10または金属箔製造用電着ドラム1の全体について品質検査することが可能である。
According to the above-mentioned inspection method for the electrodeposition drum material for metal foil production or the electrodeposition drum for metal foil production according to the present embodiment, the
以下に、実施例を示しながら、本発明の実施形態について、具体的に説明する。なお、以下に示す実施例は、本発明のあくまでも一例であって、本発明が、下記の例に限定されるものではない。 Hereinafter, embodiments of the present invention will be specifically described with reference to examples. The examples shown below are merely examples of the present invention, and the present invention is not limited to the following examples.
(1.母材の準備)
まず、母材として表1に示す組成を有する基準となるチタンの熱間圧延板(100mm厚)を複数用意した。
(1. Preparation of base material)
First, a plurality of hot-rolled titanium plates (thickness of 100 mm) having the composition shown in Table 1 as a base material and serving as a reference were prepared.
(2.化学成分の変化部の模擬)
次いで、ベースとなる母材(熱間圧延板)の表面に、人工的に化学成分が異なる部位を作製した。具体的には、熱間圧延板の表面にφ30mm深さ30mmのドリル穴をあけて真空中電子ビーム溶接にてO濃度やFe濃度、さらにはCr,Ni濃度が異なるチタンを肉盛して穴を塞いだ。そして、この穴あけ肉盛部の位置を記録した。その後、10mm厚まで熱間熱延し、焼鈍、研磨を施した。この穴あけ肉盛部は母材と化学成分が異なる部位となる。Fe、Cr、Ni濃度が高い穴あけ肉盛部では、結晶粒径が母材部よりも小さい場合がある。その例を、表1の穴あけ肉盛部1〜8に示す。
(2. Simulation of changes in chemical composition)
Next, on the surface of the base material (hot rolled plate) as a base, sites having different chemical components were artificially prepared. Specifically, a drill hole having a diameter of 30 mm and a depth of 30 mm is drilled on the surface of a hot-rolled plate, and titanium having different O concentration, Fe concentration, and Cr and Ni concentration is built up by electron beam welding in vacuum to form a hole. I closed it. Then, the position of this drilling overlay was recorded. Then, it was hot-heated to a thickness of 10 mm, annealed, and polished. This drilling overlay is a part where the chemical composition is different from that of the base material. In the drilled built-up portion having a high concentration of Fe, Cr, and Ni, the crystal grain size may be smaller than that in the base metal portion. An example thereof is shown in the drilling build-up portions 1 to 8 in Table 1.
(3.ひずみの変化部の模擬)
次に、部分的にひずみ量が異なる部位を模擬的に作製した。10mm厚の板形状まで鍛造、熱延、焼鈍、酸洗を施した母材を用いて、その母材表面に、グラインダを用いて部分的に研磨を施して、幅3〜10mmの研磨痕を導入した。このグラインダによる研磨痕の部位は、他部に比べてひずみ量が大きい部位となる。研磨によってひずみが導入されているため、同時にある程度は結晶方位と結晶粒径も未研磨部からは変化している。その例を、表1の部分グラインダ1〜3に示す。
(3. Simulation of strain change part)
Next, parts with partially different strain amounts were simulated. Using a base material that has been forged, hot-rolled, annealed, and pickled to a plate shape with a thickness of 10 mm, the surface of the base material is partially polished with a grinder to create polishing marks with a width of 3 to 10 mm. Introduced. The part of the polishing mark by this grinder is a part where the amount of strain is larger than that of other parts. Since strain is introduced by polishing, the crystal orientation and grain size also change from the unpolished part to some extent at the same time. Examples are shown in Partial Grinders 1 to 3 in Table 1.
(4.実際のマクロ模様の特定)
母材を研磨したのち、目視観察によりマクロ模様を5か所確認した。これらを表1のマクロ模様1〜5に示す。
(4. Identification of the actual macro pattern)
After polishing the base material, five macro patterns were confirmed by visual observation. These are shown in macro patterns 1 to 5 in Table 1.
(5.電圧測定)
次に、母材の表面に一対の通電電極探針を接触させて定電流を供給した。次いで、図1〜3に示すような配列で、電位検出探針の対を5mmの探針間隔として母材表面に接触させ、電圧を測定した。なお、母材の表面における平均結晶粒径は、33μmである。そして、上述した穴あけ肉盛部1〜8、部分グラインダ1〜3およびマクロ模様1〜5を含む部位における電圧を、母材の基準となる部位における電圧V0と対比した。結果を表1に合わせて示す。電流は1Aとした。
(5. Voltage measurement)
Next, a pair of energizing electrode probes were brought into contact with the surface of the base metal to supply a constant current. Next, in the arrangement shown in FIGS. 1 to 3, the pair of potential detection probes was brought into contact with the surface of the base material with a probe spacing of 5 mm, and the voltage was measured. The average crystal grain size on the surface of the base metal is 33 μm. Then, the voltage at the portion including the above-mentioned drilling build-up portions 1 to 8, the partial grinders 1 to 3 and the macro pattern 1 to 5 was compared with the voltage V 0 at the reference portion of the base material. The results are shown in Table 1. The current was 1 A.
表1に示すように、穴あけ肉盛部1〜8、部分グラインダ1〜3およびマクロ模様1〜5を含む部位における電圧は、基準となる母材における電圧から変化していた。このことから、本実施形態に係る検査方法により、金属箔製造用電着ドラム材または金属箔製造用電着ドラムの品質を精度よくかつ非破壊に検査できることが理解できる。 As shown in Table 1, the voltage at the portion including the drilling built-up portions 1 to 8, the partial grinders 1 to 3 and the macro pattern 1 to 5 changed from the voltage in the reference base material. From this, it can be understood that the inspection method according to the present embodiment can accurately and non-destructively inspect the quality of the electrodeposition drum material for metal foil production or the electrodeposition drum for metal foil production.
以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described in detail above, the present invention is not limited to such examples. It is clear that a person having ordinary knowledge in the field of technology to which the present invention belongs can come up with various modifications or modifications within the scope of the technical ideas described in the claims. , These are also naturally understood to belong to the technical scope of the present invention.
Claims (5)
前記複数の電圧から選択されるいずれか2以上の前記電圧を比較する第2の工程と、を有する、金属箔製造用電着ドラム材または金属箔製造用電着ドラムの検査方法。 A pair of current-carrying electrode probes are brought into contact with the surface of an electrodeposition drum material for metal leaf production made of industrial pure titanium or a titanium alloy or an electrodeposition drum material for metal leaf production provided with the electrodeposition drum material for metal leaf production. A constant current is supplied, and by contacting a pair of potential detection probes at a constant probe interval with respect to a plurality of locations on the surface to which the constant current is supplied, a plurality of voltages for the plurality of locations on the surface are contacted. The first step to detect
A method for inspecting an electrodeposition drum material for metal foil production or an electrodeposition drum for metal foil production, which comprises a second step of comparing any two or more of the voltages selected from the plurality of voltages.
The electrodeposition drum material for metal foil production or the metal foil production according to any one of claims 1 to 4, which calculates the ratio of two voltages selected from the plurality of voltages in the second step. Inspection method for electrodeposited drums.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019078827A JP7269472B2 (en) | 2019-04-17 | 2019-04-17 | Method for inspecting electrodeposition drum material for manufacturing metal foil or electrodeposition drum for manufacturing metal foil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019078827A JP7269472B2 (en) | 2019-04-17 | 2019-04-17 | Method for inspecting electrodeposition drum material for manufacturing metal foil or electrodeposition drum for manufacturing metal foil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020176294A true JP2020176294A (en) | 2020-10-29 |
JP7269472B2 JP7269472B2 (en) | 2023-05-09 |
Family
ID=72937541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019078827A Active JP7269472B2 (en) | 2019-04-17 | 2019-04-17 | Method for inspecting electrodeposition drum material for manufacturing metal foil or electrodeposition drum for manufacturing metal foil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7269472B2 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63191048A (en) * | 1987-02-03 | 1988-08-08 | Toshiba Corp | Crack detector |
JPH02206751A (en) * | 1989-02-06 | 1990-08-16 | Hitachi Ltd | Flaw inspecting method by electric potential method for large-sized object to be inspected |
JP2000045091A (en) * | 1998-07-27 | 2000-02-15 | Nippon Steel Corp | Titanium material for electrolytic metal foil producing drum, and its production |
JP2001141683A (en) * | 1999-11-16 | 2001-05-25 | Mitsubishi Heavy Ind Ltd | Method and apparatus for monitoring crack |
JP2004250753A (en) * | 2003-02-20 | 2004-09-09 | Nippon Steel Corp | Titanium alloy used for cathode electrode for manufacturing electrolytic copper foil, and manufacturing method therefor |
JP2005298853A (en) * | 2004-04-07 | 2005-10-27 | Nippon Steel Corp | TITANIUM PLATE FOR DRUM IN MANUFACTURING ELECTROLYTIC Cu FOIL, AND MANUFACTURING METHOD THEREFOR |
JP2007155368A (en) * | 2005-12-01 | 2007-06-21 | Mitsubishi Heavy Ind Ltd | Flaw detection method of conductive coating film and flaw detector used therefor |
JP2008241419A (en) * | 2007-03-27 | 2008-10-09 | Denshi Jiki Kogyo Kk | Method and device for measuring nugget diameter |
JP2010096504A (en) * | 2008-10-14 | 2010-04-30 | Hioki Ee Corp | Thickness nondestructive inspection method of measuring object, and device therefor |
-
2019
- 2019-04-17 JP JP2019078827A patent/JP7269472B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63191048A (en) * | 1987-02-03 | 1988-08-08 | Toshiba Corp | Crack detector |
JPH02206751A (en) * | 1989-02-06 | 1990-08-16 | Hitachi Ltd | Flaw inspecting method by electric potential method for large-sized object to be inspected |
JP2000045091A (en) * | 1998-07-27 | 2000-02-15 | Nippon Steel Corp | Titanium material for electrolytic metal foil producing drum, and its production |
JP2001141683A (en) * | 1999-11-16 | 2001-05-25 | Mitsubishi Heavy Ind Ltd | Method and apparatus for monitoring crack |
JP2004250753A (en) * | 2003-02-20 | 2004-09-09 | Nippon Steel Corp | Titanium alloy used for cathode electrode for manufacturing electrolytic copper foil, and manufacturing method therefor |
JP2005298853A (en) * | 2004-04-07 | 2005-10-27 | Nippon Steel Corp | TITANIUM PLATE FOR DRUM IN MANUFACTURING ELECTROLYTIC Cu FOIL, AND MANUFACTURING METHOD THEREFOR |
JP2007155368A (en) * | 2005-12-01 | 2007-06-21 | Mitsubishi Heavy Ind Ltd | Flaw detection method of conductive coating film and flaw detector used therefor |
JP2008241419A (en) * | 2007-03-27 | 2008-10-09 | Denshi Jiki Kogyo Kk | Method and device for measuring nugget diameter |
JP2010096504A (en) * | 2008-10-14 | 2010-04-30 | Hioki Ee Corp | Thickness nondestructive inspection method of measuring object, and device therefor |
Also Published As
Publication number | Publication date |
---|---|
JP7269472B2 (en) | 2023-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI544675B (en) | Permanent system for continuous detection of current distribution in interconnected electrolytic cells | |
Tan et al. | Evaluating localised corrosion intensity using the wire beam electrode | |
JPS60501475A (en) | Precision non-destructive testing of metals | |
Tan | A new crevice corrosion testing method and its use in the investigation of oil stain | |
JP2020176294A (en) | Method of inspecting electrodeposition drum material for producing metal foil or electrodeposition drum for producing metal foil | |
US1735878A (en) | Device for measuring the current densities of galvanic baths | |
JP3185191B2 (en) | High speed electroplating test equipment | |
TWI691620B (en) | Plating device and plating system | |
CN104746110A (en) | Stainless steel fastener screw thread surface chrome plating technology used for nuclear main pump | |
WO2022024180A1 (en) | Titanium material for manufacturing metal foil, method for manufacturing titanium material for manufacturing metal foil, and metal foil manufacturing drum | |
US5425870A (en) | Multipurpose electrolytic meter | |
US3264198A (en) | Continuous electroplating method | |
TWI769559B (en) | Method for evaluating corrosion resistance of coating | |
CN107884429B (en) | Cold-rolled steel plate texture measuring method | |
JP6534446B2 (en) | Method of manufacturing plate material for electrochemical process | |
Dibari | Evaluation of a simple, thin-film ductility tester & review of the ductility of nickel sulfamate deposits | |
JP6984763B2 (en) | Metal structure evaluation device for rolled steel sheet, metal structure evaluation method for rolled steel sheet, steel material manufacturing equipment, steel material manufacturing method, and steel material quality control method | |
JPS604278B2 (en) | electroplating method | |
Tan et al. | Characterising nonuniform electrodeposition and electrodissolution using the novel wire beam electrode method | |
Yogesha et al. | Electrodeposition of high performance multilayer coatings of Zn–Co using triangular current pulses | |
Cipta et al. | The Influence of Variation of Electrical Current and Electroplating Process Time on Coating Thickness, Glossiness and Adhesion of Copper on Low Carbon Steel | |
Wyllie | A Semi‐Quantitative Method for Measuring the Ductility of Chromium Electrodeposits | |
Tyusenkov et al. | Preventing contact corrosion of carbon steel welded joints | |
CN118654611A (en) | Method for measuring thickness of oxide layer | |
JPS6129457B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20190426 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190507 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230404 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7269472 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |