JP2020174072A - Organic electroluminescence device and electronic device - Google Patents
Organic electroluminescence device and electronic device Download PDFInfo
- Publication number
- JP2020174072A JP2020174072A JP2019073710A JP2019073710A JP2020174072A JP 2020174072 A JP2020174072 A JP 2020174072A JP 2019073710 A JP2019073710 A JP 2019073710A JP 2019073710 A JP2019073710 A JP 2019073710A JP 2020174072 A JP2020174072 A JP 2020174072A
- Authority
- JP
- Japan
- Prior art keywords
- group
- carbon atoms
- unsubstituted
- compound
- substituent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005401 electroluminescence Methods 0.000 title claims description 35
- 150000001875 compounds Chemical class 0.000 claims abstract description 301
- 125000004432 carbon atom Chemical group C* 0.000 claims description 237
- 125000001424 substituent group Chemical group 0.000 claims description 203
- 125000000217 alkyl group Chemical group 0.000 claims description 88
- 125000003118 aryl group Chemical group 0.000 claims description 77
- 125000004429 atom Chemical group 0.000 claims description 75
- 101100491335 Caenorhabditis elegans mat-2 gene Proteins 0.000 claims description 47
- 229910052799 carbon Chemical group 0.000 claims description 42
- 125000003545 alkoxy group Chemical group 0.000 claims description 39
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 39
- 230000003111 delayed effect Effects 0.000 claims description 35
- 125000000623 heterocyclic group Chemical group 0.000 claims description 30
- 125000001072 heteroaryl group Chemical group 0.000 claims description 24
- 125000004414 alkyl thio group Chemical group 0.000 claims description 22
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 22
- 102100040428 Chitobiosyldiphosphodolichol beta-mannosyltransferase Human genes 0.000 claims description 21
- 101000891557 Homo sapiens Chitobiosyldiphosphodolichol beta-mannosyltransferase Proteins 0.000 claims description 21
- 125000002521 alkyl halide group Chemical group 0.000 claims description 19
- 125000004104 aryloxy group Chemical group 0.000 claims description 18
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 16
- 125000001153 fluoro group Chemical group F* 0.000 claims description 16
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 16
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 16
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 claims description 16
- 229910052717 sulfur Inorganic materials 0.000 claims description 16
- 125000005843 halogen group Chemical group 0.000 claims description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- 125000004434 sulfur atom Chemical group 0.000 claims description 14
- 101100495256 Caenorhabditis elegans mat-3 gene Proteins 0.000 claims description 13
- 125000003277 amino group Chemical group 0.000 claims description 12
- 125000001769 aryl amino group Chemical group 0.000 claims description 11
- 125000005110 aryl thio group Chemical group 0.000 claims description 10
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 10
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 10
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 10
- 125000003342 alkenyl group Chemical group 0.000 claims description 9
- 125000003282 alkyl amino group Chemical group 0.000 claims description 9
- 125000005103 alkyl silyl group Chemical group 0.000 claims description 9
- 125000005104 aryl silyl group Chemical group 0.000 claims description 9
- 125000004185 ester group Chemical group 0.000 claims description 9
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 8
- 150000004696 coordination complex Chemical class 0.000 claims description 7
- 239000007850 fluorescent dye Substances 0.000 claims description 7
- 125000005401 siloxanyl group Chemical group 0.000 claims description 6
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 3
- 101100076569 Euplotes raikovi MAT3 gene Proteins 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 157
- -1 2,2,3,3-tetrafluoro-1-propoxy group Chemical group 0.000 description 139
- 238000000034 method Methods 0.000 description 30
- 239000000463 material Substances 0.000 description 27
- 238000002347 injection Methods 0.000 description 24
- 239000007924 injection Substances 0.000 description 24
- 239000000126 substance Substances 0.000 description 22
- 150000001721 carbon Chemical group 0.000 description 21
- 239000000523 sample Substances 0.000 description 21
- 230000032258 transport Effects 0.000 description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 20
- 230000004888 barrier function Effects 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 18
- 230000005525 hole transport Effects 0.000 description 18
- 239000010408 film Substances 0.000 description 17
- 238000005259 measurement Methods 0.000 description 16
- 239000012044 organic layer Substances 0.000 description 15
- 239000000758 substrate Substances 0.000 description 15
- 230000001052 transient effect Effects 0.000 description 15
- 229910052731 fluorine Inorganic materials 0.000 description 14
- 238000001228 spectrum Methods 0.000 description 14
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 9
- 230000005284 excitation Effects 0.000 description 9
- 238000002189 fluorescence spectrum Methods 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 9
- 150000002894 organic compounds Chemical class 0.000 description 9
- 239000010409 thin film Substances 0.000 description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 125000002252 acyl group Chemical group 0.000 description 7
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 7
- 150000001342 alkaline earth metals Chemical class 0.000 description 7
- 125000005129 aryl carbonyl group Chemical group 0.000 description 7
- 239000011575 calcium Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 125000001624 naphthyl group Chemical group 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 230000003595 spectral effect Effects 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 238000000862 absorption spectrum Methods 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 6
- 150000001340 alkali metals Chemical class 0.000 description 6
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 6
- 125000000304 alkynyl group Chemical group 0.000 description 6
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 125000006165 cyclic alkyl group Chemical group 0.000 description 6
- 230000005281 excited state Effects 0.000 description 6
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical group [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 125000004076 pyridyl group Chemical group 0.000 description 6
- 239000012488 sample solution Substances 0.000 description 6
- 125000005106 triarylsilyl group Chemical group 0.000 description 6
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 5
- 125000006267 biphenyl group Chemical group 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 125000004988 dibenzothienyl group Chemical group C1(=CC=CC=2SC3=C(C21)C=CC=C3)* 0.000 description 5
- 125000003709 fluoroalkyl group Chemical group 0.000 description 5
- 125000005647 linker group Chemical group 0.000 description 5
- 238000001296 phosphorescence spectrum Methods 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 230000000630 rising effect Effects 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 125000004665 trialkylsilyl group Chemical group 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 125000005107 alkyl diaryl silyl group Chemical group 0.000 description 4
- 125000005907 alkyl ester group Chemical group 0.000 description 4
- 150000007860 aryl ester derivatives Chemical group 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052792 caesium Inorganic materials 0.000 description 4
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 4
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 150000001716 carbazoles Chemical class 0.000 description 4
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 4
- 125000002676 chrysenyl group Chemical group C1(=CC=CC=2C3=CC=C4C=CC=CC4=C3C=CC12)* 0.000 description 4
- 125000005105 dialkylarylsilyl group Chemical group 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 229910003437 indium oxide Inorganic materials 0.000 description 4
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 4
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical group [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 4
- 125000000714 pyrimidinyl group Chemical group 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- 125000004306 triazinyl group Chemical group 0.000 description 4
- 125000003960 triphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C3=CC=CC=C3C12)* 0.000 description 4
- 229910001930 tungsten oxide Inorganic materials 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 3
- IYZMXHQDXZKNCY-UHFFFAOYSA-N 1-n,1-n-diphenyl-4-n,4-n-bis[4-(n-phenylanilino)phenyl]benzene-1,4-diamine Chemical compound C1=CC=CC=C1N(C=1C=CC(=CC=1)N(C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 IYZMXHQDXZKNCY-UHFFFAOYSA-N 0.000 description 3
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 3
- 0 CCC*CCCCCCCNN Chemical compound CCC*CCCCCCCNN 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- 229910052769 Ytterbium Inorganic materials 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 150000001491 aromatic compounds Chemical class 0.000 description 3
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 125000002541 furyl group Chemical group 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000005283 ground state Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 3
- 229910001947 lithium oxide Inorganic materials 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 125000005561 phenanthryl group Chemical group 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 125000000168 pyrrolyl group Chemical group 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 125000001544 thienyl group Chemical group 0.000 description 3
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 3
- HONWGFNQCPRRFM-UHFFFAOYSA-N 2-n-(3-methylphenyl)-1-n,1-n,2-n-triphenylbenzene-1,2-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C(=CC=CC=2)N(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 HONWGFNQCPRRFM-UHFFFAOYSA-N 0.000 description 2
- FCNCGHJSNVOIKE-UHFFFAOYSA-N 9,10-diphenylanthracene Chemical compound C1=CC=CC=C1C(C1=CC=CC=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 FCNCGHJSNVOIKE-UHFFFAOYSA-N 0.000 description 2
- 229910017073 AlLi Inorganic materials 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 2
- 229910052693 Europium Inorganic materials 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical group [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 2
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000001454 anthracenes Chemical class 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 2
- 125000005605 benzo group Chemical group 0.000 description 2
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 2
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- 150000001717 carbocyclic compounds Chemical class 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000003996 delayed luminescence Methods 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 125000003914 fluoranthenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC=C4C1=C23)* 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 2
- 125000001715 oxadiazolyl group Chemical group 0.000 description 2
- 125000002971 oxazolyl group Chemical group 0.000 description 2
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 2
- 125000004934 phenanthridinyl group Chemical group C1(=CC=CC2=NC=C3C=CC=CC3=C12)* 0.000 description 2
- 125000004625 phenanthrolinyl group Chemical group N1=C(C=CC2=CC=C3C=CC=NC3=C12)* 0.000 description 2
- 125000001791 phenazinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 description 2
- 125000001484 phenothiazinyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000078 poly(4-vinyltriphenylamine) Polymers 0.000 description 2
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 2
- 125000003373 pyrazinyl group Chemical group 0.000 description 2
- 125000003226 pyrazolyl group Chemical group 0.000 description 2
- 125000001725 pyrenyl group Chemical group 0.000 description 2
- 238000006862 quantum yield reaction Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 125000005493 quinolyl group Chemical group 0.000 description 2
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- WTGQALLALWYDJH-WYHSTMEOSA-N scopolamine hydrobromide Chemical compound Br.C1([C@@H](CO)C(=O)OC2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 WTGQALLALWYDJH-WYHSTMEOSA-N 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- FHCPAXDKURNIOZ-UHFFFAOYSA-N tetrathiafulvalene Chemical compound S1C=CSC1=C1SC=CS1 FHCPAXDKURNIOZ-UHFFFAOYSA-N 0.000 description 2
- 125000003831 tetrazolyl group Chemical group 0.000 description 2
- 238000007725 thermal activation Methods 0.000 description 2
- 125000001113 thiadiazolyl group Chemical group 0.000 description 2
- 125000000335 thiazolyl group Chemical group 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 125000003944 tolyl group Chemical group 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 125000001425 triazolyl group Chemical group 0.000 description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 2
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 2
- 229910052722 tritium Inorganic materials 0.000 description 2
- OYQCBJZGELKKPM-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O-2].[Zn+2].[O-2].[In+3] OYQCBJZGELKKPM-UHFFFAOYSA-N 0.000 description 2
- XOYZGLGJSAZOAG-UHFFFAOYSA-N 1-n,1-n,4-n-triphenyl-4-n-[4-[4-(n-[4-(n-phenylanilino)phenyl]anilino)phenyl]phenyl]benzene-1,4-diamine Chemical group C1=CC=CC=C1N(C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 XOYZGLGJSAZOAG-UHFFFAOYSA-N 0.000 description 1
- SPDPTFAJSFKAMT-UHFFFAOYSA-N 1-n-[4-[4-(n-[4-(3-methyl-n-(3-methylphenyl)anilino)phenyl]anilino)phenyl]phenyl]-4-n,4-n-bis(3-methylphenyl)-1-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=C(C)C=CC=2)C=2C=C(C)C=CC=2)C=2C=C(C)C=CC=2)=C1 SPDPTFAJSFKAMT-UHFFFAOYSA-N 0.000 description 1
- 125000004343 1-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000004793 2,2,2-trifluoroethoxy group Chemical group FC(CO*)(F)F 0.000 description 1
- FQJQNLKWTRGIEB-UHFFFAOYSA-N 2-(4-tert-butylphenyl)-5-[3-[5-(4-tert-butylphenyl)-1,3,4-oxadiazol-2-yl]phenyl]-1,3,4-oxadiazole Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=NN=C(C=2C=C(C=CC=2)C=2OC(=NN=2)C=2C=CC(=CC=2)C(C)(C)C)O1 FQJQNLKWTRGIEB-UHFFFAOYSA-N 0.000 description 1
- 125000005916 2-methylpentyl group Chemical group 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- HXQOKODEIRLDPB-UHFFFAOYSA-N 3,5-bis(trifluoromethyl)benzene-1,2-diol Chemical group OC1=CC(C(F)(F)F)=CC(C(F)(F)F)=C1O HXQOKODEIRLDPB-UHFFFAOYSA-N 0.000 description 1
- TVMBOHMLKCZFFW-UHFFFAOYSA-N 3-N,6-N,9-triphenyl-3-N,6-N-bis(9-phenylcarbazol-3-yl)carbazole-3,6-diamine Chemical compound C1=CC=CC=C1N(C=1C=C2C3=CC(=CC=C3N(C=3C=CC=CC=3)C2=CC=1)N(C=1C=CC=CC=1)C=1C=C2C3=CC=CC=C3N(C=3C=CC=CC=3)C2=CC=1)C1=CC=C(N(C=2C=CC=CC=2)C=2C3=CC=CC=2)C3=C1 TVMBOHMLKCZFFW-UHFFFAOYSA-N 0.000 description 1
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 1
- 125000005917 3-methylpentyl group Chemical group 0.000 description 1
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 1
- RZFLJQHPAGLLPF-UHFFFAOYSA-N 4-(trifluoromethyl)benzene-1,2-diol Chemical group OC1=CC=C(C(F)(F)F)C=C1O RZFLJQHPAGLLPF-UHFFFAOYSA-N 0.000 description 1
- LGDCSNDMFFFSHY-UHFFFAOYSA-N 4-butyl-n,n-diphenylaniline Polymers C1=CC(CCCC)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 LGDCSNDMFFFSHY-UHFFFAOYSA-N 0.000 description 1
- 125000004860 4-ethylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])C([H])([H])[H] 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- KMNZKANGYGKTAK-UHFFFAOYSA-N C1(=CC=CC=C1)C=1C(=C(C=CC1)C1=NN=C(O1)C1=CC(=CC=C1)C=1OC(=NN1)C1=C(C(=CC=C1)C1=CC=CC=C1)CCCC)CCCC Chemical compound C1(=CC=CC=C1)C=1C(=C(C=CC1)C1=NN=C(O1)C1=CC(=CC=C1)C=1OC(=NN1)C1=C(C(=CC=C1)C1=CC=CC=C1)CCCC)CCCC KMNZKANGYGKTAK-UHFFFAOYSA-N 0.000 description 1
- ZKHISQHQYQCSJE-UHFFFAOYSA-N C1=CC=CC=C1N(C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=C(C=C(C=1)N(C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)N(C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 Chemical compound C1=CC=CC=C1N(C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=C(C=C(C=1)N(C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)N(C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 ZKHISQHQYQCSJE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000002879 Lewis base Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N Nc1ccccc1N Chemical compound Nc1ccccc1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 1
- 241000720974 Protium Species 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 229940058303 antinematodal benzimidazole derivative Drugs 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 125000003943 azolyl group Chemical group 0.000 description 1
- CSSYLTMKCUORDA-UHFFFAOYSA-N barium(2+);oxygen(2-) Chemical class [O-2].[Ba+2] CSSYLTMKCUORDA-UHFFFAOYSA-N 0.000 description 1
- 150000001555 benzenes Chemical group 0.000 description 1
- 150000001556 benzimidazoles Chemical class 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical group C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 125000001231 benzoyloxy group Chemical group C(C1=CC=CC=C1)(=O)O* 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 150000001572 beryllium Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- UFVXQDWNSAGPHN-UHFFFAOYSA-K bis[(2-methylquinolin-8-yl)oxy]-(4-phenylphenoxy)alumane Chemical compound [Al+3].C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC([O-])=CC=C1C1=CC=CC=C1 UFVXQDWNSAGPHN-UHFFFAOYSA-K 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- XZCJVWCMJYNSQO-UHFFFAOYSA-N butyl pbd Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=NN=C(C=2C=CC(=CC=2)C=2C=CC=CC=2)O1 XZCJVWCMJYNSQO-UHFFFAOYSA-N 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- KVUAALJSMIVURS-ZEDZUCNESA-L calcium folinate Chemical compound [Ca+2].C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC([O-])=O)C([O-])=O)C=C1 KVUAALJSMIVURS-ZEDZUCNESA-L 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical class [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 125000005299 dibenzofluorenyl group Chemical group C1(=CC=CC2=C3C(=C4C=5C=CC=CC5CC4=C21)C=CC=C3)* 0.000 description 1
- 150000004826 dibenzofurans Chemical class 0.000 description 1
- IYYZUPMFVPLQIF-ALWQSETLSA-N dibenzothiophene Chemical class C1=CC=CC=2[34S]C3=C(C=21)C=CC=C3 IYYZUPMFVPLQIF-ALWQSETLSA-N 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- DKHNGUNXLDCATP-UHFFFAOYSA-N dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile Chemical compound C12=NC(C#N)=C(C#N)N=C2C2=NC(C#N)=C(C#N)N=C2C2=C1N=C(C#N)C(C#N)=N2 DKHNGUNXLDCATP-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 125000003784 fluoroethyl group Chemical group [H]C([H])(F)C([H])([H])* 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 125000001977 isobenzofuranyl group Chemical group C=1(OC=C2C=CC=CC12)* 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 150000007527 lewis bases Chemical class 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- WOYDRSOIBHFMGB-UHFFFAOYSA-N n,9-diphenyl-n-(9-phenylcarbazol-3-yl)carbazol-3-amine Chemical compound C1=CC=CC=C1N(C=1C=C2C3=CC=CC=C3N(C=3C=CC=CC=3)C2=CC=1)C1=CC=C(N(C=2C=CC=CC=2)C=2C3=CC=CC=2)C3=C1 WOYDRSOIBHFMGB-UHFFFAOYSA-N 0.000 description 1
- VZYZZKOUCVXTOJ-UHFFFAOYSA-N n-[4-[4-(n-(9,9-dimethylfluoren-2-yl)anilino)phenyl]phenyl]-9,9-dimethyl-n-phenylfluoren-2-amine Chemical group C1=C2C(C)(C)C3=CC=CC=C3C2=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=C2C(C)(C)C3=CC=CC=C3C2=CC=1)C1=CC=CC=C1 VZYZZKOUCVXTOJ-UHFFFAOYSA-N 0.000 description 1
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- COVCYOMDZRYBNM-UHFFFAOYSA-N n-naphthalen-1-yl-9-phenyl-n-(9-phenylcarbazol-3-yl)carbazol-3-amine Chemical compound C1=CC=CC=C1N1C2=CC=C(N(C=3C=C4C5=CC=CC=C5N(C=5C=CC=CC=5)C4=CC=3)C=3C4=CC=CC=C4C=CC=3)C=C2C2=CC=CC=C21 COVCYOMDZRYBNM-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005185 naphthylcarbonyl group Chemical group C1(=CC=CC2=CC=CC=C12)C(=O)* 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000004115 pentoxy group Chemical group [*]OC([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000006551 perfluoro alkylene group Chemical group 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- 150000005041 phenanthrolines Chemical class 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- ASUOLLHGALPRFK-UHFFFAOYSA-N phenylphosphonoylbenzene Chemical group C=1C=CC=CC=1P(=O)C1=CC=CC=C1 ASUOLLHGALPRFK-UHFFFAOYSA-N 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 150000003377 silicon compounds Chemical group 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- OVTCUIZCVUGJHS-VQHVLOKHSA-N trans-dipyrrin Chemical group C=1C=CNC=1/C=C1\C=CC=N1 OVTCUIZCVUGJHS-VQHVLOKHSA-N 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N trans-stilbene Chemical compound C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 125000002306 tributylsilyl group Chemical group C(CCC)[Si](CCCC)(CCCC)* 0.000 description 1
- 125000004205 trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- 125000000025 triisopropylsilyl group Chemical group C(C)(C)[Si](C(C)C)(C(C)C)* 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
Description
本発明は、有機エレクトロルミネッセンス素子及び電子機器に関する。 The present invention relates to organic electroluminescence devices and electronic devices.
有機エレクトロルミネッセンス素子(以下、「有機EL素子」という場合がある。)に電圧を印加すると、陽極から正孔が発光層に注入され、また陰極から電子が発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。このとき、電子スピンの統計則により、一重項励起子が25%の割合で生成し、及び三重項励起子が75%の割合で生成する。
一重項励起子からの発光を用いる蛍光型の有機EL素子は、携帯電話及びテレビ等のフルカラーディスプレイへ応用されつつあるが、内部量子効率25%が限界といわれている。そのため、有機EL素子の性能を向上するための検討が行われている。
When a voltage is applied to an organic electroluminescence device (hereinafter, may be referred to as an “organic EL device”), holes are injected into the light emitting layer from the anode, and electrons are injected into the light emitting layer from the cathode. Then, in the light emitting layer, the injected holes and electrons are recombined to form excitons. At this time, according to the statistical law of electron spin, singlet excitons are generated at a rate of 25%, and triplet excitons are generated at a rate of 75%.
Fluorescent organic EL devices that use light emitted from singlet excitons are being applied to full-color displays such as mobile phones and televisions, but are said to have an internal quantum efficiency of 25% as a limit. Therefore, studies are being conducted to improve the performance of the organic EL element.
例えば、一重項励起子に加えて三重項励起子を利用して、有機EL素子をさらに効率的に発光させることが期待されている。このような背景から、熱活性化遅延蛍光(以下、単に「遅延蛍光」という場合がある。)を利用した高効率の蛍光型の有機EL素子が提案され、研究がなされている。
TADF(Thermally Activated Delayed Fluorescence、熱活性化遅延蛍光)機構(メカニズム)は、一重項準位と三重項準位とのエネルギー差(ΔST)の小さな材料を用いた場合に、三重項励起子から一重項励起子への逆項間交差が熱的に生じる現象を利用するメカニズムである。熱活性化遅延蛍光については、例えば、『安達千波矢編、「有機半導体のデバイス物性」、講談社、2012年4月1日発行、261−268ページ』に記載されている。
熱活性化遅延蛍光性(TADF性)を示す化合物(以下、TADF性化合物とも称する)としては、例えば、分子内に、ドナー部位とアクセプター部位とが結合した化合物が知られている。
For example, it is expected that an organic EL device can emit light more efficiently by using triplet excitons in addition to singlet excitons. Against this background, high-efficiency fluorescent organic EL devices using thermally activated delayed fluorescence (hereinafter, may be simply referred to as “delayed fluorescence”) have been proposed and studied.
The TADF (Thermally Activated Fluorescence) mechanism (mechanism) is from triplet excitons to singlet when a material with a small energy difference (ΔST) between the singlet level and the triplet level is used. It is a mechanism that utilizes the phenomenon that the inverse intersystem crossing to the term exciter occurs thermally. Thermal activation delayed fluorescence is described, for example, in "Chihaya Adachi," Device Properties of Organic Semiconductors, "Kodansha, published on April 1, 2012, pp. 261-268".
As a compound exhibiting thermal activation delayed fluorescence (TADF property) (hereinafter, also referred to as a TADF property compound), for example, a compound in which a donor site and an acceptor site are bonded in a molecule is known.
有機EL素子に関する文献として、特許文献1及び特許文献2が挙げられる。 Documents 1 and 2 are examples of documents relating to organic EL devices.
ディスプレイ等の電子機器の性能を向上させるために、有機EL素子の性能の更なる向上が要望されている。 In order to improve the performance of electronic devices such as displays, further improvement in the performance of organic EL elements is required.
本発明の目的は、高性能化、特に長寿命化できる有機エレクトロルミネッセンス素子並びに当該有機エレクトロルミネッセンス素子を備える電子機器を提供することである。 An object of the present invention is to provide an organic electroluminescence device capable of improving performance, particularly a long life, and an electronic device provided with the organic electroluminescence device.
本発明の一態様によれば、陽極と、陰極と、前記陽極と前記陰極との間に含まれる発光層と、を有し、前記発光層は、第一の化合物M1と、第二の化合物M2と、を含み、前記第一の化合物M1は、下記一般式(1)で表され、前記第二の化合物M2は、下記一般式(20A)又は一般式(20B)で表され、前記第二の化合物M2の一重項エネルギーS1(Mat2)と、前記第一の化合物M1の一重項エネルギーS1(Mat1)とが、下記数式(数1)の関係を満たす、有機エレクトロルミネッセンス素子が提供される。
S1(Mat2)>S1(Mat1)…(数1)
According to one aspect of the present invention, the light emitting layer has an anode, a cathode, and a light emitting layer contained between the anode and the cathode, and the light emitting layer has a first compound M1 and a second compound. The first compound M1 including M2 is represented by the following general formula (1), and the second compound M2 is represented by the following general formula (20A) or general formula (20B). a second compound singlet energy S 1 of M2 (Mat2), the singlet energy S 1 of the first compound M1 (Mat1) and but satisfies the following equation (equation 1), providing an organic electroluminescence device Will be done.
S 1 (Mat 2)> S 1 (Mat 1 ) ... (Equation 1)
(前記一般式(1)において、
Xは、窒素原子、又はYと結合する炭素原子であり、
Yは、水素原子又は置換基であり、
R21〜R26は、それぞれ独立に、水素原子もしくは置換基であるか、又はR21及びR22の組、R22及びR23の組、R24及びR25の組、並びにR25及びR26の組のいずれか1つ以上の組が互いに結合して環を形成し、
置換基としてのY、及びR21〜R26は、それぞれ独立に、
置換もしくは無置換の炭素数1〜30のアルキル基、
置換もしくは無置換の炭素数1〜30のハロゲン化アルキル基、
置換もしくは無置換の環形成炭素数3〜30のシクロアルキル基、
置換もしくは無置換の環形成炭素数6〜30のアリール基、
置換もしくは無置換の炭素数1〜30のアルコキシ基、
置換もしくは無置換の炭素数1〜30のハロゲン化アルコキシ基、
置換もしくは無置換の炭素数1〜30のアルキルチオ基、
置換もしくは無置換の環形成炭素数6〜30のアリールオキシ基、
置換もしくは無置換の環形成炭素数6〜30のアリールチオ基、
置換もしくは無置換の炭素数2〜30のアルケニル基、
置換もしくは無置換の炭素数7〜30のアラルキル基、
置換もしくは無置換の環形成原子数5〜30のヘテロアリール基、
ハロゲン原子、
カルボキシ基、
置換もしくは無置換のエステル基、
置換もしくは無置換のカルバモイル基、
置換もしくは無置換のアミノ基、
ニトロ基、
シアノ基、
置換もしくは無置換のシリル基、及び
置換もしくは無置換のシロキサニル基からなる群から選択され、
Z21及びZ22は、それぞれ独立に、置換基であるか、又はZ21及びZ22が互いに結合して環を形成し、
置換基としてのZ21及びZ22は、それぞれ独立に、
ハロゲン原子、
置換もしくは無置換の炭素数1〜30のアルキル基、
置換もしくは無置換の炭素数1〜30のハロゲン化アルキル基、
置換もしくは無置換の環形成炭素数6〜30のアリール基、
置換もしくは無置換の炭素数1〜30のアルコキシ基、
置換もしくは無置換の炭素数1〜30のハロゲン化アルコキシ基、及び
置換もしくは無置換の環形成炭素数6〜30のアリールオキシ基からなる群から選択される。)
(In the general formula (1),
X is a nitrogen atom or a carbon atom bonded to Y,
Y is a hydrogen atom or a substituent,
R 21 to R 26 are independently hydrogen atoms or substituents, or R 21 and R 22 pairs, R 22 and R 23 pairs, R 24 and R 25 pairs, and R 25 and R. Any one or more of the 26 pairs combine with each other to form a ring.
Y and R 21 to R 26 as substituents are independent of each other.
Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms,
Substituent or unsubstituted alkyl halide groups having 1 to 30 carbon atoms,
Substitutable or unsubstituted ring-forming cycloalkyl group having 3 to 30 carbon atoms,
Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms,
Substituent or unsubstituted alkoxy groups having 1 to 30 carbon atoms,
Substituent or unsubstituted alkoxy group having 1 to 30 carbon atoms,
Substituent or unsubstituted alkylthio groups having 1 to 30 carbon atoms,
Substituent or unsubstituted ring-forming aryloxy groups having 6 to 30 carbon atoms,
Substituted or unsubstituted ring-forming arylthio groups having 6 to 30 carbon atoms,
Substituent or unsubstituted alkenyl groups having 2 to 30 carbon atoms,
Substituentally substituted or unsubstituted aralkyl groups having 7 to 30 carbon atoms,
A heteroaryl group having 5 to 30 substituted or unsubstituted ring-forming atoms,
Halogen atom,
Carboxylic acid group,
Substituted or unsubstituted ester groups,
Substituted or unsubstituted carbamoyl groups,
Substituted or unsubstituted amino groups,
Nitro group,
Cyano group,
Selected from the group consisting of substituted or unsubstituted silyl groups and substituted or unsubstituted siloxanyl groups.
Z 21 and Z 22 are independent substituents, or Z 21 and Z 22 are bonded to each other to form a ring.
Z 21 and Z 22 as substituents are independent of each other.
Halogen atom,
Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms,
Substituent or unsubstituted alkyl halide groups having 1 to 30 carbon atoms,
Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms,
Substituent or unsubstituted alkoxy groups having 1 to 30 carbon atoms,
It is selected from the group consisting of substituted or unsubstituted alkyl halide groups having 1 to 30 carbon atoms and substituted or unsubstituted ring-forming aryloxy groups having 6 to 30 carbon atoms. )
(前記一般式(20A)及び一般式(20B)において、
D21及びD22の一方は下記一般式(21)で表され、D21及びD22の他方は下記一般式(22)で表される。
(In the general formula (20A) and the general formula (20B),
One of D 21 and D 22 is represented by the following general formula (21), and the other of D 21 and D 22 is represented by the following general formula (22).
(前記一般式(21)において、
R1〜R8は、それぞれ独立に、水素原子もしくは置換基であり、
置換基としてのR1〜R8は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6〜30のアリール基、
置換もしくは無置換の環形成原子数5〜30の複素環基、
置換もしくは無置換の炭素数1〜30のアルキル基、
置換もしくは無置換の炭素数3〜30のアルキルシリル基、
置換もしくは無置換の環形成炭素数6〜60のアリールシリル基、
置換もしくは無置換の炭素数1〜30のアルコキシ基、
置換もしくは無置換の環形成炭素数6〜30のアリールオキシ基、
置換もしくは無置換の炭素数2〜30のアルキルアミノ基、
置換もしくは無置換の環形成炭素数6〜60のアリールアミノ基、
置換もしくは無置換の炭素数1〜30のアルキルチオ基、又は
置換もしくは無置換の環形成炭素数6〜30のアリールチオ基である。
*は、前記一般式(20A)又は一般式(20B)中におけるベンゼン環の炭素原子との結合部位を表す。)
(前記一般式(22)において、
X1は、硫黄原子又は酸素原子であり、
R19及びR20は、それぞれ独立に、水素原子もしくは置換基であり、
R31〜R38は、それぞれ独立に、水素原子もしくは置換基であり、
置換基としてのR19、R20、R31〜R38は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6〜30のアリール基、
置換もしくは無置換の環形成原子数5〜30の複素環基、
置換もしくは無置換の炭素数1〜30のアルキル基、
置換もしくは無置換の炭素数3〜30のアルキルシリル基、
置換もしくは無置換の環形成炭素数6〜60のアリールシリル基、
置換もしくは無置換の炭素数1〜30のアルコキシ基、
置換もしくは無置換の環形成炭素数6〜30のアリールオキシ基、
置換もしくは無置換の炭素数2〜30のアルキルアミノ基、
置換もしくは無置換の環形成炭素数6〜60のアリールアミノ基、
置換もしくは無置換の炭素数1〜30のアルキルチオ基、又は
置換もしくは無置換の環形成炭素数6〜30のアリールチオ基であり、
*は、前記一般式(20A)又は一般式(20B)中におけるベンゼン環の炭素原子との結合部位を表す。)
(In the general formula (21),
R 1 to R 8 are independent hydrogen atoms or substituents, respectively.
R 1 to R 8 as substituents are independent of each other.
Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms,
Substituted or unsubstituted heterocyclic groups having 5 to 30 ring-forming atoms,
Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms,
Substituent or unsubstituted alkylsilyl group having 3 to 30 carbon atoms,
Substituent or unsubstituted ring-forming arylsilyl group having 6 to 60 carbon atoms,
Substituent or unsubstituted alkoxy groups having 1 to 30 carbon atoms,
Substituent or unsubstituted ring-forming aryloxy groups having 6 to 30 carbon atoms,
Substituent or unsubstituted alkylamino groups having 2 to 30 carbon atoms,
Substituent or unsubstituted ring-forming arylamino group having 6 to 60 carbon atoms,
It is a substituted or unsubstituted alkylthio group having 1 to 30 carbon atoms, or a substituted or unsubstituted ring-forming alkylthio group having 6 to 30 carbon atoms.
* Represents the binding site of the benzene ring with the carbon atom in the general formula (20A) or the general formula (20B). )
(In the general formula (22),
X 1 is a sulfur atom or an oxygen atom,
R 19 and R 20 are independent hydrogen atoms or substituents, respectively.
R 31 to R 38 are independent hydrogen atoms or substituents, respectively.
R 19 , R 20 , and R 31 to R 38 as substituents are independent of each other.
Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms,
Substituted or unsubstituted heterocyclic groups having 5 to 30 ring-forming atoms,
Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms,
Substituent or unsubstituted alkylsilyl group having 3 to 30 carbon atoms,
Substituent or unsubstituted ring-forming arylsilyl group having 6 to 60 carbon atoms,
Substituent or unsubstituted alkoxy groups having 1 to 30 carbon atoms,
Substituent or unsubstituted ring-forming aryloxy groups having 6 to 30 carbon atoms,
Substituent or unsubstituted alkylamino groups having 2 to 30 carbon atoms,
Substituent or unsubstituted ring-forming arylamino group having 6 to 60 carbon atoms,
A substituted or unsubstituted alkylthio group having 1 to 30 carbon atoms, or a substituted or unsubstituted ring-forming alkylthio group having 6 to 30 carbon atoms.
* Represents the binding site of the benzene ring with the carbon atom in the general formula (20A) or the general formula (20B). )
本発明の一態様によれば、前述の本発明の一態様に係る有機エレクトロルミネッセンス素子を搭載した電子機器が提供される。 According to one aspect of the present invention, there is provided an electronic device equipped with the organic electroluminescence device according to the above-described aspect of the present invention.
本発明の一態様によれば、高性能化、特に長寿命化できる有機エレクトロルミネッセンス素子並びに当該有機エレクトロルミネッセンス素子を備える電子機器を提供できる。 According to one aspect of the present invention, it is possible to provide an organic electroluminescence device capable of improving performance, particularly a long life, and an electronic device including the organic electroluminescence device.
〔第一実施形態〕
(有機エレクトロルミネッセンス素子)
本実施形態に係る有機EL素子について説明する。
本実施形態に係る有機EL素子は、陽極及び陰極の両電極間に有機層を備える。この有機層は、有機化合物で構成される層を少なくとも一つ含む。あるいは、この有機層は、有機化合物で構成される複数の層が積層されてなる。有機層は、無機化合物をさらに含んでいてもよい。
[First Embodiment]
(Organic electroluminescence element)
The organic EL element according to this embodiment will be described.
The organic EL element according to the present embodiment includes an organic layer between both electrodes of the anode and the cathode. This organic layer contains at least one layer composed of an organic compound. Alternatively, this organic layer is formed by laminating a plurality of layers composed of organic compounds. The organic layer may further contain an inorganic compound.
本実施形態に係る有機EL素子は、有機層として第一の有機層を有する。 The organic EL device according to the present embodiment has a first organic layer as an organic layer.
本実施形態の有機EL素子において、有機層のうち少なくとも一層は、発光層である。有機層は、例えば、一つの発光層で構成されていてもよいし、有機EL素子に採用され得る層を含んでいてもよい。有機EL素子に採用され得る層としては、特に限定されないが、例えば、正孔注入層、正孔輸送層、電子注入層、電子輸送層、及び障壁層からなる群から選択される少なくともいずれかの層が挙げられる。 In the organic EL device of the present embodiment, at least one of the organic layers is a light emitting layer. The organic layer may be composed of, for example, one light emitting layer, or may include a layer that can be adopted for an organic EL element. The layer that can be adopted for the organic EL device is not particularly limited, but is at least one selected from the group consisting of, for example, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and a barrier layer. Layers are mentioned.
本実施形態においては、第一の有機層が発光層である。発光層としての第一の有機層は、第一の化合物M1及び第二の化合物M2を含む。 In the present embodiment, the first organic layer is a light emitting layer. The first organic layer as the light emitting layer contains the first compound M1 and the second compound M2.
本実施形態において、発光層としての第一の有機層は、金属錯体を含んでもよい。
また、発光層は、金属錯体を含まないことも好ましい。
発光層は、燐光発光性材料(ドーパント材料)を含まないことが好ましい。
発光層は、重金属錯体及び燐光発光性の希土類金属錯体を含まないことが好ましい。重金属錯体としては、例えば、イリジウム錯体、オスミウム錯体、及び白金錯体等が挙げられる。
In the present embodiment, the first organic layer as the light emitting layer may contain a metal complex.
It is also preferable that the light emitting layer does not contain a metal complex.
The light emitting layer preferably does not contain a phosphorescent material (dopant material).
The light emitting layer preferably does not contain a heavy metal complex and a phosphorescent rare earth metal complex. Examples of the heavy metal complex include an iridium complex, an osmium complex, a platinum complex and the like.
図1に、本実施形態に係る有機EL素子の一例の概略構成を示す。
有機EL素子1は、透光性の基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層10と、を含む。有機層10は、陽極3側から順に、正孔注入層6、正孔輸送層7、発光層5、電子輸送層8及び電子注入層9が、この順番で積層されて構成される。
FIG. 1 shows a schematic configuration of an example of an organic EL device according to the present embodiment.
The organic EL element 1 includes a translucent substrate 2, an anode 3, a cathode 4, and an organic layer 10 arranged between the anode 3 and the cathode 4. The organic layer 10 is composed of a hole injection layer 6, a hole transport layer 7, a light emitting layer 5, an electron transport layer 8 and an electron injection layer 9 laminated in this order from the anode 3 side.
<第一の化合物>
本実施形態において、第一の化合物M1は、下記一般式(1)で表される。
第一の化合物M1は、蛍光発光性を有する化合物であることが好ましい。
<First compound>
In the present embodiment, the first compound M1 is represented by the following general formula (1).
The first compound M1 is preferably a compound having fluorescence luminescence.
前記一般式(1)において、
Xは、窒素原子、又はYと結合する炭素原子であり、
Yは、水素原子又は置換基であり、
R21〜R26は、それぞれ独立に、水素原子もしくは置換基であるか、又はR21及びR22の組、R22及びR23の組、R24及びR25の組、並びにR25及びR26の組のいずれか1つ以上の組が互いに結合して環を形成し、
置換基としてのY、及びR21〜R26は、それぞれ独立に、
置換もしくは無置換の炭素数1〜30のアルキル基、
置換もしくは無置換の炭素数1〜30のハロゲン化アルキル基、
置換もしくは無置換の環形成炭素数3〜30のシクロアルキル基、
置換もしくは無置換の環形成炭素数6〜30のアリール基、
置換もしくは無置換の炭素数1〜30のアルコキシ基、
置換もしくは無置換の炭素数1〜30のハロゲン化アルコキシ基、
置換もしくは無置換の炭素数1〜30のアルキルチオ基、
置換もしくは無置換の環形成炭素数6〜30のアリールオキシ基、
置換もしくは無置換の環形成炭素数6〜30のアリールチオ基、
置換もしくは無置換の炭素数2〜30のアルケニル基、
置換もしくは無置換の炭素数7〜30のアラルキル基、
置換もしくは無置換の環形成原子数5〜30のヘテロアリール基、
ハロゲン原子、
カルボキシ基、
置換もしくは無置換のエステル基、
置換もしくは無置換のカルバモイル基、
置換もしくは無置換のアミノ基、
ニトロ基、
シアノ基、
置換もしくは無置換のシリル基、及び
置換もしくは無置換のシロキサニル基からなる群から選択され、
Z21及びZ22は、それぞれ独立に、置換基であるか、又はZ21及びZ22が互いに結合して環を形成し、
置換基としてのZ21及びZ22は、それぞれ独立に、
ハロゲン原子、
置換もしくは無置換の炭素数1〜30のアルキル基、
置換もしくは無置換の炭素数1〜30のハロゲン化アルキル基、
置換もしくは無置換の環形成炭素数6〜30のアリール基、
置換もしくは無置換の炭素数1〜30のアルコキシ基、
置換もしくは無置換の炭素数1〜30のハロゲン化アルコキシ基、及び
置換もしくは無置換の環形成炭素数6〜30のアリールオキシ基からなる群から選択される。
In the general formula (1)
X is a nitrogen atom or a carbon atom bonded to Y,
Y is a hydrogen atom or a substituent,
R 21 to R 26 are independently hydrogen atoms or substituents, or R 21 and R 22 pairs, R 22 and R 23 pairs, R 24 and R 25 pairs, and R 25 and R. Any one or more of the 26 pairs combine with each other to form a ring.
Y and R 21 to R 26 as substituents are independent of each other.
Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms,
Substituent or unsubstituted alkyl halide groups having 1 to 30 carbon atoms,
Substitutable or unsubstituted ring-forming cycloalkyl group having 3 to 30 carbon atoms,
Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms,
Substituent or unsubstituted alkoxy groups having 1 to 30 carbon atoms,
Substituent or unsubstituted alkoxy group having 1 to 30 carbon atoms,
Substituent or unsubstituted alkylthio groups having 1 to 30 carbon atoms,
Substituent or unsubstituted ring-forming aryloxy groups having 6 to 30 carbon atoms,
Substituted or unsubstituted ring-forming arylthio groups having 6 to 30 carbon atoms,
Substituent or unsubstituted alkenyl groups having 2 to 30 carbon atoms,
Substituentally substituted or unsubstituted aralkyl groups having 7 to 30 carbon atoms,
A heteroaryl group having 5 to 30 substituted or unsubstituted ring-forming atoms,
Halogen atom,
Carboxylic acid group,
Substituted or unsubstituted ester groups,
Substituted or unsubstituted carbamoyl groups,
Substituted or unsubstituted amino groups,
Nitro group,
Cyano group,
Selected from the group consisting of substituted or unsubstituted silyl groups and substituted or unsubstituted siloxanyl groups.
Z 21 and Z 22 are independent substituents, or Z 21 and Z 22 are bonded to each other to form a ring.
Z 21 and Z 22 as substituents are independent of each other.
Halogen atom,
Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms,
Substituent or unsubstituted alkyl halide groups having 1 to 30 carbon atoms,
Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms,
Substituent or unsubstituted alkoxy groups having 1 to 30 carbon atoms,
It is selected from the group consisting of substituted or unsubstituted alkyl halide groups having 1 to 30 carbon atoms and substituted or unsubstituted ring-forming aryloxy groups having 6 to 30 carbon atoms.
前記一般式(1)において、例えば、R25及びR26の組が互いに結合して環を形成している場合、第一の化合物M1は、下記一般式(11)で表される。 In the general formula (1), for example, when the pair of R 25 and R 26 are bonded to each other to form a ring, the first compound M1 is represented by the following general formula (11).
前記一般式(11)において、X、Y、R21〜R24、Z21、及びZ22は、それぞれ、前記一般式(1)におけるX、Y、R21〜R24、Z21、及びZ22と同義であり、R27〜R30は、それぞれ独立に、水素原子又は置換基であり、R27〜R30が置換基である場合の置換基としては、R21〜R24について列挙した置換基と同義である。 In the general formula (11), X, Y, R 21 ~R 24, Z 21, and Z 22 are each the X in the general formula (1), Y, R 21 ~R 24, Z 21, and Z Synonymous with 22 , R 27 to R 30 are independent hydrogen atoms or substituents, and R 21 to R 24 are listed as substituents when R 27 to R 30 are substituents. Synonymous with substituent.
前記一般式(1)において、Z21及びZ22が互いに結合して環を形成している場合、第一の化合物M1は、例えば、下記一般式(1A)、又は下記一般式(1B)で表される。ただし、第一の化合物M1は、以下の構造に限定されない。 In the general formula (1), when Z 21 and Z 22 are bonded to each other to form a ring, the first compound M1 is, for example, the following general formula (1A) or the following general formula (1B). expressed. However, the first compound M1 is not limited to the following structure.
前記一般式(1A)において、X、Y、及びR21〜R26は、それぞれ、前記一般式(1)におけるX、Y、及びR21〜R26と同義であり、R1Aは、それぞれ独立に、水素原子又は置換基であり、R1Aが置換基である場合の置換基としては、R21〜R26について列挙した置換基と同義であり、n3は4である。
前記一般式(1B)において、X、Y、及びR21〜R26は、それぞれ、前記一般式(1)におけるX、Y、及びR21〜R26と同義であり、R1Bは、それぞれ独立に、水素原子又は置換基であり、R1Bが置換基である場合の置換基としては、R21〜R26について列挙した置換基と同義であり、n4は4である。
In the general formula (1A), X, Y, and R 21 to R 26 are synonymous with X, Y, and R 21 to R 26 in the general formula (1), respectively, and R 1A is independent of each other. In addition, when it is a hydrogen atom or a substituent and R 1A is a substituent, the substituent is synonymous with the substituents listed for R 21 to R 26 , and n3 is 4.
In the general formula (1B), X, Y, and R 21 to R 26 are synonymous with X, Y, and R 21 to R 26 in the general formula (1), respectively, and R 1B are independent of each other. In addition, when it is a hydrogen atom or a substituent and R 1B is a substituent, the substituent is synonymous with the substituents listed for R 21 to R 26 , and n4 is 4.
Z21及びZ22のうち少なくともいずれか(好ましくはZ21及びZ22)は、置換もしくは無置換の炭素数1〜30のアルキル基、置換もしくは無置換の炭素数1〜30のハロゲン化アルキル基、置換もしくは無置換の環形成炭素数6〜30のアリール基、置換もしくは無置換の炭素数1〜30のアルコキシ基、置換もしくは無置換の炭素数1〜30のハロゲン化アルコキシ基、及び置換もしくは無置換の環形成炭素数6〜30のアリールオキシ基からなる群から選択される基であることが好ましい。
Z21及びZ22のうち少なくともいずれかは、フッ素原子で置換された炭素数1〜30のアルコキシ基、フッ素原子で置換された環形成炭素数6〜30のアリールオキシ基、及び炭素数1〜30のフルオロアルキル基で置換された環形成炭素数6〜30のアリールオキシ基からなる群から選択される基であることがより好ましい。
Z21及びZ22のうち少なくともいずれかは、フッ素原子で置換された炭素数1〜30のアルコキシ基であることがさらに好ましく、Z21及びZ22がフッ素原子で置換された炭素数1〜30のアルコキシ基であることがよりさらに好ましい。
At least one of Z 21 and Z 22 (preferably Z 21 and Z 22) is a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted halogenated alkyl group having 1 to 30 carbon atoms , Substituted or unsubstituted ring-forming aryl group having 6 to 30 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, and substituted or unsubstituted. It is preferably a group selected from the group consisting of an unsubstituted ring-forming aryloxy group having 6 to 30 carbon atoms.
At least one of Z 21 and Z 22 has an alkoxy group having 1 to 30 carbon atoms substituted with a fluorine atom, an aryloxy group having 6 to 30 carbon atoms substituted with a fluorine atom, and 1 to 1 carbon atoms. More preferably, it is a group selected from the group consisting of an aryloxy group having 6 to 30 ring-forming carbon atoms substituted with 30 fluoroalkyl groups.
It is more preferable that at least one of Z 21 and Z 22 is an alkoxy group having 1 to 30 carbon atoms substituted with a fluorine atom, and Z 21 and Z 22 have 1 to 30 carbon atoms substituted with a fluorine atom. It is even more preferable that it is an alkoxy group of.
Z21及びZ22が同じであることも好ましい。 It is also preferable that Z 21 and Z 22 are the same.
一方、前記Z21及び前記Z22のうち少なくともいずれかがフッ素原子であることも好ましく、前記Z21及び前記Z22がフッ素原子であることもより好ましい。 On the other hand, it is also preferably at least one is a fluorine atom in the Z 21 and the Z 22, it is also more preferred that the Z 21 and the Z 22 is a fluorine atom.
前記Z21及び前記Z22のうち少なくともいずれかは、下記一般式(1a)で表される基であることも好ましい。 It is also preferable that at least one of the Z 21 and the Z 22 is a group represented by the following general formula (1a).
前記一般式(1a)において、Aは、置換もしくは無置換の炭素数1〜6のアルキル基、置換もしくは無置換の炭素数1〜6のハロゲン化アルキル基、又は置換もしくは無置換の環形成炭素数6〜12のアリール基であり、L2は、置換もしくは無置換の炭素数1〜6のアルキレン基、又は置換もしくは無置換の環形成炭素数6〜12のアリーレン基であり、mは、0、1、2、3、4、5、6、又は7であり、mが2、3、4、5、6、又は7である場合、複数のL2は、互いに同一又は異なる。mは、0、1、又は2であることが好ましい。mが0の場合、Aは、O(酸素原子)に直接結合する。 In the general formula (1a), A is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkyl halide group having 1 to 6 carbon atoms, or a substituted or unsubstituted ring-forming carbon. It is an aryl group of number 6 to 12, L 2 is a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms, or a substituted or unsubstituted ring-forming aryl group having 6 to 12 carbon atoms, and m is a substituted or unsubstituted arylene group. 0,1,2,3,4,5,6, or 7, when m is 3, 4, 5, 6, or 7, a plurality of L 2 may be the same or different from each other. m is preferably 0, 1, or 2. When m is 0, A directly bonds to O (oxygen atom).
前記一般式(1)において、Z21及びZ22が前記一般式(1a)で表される基である場合、第一の化合物M1は、下記一般式(10)で表される化合物である。
第一の化合物M1は、下記一般式(10)で表される化合物であることも好ましい。
In the general formula (1), when Z 21 and Z 22 are the groups represented by the general formula (1a), the first compound M1 is a compound represented by the following general formula (10).
The first compound M1 is also preferably a compound represented by the following general formula (10).
前記一般式(10)において、X、XがYと結合する炭素原子であるときのY、R21〜R26は、それぞれ、前記一般式(1)におけるX、Y、R21〜R26と同義である。A21及びA22は、前記一般式(1a)におけるAと同義であり、互いに同一でも異なっていてもよい。L21及びL22は、前記一般式(1a)におけるL2と同義であり、互いに同一でも異なっていてもよい。m1及びm2は、それぞれ独立に、0、1、2、3、4、5、6、又は7であり、0、1、又は2であることが好ましい。m1が2、3、4、5、6、又は7である場合、複数のL21は、互いに同一又は異なり、m2が2、3、4、5、6、又は7である場合、複数のL22は、互いに同一又は異なる。m1が0の場合、A21は、O(酸素原子)に直接結合し、m2が0の場合、A22は、O(酸素原子)に直接結合する。 In the general formula (10), Y, R 21 to R 26 when X and X are carbon atoms bonded to Y are X, Y, R 21 to R 26 in the general formula (1), respectively. It is synonymous. A 21 and A 22 have the same meaning as A in the general formula (1a), and may be the same as or different from each other. L 21 and L 22 have the same meaning as L 2 in the general formula (1a), and may be the same as or different from each other. m1 and m2 are 0, 1, 2, 3, 4, 5, 6 or 7, respectively, and are preferably 0, 1, or 2. When m1 is 2, 3, 4, 5, 6, or 7, the plurality of L 21s are the same or different from each other, and when m2 is 2, 3, 4, 5, 6, or 7, the plurality of L 21s are the same or different. 22 are the same or different from each other. When m1 is 0, A 21 is directly bonded to O (oxygen atom), and when m2 is 0, A 22 is directly bonded to O (oxygen atom).
前記一般式(1a)におけるA及びL2のうち少なくともいずれかが、ハロゲン原子で置換されていることが好ましく、フッ素原子で置換されていることがより好ましい。 At least one of A and L 2 in the general formula (1a) is preferably substituted with a halogen atom, and more preferably substituted with a fluorine atom.
前記一般式(1a)におけるAは、炭素数1〜6のパーフルオロアルキル基、又は環形成炭素数6〜12のパーフルオロアリール基であることがより好ましく、炭素数1〜6のパーフルオロアルキル基であることがさらに好ましい。 A in the general formula (1a) is more preferably a perfluoroalkyl group having 1 to 6 carbon atoms or a perfluoroaryl group having 6 to 12 carbon atoms forming a ring, and a perfluoroalkyl group having 1 to 6 carbon atoms. It is more preferably a group.
前記一般式(1a)におけるL2は、炭素数1〜6のパーフルオロアルキレン基、又は環形成炭素数6〜12のパーフルオロアリーレン基であることがより好ましく、炭素数1〜6のパーフルオロアルキレン基であることがさらに好ましい。 L 2 in the general formula (1a) is more preferably a perfluoroalkylene group having 1 to 6 carbon atoms or a perfluoroarylene group having 6 to 12 ring-forming carbon atoms, and more preferably a perfluoroarylene group having 1 to 6 carbon atoms. It is more preferably an alkylene group.
すなわち、前記第一の化合物M1は、下記一般式(10a)で表される化合物であることも好ましい。 That is, the first compound M1 is preferably a compound represented by the following general formula (10a).
前記一般式(10a)において、
Xは、前記一般式(1)におけるXと同義であり、XがYと結合する炭素原子であるときのYは、前記一般式(1)におけるYと同義であり、
R21〜R26は、それぞれ独立に、前記一般式(1)におけるR21〜R26とそれぞれ同義であり、
m3は、0以上4以下であり、
m4は、0以上4以下であり、
m3及びm4は、互いに同一であるか又は異なる。
In the general formula (10a),
X is synonymous with X in the general formula (1), and Y when X is a carbon atom bonded to Y is synonymous with Y in the general formula (1).
R 21 to R 26 are independently synonymous with R 21 to R 26 in the general formula (1).
m3 is 0 or more and 4 or less,
m4 is 0 or more and 4 or less,
m3 and m4 are the same as or different from each other.
前記一般式(1)、(11)、(10)、及び(10a)において、
Xは、Yと結合する炭素原子であり、
Yは、水素原子又は置換基であり、
置換基としてのYは、置換もしくは無置換の炭素数1〜30のアルキル基、置換もしくは無置換の炭素数1〜30のハロゲン化アルキル基及び置換もしくは無置換の環形成炭素数6〜30のアリール基からなる群から選択される置換基であることが好ましく、置換もしくは無置換の環形成炭素数6〜30のアリール基であることがより好ましい。
In the general formulas (1), (11), (10), and (10a),
X is a carbon atom that bonds with Y,
Y is a hydrogen atom or a substituent,
Y as a substituent is an alkyl group having 1 to 30 carbon atoms substituted or unsubstituted, an alkyl halide group having 1 to 30 carbon atoms substituted or unsubstituted, and a ring-forming alkyl group having 6 to 30 substituted or unsubstituted carbon atoms. It is preferably a substituent selected from the group consisting of aryl groups, and more preferably a substituted or unsubstituted aryl group having 6 to 30 ring-forming carbon atoms.
前記一般式(1)、(11)、(10)、及び(10a)において、
より好ましい態様としては、
Xは、Yと結合する炭素原子であり、
Yは、水素原子又は置換基であり、
置換基としてのYは、置換もしくは無置換の環形成炭素数6〜30のアリール基であり、
置換基としてのYが置換基を有する環形成炭素数6〜30のアリール基である場合の当該置換基は、
置換もしくは無置換の炭素数1〜30のアルキル基、
置換もしくは無置換の炭素数1〜30のハロゲン化アルキル基、
置換もしくは無置換の炭素数1〜30のアルコキシ基、
置換もしくは無置換の炭素数1〜30のハロゲン化アルコキシ基、又は
炭素数1〜30のアルキル基で置換された環形成炭素数6〜30のアリール基である態様が挙げられる。
In the general formulas (1), (11), (10), and (10a),
In a more preferred embodiment
X is a carbon atom that bonds with Y,
Y is a hydrogen atom or a substituent,
Y as a substituent is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
When Y as a substituent is an aryl group having a ring-forming carbon number of 6 to 30 having a substituent, the substituent is
Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms,
Substituent or unsubstituted alkyl halide groups having 1 to 30 carbon atoms,
Substituent or unsubstituted alkoxy groups having 1 to 30 carbon atoms,
Examples thereof include a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms substituted with an alkyl group having 1 to 30 carbon atoms.
第一の化合物M1は、前記Z21と前記Z22とが互いに結合して環を形成してもよいが、前記Z21と前記Z22とが互いに結合して環を形成しないことが好ましい。 In the first compound M1, the Z 21 and the Z 22 may be bonded to each other to form a ring, but it is preferable that the Z 21 and the Z 22 are not bonded to each other to form a ring.
前記一般式(1)、(10)、及び(10a)において、R21、R23、R24、及びR26のうち少なくともいずれかが置換もしくは無置換の炭素数1〜30のアルキル基、又は置換もしくは無置換の炭素数1〜30のハロゲン化アルキル基であることが好ましい。
前記一般式(1)、(10)、及び(10a)において、R21、R23、R24、及びR26が置換もしくは無置換の炭素数1〜30のアルキル基、又は置換もしくは無置換の炭素数1〜30のハロゲン化アルキル基であることがより好ましい。この場合、R22及びR25が水素原子であることが好ましい。
In the general formulas (1), (10), and (10a), at least one of R 21 , R 23 , R 24 , and R 26 is a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, or It is preferably a substituted or unsubstituted alkyl halide group having 1 to 30 carbon atoms.
In the general formulas (1), (10), and (10a), R 21 , R 23 , R 24 , and R 26 are substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, or substituted or unsubstituted. It is more preferably an alkyl halide group having 1 to 30 carbon atoms. In this case, it is preferable that R 22 and R 25 are hydrogen atoms.
前記一般式(1)、(10)、及び(10a)において、R21、R23、R24、及びR26のうち少なくともいずれかが置換もしくは無置換の環形成炭素数6〜30のアリール基であることが好ましい。
前記一般式(1)、(10)、及び(10a)において、R21、R23、R24、及びR26が置換もしくは無置換の環形成炭素数6〜30のアリール基であることがより好ましい。この場合、R22及びR25が水素原子であることが好ましい。
In the general formulas (1), (10), and (10a), at least one of R 21 , R 23 , R 24 , and R 26 is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms. Is preferable.
In the general formulas (1), (10), and (10a), R 21 , R 23 , R 24 , and R 26 are substituted or unsubstituted aryl groups having 6 to 30 carbon atoms. preferable. In this case, it is preferable that R 22 and R 25 are hydrogen atoms.
前記一般式(1)、(10)、及び(10a)において、
より好ましい態様としては、
R21、R23、R24、及びR26は、それぞれ独立に、
置換もしくは無置換の炭素数1〜30(好ましくは炭素数1〜6)のアルキル基、
置換もしくは無置換の炭素数1〜30(好ましくは炭素数1〜6)のハロゲン化アルキル基、又は
炭素数1〜30のアルキル基で置換された環形成炭素数6〜30(好ましくは環形成炭素数6〜12)のアリール基であり、
R22及びR25が水素原子である態様が挙げられる。
In the general formulas (1), (10), and (10a),
In a more preferred embodiment
R 21 , R 23 , R 24 , and R 26 are independent of each other.
Substituentally substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms (preferably 1 to 6 carbon atoms),
A ring-forming alkyl group having 1 to 30 carbon atoms (preferably 1 to 6 carbon atoms) substituted or unsubstituted, or a ring-forming alkyl group having 1 to 30 carbon atoms substituted with 6 to 30 carbon atoms (preferably ring forming). It is an aryl group having 6 to 12 carbon atoms).
An embodiment in which R 22 and R 25 are hydrogen atoms can be mentioned.
前記一般式(11)において、R21、R23、及びR24のうち少なくともいずれかが置換もしくは無置換の炭素数1〜30のアルキル基、又は置換もしくは無置換の炭素数1〜30のハロゲン化アルキル基であることが好ましい。 In the general formula (11), at least one of R 21 , R 23 , and R 24 is a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, or a substituted or unsubstituted halogen having 1 to 30 carbon atoms. It is preferably an alkylated group.
前記一般式(11)において、R21、R23、及びR24が置換もしくは無置換の炭素数1〜30のアルキル基、又は置換もしくは無置換の炭素数1〜30のハロゲン化アルキル基であることがより好ましい。この場合、R22は水素原子であることが好ましい。 In the general formula (11), R 21 , R 23 , and R 24 are substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, or substituted or unsubstituted alkyl halide groups having 1 to 30 carbon atoms. Is more preferable. In this case, R 22 is preferably a hydrogen atom.
前記一般式(11)において、R21、R23、及びR24のうち少なくともいずれかが置換もしくは無置換の環形成炭素数6〜30のアリール基であることが好ましい。 In the general formula (11), it is preferable that at least one of R 21 , R 23 , and R 24 is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
前記一般式(11)において、R21、R23、及びR24が置換もしくは無置換の環形成炭素数6〜30のアリール基であることがより好ましい。この場合、R22は水素原子であることが好ましい。 In the general formula (11), it is more preferable that R 21 , R 23 , and R 24 are substituted or unsubstituted aryl groups having 6 to 30 carbon atoms. In this case, R 22 is preferably a hydrogen atom.
前記一般式(11)において、
より好ましい態様としては、
R21、R23、及びR24は、それぞれ独立に、
置換もしくは無置換の炭素数1〜30(好ましくは炭素数1〜6)のアルキル基、
置換もしくは無置換の炭素数1〜30(好ましくは炭素数1〜6)のハロゲン化アルキル基、又は
炭素数1〜30のアルキル基で置換された環形成炭素数6〜30(好ましくは環形成炭素数6〜12)のアリール基であり、
R22が水素原子である態様が挙げられる。
In the general formula (11),
In a more preferred embodiment
R 21 , R 23 , and R 24 are independent of each other.
Substituentally substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms (preferably 1 to 6 carbon atoms),
A ring-forming alkyl group having 1 to 30 carbon atoms (preferably 1 to 6 carbon atoms) substituted or unsubstituted, or a ring-forming alkyl group having 1 to 30 carbon atoms substituted with 6 to 30 carbon atoms (preferably ring forming). It is an aryl group having 6 to 12 carbon atoms).
An embodiment in which R 22 is a hydrogen atom can be mentioned.
第一の化合物M1において、フッ素原子で置換されたアルコキシ基としては、例えば、2,2,2−トリフロオロエトキシ基、2,2−ジフロオロエトキシ基、2,2,3,3,3−ペンタフルオロ−1−プロポキシ基、2,2,3,3−テトラフルオロ−1−プロポキシ基、1,1,1,3,3,3−ヘキサフルオロ−2−プロポキシ基、2,2,3,3,4,4,4−ヘプタフルオロ−1−ブチルオキシ基、2,2,3,3,4,4−ヘキサフルオロ−1−ブチルオキシ基、ノナフルオロターシャリーブチルオキシ基、2,2,3,3,4,4,5,5,5−ノナフルオロペンタノキシ基、2,2,3,3,4,4,5,5,6,6,6−ウンデカフルオロヘキサノキシ基、2,3−ビス(トリフルオロメチル)−2,3−ブタンジオキシ基、1,1,2,2−テトラ(トリフルオロメチル)エチレングリコキシ基、4,4,5,5,6,6,6−ヘプタフルオロヘキサン−1,2−ジオキシ基、及び4,4,5,5,6,6,7,7,8,8,9,9,9−トリデカフルオロノナン−1,2−ジオキシ基等が挙げられる。 In the first compound M1, examples of the alkoxy group substituted with a fluorine atom include 2,2,2-trifluoroethoxy group, 2,2-difluorooloethoxy group, 2,2,3,3. 3-Pentafluoro-1-propoxy group, 2,2,3,3-tetrafluoro-1-propoxy group, 1,1,1,3,3,3-hexafluoro-2-propoxy group, 2,2 3,3,4,5,4-Heptafluoro-1-butyloxy group, 2,2,3,3,4,4-hexafluoro-1-butyloxy group, nonafluoroterriary butyloxy group, 2,2 3,3,4,4,5,5,5-nonafluoropentanoxy group, 2,2,3,3,4,5,5,6,6,6-undecafluorohexanoxy group , 2,3-bis (trifluoromethyl) -2,3-butandioxy group, 1,1,2,2-tetra (trifluoromethyl) ethyleneglycoxy group, 4,4,5,5,6,6 6-Heptafluorohexane-1,2-dioxy group, and 4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononane-1,2-dioxy The group etc. can be mentioned.
第一の化合物M1において、フッ素原子で置換されたアリールオキシ基、又はフルオロアルキル基で置換されたアリールオキシ基としては、例えば、ペンタフルオロフェノキシ基、3,4,5−トリフルオロフェノキシ基、4−トリフルオロメチルフェノキシ基、3,5−ビストリフルオロメチルフェノキシ基、3−フルオロ−4−トリフルオロメチルフェノキシ基、2,3,5,6−テトラフルオロ−4−トリフルオロメチルフェノキシ基、4−フルオロカテコラート基、4−トリフルオロメチルカテコラート基、及び3,5−ビストリフルオロメチルカテコラート基等が挙げられる。 In the first compound M1, examples of the aryloxy group substituted with a fluorine atom or the aryloxy group substituted with a fluoroalkyl group include a pentafluorophenoxy group, a 3,4,5-trifluorophenoxy group, and 4 -Trifluoromethylphenoxy group, 3,5-bistrifluoromethylphenoxy group, 3-fluoro-4-trifluoromethylphenoxy group, 2,3,5,6-tetrafluoro-4-trifluoromethylphenoxy group, 4- Examples thereof include a fluorocatecholate group, a 4-trifluoromethylcatecholate group, a 3,5-bistrifluoromethylcatecholate group and the like.
第一の化合物M1が蛍光発光性の化合物である場合、第一の化合物M1は、主ピーク波長が、400nm以上700nm以下の発光を示すことが好ましい。
本明細書において、主ピーク波長とは、測定対象化合物が10−6モル/リットル以上10−5モル/リットル以下の濃度で溶解しているトルエン溶液について、測定した蛍光スペクトルにおける発光強度が最大となる蛍光スペクトルのピーク波長をいう。測定装置は、分光蛍光光度計(日立ハイテクサイエンス社製、F−7000)を用いる。
When the first compound M1 is a fluorescent compound, it is preferable that the first compound M1 exhibits light emission having a main peak wavelength of 400 nm or more and 700 nm or less.
In the present specification, the main peak wavelength means that the emission intensity in the measured fluorescence spectrum is the maximum for a toluene solution in which the compound to be measured is dissolved at a concentration of 10-6 mol / liter or more and 10-5 mol / liter or less. Refers to the peak wavelength of the fluorescence spectrum. A spectrofluorometer (F-7000 manufactured by Hitachi High-Tech Science Corporation) is used as the measuring device.
第一の化合物M1は、赤色の発光又は緑色の発光を示すことが好ましい。
本明細書において、赤色の発光とは、蛍光スペクトルの主ピーク波長が600nm以上660nm以下の範囲内である発光をいう。
第一の化合物M1が赤色の蛍光発光性の化合物である場合、第一の化合物M1の主ピーク波長は、好ましくは600nm以上660nm以下、より好ましくは600nm以上640nm以下、さらに好ましくは610nm以上630nm以下である。
本明細書において、緑色の発光とは、蛍光スペクトルの主ピーク波長が500nm以上560nm以下の範囲内である発光をいう。
第一の化合物M1が緑色の蛍光発光性の化合物である場合、第一の化合物M1の主ピーク波長は、好ましくは500nm以上560nm以下、より好ましくは500nm以上540nm以下、さらに好ましくは510nm以上530nm以下である。
本明細書において、青色の発光とは、蛍光スペクトルの主ピーク波長が430nm以上480nm以下の範囲内である発光をいう。
第一の化合物M1が青色の蛍光発光性の化合物である場合、第一の化合物M1の主ピーク波長は、好ましくは430nm以上480nm以下、より好ましくは445nm以上480nm以下である。
The first compound M1 preferably emits red or green light.
In the present specification, the red emission means the emission in which the main peak wavelength of the fluorescence spectrum is in the range of 600 nm or more and 660 nm or less.
When the first compound M1 is a red fluorescent compound, the main peak wavelength of the first compound M1 is preferably 600 nm or more and 660 nm or less, more preferably 600 nm or more and 640 nm or less, and further preferably 610 nm or more and 630 nm or less. Is.
In the present specification, the green emission means the emission in which the main peak wavelength of the fluorescence spectrum is in the range of 500 nm or more and 560 nm or less.
When the first compound M1 is a green fluorescent compound, the main peak wavelength of the first compound M1 is preferably 500 nm or more and 560 nm or less, more preferably 500 nm or more and 540 nm or less, and further preferably 510 nm or more and 530 nm or less. Is.
In the present specification, the blue emission means the emission in which the main peak wavelength of the fluorescence spectrum is in the range of 430 nm or more and 480 nm or less.
When the first compound M1 is a blue fluorescent compound, the main peak wavelength of the first compound M1 is preferably 430 nm or more and 480 nm or less, more preferably 445 nm or more and 480 nm or less.
・第一の化合物M1の製造方法
第一の化合物M1は、公知の方法により製造することができる。
-Method for producing the first compound M1 The first compound M1 can be produced by a known method.
本実施形態に係る第一の化合物M1の具体例を以下に示す。なお、本発明における第一の化合物M1は、これらの具体例に限定されない。
なお、ピロメテン骨格中におけるホウ素原子と窒素原子との配位結合は、実線、破線、矢印、もしくは省略するなど、種々の表記方法がある。本明細書においては、実線で表すか、破線で表すか、又は記載を省略する。
Specific examples of the first compound M1 according to this embodiment are shown below. The first compound M1 in the present invention is not limited to these specific examples.
The coordination bond between the boron atom and the nitrogen atom in the pyrromethene skeleton has various notations such as a solid line, a broken line, an arrow, or an omission. In the present specification, it is represented by a solid line, a broken line, or the description thereof is omitted.
<第二の化合物>
本実施形態において、第二の化合物M2は、下記一般式(20A)又は一般式(20B)で表される。
<Second compound>
In the present embodiment, the second compound M2 is represented by the following general formula (20A) or general formula (20B).
(前記一般式(20A)及び一般式(20B)において、
D21及びD22の一方は下記一般式(21)で表され、D21及びD22の他方は下記一般式(22)で表される。)
(In the general formula (20A) and the general formula (20B),
One of D 21 and D 22 is represented by the following general formula (21), and the other of D 21 and D 22 is represented by the following general formula (22). )
(前記一般式(21)において、
R1〜R8は、それぞれ独立に、水素原子もしくは置換基であり、
置換基としてのR1〜R8は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6〜30のアリール基、
置換もしくは無置換の環形成原子数5〜30の複素環基、
置換もしくは無置換の炭素数1〜30のアルキル基、
置換もしくは無置換の炭素数3〜30のアルキルシリル基、
置換もしくは無置換の環形成炭素数6〜60のアリールシリル基、
置換もしくは無置換の炭素数1〜30のアルコキシ基、
置換もしくは無置換の環形成炭素数6〜30のアリールオキシ基、
置換もしくは無置換の炭素数2〜30のアルキルアミノ基、
置換もしくは無置換の環形成炭素数6〜60のアリールアミノ基、
置換もしくは無置換の炭素数1〜30のアルキルチオ基、又は
置換もしくは無置換の環形成炭素数6〜30のアリールチオ基である。
*は、前記一般式(20A)又は一般式(20B)中におけるベンゼン環の炭素原子との結合部位を表す。)
(In the general formula (21),
R 1 to R 8 are independent hydrogen atoms or substituents, respectively.
R 1 to R 8 as substituents are independent of each other.
Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms,
Substituted or unsubstituted heterocyclic groups having 5 to 30 ring-forming atoms,
Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms,
Substituent or unsubstituted alkylsilyl group having 3 to 30 carbon atoms,
Substituent or unsubstituted ring-forming arylsilyl group having 6 to 60 carbon atoms,
Substituent or unsubstituted alkoxy groups having 1 to 30 carbon atoms,
Substituent or unsubstituted ring-forming aryloxy groups having 6 to 30 carbon atoms,
Substituent or unsubstituted alkylamino groups having 2 to 30 carbon atoms,
Substituent or unsubstituted ring-forming arylamino group having 6 to 60 carbon atoms,
It is a substituted or unsubstituted alkylthio group having 1 to 30 carbon atoms, or a substituted or unsubstituted ring-forming alkylthio group having 6 to 30 carbon atoms.
* Represents the binding site of the benzene ring with the carbon atom in the general formula (20A) or the general formula (20B). )
(前記一般式(22)において、
X1は、硫黄原子又は酸素原子であり、
R19及びR20は、それぞれ独立に、水素原子もしくは置換基であり、
R31〜R38は、それぞれ独立に、水素原子もしくは置換基であり、
置換基としてのR19、R20、R31〜R38は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6〜30のアリール基、
置換もしくは無置換の環形成原子数5〜30の複素環基、
置換もしくは無置換の炭素数1〜30のアルキル基、
置換もしくは無置換の炭素数3〜30のアルキルシリル基、
置換もしくは無置換の環形成炭素数6〜60のアリールシリル基、
置換もしくは無置換の炭素数1〜30のアルコキシ基、
置換もしくは無置換の環形成炭素数6〜30のアリールオキシ基、
置換もしくは無置換の炭素数2〜30のアルキルアミノ基、
置換もしくは無置換の環形成炭素数6〜60のアリールアミノ基、
置換もしくは無置換の炭素数1〜30のアルキルチオ基、又は
置換もしくは無置換の環形成炭素数6〜30のアリールチオ基であり、
*は、前記一般式(20A)又は一般式(20B)中におけるベンゼン環の炭素原子との結合部位を表す。)
(In the general formula (22),
X 1 is a sulfur atom or an oxygen atom,
R 19 and R 20 are independent hydrogen atoms or substituents, respectively.
R 31 to R 38 are independent hydrogen atoms or substituents, respectively.
R 19 , R 20 , and R 31 to R 38 as substituents are independent of each other.
Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms,
Substituted or unsubstituted heterocyclic groups having 5 to 30 ring-forming atoms,
Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms,
Substituent or unsubstituted alkylsilyl group having 3 to 30 carbon atoms,
Substituent or unsubstituted ring-forming arylsilyl group having 6 to 60 carbon atoms,
Substituent or unsubstituted alkoxy groups having 1 to 30 carbon atoms,
Substituent or unsubstituted ring-forming aryloxy groups having 6 to 30 carbon atoms,
Substituent or unsubstituted alkylamino groups having 2 to 30 carbon atoms,
Substituent or unsubstituted ring-forming arylamino group having 6 to 60 carbon atoms,
A substituted or unsubstituted alkylthio group having 1 to 30 carbon atoms, or a substituted or unsubstituted ring-forming alkylthio group having 6 to 30 carbon atoms.
* Represents the binding site of the benzene ring with the carbon atom in the general formula (20A) or the general formula (20B). )
R1及びR2の組、R2及びR3の組、R3及びR4の組、R5及びR6の組、R6及びR7の組、並びにR7及びR8の組は、いずれも互いに結合しない。 The R 1 and R 2 pairs, the R 2 and R 3 pairs, the R 3 and R 4 pairs, the R 5 and R 6 pairs, the R 6 and R 7 pairs, and the R 7 and R 8 pairs are Neither bind to each other.
R19及びR20の組、R31及びR32の組、R32及びR33の組、R33及びR34の組、R35及びR36の組、R36及びR37の組、並びにR37及びR38の組は、いずれも互いに結合しない。 R 19 and R 20 pairs, R 31 and R 32 pairs, R 32 and R 33 pairs, R 33 and R 34 pairs, R 35 and R 36 pairs, R 36 and R 37 pairs, and R Neither of the 37 and R 38 pairs bind to each other.
第二の化合物M2は、下記一般式(23)で表されることも好ましい。 The second compound M2 is also preferably represented by the following general formula (23).
(前記一般式(23)において、R1〜R8、R19、R20、R31〜R38及びX1は、それぞれ、前記一般式(21)及び一般式(22)におけるR1〜R8、R19、R20、R31〜R38及びX1と同義である。) (In the general formula (23), R 1 to R 8 , R 19 , R 20 , R 31 to R 38, and X 1 are R 1 to R in the general formula (21) and the general formula (22), respectively. 8 , R 19 , R 20 , R 31 to R 38 and X 1 are synonymous with)
第二の化合物M2は、下記一般式(24)で表されることも好ましい。 The second compound M2 is also preferably represented by the following general formula (24).
(前記一般式(24)において、R1〜R8、R19、R20、R31〜R38及びX1は、それぞれ、前記一般式(21)及び一般式(22)におけるR1〜R8、R19、R20、R31〜R38及びX1と同義である。) (In the general formula (24), R 1 to R 8 , R 19 , R 20 , R 31 to R 38, and X 1 are R 1 to R in the general formula (21) and the general formula (22), respectively. 8 , R 19 , R 20 , R 31 to R 38 and X 1 are synonymous with)
第二の化合物M2において、置換基としてのR1〜R8は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6〜30のアリール基、
置換もしくは無置換の環形成原子数5〜30の複素環基、
置換もしくは無置換の炭素数1〜30のアルキル基、又は
置換もしくは無置換の環形成炭素数6〜60のアリールアミノ基であることが好ましい。
In the second compound M2, R 1 to R 8 as substituents are independently
Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms,
Substituted or unsubstituted heterocyclic groups having 5 to 30 ring-forming atoms,
It is preferably an alkyl group having 1 to 30 carbon atoms substituted or unsubstituted, or an arylamino group having 6 to 60 carbon atoms substituted or unsubstituted.
第二の化合物M2において、置換基としてのR1〜R8は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6〜12のアリール基、
置換もしくは無置換の環形成原子数5〜14の複素環基、
置換もしくは無置換の炭素数1〜6のアルキル基、又は
置換もしくは無置換の環形成炭素数6〜24のアリールアミノ基であることがより好ましい。
In the second compound M2, R 1 to R 8 as substituents are independently
Substituent or unsubstituted ring-forming aryl groups having 6 to 12 carbon atoms,
Substituted or unsubstituted heterocyclic groups having 5 to 14 ring-forming atoms,
More preferably, it is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted ring-forming alkyl group having 6 to 24 carbon atoms.
第二の化合物M2において、置換基としてのR31〜R38は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6〜30のアリール基、
置換もしくは無置換の環形成原子数5〜30の複素環基、
置換もしくは無置換の炭素数1〜30のアルキル基、又は
置換もしくは無置換の環形成炭素数6〜60のアリールアミノ基であることが好ましい。
In the second compound M2, R 31 to R 38 as substituents are independently, respectively.
Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms,
Substituted or unsubstituted heterocyclic groups having 5 to 30 ring-forming atoms,
It is preferably an alkyl group having 1 to 30 carbon atoms substituted or unsubstituted, or an arylamino group having 6 to 60 carbon atoms substituted or unsubstituted.
第二の化合物M2において、置換基としてのR31〜R38は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6〜12のアリール基、
置換もしくは無置換の環形成原子数5〜14の複素環基、
置換もしくは無置換の炭素数1〜6のアルキル基、又は
置換もしくは無置換の環形成炭素数6〜24のアリールアミノ基であることがより好ましい。
In the second compound M2, R 31 to R 38 as substituents are independently, respectively.
Substituent or unsubstituted ring-forming aryl groups having 6 to 12 carbon atoms,
Substituted or unsubstituted heterocyclic groups having 5 to 14 ring-forming atoms,
More preferably, it is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted ring-forming alkyl group having 6 to 24 carbon atoms.
第二の化合物M2において、R19、R20及びR31〜R38は、水素原子であることも好ましい。 In the second compound M2, R 19 , R 20 and R 31 to R 38 are also preferably hydrogen atoms.
第二の化合物M2において、R1〜R8は、水素原子であることも好ましい。 In the second compound M2, R 1 to R 8 are also preferably hydrogen atoms.
第二の化合物M2において、R1〜R8、R19、R20及びR31〜R38は、水素原子であることも好ましい。 In the second compound M2, R 1 to R 8 , R 19 , R 20 and R 31 to R 38 are also preferably hydrogen atoms.
第二の化合物M2において、X1は、硫黄原子であることが好ましい。 In the second compound M2, X 1 is preferably a sulfur atom.
第二の化合物M2は、遅延蛍光性の化合物であることが好ましい。 The second compound M2 is preferably a delayed fluorescent compound.
・遅延蛍光性
遅延蛍光については、「有機半導体のデバイス物性」(安達千波矢編、講談社発行)の261〜268ページで解説されている。その文献の中で、蛍光発光材料の励起一重項状態と励起三重項状態のエネルギー差ΔE13を小さくすることができれば、通常は遷移確率が低い励起三重項状態から励起一重項状態への逆エネルギー移動が高効率で生じ、熱活性化遅延蛍光(ThermallyActivated delayed Fluore
scence, TADF)が発現すると説明されている。さらに、当該文献中の図10.38で、遅延蛍光の発生メカニズムが説明されている。本実施形態における第二の化合物は、このようなメカニズムで発生する熱活性化遅延蛍光を示す化合物であることが好ましい。
-Delayed fluorescence Delayed fluorescence is explained on pages 261 to 268 of "Device Physical Properties of Organic Semiconductors" (edited by Chihaya Adachi, published by Kodansha). In that document, if the energy difference ΔE 13 between the excited singlet state and the excited triplet state of the fluorescent light emitting material can be reduced, the reverse energy from the excited triplet state to the excited singlet state, which usually has a low transition probability, can be reduced. Transfer occurs with high efficiency, and thermal activated delayed fluorescence (Thermally Activated Fluore)
It is explained that (sense, TADF) is expressed. Further, FIG. 10.38 in the document describes the mechanism of delayed fluorescence generation. The second compound in the present embodiment is preferably a compound exhibiting thermally activated delayed fluorescence generated by such a mechanism.
一般に、遅延蛍光の発光は過渡PL(Photo Luminescence)測定により確認できる。 In general, the emission of delayed fluorescence can be confirmed by transient PL (Photoluminescence) measurement.
過渡PL測定から得た減衰曲線に基づいて遅延蛍光の挙動を解析することもできる。過渡PL測定とは、試料にパルスレーザーを照射して励起させ、照射を止めた後のPL発光の減衰挙動(過渡特性)を測定する手法である。TADF材料におけるPL発光は、最初のPL励起で生成する一重項励起子からの発光成分と、三重項励起子を経由して生成する一重項励起子からの発光成分に分類される。最初のPL励起で生成する一重項励起子の寿命は、ナノ秒オーダーであり、非常に短い。そのため、当該一重項励起子からの発光は、パルスレーザーを照射後、速やかに減衰する。
一方、遅延蛍光は、寿命の長い三重項励起子を経由して生成する一重項励起子からの発光のため、ゆるやかに減衰する。このように最初のPL励起で生成する一重項励起子からの発光と、三重項励起子を経由して生成する一重項励起子からの発光とでは、時間的に大きな差がある。そのため、遅延蛍光由来の発光強度を求めることができる。
It is also possible to analyze the behavior of delayed fluorescence based on the attenuation curve obtained from the transient PL measurement. Transient PL measurement is a method of irradiating a sample with a pulse laser to excite it and measuring the attenuation behavior (transient characteristics) of PL light emission after the irradiation is stopped. PL light emission in TADF materials is classified into a light emitting component from a singlet exciton generated by the first PL excitation and a light emitting component from a singlet exciton generated via a triplet exciton. The lifetime of singlet excitons generated by the first PL excitation is on the nanosecond order and is very short. Therefore, the light emission from the singlet exciton is rapidly attenuated after irradiation with the pulse laser.
On the other hand, delayed fluorescence is slowly attenuated due to light emission from singlet excitons generated via triplet excitons having a long lifetime. As described above, there is a large time difference between the light emission from the singlet exciton generated by the first PL excitation and the light emission from the singlet exciton generated via the triplet exciton. Therefore, the emission intensity derived from delayed fluorescence can be obtained.
図2には、過渡PLを測定するための例示的装置の概略図が示されている。図2を用いた過渡PLの測定方法及び遅延蛍光の挙動解析の一例を説明する。 FIG. 2 shows a schematic diagram of an exemplary device for measuring transient PL. An example of a transient PL measurement method and delayed fluorescence behavior analysis using FIG. 2 will be described.
図2の過渡PL測定装置100は、所定波長の光を照射可能なパルスレーザー部101と、測定試料を収容する試料室102と、測定試料から放射された光を分光する分光器103と、2次元像を結像するためのストリークカメラ104と、2次元像を取り込んで解析するパーソナルコンピュータ105とを備える。なお、過渡PLの測定は、図2に記載の装置に限定されない。 The transient PL measuring device 100 of FIG. 2 includes a pulse laser unit 101 capable of irradiating light having a predetermined wavelength, a sample chamber 102 accommodating a measurement sample, a spectroscope 103 that disperses light emitted from the measurement sample, and 2 It includes a streak camera 104 for forming a dimensional image and a personal computer 105 for capturing and analyzing a two-dimensional image. The measurement of transient PL is not limited to the apparatus shown in FIG.
試料室102に収容される試料は、マトリックス材料に対し、ドーピング材料が12質量%の濃度でドープされた薄膜を石英基板に成膜することで得られる。 The sample accommodated in the sample chamber 102 is obtained by forming a thin film on a quartz substrate in which a doping material is doped at a concentration of 12% by mass with respect to the matrix material.
試料室102に収容された薄膜試料に対し、パルスレーザー部101からパルスレーザーを照射してドーピング材料を励起させる。励起光の照射方向に対して90度の方向へ発光を取り出し、取り出した光を分光器103で分光し、ストリークカメラ104内で2次元像を結像する。その結果、縦軸が時間に対応し、横軸が波長に対応し、輝点が発光強度に対応する2次元画像を得ることができる。この2次元画像を所定の時間軸で切り出すと、縦軸が発光強度であり、横軸が波長である発光スペクトルを得ることができる。また、当該2次元画像を波長軸で切り出すと、縦軸が発光強度の対数であり、横軸が時間である減衰曲線(過渡PL)を得ることができる。 The thin film sample housed in the sample chamber 102 is irradiated with a pulse laser from the pulse laser unit 101 to excite the doping material. Light is emitted in a direction of 90 degrees with respect to the irradiation direction of the excitation light, the extracted light is separated by the spectroscope 103, and a two-dimensional image is formed in the streak camera 104. As a result, it is possible to obtain a two-dimensional image in which the vertical axis corresponds to time, the horizontal axis corresponds to wavelength, and the bright spot corresponds to emission intensity. When this two-dimensional image is cut out on a predetermined time axis, it is possible to obtain an emission spectrum in which the vertical axis is the emission intensity and the horizontal axis is the wavelength. Further, when the two-dimensional image is cut out on the wavelength axis, an attenuation curve (transient PL) in which the vertical axis is the logarithm of the emission intensity and the horizontal axis is the time can be obtained.
例えば、マトリックス材料として、下記参考化合物H1を用い、ドーピング材料として下記参考化合物D1を用いて上述のようにして薄膜試料Aを作製し、過渡PL測定を行った。 For example, the following reference compound H1 was used as the matrix material, and the following reference compound D1 was used as the doping material to prepare a thin film sample A as described above, and transient PL measurement was performed.
ここでは、前述の薄膜試料A及び薄膜試料Bを用いて減衰曲線を解析した。薄膜試料Bは、マトリックス材料として下記参考化合物H2を用い、ドーピング材料として前記参考化合物D1を用いて、上述のようにして薄膜試料を作製した。 Here, the attenuation curves were analyzed using the above-mentioned thin film sample A and thin film sample B. For the thin film sample B, the following reference compound H2 was used as the matrix material, and the reference compound D1 was used as the doping material to prepare a thin film sample as described above.
図3には、薄膜試料A及び薄膜試料Bについて測定した過渡PLから得た減衰曲線が示されている。 FIG. 3 shows the attenuation curves obtained from the transient PLs measured for the thin film sample A and the thin film sample B.
上記したように過渡PL測定によって、縦軸を発光強度とし、横軸を時間とする発光減衰曲線を得ることができる。この発光減衰曲線に基づいて、光励起により生成した一重項励起状態から発光する蛍光と、三重項励起状態を経由し、逆エネルギー移動により生成する一重項励起状態から発光する遅延蛍光との、蛍光強度比を見積もることができる。遅延蛍光性の材料では、素早く減衰する蛍光の強度に対し、緩やかに減衰する遅延蛍光の強度の割合が、ある程度大きい。 By transient PL measurement as described above, it is possible to obtain an emission attenuation curve in which the vertical axis is the emission intensity and the horizontal axis is the time. Based on this emission attenuation curve, the fluorescence intensity of fluorescence emitted from the singlet excited state generated by photoexcitation and delayed fluorescence emitted from the singlet excited state generated by reverse energy transfer via the triplet excited state. The ratio can be estimated. In the delayed fluorescence material, the ratio of the intensity of the slowly decaying fluorescence to the intensity of the rapidly decaying fluorescence is large to some extent.
具体的には、遅延蛍光性の材料からの発光としては、Prompt発光(即時発光)と、Delay発光(遅延発光)とが存在する。Prompt発光(即時発光)とは、当該遅延蛍光性の材料が吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察される発光である。Delay発光(遅延発光)とは、当該パルス光による励起後、即座には観察されず、その後観察される発光である。 Specifically, as the light emission from the delayed fluorescent material, there are Prompt light emission (immediate light emission) and Delay light emission (delayed light emission). Prompt emission (immediate emission) is emission that is immediately observed from the excited state after being excited by pulsed light (light emitted from a pulse laser) having a wavelength absorbed by the delayed fluorescent material. Delay light emission (delayed light emission) is light emission that is not immediately observed after being excited by the pulsed light but is observed thereafter.
Prompt発光とDelay発光の量とその比は、“Nature 492, 234−238, 2012”(参考文献1)に記載された方法と同様の方法により求めることができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、前記参考文献1に記載の装置、又は図2に記載の装置に限定されない。 The amounts of Prompt emission and Delay emission and their ratios can be determined by the same method as described in "Nature 492, 234-238, 2012" (Reference 1). The device used to calculate the amounts of Prompt emission and Delay emission is not limited to the apparatus described in Reference 1 or the apparatus shown in FIG.
また、本実施形態では、第二の化合物の遅延蛍光性の測定には、次に示す方法により作製した試料を用いる。例えば、第二の化合物をトルエンに溶解し、自己吸収の寄与を取り除くため励起波長において吸光度が0.05以下の希薄溶液を調製する。また酸素による消光を防ぐため、試料溶液を凍結脱気した後にアルゴン雰囲気下で蓋付きのセルに封入することで、アルゴンで飽和された酸素フリーの試料溶液とする。
上記試料溶液の蛍光スペクトルを分光蛍光光度計FP−8600(日本分光社製)で測定し、また同条件で9,10−ジフェニルアントラセンのエタノール溶液の蛍光スペクトルを測定する。両スペクトルの蛍光面積強度を用いて、Morris et al. J.Phys.Chem.80(1976)969中の(1)式により全蛍光量子収率を算出する。
Further, in the present embodiment, a sample prepared by the following method is used for measuring the delayed fluorescence of the second compound. For example, the second compound is dissolved in toluene to prepare a dilute solution with an absorbance of 0.05 or less at the excitation wavelength to remove the contribution of self-absorption. Further, in order to prevent quenching by oxygen, the sample solution is frozen and degassed and then sealed in a cell with a lid under an argon atmosphere to obtain an oxygen-free sample solution saturated with argon.
The fluorescence spectrum of the sample solution is measured with a spectrofluorometer FP-8600 (manufactured by Nippon Kogaku Co., Ltd.), and the fluorescence spectrum of an ethanol solution of 9,10-diphenylanthracene is measured under the same conditions. Using the fluorescence area intensities of both spectra, Morris et al. J. Phys. Chem. The total fluorescence quantum yield is calculated by the equation (1) in 80 (1976) 969.
Prompt発光とDelay発光の量とその比は、“Nature 492, 234−238, 2012”(参考文献1)に記載された方法と同様の方法により求めることができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、前記参考文献1に記載の装置、又は図2に記載の装置に限定されない。
本実施形態においては、測定対象化合物(第二の化合物)のPrompt発光(即時発光)の量をXPとし、Delay発光(遅延発光)の量をXDとしたときに、XD/XPの値が0.05以上であることが好ましい。
本明細書における第二の化合物以外の化合物のPrompt発光とDelay発光の量とその比の測定も、第二の化合物のPrompt発光とDelay発光の量とその比の測定と同様である。
The amounts of Prompt emission and Delay emission and their ratios can be determined by the same method as described in "Nature 492, 234-238, 2012" (Reference 1). The device used to calculate the amounts of Prompt emission and Delay emission is not limited to the apparatus described in Reference 1 or the apparatus shown in FIG.
When in the present embodiment, the amount of Prompt luminescence measurement target compound (second compound) (Immediate emission) and X P, the amount of Delay emission (delayed luminescence) was X D, X D / X P The value of is preferably 0.05 or more.
The measurement of the amount and ratio of Prompt emission and Delay emission of the compound other than the second compound in the present specification is the same as the measurement of the amount and ratio of Prompt emission and Delay emission of the second compound.
・第二の化合物の製造方法
第二の化合物M2は、公知の合成方法に従って、又は当該合成方法に倣い、目的物に合わせた既知の代替反応及び原料を用いることで、製造できる。
-Method for producing the second compound The second compound M2 can be produced according to a known synthesis method or by following the synthesis method and using a known alternative reaction and raw material suitable for the desired product.
第二の化合物M2の具体例としては、例えば、以下の化合物が挙げられる。ただし、本発明は、これら第二の化合物M2の具体例に限定されない。 Specific examples of the second compound M2 include the following compounds. However, the present invention is not limited to specific examples of these second compounds M2.
<発光層における第一の化合物及び第二の化合物の関係>
本実施形態の有機EL素子1において、第二の化合物M2の一重項エネルギーS1(Mat2)と、第一の化合物M1の一重項エネルギーS1(Mat1)とが、下記数式(数1)の関係を満たすことが好ましい。
S1(Mat2)>S1(Mat1)…(数1)
<Relationship between the first compound and the second compound in the light emitting layer>
In the organic EL device 1 of the present embodiment, the singlet energy S 1 of the second compound M2 (Mat2), a singlet energy S 1 of the first compound M1 (Mat1) but, following equation (Equation 1) It is preferable to satisfy the relationship.
S 1 (Mat 2)> S 1 (Mat 1 ) ... (Equation 1)
第二の化合物M2の77[K]におけるエネルギーギャップT77K(Mat2)は、第一の化合物M1の77[K]におけるエネルギーギャップT77K(Mat1)よりも大きいことが好ましい。すなわち、下記数式(数3)の関係を満たすことが好ましい。
T77K(Mat2)>T77K(Mat1)…(数3)
The energy gap T 77K (Mat2) in 77 [K] of the second compound M2 is preferably larger than the energy gap T 77K (Mat1) in 77 [K] of the first compound M1. That is, it is preferable to satisfy the relationship of the following mathematical formula (Equation 3).
T 77K (Mat2)> T 77K (Mat1) ... (Number 3)
本実施形態の有機EL素子1を発光させたときに、発光層5において、主に第一の化合物M1が発光していることが好ましい。 When the organic EL element 1 of the present embodiment is made to emit light, it is preferable that the first compound M1 mainly emits light in the light emitting layer 5.
・三重項エネルギーと77[K]におけるエネルギーギャップとの関係
ここで、三重項エネルギーと77[K]におけるエネルギーギャップとの関係について説明する。本実施形態では、77[K]におけるエネルギーギャップは、通常定義される三重項エネルギーとは異なる点がある。
三重項エネルギーの測定は、次のようにして行われる。まず、測定対象となる化合物を適切な溶媒中に溶解した溶液を石英ガラス管内に封入した試料を作製する。この試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値に基づいて、所定の換算式から三重項エネルギーを算出する。
ここで、本実施形態に係る化合物の内、熱活性遅延蛍光性の化合物は、ΔSTが小さい化合物であることが好ましい。ΔSTが小さいと、低温(77[K])状態でも、項間交差、及び逆項間交差が起こりやすく、励起一重項状態と励起三重項状態とが混在する。その結果、上記と同様にして測定されるスペクトルは、励起一重項状態、及び励起三重項状態の両者からの発光を含んでおり、いずれの状態から発光したのかについて峻別することは困難であるが、基本的には三重項エネルギーの値が支配的と考えられる。
そのため、本実施形態では、通常の三重項エネルギーTと測定手法は同じであるが、その厳密な意味において異なることを区別するため、次のようにして測定される値をエネルギーギャップT77Kと称する。測定対象となる化合物をEPA(ジエチルエーテル:イソペンタン:エタノール=5:5:2(容積比))中に、濃度が10μmol/Lとなるように溶解し、この溶液を石英セル中に入れて測定試料とする。この測定試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]に基づいて、次の換算式(F1)から算出されるエネルギー量を77[K]におけるエネルギーギャップT77Kとする。
換算式(F1):T77K[eV]=1239.85/λedge
-Relationship between triplet energy and energy gap at 77 [K] Here, the relationship between triplet energy and the energy gap at 77 [K] will be described. In this embodiment, the energy gap at 77 [K] differs from the normally defined triplet energy.
The triplet energy measurement is performed as follows. First, a sample in which a solution in which a compound to be measured is dissolved in an appropriate solvent is sealed in a quartz glass tube is prepared. For this sample, the phosphorescence spectrum (vertical axis: phosphorescence emission intensity, horizontal axis: wavelength) was measured at a low temperature (77 [K]), and a tangent line was drawn with respect to the rising edge of the phosphorescence spectrum on the short wavelength side. The triple term energy is calculated from a predetermined conversion formula based on the wavelength value at the intersection of the tangent line and the horizontal axis.
Here, among the compounds according to the present embodiment, the thermally active delayed fluorescence compound is preferably a compound having a small ΔST. When ΔST is small, intersystem crossing and inverse intersystem crossing are likely to occur even in a low temperature (77 [K]) state, and an excited singlet state and an excited triplet state coexist. As a result, the spectrum measured in the same manner as described above contains light emission from both the excited singlet state and the excited triplet state, and it is difficult to distinguish from which state the light is emitted. , Basically, the triplet energy value is considered to be dominant.
Therefore, in the present embodiment, the measurement method is the same as that of the normal triplet energy T, but in order to distinguish the difference in the strict sense, the value measured as follows is referred to as the energy gap T 77K. .. The compound to be measured is dissolved in EPA (diethyl ether: isopentane: ethanol = 5: 5: 2 (volume ratio)) so as to have a concentration of 10 μmol / L, and this solution is placed in a quartz cell for measurement. Use as a sample. For this measurement sample, the phosphorescence spectrum (vertical axis: phosphorescence emission intensity, horizontal axis: wavelength) is measured at a low temperature (77 [K]), and a tangent line is drawn with respect to the rising edge of the phosphorescence spectrum on the short wavelength side. Based on the wavelength value λ edge [nm] at the intersection of the tangent line and the horizontal axis, the amount of energy calculated from the following conversion formula (F1) is defined as the energy gap T 77K at 77 [K].
Conversion formula (F1): T 77K [eV] = 1239.85 / λ edge
燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線(すなわち変曲点における接線)が、当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
なお、スペクトルの最大ピーク強度の15%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
燐光の測定には、(株)日立ハイテクノロジー製のF−4500形分光蛍光光度計本体を用いることができる。なお、測定装置はこの限りではなく、冷却装置、及び低温用容器と、励起光源と、受光装置とを組み合わせることにより、測定してもよい。
The tangent to the rising edge of the phosphorescence spectrum on the short wavelength side is drawn as follows. When moving on the spectrum curve from the short wavelength side of the phosphorescent spectrum to the maximum value on the shortest wavelength side of the maximum values of the spectrum, consider the tangent lines at each point on the curve toward the long wavelength side. This tangent increases in slope as the curve rises (ie, as the vertical axis increases). The tangent line drawn at the point where the value of the slope takes the maximum value (that is, the tangent line at the inflection point) is the tangent line to the rising edge of the phosphorescent spectrum on the short wavelength side.
The maximum point having a peak intensity of 15% or less of the maximum peak intensity of the spectrum is not included in the maximum value on the shortest wavelength side described above, and the slope value closest to the maximum value on the shortest wavelength side is the maximum. The tangent line drawn at the point where the value is taken is taken as the tangent line to the rising edge of the phosphorescent spectrum on the short wavelength side.
For the measurement of phosphorescence, an F-4500 type spectrofluorometer main body manufactured by Hitachi High-Technology Co., Ltd. can be used. The measuring device is not limited to this, and may be measured by combining a cooling device, a low temperature container, an excitation light source, and a light receiving device.
・一重項エネルギーS1
溶液を用いた一重項エネルギーS1の測定方法(溶液法と称する場合がある。)としては、下記の方法が挙げられる。
測定対象となる化合物の10μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の吸収スペクトル(縦軸:吸収強度、横軸:波長とする。)を測定する。この吸収スペクトルの長波長側の立ち下がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を次に示す換算式(F2)に代入して一重項エネルギーを算出する。
換算式(F2):S1[eV]=1239.85/λedge
吸収スペクトル測定装置としては、例えば、日立社製の分光光度計(装置名:U3310)が挙げられるが、これに限定されない。
・ Singlet energy S 1
The method of measuring the solution using a singlet energy S 1 (hereinafter sometimes referred to as solution method.), A method described below.
A 10 μmol / L toluene solution of the compound to be measured is prepared, placed in a quartz cell, and the absorption spectrum (vertical axis: absorption intensity, horizontal axis: wavelength) of this sample is measured at room temperature (300 K). A tangent line is drawn for the fall on the long wavelength side of this absorption spectrum, and the wavelength value λedge [nm] at the intersection of the tangent line and the horizontal axis is substituted into the conversion formula (F2) shown below to calculate the singlet energy. To do.
Conversion formula (F2): S 1 [eV] = 1239.85 / λedge
Examples of the absorption spectrum measuring device include, but are not limited to, a spectrophotometer (device name: U3310) manufactured by Hitachi, Ltd.
吸収スペクトルの長波長側の立ち下がりに対する接線は以下のように引く。吸収スペクトルの極大値のうち、最も長波長側の極大値から長波長方向にスペクトル曲線上を移動する際に、曲線上の各点における接線を考える。この接線は、曲線が立ち下がるにつれ(つまり縦軸の値が減少するにつれ)、傾きが減少しその後増加することを繰り返す。傾きの値が最も長波長側(ただし、吸光度が0.1以下となる場合は除く)で極小値をとる点において引いた接線を当該吸収スペクトルの長波長側の立ち下がりに対する接線とする。
なお、吸光度の値が0.2以下の極大点は、上記最も長波長側の極大値には含めない。
The tangent to the fall on the long wavelength side of the absorption spectrum is drawn as follows. When moving on the spectrum curve from the maximum value on the longest wavelength side to the long wavelength direction among the maximum values of the absorption spectrum, consider the tangents at each point on the curve. This tangent repeats that the slope decreases and then increases as the curve descends (ie, as the value on the vertical axis decreases). The tangent line drawn at the point where the slope value takes the minimum value on the longest wavelength side (except when the absorbance is 0.1 or less) is defined as the tangent line to the fall of the long wavelength side of the absorption spectrum.
The maximum point having an absorbance value of 0.2 or less is not included in the maximum value on the longest wavelength side.
本実施形態では、一重項エネルギーS1と、77[K]におけるエネルギーギャップT77Kとの差(S1−T77K)をΔSTとして定義する。 In this embodiment, defines a singlet energy S 1, the difference between the energy gap T 77K at 77 [K] and (S 1 -T 77K) as .DELTA.St.
本実施形態において、前記第二の化合物M2の一重項エネルギーS1(Mat2)と、前記第二の化合物M2の77[K]におけるエネルギーギャップT77K(Mat2)との差ΔST(Mat2)は、好ましくは0.3eV未満、より好ましくは0.2eV未満、さらに好ましくは0.1eV未満である。すなわち、ΔST(Mat2)は、下記数式(数1A)〜(数1D)の関係を満たすことが好ましい。
ΔST(Mat2)=S1(Mat2)−T77K(Mat2)<0.3eV…(数1A)
ΔST(Mat2)=S1(Mat2)−T77K(Mat2)<0.2eV…(数1B)
ΔST(Mat2)=S1(Mat2)−T77K(Mat2)<0.1eV…(数1C)
ΔST(Mat2)=S1(Mat2)−T77K(Mat2)<0.01eV…(数1D)
In this embodiment, the singlet energy S 1 of the second compound M2 (Mat2), difference .DELTA.St (Mat2) of an energy gap T 77K (Mat2) in 77 [K] of the second compound M2 is It is preferably less than 0.3 eV, more preferably less than 0.2 eV, and even more preferably less than 0.1 eV. That is, it is preferable that ΔST (Mat2) satisfies the relationship of the following mathematical formulas (Equation 1A) to (Equation 1D).
ΔST (Mat2) = S 1 (Mat2) -T 77K (Mat2) <0.3eV ... (Equation 1A)
ΔST (Mat2) = S 1 (Mat2) -T 77K (Mat2) <0.2eV ... (Equation 1B)
ΔST (Mat2) = S 1 (Mat2) -T 77K (Mat2) <0.1 eV ... (Equation 1C)
ΔST (Mat2) = S 1 (Mat2) -T 77K (Mat2) <0.01eV ... (Equation 1D)
本実施形態の有機EL素子1は、赤色発光又は緑色発光することが好ましい。
本実施形態の有機EL素子1が緑色発光する場合、有機EL素子1から発光する光の主ピーク波長は、500nm以上560nm以下であることが好ましい。
本実施形態の有機EL素子1が赤色発光する場合、有機EL素子1から発光する光の主ピーク波長は、600nm以上660nm以下であることが好ましい。
本実施形態の有機EL素子1が青色発光する場合、有機EL素子1から発光する光の主ピーク波長は、430nm以上480nm以下であることが好ましい。
The organic EL element 1 of the present embodiment preferably emits red light or green light.
When the organic EL element 1 of the present embodiment emits green light, the main peak wavelength of the light emitted from the organic EL element 1 is preferably 500 nm or more and 560 nm or less.
When the organic EL element 1 of the present embodiment emits red light, the main peak wavelength of the light emitted from the organic EL element 1 is preferably 600 nm or more and 660 nm or less.
When the organic EL element 1 of the present embodiment emits blue light, the main peak wavelength of the light emitted from the organic EL element 1 is preferably 430 nm or more and 480 nm or less.
有機EL素子から発光する光の主ピーク波長の測定は、以下のようにして行う。
電流密度が10mA/cm2となるように有機EL素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS−2000(コニカミノルタ株式会社製)で計測する。
得られた分光放射輝度スペクトルにおいて、発光強度が最大となる発光スペクトルのピーク波長を測定し、これを主ピーク波長(単位:nm)とする。
The main peak wavelength of the light emitted from the organic EL element is measured as follows.
The spectral radiance spectrum when a voltage is applied to the organic EL element so that the current density is 10 mA / cm 2 is measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta Co., Ltd.).
In the obtained spectral radiance spectrum, the peak wavelength of the emission spectrum having the maximum emission intensity is measured, and this is defined as the main peak wavelength (unit: nm).
・発光層の膜厚
本実施形態の有機EL素子1における発光層5の膜厚は、好ましくは5nm以上50nm以下、より好ましくは7nm以上50nm以下、最も好ましくは10nm以上50nm以下である。5nm以上であると、発光層形成及び色度の調整が容易になりやすく、50nm以下であると、駆動電圧の上昇が抑制されやすい。
-Film thickness of the light emitting layer The film thickness of the light emitting layer 5 in the organic EL element 1 of the present embodiment is preferably 5 nm or more and 50 nm or less, more preferably 7 nm or more and 50 nm or less, and most preferably 10 nm or more and 50 nm or less. When it is 5 nm or more, it is easy to form a light emitting layer and adjust the chromaticity, and when it is 50 nm or less, an increase in the driving voltage is likely to be suppressed.
・発光層における化合物の含有率
発光層5に含まれている第二の化合物M2及び第一の化合物M1の含有率は、例えば、以下の範囲であることが好ましい。
第二の化合物M2の含有率は、10質量%以上80質量%以下であることが好ましく、10質量%以上60質量%以下であることがより好ましく、20質量%以上60質量%以下であることがさらに好ましい。
第一の化合物M1の含有率は、0.01質量%以上10質量%以下であることが好ましく、0.01質量%以上5質量%以下であることがより好ましく、0.01質量%以上1質量%以下であることがさらに好ましい。
なお、本実施形態は、発光層5に、第二の化合物M2及び第一の化合物M1以外の材料が含まれることを除外しない。
発光層5は、第二の化合物M2を1種のみ含んでもよいし、2種以上含んでもよい。発光層5は、第一の化合物M1を1種のみ含んでもよいし、2種以上含んでもよい。
-Compound content in the light emitting layer The content of the second compound M2 and the first compound M1 contained in the light emitting layer 5 is preferably in the following range, for example.
The content of the second compound M2 is preferably 10% by mass or more and 80% by mass or less, more preferably 10% by mass or more and 60% by mass or less, and 20% by mass or more and 60% by mass or less. Is even more preferable.
The content of the first compound M1 is preferably 0.01% by mass or more and 10% by mass or less, more preferably 0.01% by mass or more and 5% by mass or less, and 0.01% by mass or more and 1 It is more preferably mass% or less.
The present embodiment does not exclude that the light emitting layer 5 contains materials other than the second compound M2 and the first compound M1.
The light emitting layer 5 may contain only one type of the second compound M2, or may contain two or more types. The light emitting layer 5 may contain only one type of the first compound M1 or may contain two or more types.
・TADF機構(メカニズム)
図4、発光層における第二の化合物M2及び第一の化合物M1のエネルギー準位の関係の一例を示す図である。図4において、S0は、基底状態を表す。S1(Mat1)は、第一の化合物M1の最低励起一重項状態を表す。T1(Mat1)は、第一の化合物M1の最低励起三重項状態を表す。S1(Mat2)は、第二の化合物M2の最低励起一重項状態を表す。T1(Mat2)は、第二の化合物M2の最低励起三重項状態を表す。
図4中のS1(Mat1)からS1(Mat2)へ向かう破線の矢印は、第二の化合物M2の最低励起一重項状態から第一の化合物M1へのフェルスター型エネルギー移動を表す。
図4に示すように、第二の化合物M2としてΔST(Mat2)の小さな化合物を用いると、最低励起三重項状態T1(Mat2)は、熱エネルギーにより、最低励起一重項状態S1(Mat2)に逆項間交差が可能である。そして、第二の化合物M2の最低励起一重項状態S1(Mat2)から第一の化合物M1へのフェルスター型エネルギー移動が生じ、最低励起一重項状態S1(Mat1)が生成する。この結果、第一の化合物M1の最低励起一重項状態S1(Mat1)からの蛍光発光を観測することができる。このTADF機構による遅延蛍光を利用することによっても、理論的に内部効率を100%まで高めることができると考えられている。
・ TADF mechanism (mechanism)
FIG. 4 is a diagram showing an example of the relationship between the energy levels of the second compound M2 and the first compound M1 in the light emitting layer. In FIG. 4, S0 represents the ground state. S1 (Mat1) represents the lowest excited singlet state of the first compound M1. T1 (Mat1) represents the lowest excited triplet state of the first compound M1. S1 (Mat2) represents the lowest excited singlet state of the second compound M2. T1 (Mat2) represents the lowest excited triplet state of the second compound M2.
The dashed arrow from S1 (Mat1) to S1 (Mat2) in FIG. 4 represents the Felster-type energy transfer from the lowest excited singlet state of the second compound M2 to the first compound M1.
As shown in FIG. 4, when a compound having a small ΔST (Mat2) is used as the second compound M2, the lowest excited triplet state T1 (Mat2) is reversed to the lowest excited singlet state S1 (Mat2) by thermal energy. Intersystem crossing is possible. Then, Felster-type energy transfer from the lowest excited singlet state S1 (Mat2) of the second compound M2 to the first compound M1 occurs, and the lowest excited singlet state S1 (Mat1) is generated. As a result, fluorescence emission from the lowest excited singlet state S1 (Mat1) of the first compound M1 can be observed. It is believed that the internal efficiency can theoretically be increased to 100% by utilizing the delayed fluorescence by this TADF mechanism.
第一実施形態に係る有機EL素子1は、発光層5に、第二の化合物M2と、第二の化合物M2よりも小さな一重項エネルギーを有する第一の化合物M1と、を含んでいる。
第一実施形態に係る有機EL素子1は、表示装置及び発光装置等の電子機器に使用できる。
The organic EL device 1 according to the first embodiment includes a second compound M2 and a first compound M1 having a singlet energy smaller than that of the second compound M2 in the light emitting layer 5.
The organic EL element 1 according to the first embodiment can be used for electronic devices such as a display device and a light emitting device.
有機EL素子1の構成についてさらに説明する。以下、符号の記載は省略することがある。 The configuration of the organic EL element 1 will be further described. Hereinafter, the description of the reference numeral may be omitted.
(基板)
基板は、有機EL素子の支持体として用いられる。基板としては、例えば、ガラス、石英、及びプラスチック等を用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、プラスチック基板等が挙げられる。プラスチック基板を形成する材料としては、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニル、ポリイミド、及びポリエチレンナフタレート等が挙げられる。また、無機蒸着フィルムを用いることもできる。
(substrate)
The substrate is used as a support for an organic EL element. As the substrate, for example, glass, quartz, plastic, or the like can be used. Moreover, you may use a flexible substrate. The flexible substrate is a foldable (flexible) substrate, and examples thereof include a plastic substrate. Examples of the material for forming the plastic substrate include polycarbonate, polyarylate, polyether sulfone, polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride, polyimide, polyethylene naphthalate and the like. Inorganic vapor deposition film can also be used.
(陽極)
基板上に形成される陽極には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、及びこれらの混合物などを用いることが好ましい。具体的には、例えば、酸化インジウム−酸化スズ(ITO:Indium Tin Oxide)、珪素もしくは酸化珪素を含有した酸化インジウム−酸化スズ、酸化インジウム−酸化亜鉛、酸化タングステン、及び酸化亜鉛を含有した酸化インジウム、グラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、又は金属材料の窒化物(例えば、窒化チタン)等が挙げられる。
(anode)
For the anode formed on the substrate, it is preferable to use a metal having a large work function (specifically, 4.0 eV or more), an alloy, an electrically conductive compound, a mixture thereof, or the like. Specifically, for example, indium tin oxide (ITO: Indium Tin Oxide), indium tin oxide containing silicon or silicon oxide, indium oxide-zinc oxide, tungsten oxide, and indium oxide containing zinc oxide. , Graphene and the like. In addition, gold (Au), platinum (Pt), nickel (Ni), tungsten (W), chromium (Cr), molybdenum (Mo), iron (Fe), cobalt (Co), copper (Cu), palladium ( Examples thereof include Pd), titanium (Ti), and nitrides of metallic materials (for example, titanium nitride).
これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム−酸化亜鉛は、酸化インジウムに対し1質量%以上10質量%以下の酸化亜鉛を加えたターゲットを用いることにより、スパッタリング法で形成することができる。また、例えば、酸化タングステン、及び酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5質量%以上5質量%以下、酸化亜鉛を0.1質量%以上1質量%以下含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、スピンコート法などにより作製してもよい。 These materials are usually formed by a sputtering method. For example, indium oxide-zinc oxide can be formed by a sputtering method by using a target in which 1% by mass or more and 10% by mass or less of zinc oxide is added to indium oxide. Further, for example, indium oxide containing tungsten oxide and zinc oxide contained 0.5% by mass or more and 5% by mass or less of tungsten oxide and 0.1% by mass or more and 1% by mass or less of zinc oxide with respect to indium oxide. By using a target, it can be formed by a sputtering method. In addition, it may be produced by a vacuum vapor deposition method, a coating method, an inkjet method, a spin coating method or the like.
陽極上に形成されるEL層のうち、陽極に接して形成される正孔注入層は、陽極の仕事関数に関係なく正孔(ホール)注入が容易である複合材料を用いて形成されるため、電極材料として可能な材料(例えば、金属、合金、電気伝導性化合物、及びこれらの混合物、その他、元素周期表の第1族又は第2族に属する元素も含む)を用いることができる。 Of the EL layers formed on the anode, the hole injection layer formed in contact with the anode is formed by using a composite material that facilitates hole injection regardless of the work function of the electrode. , Materials that can be used as electrode materials (for example, metals, alloys, electrically conductive compounds, and mixtures thereof, and other elements belonging to Group 1 or Group 2 of the Periodic Table of Elements) can be used.
仕事関数の小さい材料である、元素周期表の第1族又は第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、及びマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、及びこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属及びこれらを含む合金等を用いることもできる。なお、アルカリ金属、アルカリ土類金属、及びこれらを含む合金を用いて陽極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。さらに、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。 Elements belonging to Group 1 or Group 2 of the Periodic Table of the Elements, which are materials with a small work function, that is, alkali metals such as lithium (Li) and cesium (Cs), and magnesium (Mg), calcium (Ca), and strontium. Alkaline earth metals such as (Sr), rare earth metals such as alloys containing them (for example, MgAg, AlLi), europium (Eu), ytterbium (Yb), and alloys containing these can also be used. When forming an anode using an alkali metal, an alkaline earth metal, or an alloy containing these, a vacuum vapor deposition method or a sputtering method can be used. Further, when a silver paste or the like is used, a coating method, an inkjet method, or the like can be used.
(陰極)
陰極には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、及びこれらの混合物などを用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族又は第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、及びマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、及びこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属及びこれらを含む合金等が挙げられる。
(cathode)
As the cathode, it is preferable to use a metal having a small work function (specifically, 3.8 eV or less), an alloy, an electrically conductive compound, a mixture thereof, or the like. Specific examples of such a cathode material include elements belonging to Group 1 or Group 2 of the Periodic Table of the Elements, that is, alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), and calcium (Ca). ), Alkaline earth metals such as strontium (Sr), and rare earth metals such as alloys containing them (for example, MgAg, AlLi), europium (Eu), ytterbium (Yb), and alloys containing them.
なお、アルカリ金属、アルカリ土類金属、これらを含む合金を用いて陰極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。 When forming a cathode using an alkali metal, an alkaline earth metal, or an alloy containing these, a vacuum vapor deposition method or a sputtering method can be used. When a silver paste or the like is used, a coating method, an inkjet method, or the like can be used.
なお、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、珪素もしくは酸化珪素を含有した酸化インジウム−酸化スズ等様々な導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。 By providing the electron injection layer, a cathode is formed by using various conductive materials such as indium tin oxide containing Al, Ag, ITO, graphene, silicon or silicon oxide, regardless of the size of the work function. can do. These conductive materials can be formed into a film by using a sputtering method, an inkjet method, a spin coating method, or the like.
(正孔注入層)
正孔注入層は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物等を用いることができる。
(Hole injection layer)
The hole injection layer is a layer containing a substance having a high hole injection property. Substances with high hole injection properties include molybdenum oxide, titanium oxide, vanadium oxide, renium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, etc. Tungsten oxide, manganese oxide and the like can be used.
また、正孔注入性の高い物質としては、低分子の有機化合物である4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、4,4’−ビス(N−{4−[N’−(3−メチルフェニル)−N’−フェニルアミノ]フェニル}−N−フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5−トリス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ベンゼン(略称:DPA3B)、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物等やジピラジノ[2,3−f:20,30−h]キノキサリン−2,3,6,7,10,11−ヘキサカルボニトリル(HAT−CN)も挙げられる。 In addition, as a substance having high hole injection property, a low molecular weight organic compound 4,4', 4''-tris (N, N-diphenylamino) triphenylamine (abbreviation: TDATA), 4,4' , 4''-Tris [N- (3-Methylphenyl) -N-Phenylamino] Triphenylamine (abbreviation: MTDATA), 4,4'-Bis [N- (4-diphenylaminophenyl) -N-Phenyl Amino] Biphenyl (abbreviation: DPAB), 4,4'-bis (N- {4- [N'-(3-methylphenyl) -N'-phenylamino] phenyl} -N-phenylamino) Biphenyl (abbreviation:: DNTPD), 1,3,5-tris [N- (4-diphenylaminophenyl) -N-phenylamino] benzene (abbreviation: DPA3B), 3- [N- (9-phenylcarbazole-3-yl) -N -Phenylamino] -9-Phenylcarbazole (abbreviation: PCzPCA1), 3,6-bis [N- (9-phenylcarbazole-3-yl) -N-phenylamino] -9-phenylcarbazole (abbreviation: PCzPCA2), Aromatic amine compounds such as 3- [N- (1-naphthyl) -N- (9-phenylcarbazole-3-yl) amino] -9-phenylcarbazole (abbreviation: PCzPCN1) and dipyrazino [2,3-f : 20,30-h] Kinoxalin-2,3,6,7,10,11-hexacarbonitrile (HAT-CN) can also be mentioned.
また、正孔注入性の高い物質としては、高分子化合物(オリゴマー、デンドリマー、ポリマー等)を用いることもできる。例えば、ポリ(N−ビニルカルバゾール)(略称:PVK)、ポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジフェニルアミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)ベンジジン](略称:Poly−TPD)などの高分子化合物が挙げられる。また、ポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子化合物を用いることもできる。 Further, as a substance having high hole injection property, a polymer compound (oligomer, dendrimer, polymer, etc.) can also be used. For example, poly (N-vinylcarbazole) (abbreviation: PVK), poly (4-vinyltriphenylamine) (abbreviation: PVTPA), poly [N- (4- {N'-[4- (4-diphenylamino)). Phenyl] phenyl-N'-phenylamino} phenyl) methacrylamide] (abbreviation: PTPDMA), poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) benzidine] (abbreviation: Polymer compounds such as Poly-TPD) can be mentioned. Further, a polymer compound to which an acid such as poly (3,4-ethylenedioxythiophene) / poly (styrene sulfonic acid) (PEDOT / PSS) or polyaniline / poly (styrene sulfonic acid) (Pani / PSS) is added is used. You can also do it.
(正孔輸送層)
正孔輸送層は、正孔輸送性の高い物質を含む層である。正孔輸送層には、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体等を使用する事ができる。具体的には、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)やN,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BAFLP)、4,4’−ビス[N−(9,9−ジメチルフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N―フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物等を用いることができる。ここに述べた物質は、主に10−6cm2/(V・s)以上の正孔移動度を有する物質である。
(Hole transport layer)
The hole transport layer is a layer containing a substance having a high hole transport property. An aromatic amine compound, a carbazole derivative, an anthracene derivative, or the like can be used for the hole transport layer. Specifically, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB) and N, N'-bis (3-methylphenyl) -N, N'- Diphenyl- [1,1'-biphenyl] -4,4'-diamine (abbreviation: TPD), 4-phenyl-4'-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: BAFLP), 4 , 4'-bis [N- (9,9-dimethylfluoren-2-yl) -N-phenylamino] biphenyl (abbreviation: DFLDPBi), 4,4', 4''-tris (N, N-diphenylamino) ) Triphenylamine (abbreviation: TDATA), 4,4', 4''-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (abbreviation: MTDATA), 4,4'-bis [N- (Spiro-9,9'-bifluoren-2-yl) -N-phenylamino] Aromatic amine compounds such as biphenyl (abbreviation: BSBP) can be used. The substances described here are mainly substances having a hole mobility of 10-6 cm 2 / (V · s) or more.
正孔輸送層には、CBP、9−[4−(N−カルバゾリル)]フェニル−10−フェニルアントラセン(CzPA)、9−フェニル−3−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(PCzPA)のようなカルバゾール誘導体や、t−BuDNA、DNA、DPAnthのようなアントラセン誘導体を用いても良い。ポリ(N−ビニルカルバゾール)(略称:PVK)やポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。 The hole transport layer includes CBP, 9- [4- (N-carbazolyl)] phenyl-10-phenylanthracene (CzPA), 9-phenyl-3- [4- (10-phenyl-9-anthril) phenyl]. Carbazole derivatives such as -9H-carbazole (PCzPA) and anthracene derivatives such as t-BuDNA, DNA and DPAnth may be used. Polymer compounds such as poly (N-vinylcarbazole) (abbreviation: PVK) and poly (4-vinyltriphenylamine) (abbreviation: PVTPA) can also be used.
但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。なお、正孔輸送性の高い物質を含む層は、単層のものだけでなく、上記物質からなる層が二層以上積層したものとしてもよい。 However, any substance other than these may be used as long as it is a substance having a higher hole transport property than electrons. The layer containing the substance having a high hole transport property is not limited to a single layer, but may be a layer in which two or more layers made of the above substances are laminated.
正孔輸送層を二層以上配置する場合、エネルギーギャップのより大きい材料を発光層に近い側に配置することが好ましい。このような材料として、後記する実施例で用いた、HT−2が挙げられる。 When two or more hole transport layers are arranged, it is preferable to arrange a material having a larger energy gap closer to the light emitting layer. Examples of such a material include HT-2 used in the examples described later.
(電子輸送層)
電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送層には、1)アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体、2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、フェナントロリン誘導体等の複素芳香族化合物、3)高分子化合物を使用することができる。具体的には低分子の有機化合物として、Alq、トリス(4−メチル−8−キノリノラト)アルミニウム(略称:Almq3)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq2)、BAlq、Znq、ZnPBO、ZnBTZなどの金属錯体等を用いることができる。また、金属錯体以外にも、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、1,3−ビス[5−(ptert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、3−(4−tert−ブチルフェニル)−4−フェニル−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:TAZ)、3−(4−tert−ブチルフェニル)−4−(4−エチルフェニル)−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:p−EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン(略称:BzOs)などの複素芳香族化合物も用いることができる。本実施態様においては、ベンゾイミダゾール化合物を好適に用いることができる。ここに述べた物質は、主に10−6cm2/(V・s)以上の電子移動度を有する物質である。なお、正孔輸送性よりも電子輸送性の高い物質であれば、上記以外の物質を電子輸送層として用いてもよい。また、電子輸送層は、単層で構成されていてもよいし、上記物質からなる層が二層以上積層されて構成されていてもよい。
(Electronic transport layer)
The electron transport layer is a layer containing a substance having a high electron transport property. The electron transport layer includes 1) metal complexes such as aluminum complexes, beryllium complexes and zinc complexes, 2) complex aromatic compounds such as imidazole derivatives, benzimidazole derivatives, azine derivatives, carbazole derivatives and phenanthroline derivatives, and 3) polymer compounds. Can be used. Specifically, as low-molecular-weight organic compounds, Alq, tris (4-methyl-8-quinolinolato) aluminum (abbreviation: Almq 3 ), bis (10-hydroxybenzo [h] quinolinato) berylium (abbreviation: BeBq 2 ), Metal complexes such as BAlq, Znq, ZnPBO, and ZnBTZ can be used. In addition to the metal complex, 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (abbreviation: PBD), 1,3-bis [5- (Phenyl-butylphenyl) -1,3,4-oxadiazole-2-yl] benzene (abbreviation: OXD-7), 3- (4-tert-butylphenyl) -4-phenyl-5- (4-) Biphenylyl) -1,2,4-triazole (abbreviation: TAZ), 3- (4-tert-butylphenyl) -4- (4-ethylphenyl) -5- (4-biphenylyl) -1,2,4- Complexes such as triazole (abbreviation: p-EtTAZ), vasofenantroline (abbreviation: BPhen), vasocuproin (abbreviation: BCP), 4,4'-bis (5-methylbenzoxadiazole-2-yl) stilben (abbreviation: BzOs) Aromatic compounds can also be used. In this embodiment, a benzimidazole compound can be preferably used. The substances described here are mainly substances having electron mobility of 10-6 cm 2 / (V · s) or more. A substance other than the above may be used as the electron transport layer as long as it is a substance having higher electron transport property than hole transport property. Further, the electron transport layer may be composed of a single layer, or may be composed of two or more layers made of the above substances.
また、電子輸送層には、高分子化合物を用いることもできる。例えば、ポリ[(9,9−ジヘキシルフルオレン−2,7−ジイル)−co−(ピリジン−3,5−ジイル)](略称:PF−Py)、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(2,2’−ビピリジン−6,6’−ジイル)](略称:PF−BPy)などを用いることができる。 Further, a polymer compound can also be used for the electron transport layer. For example, poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF-Py), poly [(9,9-dioctylfluorene-2) , 7-diyl) -co- (2,2'-bipyridine-6,6'-diyl)] (abbreviation: PF-BPy) and the like can be used.
(電子注入層)
電子注入層は、電子注入性の高い物質を含む層である。電子注入層には、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF2)、リチウム酸化物(LiOx)等のようなアルカリ金属、アルカリ土類金属、又はそれらの化合物を用いることができる。その他、電子輸送性を有する物質にアルカリ金属、アルカリ土類金属、又はそれらの化合物を含有させたもの、具体的にはAlq中にマグネシウム(Mg)を含有させたもの等を用いてもよい。なお、この場合には、陰極からの電子注入をより効率良く行うことができる。
(Electron injection layer)
The electron injection layer is a layer containing a substance having a high electron injection property. The electron injection layer includes lithium (Li), cesium (Cs), calcium (Ca), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), lithium oxide (LiOx), etc. Alkaline metals such as, alkaline earth metals, or compounds thereof can be used. In addition, a substance having an electron transporting property containing an alkali metal, an alkaline earth metal, or a compound thereof, specifically, a substance containing magnesium (Mg) in Alq or the like may be used. In this case, electron injection from the cathode can be performed more efficiently.
あるいは、電子注入層に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性及び電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。 Alternatively, a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer. Such a composite material is excellent in electron injection property and electron transport property because electrons are generated in the organic compound by the electron donor. In this case, the organic compound is preferably a material excellent in transporting generated electrons, and specifically, for example, a substance (metal complex, complex aromatic compound, etc.) constituting the above-mentioned electron transport layer is used. be able to. The electron donor may be any substance that exhibits electron donating property to the organic compound. Specifically, alkali metals, alkaline earth metals and rare earth metals are preferable, and lithium, cesium, magnesium, calcium, erbium, ytterbium and the like can be mentioned. Further, alkali metal oxides and alkaline earth metal oxides are preferable, and lithium oxides, calcium oxides, barium oxides and the like can be mentioned. A Lewis base such as magnesium oxide can also be used. Further, an organic compound such as tetrathiafulvalene (abbreviation: TTF) can also be used.
(層形成方法)
本実施形態の有機EL素子の各層の形成方法としては、上記で特に言及した以外には制限されないが、真空蒸着法、スパッタリング法、プラズマ法、イオンプレーティング法などの乾式成膜法や、スピンコーティング法、ディッピング法、フローコーティング法、インクジェット法などの湿式成膜法などの公知の方法を採用することができる。
(Layer formation method)
The method for forming each layer of the organic EL element of the present embodiment is not limited except as specifically mentioned above, but is limited to dry film deposition methods such as vacuum deposition method, sputtering method, plasma method, ion plating method, and spin coating. Known methods such as a coating method, a dipping method, a flow coating method, and a wet film forming method such as an inkjet method can be adopted.
(膜厚)
本実施形態の有機EL素子の各有機層の膜厚は、上記で特に言及した以外には制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから1μmの範囲が好ましい。
(Film thickness)
The film thickness of each organic layer of the organic EL element of the present embodiment is not limited except as specifically mentioned above, but in general, if the film thickness is too thin, defects such as pinholes are likely to occur, and conversely, if it is too thick, it is high. Since an applied voltage is required and efficiency is deteriorated, a range of several nm to 1 μm is usually preferable.
第一実施形態に係る有機EL素子は、表示装置及び発光装置等の電子機器に使用できる。 The organic EL element according to the first embodiment can be used for electronic devices such as display devices and light emitting devices.
本実施形態に係る有機エレクトロルミネッセンス素子によれば、高性能化、特に長寿命で発光する。 According to the organic electroluminescence device according to the present embodiment, high performance, particularly long life is emitted.
〔第二実施形態〕
第二実施形態に係る有機EL素子の構成について説明する。第二実施形態の説明において第一実施形態と同一の構成要素は、同一符号や名称を付す等して説明を省略もしくは簡略化する。また、第二実施形態では、特に言及されない材料や化合物については、第一実施形態で説明した材料や化合物と同様の材料や化合物を用いることができる。
[Second Embodiment]
The configuration of the organic EL element according to the second embodiment will be described. In the description of the second embodiment, the same components as those of the first embodiment are given the same reference numerals and names, and the description is omitted or simplified. Further, in the second embodiment, the same materials and compounds as those described in the first embodiment can be used for the materials and compounds not particularly mentioned.
第二実施形態に係る有機EL素子は、発光層が、さらに第三の化合物M3を含んでいる点で、第一実施形態に係る有機EL素子と異なる。その他の点については第一実施形態と同様である。
すなわち、第二実施形態において、第一の有機層としての発光層は、第二の化合物M2と、第一の化合物M1と、第三の化合物M3とを含む。
この態様の場合、第二の化合物M2は、ホスト材料であることが好ましく、第一の化合物M1は、ドーパント材料であることが好ましく、第三の化合物M3は、分散材として、ドーパント材料を発光層中に分散させる材料であることが好ましい。
The organic EL device according to the second embodiment is different from the organic EL device according to the first embodiment in that the light emitting layer further contains the third compound M3. Other points are the same as those in the first embodiment.
That is, in the second embodiment, the light emitting layer as the first organic layer contains the second compound M2, the first compound M1, and the third compound M3.
In this embodiment, the second compound M2 is preferably a host material, the first compound M1 is preferably a dopant material, and the third compound M3 emits a dopant material as a dispersant. It is preferably a material that is dispersed in the layer.
<第三の化合物>
第三の化合物M3は、遅延蛍光性の化合物でもよいし、遅延蛍光性を示さない化合物でもよい。
<Third compound>
The third compound M3 may be a delayed fluorescence compound or a compound that does not exhibit delayed fluorescence.
第三の化合物M3としては、特に限定されないが、アミン化合物以外の化合物であることが好ましい。また、例えば、第三の化合物M3としては、カルバゾール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体を用いることができるが、これら誘導体に限定されない。 The third compound M3 is not particularly limited, but is preferably a compound other than the amine compound. Further, for example, as the third compound M3, a carbazole derivative, a dibenzofuran derivative, and a dibenzothiophene derivative can be used, but the derivative is not limited thereto.
第三の化合物M3は、一つの分子中に下記一般式(31)で表される部分構造、下記一般式(32)で表される部分構造、下記一般式(33A)で表される部分構造、及び下記一般式(34B)で表される部分構造のうち少なくともいずれかを含む化合物であることも好ましい。 The third compound M3 has a partial structure represented by the following general formula (31), a partial structure represented by the following general formula (32), and a partial structure represented by the following general formula (33A) in one molecule. , And a compound containing at least one of the partial structures represented by the following general formula (34B) is also preferable.
前記一般式(31)において、
Y31〜Y36は、それぞれ独立に、窒素原子、又は第三の化合物M3の分子中における他の原子と結合する炭素原子であり、
ただし、Y31〜Y36のうち少なくともいずれかは、第三の化合物M3の分子中における他の原子と結合する炭素原子であり、
前記一般式(32)において、
Y41〜Y48は、それぞれ独立に、窒素原子、又は第三の化合物M3の分子中における他の原子と結合する炭素原子であり、
ただし、Y41〜Y48のうち少なくともいずれかは、第三の化合物M3の分子中における他の原子と結合する炭素原子であり、
X30は、第三の化合物M3の分子中における他の原子と結合する窒素原子、又は酸素原子、もしくは硫黄原子である。
前記一般式(33A)及び(34A)中、*は、それぞれ独立に、第三の化合物M3の分子中における他の原子又は他の構造との結合箇所を表す。
In the general formula (31),
Y 31 to Y 36 are independent carbon atoms that bond with nitrogen atoms or other atoms in the molecule of the third compound M3.
However, at least one of Y 31 to Y 36 is a carbon atom that binds to another atom in the molecule of the third compound M3.
In the general formula (32),
Y 41 to Y 48 are independent carbon atoms that bond with nitrogen atoms or other atoms in the molecule of the third compound M3.
However, at least one of Y 41 to Y 48 is a carbon atom that binds to another atom in the molecule of the third compound M3.
X 30 is a nitrogen atom, an oxygen atom, or a sulfur atom that binds to another atom in the molecule of the third compound M3.
In the general formulas (33A) and (34A), * independently represents a bonding site with another atom or other structure in the molecule of the third compound M3.
前記一般式(32)において、Y41〜Y48のうち少なくとも2つが第三の化合物M3の分子中における他の原子と結合する炭素原子であり、当該炭素原子を含む環構造が構築されていることも好ましい。
例えば、前記一般式(32)で表される部分構造が、下記一般式(321)、一般式(322)、一般式(323)、一般式(324)、一般式(325)、及び一般式(326)で表される部分構造からなる群から選択されるいずれかの部分構造であることが好ましい。
In the general formula (32), at least two of Y 41 to Y 48 are carbon atoms bonded to other atoms in the molecule of the third compound M3, and a ring structure containing the carbon atoms is constructed. It is also preferable.
For example, the partial structures represented by the general formula (32) are the following general formula (321), general formula (322), general formula (323), general formula (324), general formula (325), and general formula. It is preferable that it is any partial structure selected from the group consisting of the partial structures represented by (326).
前記一般式(321)〜(326)において、
X30は、それぞれ独立に、第三の化合物M3の分子中における他の原子と結合する窒素原子、又は酸素原子、もしくは硫黄原子であり、
Y41〜Y48は、それぞれ独立に、窒素原子、又は第三の化合物M3の分子中における他の原子と結合する炭素原子であり、
X31は、それぞれ独立に、第三の化合物M3の分子中における他の原子と結合する窒素原子、酸素原子、硫黄原子、又は第三の化合物M3の分子中における他の原子と結合する炭素原子であり、
Y61〜Y64は、それぞれ独立に、窒素原子、又は第三の化合物M3の分子中における他の原子と結合する炭素原子である。
本実施形態においては、第三の化合物M3は、前記一般式(321)〜(326)のうち前記一般式(323)で表される部分構造を有することが好ましい。
In the general formulas (321) to (326),
X 30 is a nitrogen atom, an oxygen atom, or a sulfur atom that independently binds to another atom in the molecule of the third compound M3.
Y 41 to Y 48 are independent carbon atoms that bond with nitrogen atoms or other atoms in the molecule of the third compound M3.
Each of X 31 is a nitrogen atom, an oxygen atom, a sulfur atom, or a carbon atom that is bonded to another atom in the molecule of the third compound M3, or a carbon atom that is bonded to another atom in the molecule of the third compound M3. And
Y 61 to Y 64 are each independently a nitrogen atom or a carbon atom that binds to another atom in the molecule of the third compound M3.
In the present embodiment, the third compound M3 preferably has a partial structure represented by the general formula (323) among the general formulas (321) to (326).
前記一般式(31)で表される部分構造は、下記一般式(33)で表される基、及び下記一般式(34)で表される基からなる群から選択される少なくともいずれかの基として第三の化合物M3に含まれることが好ましい。
第三の化合物M3は、下記一般式(33)、及び下記一般式(34)で表される部分構造のうち少なくともいずれかの部分構造を有することも好ましい。下記一般式(33)、及び下記一般式(34)で表される部分構造のように結合箇所が互いにメタ位に位置するため、第三の化合物M3の77[K]におけるエネルギーギャップT77K(Mat3)を高く保つことができる。
The partial structure represented by the general formula (31) is at least one group selected from the group consisting of the group represented by the following general formula (33) and the group represented by the following general formula (34). Is preferably contained in the third compound M3.
The third compound M3 preferably has at least one of the partial structures represented by the following general formula (33) and the following general formula (34). Since the bonding sites are located at the meta positions of each other as in the partial structures represented by the following general formula (33) and the following general formula (34), the energy gap T 77K in 77 [K] of the third compound M3 ( Mat3) can be kept high.
前記一般式(33)において、Y31、Y32、Y34、及びY36は、それぞれ独立に、窒素原子又はCR31である。
前記一般式(34)において、Y32、Y34、及びY36は、それぞれ独立に、窒素原子又はCR31である。
前記一般式(33)、及び(34)において、
R31は、それぞれ独立に、水素原子又は置換基であり、
置換基としてのR31は、それぞれ独立に、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のフルオロアルキル基、
置換または無置換の環形成炭素数3〜30のシクロアルキル基、
置換または無置換の炭素数7〜30のアラルキル基、
置換または無置換のシリル基、
置換ゲルマニウム基、
置換ホスフィンオキシド基、
ハロゲン原子、
シアノ基、
ニトロ基、及び
置換または無置換のカルボキシ基
からなる群から選択される。
ただし、前記R31における置換または無置換の環形成炭素数6〜30のアリール基は、非縮合環であることが好ましい。
前記一般式(33)、及び前記一般式(34)において、*は、それぞれ独立に、第三の化合物M3の分子中における他の原子又は他の構造との結合箇所を表す。
In the general formula (33), Y 31 , Y 32 , Y 34 , and Y 36 are independently nitrogen atoms or CR 31 .
In the general formula (34), Y 32 , Y 34 , and Y 36 are independently nitrogen atoms or CR 31 .
In the general formulas (33) and (34),
R 31 is a hydrogen atom or a substituent independently of each other.
R 31 as a substituent is independent of each other.
Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms,
A heteroaryl group having 5 to 30 substituted or unsubstituted ring-forming atoms,
Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms,
Substituted or unsubstituted fluoroalkyl groups having 1 to 30 carbon atoms,
Substitutable or unsubstituted ring-forming cycloalkyl groups having 3 to 30 carbon atoms,
Substituent or unsubstituted aralkyl groups having 7 to 30 carbon atoms,
Substituted or unsubstituted silyl group,
Substitute germanium group,
Substituted phosphine oxide group,
Halogen atom,
Cyano group,
It is selected from the group consisting of nitro groups and substituted or unsubstituted carboxy groups.
However, the substituted or unsubstituted aryl group having 6 to 30 carbon atoms in R 31 is preferably a non-condensed ring.
In the general formula (33) and the general formula (34), * independently represents a bonding site with another atom or other structure in the molecule of the third compound M3.
前記一般式(33)において、Y31、Y32、Y34、及びY36は、それぞれ独立に、CR31であることが好ましく、複数のR31は、互いに同一であるか、又は異なる。
また、前記一般式(34)において、Y32、Y34、及びY36は、それぞれ独立に、CR31であることが好ましく、複数のR31は、互いに同一であるか、又は異なる。
In the general formula (33), Y 31 , Y 32 , Y 34 , and Y 36 are preferably CR 31 independently, and a plurality of R 31 are the same as or different from each other.
Further, in the general formula (34), it is preferable that Y 32 , Y 34 , and Y 36 are independently CR 31 , and a plurality of R 31s are the same as or different from each other.
置換ゲルマニウム基は、−Ge(R301)3で表されることが好ましい。R301は、それぞれ独立に、置換基である。置換基R301は、置換または無置換の炭素数1〜30のアルキル基、又は置換または無置換の環形成炭素数6〜30のアリール基であることが好ましい。複数のR301は、互いに同一であるか又は異なる。 The substituted germanium group is preferably represented by −Ge (R 301 ) 3 . R 301 is a substituent independently of each other. The substituent R 301 is preferably a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms or a substituted or unsubstituted aryl group having 6 to 30 carbon atoms. A plurality of R 301s are the same as or different from each other.
前記一般式(32)で表される部分構造は、下記一般式(35)〜(39)、及び下記一般式(30a)で表される基からなる群から選択される少なくともいずれかの基として第三の化合物M3に含まれることが好ましい。 The partial structure represented by the general formula (32) is as at least one group selected from the group consisting of the groups represented by the following general formulas (35) to (39) and the following general formula (30a). It is preferably contained in the third compound M3.
前記一般式(35)において、Y41乃至Y48は、それぞれ独立に、窒素原子又はCR32である。
前記一般式(36)、及び(37)において、Y41〜Y45、Y47、及びY48は、それぞれ独立に、窒素原子又はCR32である。
前記一般式(38)において、Y41、Y42、Y44、Y45、Y47、及びY48は、それぞれ独立に、窒素原子又はCR32である。
前記一般式(39)において、Y42〜Y48は、それぞれ独立に、窒素原子又はCR32である。
前記一般式(30a)において、Y42〜Y47は、それぞれ独立に、窒素原子又はCR32である。
前記一般式(35)〜(39)、及び(30a)において、
R32は、それぞれ独立に、水素原子又は置換基であり、
置換基としてのR32は、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のフルオロアルキル基、
置換または無置換の環形成炭素数3〜30のシクロアルキル基、
置換または無置換の炭素数7〜30のアラルキル基、
置換または無置換のシリル基、
置換ゲルマニウム基、
置換ホスフィンオキシド基、
ハロゲン原子、
シアノ基、
ニトロ基、及び
置換または無置換のカルボキシ基
からなる群から選択され、
複数のR32は、互いに同一であるか又は異なる。
前記一般式(37)〜(39),及び(30a)において、
X30は、NR33、酸素原子、又は硫黄原子であり、
R33は、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のフルオロアルキル基、
置換または無置換の環形成炭素数3〜30のシクロアルキル基、
置換または無置換の炭素数7〜30のアラルキル基、
置換または無置換のシリル基、
置換ゲルマニウム基、
置換ホスフィンオキシド基、
フッ素原子、
シアノ基、
ニトロ基、及び
置換または無置換のカルボキシ基
からなる群から選択され、
複数のR33は、互いに同一であるか又は異なる。
ただし、前記R33における置換または無置換の環形成炭素数6〜30のアリール基は、非縮合環であることが好ましい。
前記一般式(35)〜(39)、及び(30a)において、*は、それぞれ独立に、第三の化合物M3の分子中における他の原子又は他の構造との結合箇所を表す。
In the general formula (35), Y 41 to Y 48 are independently nitrogen atoms or CR 32 , respectively.
In the general formulas (36) and (37), Y 41 to Y 45 , Y 47 , and Y 48 are independently nitrogen atoms or CR 32 , respectively.
In the general formula (38), Y 41 , Y 42 , Y 44 , Y 45 , Y 47 , and Y 48 are independently nitrogen atoms or CR 32 , respectively.
In the general formula (39), Y 42 to Y 48 are independently nitrogen atoms or CR 32 , respectively.
In the general formula (30a), Y 42 to Y 47 are independently nitrogen atoms or CR 32 , respectively.
In the general formulas (35) to (39) and (30a),
R 32 is a hydrogen atom or a substituent independently of each other.
R 32 as a substituent is
Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms,
A heteroaryl group having 5 to 30 substituted or unsubstituted ring-forming atoms,
Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms,
Substituted or unsubstituted fluoroalkyl groups having 1 to 30 carbon atoms,
Substitutable or unsubstituted ring-forming cycloalkyl groups having 3 to 30 carbon atoms,
Substituent or unsubstituted aralkyl groups having 7 to 30 carbon atoms,
Substituted or unsubstituted silyl group,
Substitute germanium group,
Substituted phosphine oxide group,
Halogen atom,
Cyano group,
Selected from the group consisting of nitro groups and substituted or unsubstituted carboxy groups,
A plurality of R 32s are the same as or different from each other.
In the general formulas (37) to (39) and (30a),
X 30 is NR 33 , an oxygen atom, or a sulfur atom.
R 33 is
Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms,
A heteroaryl group having 5 to 30 substituted or unsubstituted ring-forming atoms,
Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms,
Substituted or unsubstituted fluoroalkyl groups having 1 to 30 carbon atoms,
Substitutable or unsubstituted ring-forming cycloalkyl groups having 3 to 30 carbon atoms,
Substituent or unsubstituted aralkyl groups having 7 to 30 carbon atoms,
Substituted or unsubstituted silyl group,
Substitute germanium group,
Substituted phosphine oxide group,
Fluorine atom,
Cyano group,
Selected from the group consisting of nitro groups and substituted or unsubstituted carboxy groups,
The plurality of R 33s are the same as or different from each other.
However, the substituted or unsubstituted aryl group having 6 to 30 carbon atoms in R 33 is preferably a non-condensed ring.
In the general formulas (35) to (39) and (30a), * independently represents a bond with another atom or other structure in the molecule of the third compound M3.
前記一般式(35)において、Y41〜Y48は、それぞれ独立に、CR32であることが好ましく、前記一般式(36)、及び前記一般式(37)において、Y41〜Y45,Y47、及びY48は、それぞれ独立に、CR32であることが好ましく、前記一般式(38)において、Y41,Y42,Y44,Y45,Y47、及びY48は、それぞれ独立に、CR32であることが好ましく、前記一般式(39)において、Y42〜Y48は、それぞれ独立に、CR32であることが好ましく、前記一般式(30a)において、Y42〜Y47は、それぞれ独立に、CR32であることが好ましく、複数のR32は、互いに同一であるか又は異なる。 In the general formula (35), Y 41 to Y 48 are preferably CR 32 independently of each other, and in the general formula (36) and the general formula (37), Y 41 to Y 45 , Y. It is preferable that 47 and Y 48 are independently CR 32 , and in the general formula (38), Y 41 , Y 42 , Y 44 , Y 45 , Y 47 , and Y 48 are independent of each other. , CR 32 , and in the general formula (39), Y 42 to Y 48 are each independently, preferably CR 32 , and in the general formula (30a), Y 42 to Y 47 are , Each independently, preferably CR 32 , and the plurality of R 32s are the same as or different from each other.
第三の化合物M3において、X30は、酸素原子又は硫黄原子であることが好ましく、酸素原子であることがより好ましい。 In the third compound M3, X 30 is preferably an oxygen atom or a sulfur atom, and more preferably an oxygen atom.
第三の化合物M3において、R31、及びR32は、それぞれ独立に、水素原子又は置換基であって、置換基としてのR31、及び置換基としてのR32は、それぞれ独立に、フッ素原子、シアノ基、置換または無置換の炭素数1〜30のアルキル基、置換または無置換の環形成炭素数6〜30のアリール基、及び置換または無置換の環形成原子数5〜30のヘテロアリール基からなる群から選択されるいずれかの基であることが好ましい。R31、及びR32は、水素原子、シアノ基、置換または無置換の環形成炭素数6〜30のアリール基、又は置換または無置換の環形成原子数5〜30のヘテロアリール基であることがより好ましい。ただし、置換基としてのR31、及び置換基としてのR32が置換または無置換の環形成炭素数6〜30のアリール基である場合、当該アリール基は、非縮合環であることが好ましい。 In the third compound M3, R 31 and R 32 are independently hydrogen atoms or substituents, and R 31 as a substituent and R 32 as a substituent are independently fluorine atoms. , Cyano groups, substituted or unsubstituted alkyl groups with 1 to 30 carbon atoms, substituted or unsubstituted ring-forming aryl groups with 6 to 30 carbon atoms, and substituted or unsubstituted ring-forming atomic groups with 5 to 30 heteroaryl groups. It is preferably any group selected from the group consisting of groups. R 31 and R 32 are hydrogen atoms, cyano groups, aryl groups having 6 to 30 substituted or unsubstituted ring-forming atoms, or heteroaryl groups having 5 to 30 substituted or unsubstituted ring-forming atoms. Is more preferable. However, when R 31 as a substituent and R 32 as a substituent are substituted or unsubstituted aryl groups having 6 to 30 carbon atoms, the aryl group is preferably a non-condensed ring.
第三の化合物M3は、芳香族炭化水素化合物、又は芳香族複素環化合物であることも好ましい。 The third compound M3 is also preferably an aromatic hydrocarbon compound or an aromatic heterocyclic compound.
・第三の化合物の製造方法
第三の化合物M3は、例えば、国際公開第2012/153780号、及び国際公開第2013/038650号等に記載の方法により製造することができる。また、例えば、目的物に合わせた既知の代替反応、及び原料を用いることで、第三の化合物をM3製造できる。
-Method for producing the third compound The third compound M3 can be produced, for example, by the methods described in International Publication No. 2012/153780, International Publication No. 2013/038650, and the like. Further, for example, the third compound can be produced as M3 by using a known alternative reaction according to the target substance and a raw material.
第三の化合物M3における置換基の例は、例えば、以下のとおりであるが、本発明は、これらの例に限定されない。 Examples of substituents in the third compound M3 are, for example, as follows, but the present invention is not limited to these examples.
アリ−ル基(芳香族炭化水素基と称する場合がある。)の具体例としては、フェニル基、トリル基、キシリル基、ナフチル基、フェナントリル基、ピレニル基、クリセニル基、ベンゾ[c]フェナントリル基、ベンゾ[g]クリセニル基、ベンゾアントリル基、トリフェニレニル基、フルオレニル基、9,9−ジメチルフルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、ビフェニル基、ターフェニル基、クォーターフェニル基、フルオランテニル基等が挙げられ、好ましくはフェニル基、ビフェニル基、ターフェニル基、クォーターフェニル基、ナフチル基、トリフェニレニル基、及びフルオレニル基等を挙げることができる。
置換基を有するアリ−ル基としては、トリル基、キシリル基、及び9,9−ジメチルフルオレニル基等を挙げることができる。
具体例が示すように、アリール基は、縮合アリール基、及び非縮合アリール基の両方を含む。
アリ−ル基としては、フェニル基、ビフェニル基、ターフェニル基、クォーターフェニル基、ナフチル基、トリフェニレニル基、又はフルオレニル基が好ましい。
Specific examples of the allyl group (sometimes referred to as an aromatic hydrocarbon group) include a phenyl group, a tolyl group, a xsilyl group, a naphthyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, and a benzo [c] phenanthryl group. , Benzo [g] chrysenyl group, benzoantryl group, triphenylenyl group, fluorenyl group, 9,9-dimethylfluorenyl group, benzofluorenyl group, dibenzofluorenyl group, biphenyl group, terphenyl group, quarterphenyl Examples thereof include a group, a fluoranthenyl group, and preferably a phenyl group, a biphenyl group, a terphenyl group, a quarterphenyl group, a naphthyl group, a triphenylenyl group, a fluorenyl group and the like.
Examples of the allyl group having a substituent include a tolyl group, a xsilyl group, a 9,9-dimethylfluorenyl group and the like.
As specific examples show, aryl groups include both condensed aryl groups and non-condensed aryl groups.
As the allyl group, a phenyl group, a biphenyl group, a terphenyl group, a quarterphenyl group, a naphthyl group, a triphenylenyl group, or a fluorenyl group is preferable.
ヘテロアリール基(複素環基、ヘテロ芳香族環基、又は芳香族複素環基と称する場合がある。)の具体例としては、ピロリル基、ピラゾリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、ピリジル基、トリアジニル基、インドリル基、イソインドリル基、イミダゾリル基、ベンズイミダゾリル基、インダゾリル基、イミダゾ[1,2−a]ピリジニル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、ジベンゾフラニル基、アザジベンゾフラニル基、チオフェニル基、ベンゾチエニル基、ジベンゾチエニル基、アザジベンゾチエニル基、キノリル基、イソキノリル基、キノキサリニル基、キナゾリニル基、ナフチリジニル基、カルバゾリル基、アザカルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、オキサゾリル基、オキサジアゾリル基、フラザニル基、ベンズオキサゾリル基、チエニル基、チアゾリル基、チアジアゾリル基、ベンズチアゾリル基、トリアゾリル基、テトラゾリル基等が挙げられ、好ましくは、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、ピリジル基、ピリミジニル基、トリアジニル基、アザジベンゾフラニル基、及びアザジベンゾチエニル基等を挙げることができる。
ヘテロアリール基としては、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、ピリジル基、ピリミジニル基、トリアジニル基、アザジベンゾフラニル基、又はアザジベンゾチエニル基が好ましく、ジベンゾフラニル基、ジベンゾチエニル基、アザジベンゾフラニル基、又はアザジベンゾチエニル基がさらに好ましい。
Specific examples of the heteroaryl group (sometimes referred to as a heterocyclic group, a heteroaromatic ring group, or an aromatic heterocyclic group) include a pyrrolyl group, a pyrazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridadinyl group, and a pyridyl group. , Triazinyl group, indolyl group, isoindrill group, imidazolyl group, benzimidazolyl group, indazolyl group, imidazole [1,2-a] pyridinyl group, furyl group, benzofuranyl group, isobenzofuranyl group, dibenzofuranyl group, azadibenzo Furanyl group, thiophenyl group, benzothienyl group, dibenzothienyl group, azadibenzothienyl group, quinolyl group, isoquinolyl group, quinoxalinyl group, quinazolinyl group, naphthyldinyl group, carbazolyl group, azacarbazolyl group, phenanthridinyl group, acridinyl group, Phenanthrolinyl group, phenazinyl group, phenothiazinyl group, phenoxadinyl group, oxazolyl group, oxadiazolyl group, frazayl group, benzoxazolyl group, thienyl group, thiazolyl group, thiadiazolyl group, benzthiazolyl group, triazolyl group, tetrazolyl group, etc. Preferred examples thereof include a dibenzofuranyl group, a dibenzothienyl group, a carbazolyl group, a pyridyl group, a pyrimidinyl group, a triazinyl group, an azadibenzofuranyl group, and an azadibenzothienyl group.
As the heteroaryl group, a dibenzofuranyl group, a dibenzothienyl group, a carbazolyl group, a pyridyl group, a pyrimidinyl group, a triazinyl group, an azadibenzofuranyl group, or an azadibenzothienyl group is preferable, and a dibenzofuranyl group, a dibenzothienyl group, Azadibenzofuranyl groups or azadibenzothienyl groups are more preferred.
第三の化合物M3において、置換シリル基は、置換または無置換のトリアルキルシリル基、置換または無置換のアリールアルキルシリル基、及び置換または無置換のトリアリールシリル基からなる群から選択されることも好ましい。
置換または無置換のトリアルキルシリル基の具体例としては、トリメチルシリル基、及びトリエチルシリル基を挙げることができる。
置換若しくは無置換のアリールアルキルシリル基の具体例としては、ジフェニルメチルシリル基、ジトリルメチルシリル基、及びフェニルジメチルシリル基等を挙げることができる。
置換または無置換のトリアリールシリル基の具体例としては、トリフェニルシリル基、及びトリトリルシリル基等を挙げることができる。
In the third compound M3, the substituted silyl group is selected from the group consisting of a substituted or unsubstituted trialkylsilyl group, a substituted or unsubstituted arylalkylsilyl group, and a substituted or unsubstituted triarylsilyl group. Is also preferable.
Specific examples of the substituted or unsubstituted trialkylsilyl group include a trimethylsilyl group and a triethylsilyl group.
Specific examples of the substituted or unsubstituted arylalkylsilyl group include a diphenylmethylsilyl group, a ditrilmethylsilyl group, a phenyldimethylsilyl group and the like.
Specific examples of the substituted or unsubstituted triarylsilyl group include a triphenylsilyl group and a tritrylsilyl group.
第三の化合物M3において、置換ホスフィンオキシド基は、置換または無置換のジアリールホスフィンオキシド基であることも好ましい。
置換または無置換のジアリールホスフィンオキシド基の具体例としては、ジフェニルホスフィンオキシド基、及びジトリルホスフィンオキシド基等を挙げることができる。
In the third compound M3, the substituted phosphine oxide group is also preferably a substituted or unsubstituted diarylphosphine oxide group.
Specific examples of the substituted or unsubstituted diarylphosphine oxide group include a diphenylphosphine oxide group and a ditrilphosphine oxide group.
第三の化合物M3において、置換カルボキシ基としては、例えば、ベンゾイルオキシ基等が挙げられる。 In the third compound M3, examples of the substituted carboxy group include a benzoyloxy group and the like.
本実施形態に係る第三の化合物M3の具体例を以下に示す。なお、本発明における第三の化合物M3は、これらの具体例に限定されない。 Specific examples of the third compound M3 according to the present embodiment are shown below. The third compound M3 in the present invention is not limited to these specific examples.
<発光層における第一の化合物、第二の化合物、及び第三の化合物の関係>
本実施形態の有機EL素子において、第二の化合物M2の一重項エネルギーS1(Mat1)と、第三の化合物M3の一重項エネルギーS1(Mat3)とは、下記数式(数2)の関係を満たすことが好ましい。
S1(Mat3)>S1(Mat2)…(数2)
<Relationship between the first compound, the second compound, and the third compound in the light emitting layer>
In the organic EL device of the present embodiment, the singlet energy S 1 (Mat1) of the second compound M2, a singlet energy S 1 of the third compound M3 (MAT3), relationship of the following equation (Equation 2) It is preferable to satisfy.
S 1 (Mat3)> S 1 (Mat2) ... ( number 2)
第三の化合物M3の77[K]におけるエネルギーギャップT77K(Mat3)は、第二の化合物M2の77[K]におけるエネルギーギャップT77K(Mat2)よりも大きいことが好ましく、下記数式(数3A)の関係を満たすことが好ましい。
T77K(Mat3)>T77K(Mat2)…(数3A)
The energy gap T 77K (Mat3) in 77 [K] of the third compound M3 is preferably larger than the energy gap T 77K (Mat2) in 77 [K] of the second compound M2, and the following formula (Equation 3A) ) Satisfy the relationship.
T 77K (Mat3)> T 77K (Mat2) ... (Equation 3A)
第三の化合物M3の77[K]におけるエネルギーギャップT77K(Mat3)は、第一の化合物M1の77[K]におけるエネルギーギャップT77K(Mat1)よりも大きいことが好ましく、下記数式(数3B)の関係を満たすことが好ましい。
T77K(Mat3)>T77K(Mat1)…(数3B)
The energy gap T 77K (Mat3) in 77 [K] of the third compound M3 is preferably larger than the energy gap T 77K (Mat1) in 77 [K] of the first compound M1 and is preferably larger than the following formula (Equation 3B). ) Satisfy the relationship.
T 77K (Mat3)> T 77K (Mat1) ... (Number 3B)
第二の化合物M2の一重項エネルギーS1(Mat2)と、第一の化合物M1の一重項エネルギーS1(Mat1)と、第三の化合物M3の一重項エネルギーS1(Mat3)とは、下記数式(数2A)の関係を満たすことが好ましい。
S1(Mat3)>S1(Mat2)>S1(Mat1)…(数2A)
The singlet energy S 1 of the second compound M2 (Mat2), a singlet energy S 1 (Mat1) of the first compound M1, and the singlet energy S 1 of the third compound M3 (Mat3), following It is preferable to satisfy the relationship of the mathematical formula (Equation 2A).
S 1 (Mat 3)> S 1 (Mat 2)> S 1 (Mat 1 ) ... (Equation 2A)
第一の化合物M1の77[K]におけるエネルギーギャップT77K(Mat1)と、第二の化合物M2の77[K]におけるエネルギーギャップT77K(Mat2)と、第三の化合物M3の77[K]におけるエネルギーギャップT77K(Mat3)とは、下記数式(数3C)の関係を満たすことが好ましい。
T77K(Mat3)>T77K(Mat2)>T77K(Mat1)…(数3C)
An energy gap T 77K (Mat1) in 77 [K] of the first compound M1, the energy gap T 77K at 77 [K] of the second compound M2 (Mat2), 77 of the third compound M3 [K] It is preferable that the energy gap T 77K (Mat3) in the above satisfies the relationship of the following mathematical formula (Equation 3C).
T 77K (Mat3)> T 77K (Mat2)> T 77K (Mat1) ... (Number 3C)
本実施形態の有機EL素子を発光させたときに、発光層において、主に蛍光発光性の化合物が発光していることが好ましい。
本実施形態の有機EL素子は、第一実施形態の有機EL素子と同様に、赤色発光又は緑色発光することが好ましい。
有機EL素子から発光する光の主ピーク波長は、第一実施形態の有機EL素子と同様の方法で測定することができる。
When the organic EL element of the present embodiment is made to emit light, it is preferable that a fluorescent compound mainly emits light in the light emitting layer.
The organic EL element of the present embodiment preferably emits red light or green light, like the organic EL element of the first embodiment.
The main peak wavelength of the light emitted from the organic EL element can be measured by the same method as that of the organic EL element of the first embodiment.
・発光層における化合物の含有率
発光層に含まれている第二の化合物M2、第一の化合物M1、及び第三の化合物の含有率は、例えば、以下の範囲であることが好ましい。
第二の化合物M2の含有率は、10質量%以上80質量%以下であることが好ましく、10質量%以上60質量%以下であることがより好ましく、20質量%以上60質量%以下であることがさらに好ましい。
第一の化合物M1の含有率は、0.01質量%以上10質量%以下であることが好ましく、0.01質量%以上5質量%以下であることがより好ましく、0.01質量%以上1質量%以下であることがさらに好ましい。
第三の化合物の含有率は、10質量%以上80質量%以下であることが好ましい。
発光層における第二の化合物M2、第一の化合物M1、及び第三の化合物M3の合計含有率の上限は、100質量%である。なお、本実施形態は、発光層に、第二の化合物M2、第一の化合物M1、及び第三の化合物M3以外の材料が含まれることを除外しない。
発光層は、第二の化合物M2を1種のみ含んでもよいし、2種以上含んでもよい。発光層は、第一の化合物M1を1種のみ含んでもよいし、2種以上含んでもよい。発光層は、第三の化合物M3を1種のみ含んでもよいし、2種以上含んでもよい。
-Compound content in the light emitting layer The content of the second compound M2, the first compound M1 and the third compound contained in the light emitting layer is preferably in the following range, for example.
The content of the second compound M2 is preferably 10% by mass or more and 80% by mass or less, more preferably 10% by mass or more and 60% by mass or less, and 20% by mass or more and 60% by mass or less. Is even more preferable.
The content of the first compound M1 is preferably 0.01% by mass or more and 10% by mass or less, more preferably 0.01% by mass or more and 5% by mass or less, and 0.01% by mass or more and 1 It is more preferably mass% or less.
The content of the third compound is preferably 10% by mass or more and 80% by mass or less.
The upper limit of the total content of the second compound M2, the first compound M1, and the third compound M3 in the light emitting layer is 100% by mass. The present embodiment does not exclude that the light emitting layer contains materials other than the second compound M2, the first compound M1, and the third compound M3.
The light emitting layer may contain only one type of the second compound M2, or may contain two or more types. The light emitting layer may contain only one kind of the first compound M1 or two or more kinds. The light emitting layer may contain only one type of the third compound M3, or may contain two or more types.
図5は、発光層における第二の化合物M2、第一の化合物M1、及び第三の化合物M3のエネルギー準位の関係の一例を示す図である。図5において、S0は、基底状態を表す。S1(Mat1)は、第一の化合物M1の最低励起一重項状態を表し、T1(Mat1)は、第一の化合物M1の最低励起三重項状態を表す。S1(Mat2)は、第二の化合物M2の最低励起一重項状態を表し、T1(Mat2)は、第二の化合物M2の最低励起三重項状態を表す。S1(Mat3)は、第三の化合物M3の最低励起一重項状態を表し、T1(Mat3)は、第三の化合物M3の最低励起三重項状態を表す。
図5中のS1(Mat2)からS1(Mat1)へ向かう破線の矢印は、第二の化合物M2の最低励起一重項状態から第一の化合物M1の最低励起一重項状態へのフェルスター型エネルギー移動を表す。
図5に示すように、第二の化合物M2としてΔST(Mat2)の小さな化合物を用いると、最低励起三重項状態T1(Mat2)は、熱エネルギーにより、最低励起一重項状態S1(Mat2)に逆項間交差が可能である。そして、第二の化合物M2の最低励起一重項状態S1(Mat2)から第一の化合物M1へのフェルスター型エネルギー移動が生じ、最低励起一重項状態S1(Mat1)が生成する。この結果、第一の化合物M1の最低励起一重項状態S1(Mat1)からの蛍光発光を観測することができる。このTADFメカニズムによる遅延蛍光を利用することによっても、理論的に内部量子効率を100%まで高めることができると考えられている。
FIG. 5 is a diagram showing an example of the relationship between the energy levels of the second compound M2, the first compound M1, and the third compound M3 in the light emitting layer. In FIG. 5, S0 represents the ground state. S1 (Mat1) represents the lowest excited singlet state of the first compound M1, and T1 (Mat1) represents the lowest excited triplet state of the first compound M1. S1 (Mat2) represents the lowest excited singlet state of the second compound M2, and T1 (Mat2) represents the lowest excited triplet state of the second compound M2. S1 (Mat3) represents the lowest excited singlet state of the third compound M3, and T1 (Mat3) represents the lowest excited triplet state of the third compound M3.
The dashed arrow from S1 (Mat2) to S1 (Mat1) in FIG. 5 indicates the Felster-type energy transfer from the lowest excited singlet state of the second compound M2 to the lowest excited singlet state of the first compound M1. Represents.
As shown in FIG. 5, when a compound having a small ΔST (Mat2) is used as the second compound M2, the lowest excited triplet state T1 (Mat2) is reversed to the lowest excited singlet state S1 (Mat2) by thermal energy. Intersystem crossing is possible. Then, Felster-type energy transfer from the lowest excited singlet state S1 (Mat2) of the second compound M2 to the first compound M1 occurs, and the lowest excited singlet state S1 (Mat1) is generated. As a result, fluorescence emission from the lowest excited singlet state S1 (Mat1) of the first compound M1 can be observed. It is believed that the internal quantum efficiency can theoretically be increased to 100% by utilizing the delayed fluorescence by this TADF mechanism.
第二実施形態に係る有機EL素子は、発光層に、第二の化合物M2と、第二の化合物M2よりも小さな一重項エネルギーを有する第一の化合物M1と、第二の化合物M2よりも大きな一重項エネルギーを有する第三の化合物M3と、を含んでいる。 The organic EL element according to the second embodiment has a second compound M2, a first compound M1 having a singlet energy smaller than that of the second compound M2, and a larger one than the second compound M2 in the light emitting layer. It contains a third compound, M3, which has singlet energy.
第二実施形態に係る有機EL素子は、表示装置及び発光装置等の電子機器に使用できる。 The organic EL element according to the second embodiment can be used for electronic devices such as display devices and light emitting devices.
本実施形態に係る有機エレクトロルミネッセンス素子によれば、高性能化、特に長寿命で発光する。 According to the organic electroluminescence device according to the present embodiment, high performance, particularly long life is emitted.
〔第三実施形態〕
[電子機器]
本実施形態に係る電子機器は、上述の実施形態のいずれかの有機EL素子を搭載している。電子機器としては、例えば、表示装置及び発光装置等が挙げられる。表示装置としては、例えば、表示部品(例えば、有機ELパネルモジュール等)、テレビ、携帯電話、タブレット、及びパーソナルコンピュータ等が挙げられる。発光装置としては、例えば、照明及び車両用灯具等が挙げられる。
[Third Embodiment]
[Electronics]
The electronic device according to this embodiment is equipped with an organic EL element according to any one of the above-described embodiments. Examples of the electronic device include a display device and a light emitting device. Examples of the display device include display components (for example, organic EL panel modules, etc.), televisions, mobile phones, tablets, personal computers, and the like. Examples of the light emitting device include lighting and vehicle lighting equipment.
〔その他の説明〕
本明細書において、Rx及びRyが互いに結合して環を形成するとは、例えば、Rx及びRyが炭素原子、窒素原子、酸素原子、硫黄原子又はケイ素原子を含み、Rxに含まれる原子(炭素原子、窒素原子、酸素原子、硫黄原子又はケイ素原子)と、Ryに含まれる原子(炭素原子、窒素原子、酸素原子、硫黄原子又はケイ素原子)とが、単結合、二重結合、三重結合、又は二価の連結基を介して結合し、環形成原子数が5以上の環(具体的には、複素環又は芳香族炭化水素環)を形成することを意味する。xは、数字、文字、又は、数字と文字との組み合わせである。yは、数字、文字、又は、数字と文字との組み合わせである。
二価の連結基としては特に制限されないが、例えば、−O−、−CO−、−CO2−、−S−、−SO−、−SO2−、−NH−、−NRa−、及びこれらの連結基を2以上組み合わせた基等が挙げられる。
複素環の具体例としては、後述の「一般式中における各置換基についての説明」で例示した「ヘテロアリール基Sub2」から結合手を除いた環構造(複素環)が挙げられる。これらの複素環は置換基を有していてもよい。
芳香族炭化水素環の具体例としては、後述の「一般式中における各置換基についての説明」で例示した「アリール基Sub1」から結合手を除いた環構造(芳香族炭化水素環)が挙げられる。これらの芳香族炭化水素環は置換基を有していてもよい。
Raとしては、例えば、後述の「一般式中における各置換基についての説明」で例示した置換もしくは無置換の炭素数1〜30のアルキル基Sub3、置換もしくは無置換の環形成炭素数6〜30のアリール基Sub1、置換もしくは無置換の環形成原子数5〜30のヘテロアリール基Sub2等が挙げられる。
例えば、Rx及びRyが互いに結合して環を形成するとは、下記一般式(E1)で表される分子構造において、Rx1に含まれる原子と、Ry1に含まれる原子とが、一般式(E2)で表される環(環構造)Eを形成すること;一般式(F1)で表される分子構造において、Rx1に含まれる原子と、Ry1に含まれる原子とが、一般式(F2)で表される環Fを形成すること;一般式(G1)で表される分子構造において、Rx1に含まれる原子と、Ry1に含まれる原子とが、一般式(G2)で表される環Gを形成すること;一般式(H1)で表される分子構造において、Rx1に含まれる原子と、Ry1に含まれる原子とが、一般式(H2)で表される環Hを形成すること;一般式(I1)で表される分子構造において、Rx1に含まれる原子と、Ry1に含まれる原子とが、一般式(I2)で表される環Iを形成すること;を意味する。
一般式(E1)〜(I1)中、*は、それぞれ独立に、一分子中の他の原子との結合位置を表す。一般式(E1)中の2つの*は一般式(E2)中の2つの*にそれぞれ対応し、一般式(F1)中の2つの*は一般式(F2)中の2つの*にそれぞれ対応し、一般式(G1)中の2つの*は一般式(G2)中の2つの*にそれぞれ対応し、一般式(H1)中の2つの*は一般式(H2)中の2つの*にそれぞれ対応し、一般式(I1)中の2つの*は一般式(I2)中の2つの*にそれぞれ対応する。
[Other explanations]
In the present specification, when Rx and Ry are bonded to each other to form a ring, for example, Rx and Ry include a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom or a silicon atom, and an atom contained in Rx (carbon atom). , Nitrogen atom, oxygen atom, sulfur atom or silicon atom) and the atom contained in Ry (carbon atom, nitrogen atom, oxygen atom, sulfur atom or silicon atom) are single-bonded, double-bonded, triple-bonded, or It means that they are bonded via a divalent linking group to form a ring having 5 or more ring-forming atoms (specifically, a heterocycle or an aromatic hydrocarbon ring). x is a number, a letter, or a combination of a number and a letter. y is a number, a letter, or a combination of a number and a letter.
There is no particular restriction on the divalent linking group, e.g., -O -, - CO -, - CO 2 -, - S -, - SO -, - SO 2 -, - NH -, - NRa-, and their Examples thereof include a group in which two or more linking groups of the above are combined.
Specific examples of the heterocycle include a ring structure (heterocycle) obtained by removing the bond from the "heteroaryl group Sub 2 " exemplified in "Explanation of each substituent in the general formula" described later. These heterocycles may have substituents.
As a specific example of the aromatic hydrocarbon ring, a ring structure (aromatic hydrocarbon ring) obtained by removing the bond from the "aryl group Sub 1 " exemplified in "Explanation of each substituent in the general formula" described later is used. Can be mentioned. These aromatic hydrocarbon rings may have a substituent.
Examples of Ra include the substituted or unsubstituted alkyl group Sub 3 having 1 to 30 carbon atoms exemplified in the "Explanation of each substituent in the general formula" described later, and the substituted or unsubstituted ring-forming carbon number 6 to 3. Examples thereof include an aryl group Sub 1 of 30 and a heteroaryl group Sub 2 having 5 to 30 substituted or unsubstituted ring-forming atoms.
For example, when Rx and Ry are bonded to each other to form a ring, in the molecular structure represented by the following general formula (E1), the atom contained in Rx 1 and the atom contained in Ry 1 are represented by the general formula (E1). Forming the ring (ring structure) E represented by E2); In the molecular structure represented by the general formula (F1), the atom contained in Rx 1 and the atom contained in Ry 1 are represented by the general formula (F1). Forming the ring F represented by F2); In the molecular structure represented by the general formula (G1), the atom contained in Rx 1 and the atom contained in Ry 1 are represented by the general formula (G2). In the molecular structure represented by the general formula (H1), the atom contained in Rx 1 and the atom contained in Ry 1 form the ring H represented by the general formula (H2). In the molecular structure represented by the general formula (I1), the atom contained in Rx 1 and the atom contained in Ry 1 form a ring I represented by the general formula (I2). Means;
In the general formulas (E1) to (I1), * independently represents a bond position with another atom in one molecule. The two * in the general formula (E1) correspond to the two * in the general formula (E2), respectively, and the two * in the general formula (F1) correspond to the two * in the general formula (F2), respectively. Then, the two * in the general formula (G1) correspond to the two * in the general formula (G2), respectively, and the two * in the general formula (H1) correspond to the two * in the general formula (H2). Corresponding to each, the two * in the general formula (I1) correspond to the two * in the general formula (I2), respectively.
一般式(E2)〜(I2)で表される分子構造において、E〜Iはそれぞれ環構造(前記環形成原子数が5以上の環)を表す。一般式(E2)〜(I2)中、*は、それぞれ独立に、一分子中の他の原子との結合位置を表す。一般式(E2)中の2つの*は一般式(E1)中の2つの*にそれぞれ対応する。一般式(F2)〜(I2)中の2つの*についても同様に、一般式(F1)〜(I1)中の2つの*にそれぞれ対応する。 In the molecular structures represented by the general formulas (E2) to (I2), E to I each represent a ring structure (the ring having 5 or more ring-forming atoms). In the general formulas (E2) to (I2), * independently represents a bond position with another atom in one molecule. The two * in the general formula (E2) correspond to the two * in the general formula (E1), respectively. Similarly, the two * in the general formulas (F2) to (I2) correspond to the two * in the general formulas (F1) to (I1), respectively.
例えば、一般式(E1)において、Rx1及びRy1が互いに結合して一般式(E2)中の環Eを形成し、環Eが無置換のベンゼン環である場合、一般式(E1)で表される分子構造は、下記一般式(E3)で表される分子構造になる。ここで、一般式(E3)中の2つの*は、それぞれ独立に、一般式(E2)及び一般式(E1)中の2つの*に対応する。
例えば、一般式(E1)において、Rx1及びRy1が互いに結合して一般式(E2)中の環Eを形成し、環Eが無置換のピロール環である場合、一般式(E1)で表される分子構造は、下記一般式(E4)で表される分子構造になる。ここで、一般式(E4)中の2つの*は、それぞれ独立に、一般式(E2)及び一般式(E1)中の2つの*に対応する。一般式(E3)及び(E4)中、*は、それぞれ独立に、一分子中の他の原子との結合位置を表す。
For example, in the general formula (E1), when Rx 1 and Ry 1 are bonded to each other to form the ring E in the general formula (E2) and the ring E is an unsubstituted benzene ring, the general formula (E1) is used. The molecular structure represented is the molecular structure represented by the following general formula (E3). Here, the two * in the general formula (E3) correspond independently to the two * in the general formula (E2) and the general formula (E1), respectively.
For example, in the general formula (E1), when Rx 1 and Ry 1 are bonded to each other to form the ring E in the general formula (E2) and the ring E is an unsubstituted pyrrole ring, the general formula (E1) is used. The molecular structure represented is the molecular structure represented by the following general formula (E4). Here, the two * in the general formula (E4) correspond independently to the two * in the general formula (E2) and the general formula (E1), respectively. In the general formulas (E3) and (E4), * independently represents a bond position with another atom in one molecule.
本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記載される「環形成炭素数」については、特筆しない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジニル基は環形成炭素数が5であり、フラニル基は環形成炭素数4である。また、ベンゼン環やナフタレン環に置換基として例えばアルキル基が置換している場合、当該アルキル基の炭素数は、環形成炭素数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の炭素数は環形成炭素数の数に含めない。 In the present specification, the ring-forming carbon number constitutes the ring itself of a compound having a structure in which atoms are cyclically bonded (for example, a monocyclic compound, a fused ring compound, a crosslinked compound, a carbocyclic compound, or a heterocyclic compound). Represents the number of carbon atoms in an atom. When the ring is substituted with a substituent, the carbon contained in the substituent is not included in the ring-forming carbon number. The "ring-forming carbon number" described below shall be the same unless otherwise specified. For example, a benzene ring has a ring-forming carbon number of 6, a naphthalene ring has a ring-forming carbon number of 10, a pyridinyl group has a ring-forming carbon number of 5, and a furanyl group has a ring-forming carbon number of 4. When, for example, an alkyl group is substituted as a substituent on the benzene ring or naphthalene ring, the number of carbon atoms of the alkyl group is not included in the number of ring-forming carbon atoms. When, for example, a fluorene ring is bonded to the fluorene ring as a substituent (including a spirofluorene ring), the number of carbon atoms of the fluorene ring as a substituent is not included in the number of ring-forming carbon atoms.
本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記載される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環は、環形成原子数が6であり、キナゾリン環は、環形成原子数が10であり、フラン環は、環形成原子数が5である。ピリジン環やキナゾリン環の炭素原子にそれぞれ結合している水素原子や置換基を構成する原子については、環形成原子数の数に含めない。
また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の原子数は環形成原子数の数に含めない。
In the present specification, the number of ring-forming atoms is a compound having a structure in which atoms are cyclically bonded (for example, a monocycle, a fused ring, or a ring assembly) (for example, a monocyclic compound, a fused ring compound, a crosslinked compound, a carbocyclic compound, or a complex). It represents the number of atoms constituting the ring itself of the ring compound). Atoms that do not form a ring and atoms contained in the substituent when the ring is substituted by a substituent are not included in the number of ring-forming atoms. The "number of ring-forming atoms" described below shall be the same unless otherwise specified. For example, the pyridine ring has 6 ring-forming atoms, the quinazoline ring has 10 ring-forming atoms, and the furan ring has 5 ring-forming atoms. Hydrogen atoms bonded to carbon atoms of the pyridine ring and quinazoline ring and atoms constituting substituents are not included in the number of ring-forming atoms.
When, for example, a fluorene ring is bonded to the fluorene ring as a substituent (including a spirofluorene ring), the number of atoms of the fluorene ring as a substituent is not included in the number of ring-forming atoms.
・一般式中の各置換基についての説明(各置換基の説明)
次に、本明細書における一般式中の各置換基について説明する。
-Explanation of each substituent in the general formula (Explanation of each substituent)
Next, each substituent in the general formula in the present specification will be described.
本明細書におけるアリール基(芳香族炭化水素基と称する場合がある。)は、例えば、アリール基Sub1であり、アリール基Sub1は、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、ピレニル基、クリセニル基、フルオランテニル基、ベンゾ[a]アントリル基、ベンゾ[c]フェナントリル基、トリフェニレニル基、ベンゾ[k]フルオランテニル基、ベンゾ[g]クリセニル基、ベンゾ[b]トリフェニレニル基、ピセニル基、及びペリレニル基からなる群から選択される少なくともいずれかの基である。 The aryl group (sometimes referred to as an aromatic hydrocarbon group) in the present specification is, for example, an aryl group Sub 1 , and the aryl group Sub 1 is a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, or anthryl. Group, phenanthryl group, fluorenyl group, pyrenyl group, chrysenyl group, fluoranthenyl group, benzo [a] anthryl group, benzo [c] phenanthryl group, triphenylenyl group, benzo [k] fluoranthenyl group, benzo [g] chrysenyl It is at least one group selected from the group consisting of a group, a benzo [b] triphenylenyl group, a pisenyl group, and a perylenyl group.
本明細書におけるアリール基Sub1としては、環形成炭素数が、6〜30であることが好ましく、6〜20であることがより好ましく、6〜14であることがさらに好ましく、6〜12であることがよりさらに好ましい。上記アリール基Sub1の中でもフェニル基、ビフェニル基、ナフチル基、フェナントリル基、ターフェニル基、及びフルオレニル基が好ましい。1−フルオレニル基、2−フルオレニル基、3−フルオレニル基及び4−フルオレニル基については、9位の炭素原子に、後述する本明細書における置換もしくは無置換のアルキル基Sub3や、置換もしくは無置換のアリール基Sub1が置換されていることが好ましい。 As the aryl group Sub 1 in the present specification, the ring-forming carbon number is preferably 6 to 30, more preferably 6 to 20, further preferably 6 to 14, and 6 to 12. It is even more preferable to have. Among the aryl groups Sub 1 , phenyl group, biphenyl group, naphthyl group, phenanthryl group, terphenyl group, and fluorenyl group are preferable. For the 1-fluorenyl group, 2-fluorenyl group, 3-fluorenyl group and 4-fluorenyl group, the carbon atom at the 9-position is substituted with the substituted or unsubstituted alkyl group Sub 3 described later, or substituted or unsubstituted. It is preferable that the aryl group Sub 1 of the above is substituted.
本明細書におけるヘテロアリール基(複素環基、ヘテロ芳香族環基、又は芳香族複素環基と称する場合がある。)は、例えば、複素環基Sub2である。複素環基Sub2は、ヘテロ原子として、窒素、硫黄、酸素、ケイ素、セレン原子、及びゲルマニウム原子からなる群から選択される少なくともいずれかの原子を含む基である。複素環基Sub2は、ヘテロ原子として、窒素、硫黄、及び酸素からなる群から選択される少なくともいずれかの原子を含む基であることが好ましい。 The heteroaryl group (sometimes referred to as a heterocyclic group, a heteroaromatic ring group, or an aromatic heterocyclic group) in the present specification is, for example, the heterocyclic group Sub 2 . The heterocyclic group Sub 2 is a group containing at least one atom selected from the group consisting of nitrogen, sulfur, oxygen, silicon, selenium atom, and germanium atom as a heteroatom. The heterocyclic group Sub 2 is preferably a group containing at least one atom selected from the group consisting of nitrogen, sulfur, and oxygen as a heteroatom.
本明細書における複素環基Sub2は、例えば、ピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基、トリアジニル基、キノリル基、イソキノリニル基、ナフチリジニル基、フタラジニル基、キノキサリニル基、キナゾリニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、ベンズイミダゾリル基、インダゾリル基、イミダゾピリジニル基、ベンズトリアゾリル基、カルバゾリル基、フリル基、チエニル基、オキサゾリル基、チアゾリル基、イソキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、ベンゾフラニル基、ベンゾチエニル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾイソキサゾリル基、ベンゾイソチアゾリル基、ベンゾオキサジアゾリル基、ベンゾチアジアゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ピペリジニル基、ピロリジニル基、ピペラジニル基、モルホリル基、フェナジニル基、フェノチアジニル基、及びフェノキサジニル基からなる群から選択される少なくともいずれかの基である。 The heterocyclic group Sub 2 in the present specification is, for example, pyridyl group, pyrimidinyl group, pyrazinyl group, pyridadinyl group, triazinyl group, quinolyl group, isoquinolinyl group, naphthyldinyl group, phthalazinyl group, quinoxalinyl group, quinazolinyl group, phenanthridinyl. Group, acridinyl group, phenanthrolinyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, triazolyl group, tetrazolyl group, indrill group, benzimidazolyl group, indazolyl group, imidazolylinyl group, benztriazolyl group, carbazolyl group , Frill group, thienyl group, oxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, oxadiazolyl group, thiadiazolyl group, benzofuranyl group, benzothienyl group, benzoxazolyl group, benzothiazolyl group, benzoisoxazolyl group, benzoisoti A group consisting of an azolyl group, a benzoxaziazolyl group, a benzothiasiazolyl group, a dibenzofuranyl group, a dibenzothienyl group, a piperidinyl group, a pyrrolidinyl group, a piperazinyl group, a morpholic group, a phenazinyl group, a phenothiazinyl group, and a phenoxadinyl group. At least one of the groups selected from.
本明細書における複素環基Sub2としては、環形成原子数が、5〜30であることが好ましく、5〜20であることがより好ましく、5〜14であることがさらに好ましい。上記複素環基Sub2の中でも1−ジベンゾフラニル基、2−ジベンゾフラニル基、3−ジベンゾフラニル基、4−ジベンゾフラニル基、1−ジベンゾチエニル基、2−ジベンゾチエニル基、3−ジベンゾチエニル基、4−ジベンゾチエニル基、1−カルバゾリル基、2−カルバゾリル基、3−カルバゾリル基、4−カルバゾリル基、及び9−カルバゾリル基がさらにより好ましい。1−カルバゾリル基、2−カルバゾリル基、3−カルバゾリル基及び4−カルバゾリル基については、9位の窒素原子に、本明細書における置換もしくは無置換のアリール基Sub1や、置換もしくは無置換の複素環基Sub2が置換していることが好ましい。 As the heterocyclic group Sub 2 in the present specification, the number of ring-forming atoms is preferably 5 to 30, more preferably 5 to 20, and even more preferably 5 to 14. Among the above heterocyclic groups Sub 2 , 1-dibenzofuranyl group, 2-dibenzofuranyl group, 3-dibenzofuranyl group, 4-dibenzofuranyl group, 1-dibenzothienyl group, 2-dibenzothienyl group, 3- Dibenzothienyl groups, 4-dibenzothienyl groups, 1-carbazolyl groups, 2-carbazolyl groups, 3-carbazolyl groups, 4-carbazolyl groups, and 9-carbazolyl groups are even more preferred. For the 1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group and 4-carbazolyl group, the nitrogen atom at the 9-position may be substituted or unsubstituted aryl group Sub 1 or a substituted or unsubstituted heterocycle in the present specification. It is preferable that the ring group Sub 2 is substituted.
また、本明細書において、複素環基Sub2は、例えば、下記一般式(XY−1)〜(XY−18)で表される部分構造から誘導される基であってもよい。 Further, in the present specification, the heterocyclic group Sub 2 may be, for example, a group derived from a partial structure represented by the following general formulas (XY-1) to (XY-18).
前記一般式(XY−1)〜(XY−18)において、XA及びYAは、それぞれ独立に、ヘテロ原子であり、酸素原子、硫黄原子、セレン原子、ケイ素原子、又はゲルマニウム原子であることが好ましい。前記一般式(XY−1)〜(XY−18)で表される部分構造は、任意の位置で結合手を有して複素環基となり、この複素環基は、置換基を有していてもよい。 In Formula (XY-1) ~ (XY -18), it is X A and Y A, independently, a heteroatom, an oxygen atom, a sulfur atom, a selenium atom, silicon atom, or germanium atom Is preferable. The partial structures represented by the general formulas (XY-1) to (XY-18) have a bond at an arbitrary position to form a heterocyclic group, and this heterocyclic group has a substituent. May be good.
また、本明細書において、複素環基Sub2は、例えば、下記一般式(XY−19)〜(XY−22)で表される基であってもよい。また、結合手の位置も適宜変更され得る。 Further, in the present specification, the heterocyclic group Sub 2 may be, for example, a group represented by the following general formulas (XY-19) to (XY-22). In addition, the position of the joint can be changed as appropriate.
本明細書におけるアルキル基は、直鎖のアルキル基、分岐鎖のアルキル基又は環状のアルキル基のいずれであってもよい。
本明細書におけるアルキル基は、例えば、アルキル基Sub3である。
本明細書における直鎖のアルキル基は、例えば、直鎖のアルキル基Sub31である。
本明細書における分岐鎖のアルキル基は、例えば、分岐鎖のアルキル基Sub32である。
本明細書における環状のアルキル基は、例えば、環状のアルキル基Sub33である。
アルキル基Sub3は、例えば、直鎖のアルキル基Sub31、分岐鎖のアルキル基Sub32、及び環状のアルキル基Sub33からなる群から選択される少なくともいずれかの基である。
The alkyl group in the present specification may be a linear alkyl group, a branched chain alkyl group, or a cyclic alkyl group.
The alkyl group in the present specification is, for example, the alkyl group Sub 3 .
The linear alkyl group in the present specification is, for example, the linear alkyl group Sub 31 .
The alkyl group of the branched chain in the present specification is, for example, the alkyl group Sub 32 of the branched chain.
The cyclic alkyl group in the present specification is, for example, the cyclic alkyl group Sub 33 .
The alkyl group Sub 3 is, for example, at least one group selected from the group consisting of a linear alkyl group Sub 31 , a branched chain alkyl group Sub 32 , and a cyclic alkyl group Sub 33 .
直鎖のアルキル基Sub31又は分岐鎖のアルキル基Sub32は、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、ネオペンチル基、アミル基、イソアミル基、1−メチルペンチル基、2−メチルペンチル基、1−ペンチルヘキシル基、1−ブチルペンチル基、1−ヘプチルオクチル基、及び3−メチルペンチル基からなる群から選択される少なくともいずれかの基である。 The linear alkyl group Sub 31 or the branched alkyl group Sub 32 is, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group. , N-Pentyl group, n-Hexyl group, n-Heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group , N-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, neopentyl group, amyl group, isoamyl group, 1-methylpentyl group, 2-methylpentyl group, 1-pentylhexyl group, 1- At least one group selected from the group consisting of a butylpentyl group, a 1-heptyloctyl group, and a 3-methylpentyl group.
本明細書における直鎖のアルキル基Sub31又は分岐鎖のアルキル基Sub32の炭素数は、1〜30であることが好ましく、1〜20であることがより好ましく、1〜10であることがさらに好ましく、1〜6であることがよりさらに好ましい。上記直鎖のアルキル基Sub31又は分岐鎖のアルキル基Sub32としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、アミル基、イソアミル基、及びネオペンチル基がさらにより好ましい。 The linear alkyl group Sub 31 or the branched alkyl group Sub 32 in the present specification preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and preferably 1 to 10 carbon atoms. More preferably, it is even more preferably 1 to 6. The linear alkyl group Sub 31 or the branched alkyl group Sub 32 includes methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group and n. -Pentyl groups, n-hexyl groups, amyl groups, isoamyl groups, and neopentyl groups are even more preferred.
本明細書における環状のアルキル基Sub33は、例えば、シクロアルキル基Sub331である。 The cyclic alkyl group Sub 33 in the present specification is, for example, a cycloalkyl group Sub 331 .
本明細書におけるシクロアルキル基Sub331は、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4−メチルシクロヘキシル基、アダマンチル基、及びノルボルニル基からなる群から選択される少なくともいずれかの基である。シクロアルキル基Sub331の環形成炭素数は、3〜30であることが好ましく、3〜20であることがより好ましく、3〜10であることがさらに好ましく、5〜8であることがよりさらに好ましい。シクロアルキル基Sub331の中でも、シクロペンチル基やシクロヘキシル基がさらにより好ましい。 The cycloalkyl group Sub 331 in the present specification is, for example, at least one group selected from the group consisting of a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, an adamantyl group, and a norbornyl group. Is. The ring-forming carbon number of the cycloalkyl group Sub 331 is preferably 3 to 30, more preferably 3 to 20, further preferably 3 to 10, and even more preferably 5 to 8. preferable. Among the cycloalkyl groups Sub 331 , cyclopentyl groups and cyclohexyl groups are even more preferable.
本明細書におけるハロゲン化アルキル基は、例えば、ハロゲン化アルキル基Sub4であり、ハロゲン化アルキル基Sub4は、例えば、アルキル基Sub3が1以上のハロゲン原子、好ましくはフッ素原子で置換されたアルキル基である。 The alkyl halide group in the present specification is, for example, the alkyl halide group Sub 4 , and the alkyl halide group Sub 4 is, for example, the alkyl group Sub 3 substituted with one or more halogen atoms, preferably a fluorine atom. It is an alkyl group.
本明細書におけるハロゲン化アルキル基Sub4は、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、トリフルオロメチルメチル基、トリフルオロエチル基、及びペンタフルオロエチル基からなる群から選択される少なくともいずれかの基である。 The alkyl halide group Sub 4 in the present specification is, for example, a group consisting of a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a trifluoromethylmethyl group, a trifluoroethyl group, and a pentafluoroethyl group. At least one of the groups selected from.
本明細書における置換シリル基は、例えば、置換シリル基Sub5であり、置換シリル基Sub5は、例えば、アルキルシリル基Sub51及びアリールシリル基Sub52からなる群から選択される少なくともいずれかの基である。 The substituted silyl group in the present specification is, for example, the substituted silyl group Sub 5 , and the substituted silyl group Sub 5 is at least one selected from the group consisting of, for example, the alkylsilyl group Sub 51 and the arylsilyl group Sub 52 . Is the basis.
本明細書におけるアルキルシリル基Sub51は、例えば、上記アルキル基Sub3を有するトリアルキルシリル基Sub511である。
トリアルキルシリル基Sub511は、例えば、トリメチルシリル基、トリエチルシリル基、トリ−n−ブチルシリル基、トリ−n−オクチルシリル基、トリイソブチルシリル基、ジメチルエチルシリル基、ジメチルイソプロピルシリル基、ジメチル−n−プロピルシリル基、ジメチル−n−ブチルシリル基、ジメチル−t−ブチルシリル基、ジエチルイソプロピルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、及びトリイソプロピルシリル基からなる群から選択される少なくともいずれかの基である。トリアルキルシリル基Sub511における3つのアルキル基Sub3は、互いに同一でも異なっていてもよい。
The alkylsilyl group Sub 51 in the present specification is, for example, the trialkylsilyl group Sub 511 having the above-mentioned alkyl group Sub 3 .
The trialkylsilyl group Sub 511 is, for example, a trimethylsilyl group, a triethylsilyl group, a tri-n-butylsilyl group, a tri-n-octylsilyl group, a triisobutylsilyl group, a dimethylethylsilyl group, a dimethylisopropylsilyl group, a dimethyl-n. At least one selected from the group consisting of a -propylsilyl group, a dimethyl-n-butylsilyl group, a dimethyl-t-butylsilyl group, a diethylisopropylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, and a triisopropylsilyl group. Is the basis. The three alkyl groups Sub 3 in the trialkylsilyl group Sub 511 may be the same or different from each other.
本明細書におけるアリールシリル基Sub52は、例えば、ジアルキルアリールシリル基Sub521、アルキルジアリールシリル基Sub522、及びトリアリールシリル基Sub523からなる群から選択される少なくともいずれかの基である。 The arylsilyl group Sub 52 in the present specification is, for example, at least one group selected from the group consisting of the dialkylarylsilyl group Sub 521 , the alkyldiarylsilyl group Sub 522 , and the triarylsilyl group Sub 523 .
ジアルキルアリールシリル基Sub521は、例えば、上記アルキル基Sub3を2つ有し、上記アリール基Sub1を1つ有するジアルキルアリールシリル基である。ジアルキルアリールシリル基Sub521の炭素数は、8〜30であることが好ましい。 The dialkylarylsilyl group Sub 521 is, for example, a dialkylarylsilyl group having two alkyl groups Sub 3 and one aryl group Sub 1 . The dialkylarylsilyl group Sub 521 preferably has 8 to 30 carbon atoms.
アルキルジアリールシリル基Sub522は、例えば、上記アルキル基Sub3を1つ有し、上記アリール基Sub1を2つ有するアルキルジアリールシリル基である。アルキルジアリールシリル基Sub522の炭素数は、13〜30であることが好ましい。 The alkyldiarylsilyl group Sub 522 is, for example, an alkyldiarylsilyl group having one of the above alkyl groups Sub 3 and two of the above aryl groups Sub 1 . The alkyldiarylsilyl group Sub 522 preferably has 13 to 30 carbon atoms.
トリアリールシリル基Sub523は、例えば、上記アリール基Sub1を3つ有するトリアリールシリル基である。トリアリールシリル基Sub523の炭素数は、18〜30であることが好ましい。 The triarylsilyl group Sub 523 is, for example, a triarylsilyl group having three of the above aryl groups Sub 1 . The number of carbon atoms of the triarylsilyl group Sub 523 is preferably 18 to 30.
本明細書における置換もしくは無置換のアルキルスルホニル基は、例えば、アルキルスルホニル基Sub6であり、アルキルスルホニル基Sub6は、−SO2Rwで表される。−SO2RwにおけるRwは、置換もしくは無置換の上記アルキル基Sub3を表す。 A substituted or unsubstituted alkylsulfonyl groups herein, for example, an alkylsulfonyl group Sub 6, an alkylsulfonyl group Sub 6 is represented by -SO 2 R w. R w in -SO 2 R w represents the alkyl group Sub 3 substituted or unsubstituted.
本明細書におけるアラルキル基(アリールアルキル基と称する場合がある)は、例えば、アラルキル基Sub7である。アラルキル基Sub7におけるアリール基は、例えば、上記アリール基Sub1及び上記ヘテロアリール基Sub2の少なくとも一方を含む。 The aralkyl group (sometimes referred to as an arylalkyl group) in the present specification is, for example, the aralkyl group Sub 7 . The aryl group in the aralkyl group Sub 7 includes, for example, at least one of the aryl group Sub 1 and the heteroaryl group Sub 2 .
本明細書におけるアラルキル基Sub7は、アリール基Sub1を有する基であることが好ましく、−Z3−Z4と表される。このZ3は、例えば、上記アルキル基Sub3に対応するアルキレン基等である。このZ4は、例えば、上記アリール基Sub1である。このアラルキル基Sub7は、アリール部分が炭素数6〜30(好ましくは6〜20、より好ましくは6〜12)、アルキル部分が炭素数1〜30(好ましくは1〜20、より好ましくは1〜10、さらに好ましくは1〜6)であることが好ましい。このアラルキル基Sub7は、例えば、ベンジル基、2−フェニルプロパン−2−イル基、1−フェニルエチル基、2−フェニルエチル基、1−フェニルイソプロピル基、2−フェニルイソプロピル基、フェニル−t−ブチル基、α−ナフチルメチル基、1−α−ナフチルエチル基、2−α−ナフチルエチル基、1−α−ナフチルイソプロピル基、2−α−ナフチルイソプロピル基、β−ナフチルメチル基、1−β−ナフチルエチル基、2−β−ナフチルエチル基、1−β−ナフチルイソプロピル基、及び2−β−ナフチルイソプロピル基からなる群から選択される少なくともいずれかの基である。 The aralkyl group Sub 7 in the present specification is preferably a group having an aryl group Sub 1 , and is represented by −Z 3 −Z 4 . The Z 3 is, for example, an alkylene group corresponding to the above alkyl group Sub 3 . The Z 4 is, for example, the above aryl group Sub 1 . In this aralkyl group Sub 7 , the aryl moiety has 6 to 30 carbon atoms (preferably 6 to 20, more preferably 6 to 12), and the alkyl moiety has 1 to 30 carbon atoms (preferably 1 to 20, more preferably 1 to 1). 10, more preferably 1 to 6). The aralkyl group Sub 7 includes, for example, a benzyl group, a 2-phenylpropan-2-yl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylisopropyl group, a 2-phenylisopropyl group, and a phenyl-t-. Butyl group, α-naphthylmethyl group, 1-α-naphthylethyl group, 2-α-naphthylethyl group, 1-α-naphthylisopropyl group, 2-α-naphthylisopropyl group, β-naphthylmethyl group, 1-β It is at least one group selected from the group consisting of a-naphthylethyl group, 2-β-naphthylethyl group, 1-β-naphthylisopropyl group, and 2-β-naphthylisopropyl group.
本明細書におけるアルコキシ基は、例えば、アルコキシ基Sub8であり、アルコキシ基Sub8は、−OZ1と表される。このZ1は、例えば、上記アルキル基Sub3である。アルコキシ基Sub8は、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、及びヘキシルオキシ基からなる群から選択される少なくともいずれかの基である。アルコキシ基Sub8の炭素数は、1〜30であることが好ましく、1〜20であることがより好ましい。 The alkoxy group in the present specification is, for example, the alkoxy group Sub 8 , and the alkoxy group Sub 8 is represented as −OZ 1 . This Z 1 is, for example, the above-mentioned alkyl group Sub 3 . The alkoxy group Sub 8 is, for example, at least one group selected from the group consisting of a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, and a hexyloxy group. The alkoxy group Sub 8 preferably has 1 to 30 carbon atoms, and more preferably 1 to 20 carbon atoms.
本明細書におけるハロゲン化アルコキシ基は、例えば、ハロゲン化アルコキシ基Sub9であり、ハロゲン化アルコキシ基Sub9は、例えば、上記アルコキシ基Sub8が1以上のハロゲン原子、好ましくはフッ素原子で置換されたアルコキシ基である。 The halogenated alkoxy group in the present specification is, for example, a halogenated alkoxy group Sub 9 , and in the halogenated alkoxy group Sub 9 , for example, the above-mentioned alkoxy group Sub 8 is replaced with one or more halogen atoms, preferably a fluorine atom. It is an alkoxy group.
本明細書におけるアリールオキシ基(アリールアルコキシ基と称する場合がある)は、
例えば、アリールアルコキシ基Sub10である。アリールアルコキシ基Sub10におけるアリール基は、アリール基Sub1及びヘテロアリール基Sub2の少なくとも一方を含む。
Aryloxy groups (sometimes referred to as arylalkoxy groups) in the present specification are
For example, the arylalkoxy group Sub 10 . The aryl group in the arylalkoxy group Sub 10 includes at least one of the aryl group Sub 1 and the heteroaryl group Sub 2 .
本明細書におけるアリールアルコキシ基Sub10は、−OZ2と表される。このZ2のは、例えば、アリール基Sub1又はヘテロアリール基Sub2である。アリールアルコキシ基Sub10の環形成炭素数は、6〜30であることが好ましく、6〜20であることがより好ましい。このアリールアルコキシ基Sub10としては、例えば、フェノキシ基が挙げられる。 The arylalkoxy group Sub 10 in the present specification is represented by −OZ 2 . The Z 2 is, for example, an aryl group Sub 1 or a heteroaryl group Sub 2 . The ring-forming carbon number of the arylalkoxy group Sub 10 is preferably 6 to 30, and more preferably 6 to 20. Examples of the arylalkoxy group Sub 10 include a phenoxy group.
本明細書における置換アミノ基は、例えば、置換アミノ基Sub11であり、置換アミノ基Sub11は、例えば、アリールアミノ基Sub111及びアルキルアミノ基Sub112からなる群から選択される少なくともいずれかの基である。
アリールアミノ基Sub111は、−NHRV1、又は−N(RV1)2と表される。このRV1は、例えば、アリール基Sub1である。−N(RV1)2における2つのRV1は、同一又は異なる。
アルキルアミノ基Sub112は、−NHRV2、又は−N(RV2)2と表される。このRV2は、例えば、アルキル基Sub3である。−N(RV2)2における2つのRV2は、同一又は異なる。
The substituted amino group in the present specification is, for example, the substituted amino group Sub 11 , and the substituted amino group Sub 11 is at least one selected from the group consisting of, for example, the arylamino group Sub 111 and the alkylamino group Sub 112 . It is a group.
The arylamino group Sub 111 is represented as -NHR V1 or -N (R V1 ) 2 . This R V1 is, for example, the aryl group Sub 1 . -N (R V1) of the two in 2 R V1 are the same or different.
The alkylamino group Sub 112 is represented as -NHR V2 or -N (R V2 ) 2 . This R V2 is, for example, an alkyl group Sub 3 . -N (R V2) 2 two R V2 in 2 are the same or different.
本明細書におけるアルケニル基は、例えば、アルケニル基Sub12であり、アルケニル基Sub12は、直鎖又は分岐鎖のいずれかであり、例えば、ビニル基、プロペニル基、ブテニル基、オレイル基、エイコサペンタエニル基、ドコサヘキサエニル基、スチリル基、2,2−ジフェニルビニル基、1,2,2−トリフェニルビニル基、及び2−フェニル−2−プロペニルからなる群から選択される少なくともいずれかの基である。 The alkenyl group in the present specification is, for example, the alkenyl group Sub 12 , and the alkenyl group Sub 12 is either a linear group or a branched chain, and is, for example, a vinyl group, a propenyl group, a butenyl group, an oleyl group, an eikosa. At least one selected from the group consisting of pentaenyl group, docosahexaenyl group, styryl group, 2,2-diphenylvinyl group, 1,2,2-triphenylvinyl group, and 2-phenyl-2-propenyl. It is a group.
本明細書におけるアルキニル基は、例えば、アルキニル基Sub13であり、アルキニル基Sub13は、直鎖又は分岐鎖のいずれであってもよく、例えば、エチニル、プロピニル、及び2−フェニルエチニルからなる群から選択される少なくともいずれかの基である。 The alkynyl group in the present specification is, for example, the alkynyl group Sub 13 , and the alkynyl group Sub 13 may be either a straight chain or a branched chain, for example, a group consisting of ethynyl, propynyl, and 2-phenylethynyl. At least one of the groups selected from.
本明細書におけるアルキルチオ基は、例えば、アルキルチオ基Sub14である。
アルキルチオ基Sub14は、−SRV3と表される。このRV3は、例えば、アルキル基Sub3である。アルキルチオ基Sub14の炭素数は、1〜30であることが好ましく、1〜20であることがより好ましい。
本明細書におけるアリールチオ基は、例えば、アリールチオ基Sub15である。
アリールチオ基Sub15は、−SRV4と表される。このRV4は、例えば、アリール基Sub1である。アリールチオ基Sub15の環形成炭素数は、6〜30であることが好ましく、6〜20であることがより好ましい。
The alkylthio group in the present specification is, for example, the alkylthio group Sub 14 .
The alkylthio group Sub 14 is represented as -SR V3 . This R V3 is, for example, an alkyl group Sub 3 . The number of carbon atoms of the alkylthio group Sub 14 is preferably 1 to 30, and more preferably 1 to 20.
The arylthio group in the present specification is, for example, the arylthio group Sub 15 .
The arylthio group Sub 15 is represented as -SR V4 . This R V4 is, for example, the aryl group Sub 1 . The ring-forming carbon number of the arylthio group Sub 15 is preferably 6 to 30, and more preferably 6 to 20.
本明細書におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられ、フッ素原子が好ましい。 Examples of the halogen atom in the present specification include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and a fluorine atom is preferable.
本明細書における置換ホスフィノ基は、例えば、置換ホスフィノ基Sub16であり、置換ホスフィノ基Sub16は、例えば、フェニルホスファニル基である。 The substituted phosphino group in the present specification is, for example, the substituted phosphino group Sub 16 , and the substituted phosphino group Sub 16 is, for example, a phenylphosphanyl group.
本明細書におけるアリールカルボニル基は、例えば、アリールカルボニル基Sub17であり、アリールカルボニル基Sub17は、−COY’と表される。このY’は、例えば、アリール基Sub1である。本明細書におけるアリールカルボニル基Sub17は、例えば、フェニルカルボニル基、ジフェニルカルボニル基、ナフチルカルボニル基、及びトリフェニルカルボニル基からなる群から選択される少なくともいずれかの基である。 The arylcarbonyl group in the present specification is, for example, the arylcarbonyl group Sub 17 , and the arylcarbonyl group Sub 17 is represented as −COY'. This Y'is, for example, the aryl group Sub 1 . The arylcarbonyl group Sub 17 in the present specification is, for example, at least one group selected from the group consisting of a phenylcarbonyl group, a diphenylcarbonyl group, a naphthylcarbonyl group, and a triphenylcarbonyl group.
本明細書におけるアシル基は、例えば、アシル基Sub18であり、アシル基Sub18は、−COR’と表される。このR’は、例えば、アルキル基Sub3である。本明細書におけるアシル基Sub18は、例えば、アセチル基及びプロピオニル基からなる群から選択される少なくともいずれかの基である。 The acyl group in the present specification is, for example, the acyl group Sub 18 , and the acyl group Sub 18 is represented as −COR'. This R'is, for example, the alkyl group Sub 3 . The acyl group Sub 18 in the present specification is, for example, at least one group selected from the group consisting of an acetyl group and a propionyl group.
本明細書における置換ホスホリル基は、例えば、置換ホスホリル基Sub19であり、置換ホスホリル基Sub19は、下記一般式(P)で表される。 The substituted phosphoryl group in the present specification is, for example, the substituted phosphoryl group Sub 19 , and the substituted phosphoryl group Sub 19 is represented by the following general formula (P).
前記一般式(P)において、ArP1及びArP2は、上記アルキル基Sub3、及び上記アリール基Sub1からなる群から選択されるいずれかの置換基である。 In the general formula (P), Ar P1 and Ar P2 are any of the substituents selected from the group consisting of the alkyl group Sub 3 and the aryl group Sub 1 .
本明細書におけるエステル基は、例えば、エステル基Sub20であり、エステル基Sub20は、例えば、アルキルエステル基及びアリールエステル基 からなる群から選択される少なくともいずれかの基である。
本明細書におけるアルキルエステル基は、例えば、アルキルエステル基Sub201であり、アルキルエステル基Sub201は、−C(=O)OREで表される。REは、例えば、置換もしくは無置換の上記アルキル基Sub3(好ましくは炭素数1〜10)である。
本明細書におけるアリールエステル基は、例えば、アリールエステル基Sub202であり、アリールエステル基Sub202は、−C(=O)ORArで表される。RArは、例えば、置換もしくは無置換の上記アリール基Sub1である。
The ester group in the present specification is, for example, the ester group Sub 20 , and the ester group Sub 20 is, for example, at least one group selected from the group consisting of an alkyl ester group and an aryl ester group.
Alkyl ester groups herein, for example, an alkyl ester group Sub 201, an alkyl ester group Sub 201 is represented by -C (= O) OR E. RE is, for example, the above-mentioned alkyl group Sub 3 (preferably having 1 to 10 carbon atoms) substituted or unsubstituted.
The aryl ester group in the present specification is, for example, the aryl ester group Sub 202 , and the aryl ester group Sub 202 is represented by −C (= O) OR Ar . R Ar is, for example, the above-mentioned aryl group Sub 1 substituted or unsubstituted.
本明細書におけるシロキサニル基は、例えば、シロキサニル基Sub21であり、シロキサニル基Sub21は、エーテル結合を介したケイ素化合物基である。シロキサニル基Sub21は、例えば、トリメチルシロキサニル基である。 The siroxanyl group in the present specification is, for example, the siroxanyl group Sub 21 and the siroxanyl group Sub 21 is a silicon compound group via an ether bond. The siroxanyl group Sub 21 is, for example, a trimethylsyloxanyl group.
本明細書におけるカルバモイル基は、−CONH2で表される。
本明細書における置換のカルバモイル基は、例えば、カルバモイル基Sub22であり、カルバモイル基Sub22は、−CONH−ArC、又は−CONH−RCで表される。ArCは、例えば、置換もしくは無置換の上記アリール基Sub1(好ましくは環形成炭素数6〜10)及び上記ヘテロアリール基Sub2(好ましくは環形成原子数5〜14)からなる群から選択される少なくともいずれかの基である。ArCは、アリール基Sub1とヘテロアリール基Sub2とが結合した基であってもよい。
RCは、例えば、置換もしくは無置換の上記アルキル基Sub3(好ましくは炭素数1〜6)である。
The carbamoyl group herein is represented by -CONH 2 .
The substituted carbamoyl group in the present specification is, for example, the carbamoyl group Sub 22 , and the carbamoyl group Sub 22 is represented by -CONH-Ar C or -CONH- RC . Ar C is selected from the group consisting of, for example, the substituted or unsubstituted aryl group Sub 1 (preferably having 6 to 10 ring-forming carbon atoms) and the heteroaryl group Sub 2 (preferably having 5 to 14 ring-forming atoms). Is at least one of the groups to be. Ar C may be a group in which an aryl group Sub 1 and a heteroaryl group Sub 2 are bonded.
The RC is, for example, the above-mentioned alkyl group Sub 3 (preferably having 1 to 6 carbon atoms) substituted or unsubstituted.
本明細書において、「環形成炭素」とは飽和環、不飽和環、又は芳香環を構成する炭素原子を意味する。「環形成原子」とはヘテロ環(飽和環、不飽和環、及び芳香環を含む)を構成する炭素原子及びヘテロ原子を意味する。 As used herein, the term "ring-forming carbon" means a carbon atom that constitutes a saturated ring, an unsaturated ring, or an aromatic ring. "Ring-forming atom" means a carbon atom and a heteroatom constituting a heterocycle (including a saturated ring, an unsaturated ring, and an aromatic ring).
また、本明細書において、水素原子とは、中性子数の異なる同位体、すなわち、軽水素(Protium)、重水素(Deuterium)、三重水素(Tritium)を包含する。 Further, in the present specification, the hydrogen atom includes isotopes having different numbers of neutrons, that is, hydrogen (Protium), deuterium (Deuterium), and tritium (Tritium).
以下、アルキル基Sub3とは、「各置換基の説明」で説明した直鎖のアルキル基Sub31、分岐鎖のアルキル基Sub32、及び環状のアルキル基Sub33のいずれか1以上の基を意味する。
同様に、置換シリル基Sub5とは、アルキルシリル基Sub51及びアリールシリル基Sub52のいずれか1以上の基を意味する。
同様に、置換アミノ基Sub11とは、アリールアミノ基Sub111及びアルキルアミノ基Sub112のいずれか1以上の基を意味する。
Hereinafter, the alkyl group Sub 3 refers to any one or more of the linear alkyl group Sub 31 , the branched alkyl group Sub 32 , and the cyclic alkyl group Sub 33 described in "Explanation of each substituent". means.
Similarly, the substituted silyl group Sub 5 means any one or more groups of the alkylsilyl group Sub 51 and the arylsilyl group Sub 52 .
Similarly, the substituted amino group Sub 11 means any one or more of the arylamino group Sub 111 and the alkylamino group Sub 112 .
本明細書において、「置換もしくは無置換の」という場合における置換基としては、例えば置換基RF1であり、置換基RF1は、アリール基Sub1、ヘテロアリール基Sub2、アルキル基Sub3、ハロゲン化アルキル基Sub4、置換シリル基Sub5、アルキルスルホニル基Sub6、アラルキル基Sub7、アルコキシ基Sub8、ハロゲン化アルコキシ基Sub9、アリールアルコキシ基Sub10、置換アミノ基Sub11、アルケニル基Sub12、アルキニル基Sub13、アルキルチオ基Sub14、アリールチオ基Sub15、置換ホスフィノ基Sub16、アリールカルボニル基Sub17、アシル基Sub18、置換ホスホリル基Sub19、エステル基Sub20、シロキサニル基Sub21、カルバモイル基Sub22、無置換のアミノ基、無置換のシリル基、ハロゲン原子、シアノ基、ヒドロキシ基、チオール基、ニトロ基、及びカルボキシ基からなる群から選択される少なくとも一種の基である。 In the present specification, the substituent in the case of "substituted or unsubstituted" is, for example, the substituent R F1 , and the substituent R F1 is an aryl group Sub 1 , a heteroaryl group Sub 2 , an alkyl group Sub 3 , and the like. Alkyl halide Sub 4 , substituted silyl group Sub 5 , alkylsulfonyl group Sub 6 , aralkyl group Sub 7 , alkoxy group Sub 8 , halogenated alkoxy group Sub 9 , arylalkoxy group Sub 10 , substituted amino group Sub 11 , alkenyl group. Sub 12, an alkynyl group Sub 13, an alkylthio group Sub 14, arylthio group Sub 15, a substituted phosphino group Sub 16, an arylcarbonyl group Sub 17, acyl group Sub 18, a substituted phosphoryl group Sub 19, an ester group Sub 20, siloxanyl group Sub 21 , Carbamoyl group Sub 22 , an unsubstituted amino group, an unsubstituted silyl group, a halogen atom, a cyano group, a hydroxy group, a thiol group, a nitro group, and a carboxy group, at least one group selected from the group.
本明細書において、「置換もしくは無置換の」という場合における置換基RF1は、ジアリールホウ素基(ArB1ArB2B−)であってもよい。このArB1及びArB2の例としては、上述のアリール基Sub1が挙げられる。ArB1ArB2B−におけるArB1及びArB2は同一又は異なる。 In the present specification, the substituent R F1 in the case of “substituent or unsubstituted” may be a diarylboron group (Ar B1 Ar B2 B−). Examples of the Ar B1 and Ar B2 include the above-mentioned aryl group Sub 1 . Ar B1 Ar B2 B- Ar B1 and Ar B2 in the same or different.
置換基RF1の具体例及び好ましい基としては、「各置換基の説明」中の置換基(例えば、アリール基Sub1、ヘテロアリール基Sub2、アルキル基Sub3、ハロゲン化アルキル基Sub4、置換シリル基Sub5、アルキルスルホニル基Sub6、アラルキル基Sub7、アルコキシ基Sub8、ハロゲン化アルコキシ基Sub9、アリールアルコキシ基Sub10、置換アミノ基Sub11、アルケニル基Sub12、アルキニル基Sub13、アルキルチオ基Sub14、アリールチオ基Sub15、置換ホスフィノ基Sub16、アリールカルボニル基Sub17、アシル基Sub18、置換ホスホリル基Sub19、エステル基Sub20、シロキサニル基Sub21、及びカルバモイル基Sub22)の具体例及び好ましい基と同様の基が挙げられる。 Specific examples and preferred groups of substituents R F1, substituent in "Description of the substituent" (e.g., aryl group Sub 1, heteroaryl Sub 2, alkyl group Sub 3, a halogenated alkyl group Sub 4, Substituted silyl group Sub 5 , alkylsulfonyl group Sub 6 , aralkyl group Sub 7 , alkoxy group Sub 8 , halogenated alkoxy group Sub 9 , arylalkoxy group Sub 10 , substituted amino group Sub 11 , alkenyl group Sub 12 , alkynyl group Sub 13 , Alkylthio group Sub 14 , arylthio group Sub 15 , substituted phosphino group Sub 16 , arylcarbonyl group Sub 17 , acyl group Sub 18 , substituted phosphoryl group Sub 19 , ester group Sub 20 , and siloxanyl group Sub 21 and carbamoyl group Sub 22 ). Specific examples of the above and groups similar to the preferred groups are mentioned.
「置換もしくは無置換の」という場合における置換基RF1は、アリール基Sub1、ヘテロアリール基Sub2、アルキル基Sub3、ハロゲン化アルキル基Sub4、置換シリル基Sub5、アルキルスルホニル基Sub6、アラルキル基Sub7、アルコキシ基Sub8、ハロゲン化アルコキシ基Sub9、アリールアルコキシ基Sub10、置換アミノ基Sub11、アルケニル基Sub12、アルキニル基Sub13、アルキルチオ基Sub14、アリールチオ基Sub15、置換ホスフィノ基Sub16、アリールカルボニル基Sub17、アシル基Sub18、置換ホスホリル基Sub19、エステル基Sub20、シロキサニル基Sub21、カルバモイル基Sub22、無置換のアミノ基、無置換のシリル基、ハロゲン原子、シアノ基、ヒドロキシ基、チオール基、ニトロ基、及びカルボキシ基からなる群から選択される少なくとも一種の基(以下、置換基RF2とも称する)によってさらに置換されてもよい。また、これらの置換基RF2は複数が互いに結合して環を形成してもよい。 Substituents R F1 in the case of "substituted or unsubstituted" are aryl group Sub 1 , heteroaryl group Sub 2 , alkyl group Sub 3 , halogenated alkyl group Sub 4 , substituted silyl group Sub 5 , alkylsulfonyl group Sub 6 , Aralkyl group Sub 7 , alkoxy group Sub 8 , halogenated alkoxy group Sub 9 , arylalkoxy group Sub 10 , substituted amino group Sub 11 , alkenyl group Sub 12 , alkynyl group Sub 13 , alkylthio group Sub 14 , arylthio group Sub 15 , Substituted phosphino group Sub 16 , arylcarbonyl group Sub 17 , acyl group Sub 18 , substituted phosphoryl group Sub 19 , ester group Sub 20 , siloxanyl group Sub 21 , carbamoyl group Sub 22 , unsubstituted amino group, unsubstituted silyl group, halogen atom, cyano group, hydroxy group, thiol group, at least one group selected from the group consisting of nitro groups and carboxy groups, (hereinafter also referred to as substituent R F2) may be further substituted by. Further, a plurality of these substituents RF2 may be bonded to each other to form a ring.
「置換もしくは無置換の」という場合における「無置換」とは前記置換基RF1で置換されておらず、水素原子が結合していることを意味する。 Not substituted with the substituents R F1 is a "unsubstituted" in the case of "substituted or unsubstituted" means that a hydrogen atom is bonded.
なお、本明細書において、「置換もしくは無置換の炭素数XX〜YYのZZ基」という表現における「炭素数XX〜YY」は、ZZ基が無置換である場合の炭素数を表し、置換されている場合の置換基RF1の炭素数は含めない。 In the present specification, "carbon number XX to YY" in the expression "ZZ group having substituted or unsubstituted carbon number XX to YY" represents the number of carbon atoms when the ZZ group is unsubstituted and is substituted. and carbon number of the substituent R F1 where are is not included.
本明細書において、「置換もしくは無置換の原子数XX〜YYのZZ基」という表現における「原子数XX〜YY」は、ZZ基が無置換である場合の原子数を表し、置換されている場合の置換基RF1の原子数は含めない。 In the present specification, the "atomic number XX to YY" in the expression "ZZ group of atomic number XX to YY substituted or unsubstituted" represents the number of atoms when the ZZ group is unsubstituted and is substituted. atoms of the substituents R F1 in this case is not included.
本明細書において説明する化合物、又はその部分構造において、「置換もしくは無置換の」という場合についても、前記と同様である。 The same applies to the case of "substituted or unsubstituted" in the compound described in the present specification or its partial structure.
本明細書において、置換基同士が互いに結合して環が構築される場合、当該環の構造は、飽和環、不飽和環、芳香族炭化水素環、又は複素環である。 In the present specification, when substituents are bonded to each other to construct a ring, the structure of the ring is a saturated ring, an unsaturated ring, an aromatic hydrocarbon ring, or a heterocycle.
本明細書において、連結基における芳香族炭化水素基としては、例えば、上述した一価のアリール基Sub1から、1つ以上の原子を除いて得られる二価以上の基が挙げられる。
本明細書において、連結基における複素環基としては、例えば、上述した一価のヘテロアリール基Sub2から、1つ以上の原子を除いて得られる二価以上の基が挙げられる。
In the present specification, examples of the aromatic hydrocarbon group in the linking group include a divalent or higher valent group obtained by removing one or more atoms from the monovalent aryl group Sub 1 described above.
In the present specification, examples of the heterocyclic group in the linking group include a divalent or higher valent group obtained by removing one or more atoms from the monovalent heteroaryl group Sub 2 described above.
本明細書において、「〜」を用いて表される数値範囲は、「〜」の前に記載される数値を下限値とし、「〜」の後に記載される数値を上限値として含む範囲を意味する。 In the present specification, the numerical range represented by using "~" means a range including a numerical value before "~" as a lower limit value and a numerical value after "~" as an upper limit value. To do.
〔実施形態の変形〕
なお、本発明は、上述の実施形態に限定されず、本発明の目的を達成できる範囲での変更、改良等は、本発明に含まれる。
[Modification of Embodiment]
The present invention is not limited to the above-described embodiment, and changes, improvements, etc. within the range in which the object of the present invention can be achieved are included in the present invention.
例えば、発光層は、1層に限られず、複数の発光層が積層されていてもよい。有機EL素子が複数の発光層を有する場合、少なくとも1つの発光層が上記実施形態で説明した条件を満たしていればよい。例えば、その他の発光層が、蛍光発光型の発光層であっても、三重項励起状態から直接基底状態への電子遷移による発光を利用した燐光発光型の発光層であってもよい。
また、有機EL素子が複数の発光層を有する場合、これらの発光層が互いに隣接して設けられていてもよいし、中間層を介して複数の発光ユニットが積層された、いわゆるタンデム型の有機EL素子であってもよい。
For example, the light emitting layer is not limited to one layer, and a plurality of light emitting layers may be laminated. When the organic EL element has a plurality of light emitting layers, it is sufficient that at least one light emitting layer satisfies the conditions described in the above embodiment. For example, the other light emitting layer may be a fluorescence light emitting layer or a phosphorescent light emitting layer utilizing light emission by electron transition from the triplet excited state to the direct ground state.
Further, when the organic EL element has a plurality of light emitting layers, these light emitting layers may be provided adjacent to each other, or a so-called tandem type organic in which a plurality of light emitting units are laminated via an intermediate layer. It may be an EL element.
また、例えば、発光層の陽極側、及び陰極側の少なくとも一方に障壁層を隣接させて設けてもよい。障壁層は、発光層に接して配置され、正孔、電子、及び励起子の少なくともいずれかを阻止することが好ましい。
例えば、発光層の陰極側で接して障壁層が配置された場合、当該障壁層は、電子を輸送し、かつ正孔が当該障壁層よりも陰極側の層(例えば、電子輸送層)に到達することを阻止する。有機EL素子が、電子輸送層を含む場合は、発光層と電子輸送層との間に当該障壁層を含むことが好ましい。
また、発光層の陽極側で接して障壁層が配置された場合、当該障壁層は、正孔を輸送し、かつ電子が当該障壁層よりも陽極側の層(例えば、正孔輸送層)に到達することを阻止する。有機EL素子が、正孔輸送層を含む場合は、発光層と正孔輸送層との間に当該障壁層を含むことが好ましい。
また、励起エネルギーが発光層からその周辺層に漏れ出さないように、障壁層を発光層に隣接させて設けてもよい。発光層で生成した励起子が、当該障壁層よりも電極側の層(例えば、電子輸送層及び正孔輸送層等)に移動することを阻止する。
発光層と障壁層とは接合していることが好ましい。
Further, for example, a barrier layer may be provided adjacent to at least one of the anode side and the cathode side of the light emitting layer. The barrier layer is preferably located in contact with the light emitting layer to block at least one of holes, electrons, and excitons.
For example, when a barrier layer is arranged in contact with the cathode side of the light emitting layer, the barrier layer transports electrons and holes reach a layer on the cathode side of the barrier layer (for example, an electron transport layer). Stop doing. When the organic EL element includes an electron transport layer, it is preferable to include the barrier layer between the light emitting layer and the electron transport layer.
When the barrier layer is arranged in contact with the anode side of the light emitting layer, the barrier layer transports holes and electrons are transferred to the layer on the anode side of the barrier layer (for example, the hole transport layer). Prevent it from reaching. When the organic EL element includes a hole transport layer, it is preferable to include the barrier layer between the light emitting layer and the hole transport layer.
Further, a barrier layer may be provided adjacent to the light emitting layer so that the excitation energy does not leak from the light emitting layer to the peripheral layer thereof. It prevents excitons generated in the light emitting layer from moving to a layer on the electrode side of the barrier layer (for example, an electron transport layer and a hole transport layer).
It is preferable that the light emitting layer and the barrier layer are joined.
その他、本発明の実施における具体的な構造、及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。 In addition, the specific structure, shape, and the like in carrying out the present invention may be other structures and the like as long as the object of the present invention can be achieved.
以下、本発明に係る実施例を説明する。本発明はこれらの実施例によって何ら限定されない。 Hereinafter, examples according to the present invention will be described. The present invention is not limited to these examples.
<化合物>
実施例1〜2に係る有機EL素子の製造に用いた一般式(20A)又は一般式(20B)で表される化合物の構造を以下に示す。
<Compound>
The structure of the compound represented by the general formula (20A) or the general formula (20B) used in the production of the organic EL device according to Examples 1 and 2 is shown below.
比較例1に係る有機EL素子の製造に用いた比較化合物の構造を以下に示す。 The structure of the comparative compound used in the production of the organic EL device according to Comparative Example 1 is shown below.
実施例1〜2及び比較例1に係る有機EL素子の製造に用いた、他の化合物の構造を以下に示す。 The structures of other compounds used in the production of the organic EL device according to Examples 1 and 2 and Comparative Example 1 are shown below.
<有機EL素子の作製>
有機EL素子を以下のように作製し、評価した。
<Manufacturing of organic EL element>
An organic EL device was prepared and evaluated as follows.
〔実施例1〕
25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマテック株式会社製)を、イソプロピルアルコール中で5分間超音波洗浄を行った後、UVオゾン洗浄を1分間行った。ITOの膜厚は、130nmとした。
洗浄後の透明電極ライン付き前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HAを共蒸着し、膜厚5nmの正孔注入層を形成した。
次に、正孔注入層上に、化合物HT−1を蒸着し、膜厚110nmの正孔輸送層を形成した。
次に、この正孔輸送層上に、化合物mCBPを蒸着し、膜厚10nmの電子障壁層を形成した。
次に、この電子障壁層上に、第三の化合物M3としての化合物mCBPと、第二の化合物M2としての化合物TADF−1と、第一の化合物M1としての化合物GDと、を共蒸着し、膜厚25nmの発光層を形成した。発光層における化合物mCBPの濃度を74質量%とし、化合物TADF−1の濃度を25質量%とし、化合物GDの濃度を1質量%とした。
次に、この発光層上に、化合物ET−1を蒸着し、膜厚5nmの正孔障壁層を形成した。
次に、この正孔障壁層上に、化合物ET−2を蒸着し、膜厚50nmの電子輸送層を形成した。
次に、この電子輸送層上に、フッ化リチウム(LiF)を蒸着し、膜厚1nmの電子注入性電極(陰極)を形成した。
そして、この電子注入性電極上に、金属アルミニウム(Al)を蒸着し、膜厚80nmの金属Al陰極を形成した。
実施例1に係る有機EL素子の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HA(5)/HT-1(110)/mCBP(10)/mCBP:TADF-1:GD(25,74%:25%:1%)/ET-1(5)/ET-2(50)/LiF(1)/Al(80)
なお、括弧内の数字は、膜厚(単位:nm)を示す。
同じく括弧内において、パーセント表示された数字(74%:25%:1%)は、発光層における化合物mCBP、化合物TADF−1、及び化合物GDの割合(質量%)を示す。以下、同様の表記とする。
[Example 1]
A glass substrate (manufactured by Geomatec Co., Ltd.) with an ITO transparent electrode (anode) having a thickness of 25 mm × 75 mm × 1.1 mm was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 1 minute. The film thickness of ITO was 130 nm.
The glass substrate with the transparent electrode line after cleaning is mounted on the substrate holder of the vacuum vapor deposition apparatus, and the compound HA is co-deposited on the surface on the side where the transparent electrode line is formed so as to cover the transparent electrode. A hole injection layer having a thickness of 5 nm was formed.
Next, the compound HT-1 was deposited on the hole injection layer to form a hole transport layer having a film thickness of 110 nm.
Next, the compound mCBP was deposited on the hole transport layer to form an electron barrier layer having a film thickness of 10 nm.
Next, the compound mCBP as the third compound M3, the compound TADF-1 as the second compound M2, and the compound GD as the first compound M1 are co-deposited on the electron barrier layer. A light emitting layer having a thickness of 25 nm was formed. The concentration of compound mCBP in the light emitting layer was 74% by mass, the concentration of compound TADF-1 was 25% by mass, and the concentration of compound GD was 1% by mass.
Next, the compound ET-1 was deposited on the light emitting layer to form a hole barrier layer having a film thickness of 5 nm.
Next, the compound ET-2 was deposited on the hole barrier layer to form an electron transport layer having a film thickness of 50 nm.
Next, lithium fluoride (LiF) was vapor-deposited on the electron transport layer to form an electron-injectable electrode (cathode) having a film thickness of 1 nm.
Then, metallic aluminum (Al) was vapor-deposited on the electron-injectable electrode to form a metallic Al cathode having a film thickness of 80 nm.
The element configuration of the organic EL element according to the first embodiment is shown as follows.
ITO (130) / HA (5) / HT-1 (110) / mCBP (10) / mCBP: TADF-1: GD (25,74%: 25%: 1%) / ET-1 (5) / ET -2 (50) / LiF (1) / Al (80)
The numbers in parentheses indicate the film thickness (unit: nm).
Also in parentheses, the percentages (74%: 25%: 1%) indicate the proportions (mass%) of compound mCBP, compound TADF-1, and compound GD in the light emitting layer. Hereinafter, the same notation will be used.
〔実施例2〕
実施例2に係る有機EL素子は、実施例1に係る有機EL素子の発光層における化合物TADF−1を表1に記載の化合物に変更したこと以外、実施例1と同様にして作製した。
[Example 2]
The organic EL device according to Example 2 was produced in the same manner as in Example 1 except that the compound TADF-1 in the light emitting layer of the organic EL device according to Example 1 was changed to the compound shown in Table 1.
〔比較例1〕
比較例1に係る有機EL素子は、実施例1に係る有機EL素子の発光層における化合物TADF−1を表1に記載の化合物に変更したこと以外、実施例1と同様にして作製した。
[Comparative Example 1]
The organic EL device according to Comparative Example 1 was produced in the same manner as in Example 1 except that the compound TADF-1 in the light emitting layer of the organic EL device according to Example 1 was changed to the compound shown in Table 1.
<有機EL素子の評価>
実施例1〜2及び比較例1で作製した有機EL素子について、以下の評価を行った。評価結果を表1に示す。
なお、比較例1の発光層で使用した化合物Ref−1は、便宜上、第二の化合物の欄に記載している。
<Evaluation of organic EL elements>
The organic EL devices produced in Examples 1 and 2 and Comparative Example 1 were evaluated as follows. The evaluation results are shown in Table 1.
The compound Ref-1 used in the light emitting layer of Comparative Example 1 is described in the column of the second compound for convenience.
・主ピーク波長(λp)
有機EL素子の電流密度が10mA/cm2となるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS−2000(コニカミノルタ株式会社製)で計測した。得られた分光放射輝度スペクトルから、主ピーク波長λp(単位:nm)を求めた。
・ Main peak wavelength (λp)
The spectral radiance spectrum when a voltage was applied to the element so that the current density of the organic EL element was 10 mA / cm 2 was measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta Co., Ltd.). From the obtained spectral radiance spectrum, the main peak wavelength λ p (unit: nm) was determined.
・寿命(LT95)
分光放射輝度計CS−200(コニカミノルタ株式会社製)を用いて、電流密度が50mA/cm2となるように素子に電圧を印加し、初期輝度に対して輝度が95%となるまでの時間(単位:h)を測定した。
本明細書において、初期輝度に対して輝度が95%となるまでの時間を「寿命(LT95)」と示す場合がある。
・ Life (LT95)
Using a spectral radiance meter CS-200 (manufactured by Konica Minolta Co., Ltd.), a voltage is applied to the element so that the current density is 50 mA / cm 2, and the time until the brightness becomes 95% of the initial brightness. (Unit: h) was measured.
In the present specification, the time until the brightness becomes 95% with respect to the initial brightness may be referred to as "life (LT95)".
比較例1に係る有機EL素子の寿命(LT95)を100hとしたときの実施例1及び実施例2に係る有機EL素子の寿命(LT95)の相対値(単位:%)を、下記数式(数10)を用いて算出した。 The relative value (unit:%) of the life (LT95) of the organic EL element according to Example 1 and Example 2 when the life (LT95) of the organic EL element according to Comparative Example 1 is 100 h is calculated by the following mathematical formula (number). It was calculated using 10).
実施例1又は2に係る有機EL素子の寿命(LT95)の相対値={実施例1又は2に係る有機EL素子の寿命(LT95)/比較例1に係る有機EL素子の寿命(LT95)}×100…(数10) Relative value of the life of the organic EL element according to Example 1 or 2 (LT95) = {Life of the organic EL element according to Example 1 or 2 (LT95) / Life of the organic EL element according to Comparative Example 1 (LT95)} × 100 ... (several tens)
実施例1及び2に係る有機EL素子は、比較例1に係る有機EL素子に比べて、長寿命化した。 The organic EL element according to Examples 1 and 2 has a longer life than the organic EL element according to Comparative Example 1.
<化合物の評価>
実施例1〜2及び比較例1で使用した化合物の物性値を以下の方法で測定した。
<Evaluation of compounds>
The physical property values of the compounds used in Examples 1 and 2 and Comparative Example 1 were measured by the following methods.
(遅延蛍光性)
・化合物TADF−1の遅延蛍光性
遅延蛍光性は図2に示す装置を利用して過渡PLを測定することにより確認した。前記化合物TADF−1をトルエンに溶解し、自己吸収の寄与を取り除くため励起波長において吸光度が0.05以下の希薄溶液を調製した。また酸素による消光を防ぐため、試料溶液を凍結脱気した後にアルゴン雰囲気下で蓋付きのセルに封入することで、アルゴンで飽和された酸素フリーの試料溶液とした。
上記試料溶液の蛍光スペクトルを分光蛍光光度計FP−8600(日本分光社製)で測定し、また同条件で9,10−ジフェニルアントラセンのエタノール溶液の蛍光スペクトルを測定した。両スペクトルの蛍光面積強度を用いて、Morris et al. J.Phys.Chem.80(1976)969中の(1)式により全蛍光量子収率を算出した。
前記化合物TADF−1が吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察されるPrompt発光(即時発光)と、当該励起後、即座には観察されず、その後観察されるDelay発光(遅延発光)とが存在する。本実施例における遅延蛍光発光とは、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上を意味する。具体的には、Prompt発光(即時発光)の量をXPとし、Delay発光(遅延発光)の量をXDとしたときに、XD/XPの値が0.05以上であることを意味する。
Prompt発光とDelay発光の量とその比は、“Nature 492, 234−238, 2012” (参考文献1)に記載された方法と同様の方法により求めることができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、前記参考文献1に記載の装置、又は図2に記載の装置に限定されない。
化合物TADF−1について、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上あることが確認された。
具体的には、化合物TADF−1について、XD/XPの値が0.05以上であった。
(Delayed fluorescence)
-Delayed fluorescence of compound TADF-1 The delayed fluorescence was confirmed by measuring transient PL using the apparatus shown in FIG. The compound TADF-1 was dissolved in toluene to prepare a dilute solution having an absorbance of 0.05 or less at the excitation wavelength in order to remove the contribution of self-absorption. Further, in order to prevent quenching by oxygen, the sample solution was frozen and degassed and then sealed in a cell with a lid under an argon atmosphere to obtain an oxygen-free sample solution saturated with argon.
The fluorescence spectrum of the sample solution was measured with a spectrofluorometer FP-8600 (manufactured by Nippon Kogaku Co., Ltd.), and the fluorescence spectrum of an ethanol solution of 9,10-diphenylanthracene was measured under the same conditions. Using the fluorescence area intensities of both spectra, Morris et al. J. Phys. Chem. The total fluorescence quantum yield was calculated by the equation (1) in 80 (1976) 969.
Prompt emission (immediate emission) that is immediately observed from the excited state after being excited by pulsed light (light emitted from a pulse laser) having a wavelength absorbed by the compound TADF-1 and immediately after the excitation. Is not observed, and there is a pulsed emission (delayed emission) that is observed thereafter. The delayed fluorescence emission in this example means that the amount of Delay emission (delayed emission) is 5% or more with respect to the amount of Prompt emission (immediate emission). Specifically, the amount of Prompt luminescence (immediate emission) and X P, the amount of Delay emission (delayed luminescence) is taken as X D, that the value of X D / X P is 0.05 or more means.
The amounts of Prompt emission and Delay emission and their ratios can be determined by the same method as described in "Nature 492, 234-238, 2012" (Reference 1). The device used to calculate the amounts of Prompt emission and Delay emission is not limited to the apparatus described in Reference 1 or the apparatus shown in FIG.
Regarding the compound TADF-1, it was confirmed that the amount of Delay emission (delayed emission) was 5% or more with respect to the amount of Prompt emission (immediate emission).
Specifically, the compound TADF-1, the value of X D / X P was 0.05 or more.
・化合物TADF−2の遅延蛍光性
化合物TADF−1に代えて、化合物TADF−2を用いたこと以外、上記と同様にして化合物TADF−2の遅延蛍光性を確認した。
化合物TADF−2について、XD/XPの値は、0.05以上であった。
-Delayed fluorescence of compound TADF-2 The delayed fluorescence of compound TADF-2 was confirmed in the same manner as above except that compound TADF-2 was used instead of compound TADF-1.
For compound TADF-2, the value of X D / X P was 0.05 or more.
・比較化合物Ref−1の遅延蛍光性
化合物TADF−1に代えて、比較化合物Ref−1を用いたこと以外、上記と同様にして比較化合物Ref−1の遅延蛍光性を確認した。
比較化合物Ref−1について、XD/XPの値は、0.05以上であった。
-Delayed fluorescence of the comparative compound Ref-1 The delayed fluorescence of the comparative compound Ref-1 was confirmed in the same manner as above except that the comparative compound Ref-1 was used instead of the compound TADF-1.
Comparative Compound Ref-1, the value of X D / X P was 0.05 or more.
(一重項エネルギーS1)
化合物TADF−1、TADF−2、化合物GD、化合物mCBP、及び比較化合物Ref−1の一重項エネルギーS1を、前述の溶液法により測定した。測定結果を表1に示す。
(Singlet energy S 1 )
Compound TADF-1, TADF-2, compounds GD, compounds mCBP, and singlet energy S 1 of comparative compound Ref-1, was measured by the above-mentioned solution method. The measurement results are shown in Table 1.
(77[K]におけるエネルギーギャップ)
化合物TADF−1、化合物TADF−2及び比較化合物Ref−1の77[K]におけるエネルギーギャップT77Kを前述の方法により測定した。
(Energy gap at 77 [K])
The energy gap T 77K of compound TADF-1, compound TADF-2 and comparative compound Ref-1 at 77 [K] was measured by the method described above.
(ΔST)
測定した一重項エネルギーS1と77[K]におけるエネルギーギャップT77Kとに基づいて、ΔSTを算出した。化合物TADF−1、化合物TADF−2、及び比較化合物Ref−1のΔSTは、いずれも、0.01未満と確認した。
(ΔST)
Based on the energy gap T 77K in the measured singlet energy S 1 and 77 [K], was calculated .DELTA.St. The ΔST of compound TADF-1, compound TADF-2, and comparative compound Ref-1 was confirmed to be less than 0.01.
1…有機EL素子、2…基板、3…陽極、4…陰極、5…発光層、6…正孔注入層、7…正孔輸送層、8…電子輸送層、9…電子注入層。 1 ... Organic EL element, 2 ... Substrate, 3 ... Anode, 4 ... Cathode, 5 ... Light emitting layer, 6 ... Hole injection layer, 7 ... Hole transport layer, 8 ... Electron transport layer, 9 ... Electron injection layer.
Claims (11)
陰極と、
前記陽極と前記陰極との間に含まれる発光層と、を有し、
前記発光層は、第一の化合物M1と、第二の化合物M2と、を含み、
前記第一の化合物M1は、下記一般式(1)で表され、
前記第二の化合物M2は、下記一般式(20A)又は一般式(20B)で表され、
前記第二の化合物M2の一重項エネルギーS1(Mat2)と、前記第一の化合物M1の一重項エネルギーS1(Mat1)とが、下記数式(数1)の関係を満たす、
有機エレクトロルミネッセンス素子。
S1(Mat2)>S1(Mat1)…(数1)
(前記一般式(1)において、
Xは、窒素原子、又はYと結合する炭素原子であり、
Yは、水素原子又は置換基であり、
R21〜R26は、それぞれ独立に、水素原子もしくは置換基であるか、又はR21及びR22の組、R22及びR23の組、R24及びR25の組、並びにR25及びR26の組のいずれか1つ以上の組が互いに結合して環を形成し、
置換基としてのY、及びR21〜R26は、それぞれ独立に、
置換もしくは無置換の炭素数1〜30のアルキル基、
置換もしくは無置換の炭素数1〜30のハロゲン化アルキル基、
置換もしくは無置換の環形成炭素数3〜30のシクロアルキル基、
置換もしくは無置換の環形成炭素数6〜30のアリール基、
置換もしくは無置換の炭素数1〜30のアルコキシ基、
置換もしくは無置換の炭素数1〜30のハロゲン化アルコキシ基、
置換もしくは無置換の炭素数1〜30のアルキルチオ基、
置換もしくは無置換の環形成炭素数6〜30のアリールオキシ基、
置換もしくは無置換の環形成炭素数6〜30のアリールチオ基、
置換もしくは無置換の炭素数2〜30のアルケニル基、
置換もしくは無置換の炭素数7〜30のアラルキル基、
置換もしくは無置換の環形成原子数5〜30のヘテロアリール基、
ハロゲン原子、
カルボキシ基、
置換もしくは無置換のエステル基、
置換もしくは無置換のカルバモイル基、
置換もしくは無置換のアミノ基、
ニトロ基、
シアノ基、
置換もしくは無置換のシリル基、及び
置換もしくは無置換のシロキサニル基からなる群から選択され、
Z21及びZ22は、それぞれ独立に、置換基であるか、又はZ21及びZ22が互いに結合して環を形成し、
置換基としてのZ21及びZ22は、それぞれ独立に、
ハロゲン原子、
置換もしくは無置換の炭素数1〜30のアルキル基、
置換もしくは無置換の炭素数1〜30のハロゲン化アルキル基、
置換もしくは無置換の環形成炭素数6〜30のアリール基、
置換もしくは無置換の炭素数1〜30のアルコキシ基、
置換もしくは無置換の炭素数1〜30のハロゲン化アルコキシ基、及び
置換もしくは無置換の環形成炭素数6〜30のアリールオキシ基からなる群から選択される。)
(前記一般式(20A)及び一般式(20B)において、
D21及びD22の一方は下記一般式(21)で表され、D21及びD22の他方は下記一般式(22)で表される。
(前記一般式(21)において、
R1〜R8は、それぞれ独立に、水素原子もしくは置換基であり、
置換基としてのR1〜R8は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6〜30のアリール基、
置換もしくは無置換の環形成原子数5〜30の複素環基、
置換もしくは無置換の炭素数1〜30のアルキル基、
置換もしくは無置換の炭素数3〜30のアルキルシリル基、
置換もしくは無置換の環形成炭素数6〜60のアリールシリル基、
置換もしくは無置換の炭素数1〜30のアルコキシ基、
置換もしくは無置換の環形成炭素数6〜30のアリールオキシ基、
置換もしくは無置換の炭素数2〜30のアルキルアミノ基、
置換もしくは無置換の環形成炭素数6〜60のアリールアミノ基、
置換もしくは無置換の炭素数1〜30のアルキルチオ基、又は
置換もしくは無置換の環形成炭素数6〜30のアリールチオ基である。
*は、前記一般式(20A)又は一般式(20B)中におけるベンゼン環の炭素原子との結合部位を表す。)
(前記一般式(22)において、
X1は、硫黄原子又は酸素原子であり、
R19及びR20は、それぞれ独立に、水素原子もしくは置換基であり、
R31〜R38は、それぞれ独立に、水素原子もしくは置換基であり、
置換基としてのR19、R20、R31〜R38は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6〜30のアリール基、
置換もしくは無置換の環形成原子数5〜30の複素環基、
置換もしくは無置換の炭素数1〜30のアルキル基、
置換もしくは無置換の炭素数3〜30のアルキルシリル基、
置換もしくは無置換の環形成炭素数6〜60のアリールシリル基、
置換もしくは無置換の炭素数1〜30のアルコキシ基、
置換もしくは無置換の環形成炭素数6〜30のアリールオキシ基、
置換もしくは無置換の炭素数2〜30のアルキルアミノ基、
置換もしくは無置換の環形成炭素数6〜60のアリールアミノ基、
置換もしくは無置換の炭素数1〜30のアルキルチオ基、又は
置換もしくは無置換の環形成炭素数6〜30のアリールチオ基であり、
*は、前記一般式(20A)又は一般式(20B)中におけるベンゼン環の炭素原子との結合部位を表す。) With the anode
With the cathode
It has a light emitting layer contained between the anode and the cathode, and has.
The light emitting layer contains the first compound M1 and the second compound M2.
The first compound M1 is represented by the following general formula (1).
The second compound M2 is represented by the following general formula (20A) or general formula (20B).
Wherein the second compound singlet energy S 1 of M2 (Mat2), said first compound M1 of singlet energy S 1 (Mat1) and but satisfies the following equation (Equation 1),
Organic electroluminescence element.
S 1 (Mat 2)> S 1 (Mat 1 ) ... (Equation 1)
(In the general formula (1),
X is a nitrogen atom or a carbon atom bonded to Y,
Y is a hydrogen atom or a substituent,
R 21 to R 26 are independently hydrogen atoms or substituents, or R 21 and R 22 pairs, R 22 and R 23 pairs, R 24 and R 25 pairs, and R 25 and R. Any one or more of the 26 pairs combine with each other to form a ring.
Y and R 21 to R 26 as substituents are independent of each other.
Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms,
Substituent or unsubstituted alkyl halide groups having 1 to 30 carbon atoms,
Substitutable or unsubstituted ring-forming cycloalkyl group having 3 to 30 carbon atoms,
Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms,
Substituent or unsubstituted alkoxy groups having 1 to 30 carbon atoms,
Substituent or unsubstituted alkoxy group having 1 to 30 carbon atoms,
Substituent or unsubstituted alkylthio groups having 1 to 30 carbon atoms,
Substituent or unsubstituted ring-forming aryloxy groups having 6 to 30 carbon atoms,
Substituted or unsubstituted ring-forming arylthio groups having 6 to 30 carbon atoms,
Substituent or unsubstituted alkenyl groups having 2 to 30 carbon atoms,
Substituentally substituted or unsubstituted aralkyl groups having 7 to 30 carbon atoms,
A heteroaryl group having 5 to 30 substituted or unsubstituted ring-forming atoms,
Halogen atom,
Carboxylic acid group,
Substituted or unsubstituted ester groups,
Substituted or unsubstituted carbamoyl groups,
Substituted or unsubstituted amino groups,
Nitro group,
Cyano group,
Selected from the group consisting of substituted or unsubstituted silyl groups and substituted or unsubstituted siloxanyl groups.
Z 21 and Z 22 are independent substituents, or Z 21 and Z 22 are bonded to each other to form a ring.
Z 21 and Z 22 as substituents are independent of each other.
Halogen atom,
Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms,
Substituent or unsubstituted alkyl halide groups having 1 to 30 carbon atoms,
Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms,
Substituent or unsubstituted alkoxy groups having 1 to 30 carbon atoms,
It is selected from the group consisting of substituted or unsubstituted alkyl halide groups having 1 to 30 carbon atoms and substituted or unsubstituted ring-forming aryloxy groups having 6 to 30 carbon atoms. )
(In the general formula (20A) and the general formula (20B),
One of D 21 and D 22 is represented by the following general formula (21), and the other of D 21 and D 22 is represented by the following general formula (22).
(In the general formula (21),
R 1 to R 8 are independent hydrogen atoms or substituents, respectively.
R 1 to R 8 as substituents are independent of each other.
Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms,
Substituted or unsubstituted heterocyclic groups having 5 to 30 ring-forming atoms,
Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms,
Substituent or unsubstituted alkylsilyl group having 3 to 30 carbon atoms,
Substituent or unsubstituted ring-forming arylsilyl group having 6 to 60 carbon atoms,
Substituent or unsubstituted alkoxy groups having 1 to 30 carbon atoms,
Substituent or unsubstituted ring-forming aryloxy groups having 6 to 30 carbon atoms,
Substituent or unsubstituted alkylamino groups having 2 to 30 carbon atoms,
Substituent or unsubstituted ring-forming arylamino group having 6 to 60 carbon atoms,
It is a substituted or unsubstituted alkylthio group having 1 to 30 carbon atoms, or a substituted or unsubstituted ring-forming alkylthio group having 6 to 30 carbon atoms.
* Represents the binding site of the benzene ring with the carbon atom in the general formula (20A) or the general formula (20B). )
(In the general formula (22),
X 1 is a sulfur atom or an oxygen atom,
R 19 and R 20 are independent hydrogen atoms or substituents, respectively.
R 31 to R 38 are independent hydrogen atoms or substituents, respectively.
R 19 , R 20 , and R 31 to R 38 as substituents are independent of each other.
Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms,
Substituted or unsubstituted heterocyclic groups having 5 to 30 ring-forming atoms,
Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms,
Substituent or unsubstituted alkylsilyl group having 3 to 30 carbon atoms,
Substituent or unsubstituted ring-forming arylsilyl group having 6 to 60 carbon atoms,
Substituent or unsubstituted alkoxy groups having 1 to 30 carbon atoms,
Substituent or unsubstituted ring-forming aryloxy groups having 6 to 30 carbon atoms,
Substituent or unsubstituted alkylamino groups having 2 to 30 carbon atoms,
Substituent or unsubstituted ring-forming arylamino group having 6 to 60 carbon atoms,
A substituted or unsubstituted alkylthio group having 1 to 30 carbon atoms, or a substituted or unsubstituted ring-forming alkylthio group having 6 to 30 carbon atoms.
* Represents the binding site of the benzene ring with the carbon atom in the general formula (20A) or the general formula (20B). )
R19、R20及びR31〜R38は、水素原子である、
有機エレクトロルミネッセンス素子。 In the organic electroluminescence device according to claim 1,
R 19 , R 20 and R 31 to R 38 are hydrogen atoms,
Organic electroluminescence element.
R1〜R8は、水素原子である、
有機エレクトロルミネッセンス素子。 In the organic electroluminescence device according to claim 1,
R 1 to R 8 are hydrogen atoms,
Organic electroluminescence element.
R1〜R8、R19、R20及びR31〜R38は、水素原子である、
有機エレクトロルミネッセンス素子。 In the organic electroluminescence device according to claim 1,
R 1 to R 8 , R 19 , R 20 and R 31 to R 38 are hydrogen atoms,
Organic electroluminescence element.
X1は、硫黄原子である、
有機エレクトロルミネッセンス素子。 In the organic electroluminescence device according to any one of claims 1 to 4.
X 1 is a sulfur atom,
Organic electroluminescence element.
前記第二の化合物M2は、遅延蛍光性の化合物である、
有機エレクトロルミネッセンス素子。 In the organic electroluminescence device according to any one of claims 1 to 5.
The second compound M2 is a delayed fluorescent compound.
Organic electroluminescence element.
Z21及びZ22がフッ素原子である、
有機エレクトロルミネッセンス素子。 In the organic electroluminescence device according to any one of claims 1 to 6.
Z 21 and Z 22 are fluorine atoms,
Organic electroluminescence element.
R21、R23、R24、及びR26は、それぞれ独立に、置換もしくは無置換の炭素数1〜30のアルキル基、又は置換もしくは無置換の炭素数1〜30のハロゲン化アルキル基である、
有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 7.
R 21 , R 23 , R 24 , and R 26 are independently substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, or substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, respectively. ,
Organic electroluminescence element.
前記発光層は、第三の化合物M3をさらに含み、
前記第三の化合物M3の一重項エネルギーS1(Mat3)と、前記第二の化合物M2の一重項エネルギーS1(Mat2)とが、下記数式(数2)の関係を満たす、
有機エレクトロルミネッセンス素子。
S1(Mat3)>S1(Mat2)…(数2) The organic electroluminescence device according to any one of claims 1 to 8.
The light emitting layer further contains the third compound M3.
Wherein the singlet energy S 1 (MAT3) of the third compound M3, the second compound singlet energy S 1 of M2 (Mat2) and but satisfies the following equation (Equation 2),
Organic electroluminescence element.
S 1 (Mat3)> S 1 (Mat2) ... ( number 2)
前記発光層は、金属錯体を含まない、
有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 9.
The light emitting layer does not contain a metal complex.
Organic electroluminescence element.
An electronic device equipped with the organic electroluminescence device according to any one of claims 1 to 10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019073710A JP2020174072A (en) | 2019-04-08 | 2019-04-08 | Organic electroluminescence device and electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019073710A JP2020174072A (en) | 2019-04-08 | 2019-04-08 | Organic electroluminescence device and electronic device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020174072A true JP2020174072A (en) | 2020-10-22 |
Family
ID=72831697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019073710A Pending JP2020174072A (en) | 2019-04-08 | 2019-04-08 | Organic electroluminescence device and electronic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020174072A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022230573A1 (en) * | 2021-04-26 | 2022-11-03 | 株式会社Kyulux | Organic light-emitting device and method for making same |
WO2022244503A1 (en) * | 2021-05-20 | 2022-11-24 | 株式会社Kyulux | Organic light emitting element |
-
2019
- 2019-04-08 JP JP2019073710A patent/JP2020174072A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022230573A1 (en) * | 2021-04-26 | 2022-11-03 | 株式会社Kyulux | Organic light-emitting device and method for making same |
WO2022244503A1 (en) * | 2021-05-20 | 2022-11-24 | 株式会社Kyulux | Organic light emitting element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6761796B2 (en) | Organic electroluminescence devices, electronics, and compounds | |
JP2020161843A (en) | Organic electroluminescent element and electronic device | |
WO2018181188A1 (en) | Organic electroluminescence element and electronic device | |
WO2016031785A1 (en) | Organic electroluminescent element and electronic device | |
WO2021066059A1 (en) | Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device | |
JP7393345B2 (en) | Organic electroluminescent devices, compounds, materials for organic electroluminescent devices, and electronic devices | |
WO2021015177A1 (en) | Organic electroluminescent element and electronic device | |
JP6829583B2 (en) | Compounds, compositions, organic electroluminescence devices, and electronic devices | |
WO2019181858A1 (en) | Organic electroluminescent element and electronic device | |
WO2020085446A1 (en) | Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic appliance | |
JP2020050650A (en) | Compound, organic electroluminescent element material, organic electroluminescent element, and electronic apparatus | |
JP2020158425A (en) | Compounds, organic electroluminescent element material, organic electroluminescent element, and electronic apparatus | |
WO2020241580A1 (en) | Organic electroluminescent element and electronic device | |
JP7374187B2 (en) | Organic electroluminescent devices, compounds and electronic devices | |
JP2020174072A (en) | Organic electroluminescence device and electronic device | |
WO2020059862A1 (en) | Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device | |
JP2021020857A (en) | Compound, organic electroluminescent element, and electronic apparatus | |
WO2022075270A1 (en) | Organic electroluminescent element, compound, material for organic electroluminescent element, and electronic device | |
WO2022025021A1 (en) | Organic electroluminescent element, organic electroluminescent light-emitting device, and electronic equipment | |
WO2021166553A1 (en) | Organic electroluminescent element and electronic appliance | |
WO2021166552A1 (en) | Organic electroluminescence element and electronic device | |
WO2017065295A1 (en) | Organic electroluminescent element and electronic device | |
WO2021261461A1 (en) | Compounds, materials for organic electroluminescent devices, organic electroluminescent devices, and electronic devices | |
JP2019137617A (en) | Compound, organic electroluminescent element, and electronic apparatus | |
WO2021117710A1 (en) | Organic electroluminescent element, compound and electronic device |