Nothing Special   »   [go: up one dir, main page]

JP2020152655A - Benzoheterophenanthrene compound having condensed ring group and use thereof - Google Patents

Benzoheterophenanthrene compound having condensed ring group and use thereof Download PDF

Info

Publication number
JP2020152655A
JP2020152655A JP2019050813A JP2019050813A JP2020152655A JP 2020152655 A JP2020152655 A JP 2020152655A JP 2019050813 A JP2019050813 A JP 2019050813A JP 2019050813 A JP2019050813 A JP 2019050813A JP 2020152655 A JP2020152655 A JP 2020152655A
Authority
JP
Japan
Prior art keywords
compound
organic
bis
general formula
naphthalenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019050813A
Other languages
Japanese (ja)
Inventor
中村 圭介
Keisuke Nakamura
圭介 中村
松本 直樹
Naoki Matsumoto
直樹 松本
宏和 新屋
Hirokazu Araya
宏和 新屋
弘之 川島
Hiroyuki Kawashima
弘之 川島
真太朗 野村
Shintaro Nomura
真太朗 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2019050813A priority Critical patent/JP2020152655A/en
Publication of JP2020152655A publication Critical patent/JP2020152655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Furan Compounds (AREA)

Abstract

To provide an organic EL material which exhibits higher efficiency than conventional materials.SOLUTION: A 2-aminocarbazole compound represented by general formula (1) (where X represents an oxygen atom or a sulfur atom; R1 and R2 each independently represent a hydrogen atom or a specific arylamino group; and at least one of R1 and R2 is the arylamino group) is used for one or more of a light-emitting layer, a hole transport layer, and a hole injection layer of an organic EL element.SELECTED DRAWING: None

Description

本発明は、縮環した芳香族置換基を持つ、新規なアリールアミン化合物、及びそれを用いた有機EL素子に関するものである。 The present invention relates to a novel arylamine compound having a fused aromatic substituent and an organic EL device using the same.

自発光を特徴とする有機EL素子は、液晶パネルで使用されるバックライトが不要であることから薄型化が可能であり、また画面を曲面にできるフレキシブル性能の利点を有するため、次世代の薄型ディスプレイや照明として近年盛んに研究が進み、既に携帯電話のディスプレイやテレビ等へ実用化されている。 The organic EL element characterized by self-luminous light can be made thinner because it does not require the backlight used in the liquid crystal panel, and it has the advantage of flexible performance that allows the screen to be curved, so it is the next-generation thin. Research has been actively pursued in recent years as displays and lighting, and they have already been put into practical use in mobile phone displays and televisions.

一般に有機EL素子は、陽極と陰極との間に、正孔輸送材料、発光材料及び電子輸送材料を積層させた構造であるが、現在では低消費電力化、さらには長寿命化を達成させるため、正孔注入材料、電子注入材料及び正孔阻止材料等を挿入した多層積層構造が主流となっている。正孔輸送材料には、適当なイオン化ポテンシャルと正孔輸送能を有するアミン化合物が用いられ、標準的な材料として、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(以下、NPDと略す)が知られている(例えば、非特許文献1)。 Generally, an organic EL element has a structure in which a hole transport material, a light emitting material, and an electron transport material are laminated between an anode and a cathode, but at present, in order to achieve low power consumption and long life. , A multi-layer laminated structure in which a hole injection material, an electron injection material, a hole blocking material, etc. are inserted is the mainstream. As the hole transport material, an amine compound having an appropriate ionization potential and hole transport ability is used, and as a standard material, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] Biphenyl (hereinafter abbreviated as NPD) is known (for example, Non-Patent Document 1).

しかし、NPDは、ガラス転移温度が十分高くないことから、素子寿命に課題があった。また、NPDを正孔輸送層に用いた素子の駆動電圧、発光効率も市場要求を満足するほど十分ではなかった。 However, NPD has a problem in device life because the glass transition temperature is not sufficiently high. In addition, the drive voltage and luminous efficiency of the device using the NPD for the hole transport layer were not sufficient to satisfy the market requirements.

このような背景から、高いガラス転移温度を確保することができ、正孔輸送性に優れる縮合環を導入したアリールアミン化合物の開発が進められている。 Against this background, the development of an arylamine compound having a condensed ring that can secure a high glass transition temperature and has excellent hole transportability is being promoted.

高いガラス転移温度が確保できる縮合環の一つとしては、フェナントレン環にベンゾチオフェン環若しくはベンゾフラン環が縮環した構造が知られおり、このような縮合環を利用した正孔輸送材料も報告されている(例えば、特許文献1、2、3参照)。 As one of the fused rings that can secure a high glass transition temperature, a structure in which a benzothiophene ring or a benzofuran ring is fused to a phenanthrene ring is known, and a hole transport material using such a fused ring has also been reported. (See, for example, Patent Documents 1, 2 and 3).

特表2013−544776号公報Special Table 2013-544776 国際公開第2013/055132号International Publication No. 2013-055132 特開2015−96484号公報JP-A-2015-96484

Applied Physics Letters,1996年,69巻,2160頁Applied Physics Letters, 1996, Vol. 69, p. 2160

特許文献1、2、及び3に開示された化合物については、素子寿命の改善が求められている。 For the compounds disclosed in Patent Documents 1, 2 and 3, improvement in device life is required.

本発明者らは、鋭意検討した結果、ベンゾ[b]フェナントレノ[9,10−d]チオフェン環、又はベンゾ[b]フェナントレノ[9,10−d]フラン環を分子内に有する、下記一般式(1)で表されるアリールアミン化合物が、従来公知の化合物に比べて、有機EL素子の素子寿命に優れることを見いだし、本発明を完成するに至った。 As a result of diligent studies, the present inventors have the following general formula having a benzo [b] phenanthreno [9,10-d] thiophene ring or a benzo [b] phenanthreno [9,10-d] furan ring in the molecule. It has been found that the arylamine compound represented by (1) is superior in the device life of the organic EL element as compared with the conventionally known compound, and the present invention has been completed.

(式中、Xは、酸素原子又は硫黄原子を表す。R及びRは、各々独立して、水素原子、又は下記一般式(2)で表される基を表し、R及びRのうち少なくとも一つは、下記一般式(2)で表される基である。) (In the formula, X represents an oxygen atom or a sulfur atom. R 1 and R 2 each independently represent a hydrogen atom or a group represented by the following general formula (2), and R 1 and R 2 respectively. At least one of them is a group represented by the following general formula (2).)

(式中、m及びnは、0または1を表す。A及びBは、ベンゼン環を形成してもよい。) (In the formula, m and n represent 0 or 1. A and B may form a benzene ring.)

本発明のアリールアミン化合物は、従来公知材料に比べて有機EL素子寿命に優れるため、長寿命の有機EL素子搭載機器を提供できるという効果を奏する。 Since the arylamine compound of the present invention has an excellent life of the organic EL device as compared with the conventionally known material, it has an effect that a device equipped with the organic EL device having a long life can be provided.

本発明のアリールアミン化合物は酸化還元安定性に優れるという効果を奏し、当該効果に基づいて有機EL素子を長寿命化するという効果を奏すると推測される。 It is presumed that the arylamine compound of the present invention has an effect of excellent redox stability, and based on the effect, has an effect of extending the life of the organic EL device.

本発明のアリールアミン化合物は、耐熱分解性に優れるため、有機EL素子の連続生産性向上や歩留まり向上に寄与するという効果を奏する。 Since the arylamine compound of the present invention is excellent in heat-resistant decomposition property, it has an effect of contributing to improvement of continuous productivity and yield of organic EL device.

また、本発明のアリールアミン化合物は、有機EL素子の正孔輸送層又は正孔注入層として用いた場合に、従来公知の材料に比べて、高い発光効率を発現し、機器の低消費電力化に寄与するという効果を奏する。 Further, when the arylamine compound of the present invention is used as a hole transport layer or a hole injection layer of an organic EL device, it exhibits higher luminous efficiency than conventionally known materials and reduces power consumption of equipment. It has the effect of contributing to.

このような効果は、ジアリールアミノ基の構造とその結合位置に特徴を持たせた本発明のアリールアミン化合物の特徴的な化学構造に由来するものである。 Such an effect is derived from the characteristic chemical structure of the arylamine compound of the present invention, which is characterized by the structure of the diarylamino group and its bonding position.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

上記一般式(1)で表されるアリールアミン化合物において、Xは、酸素原子又は硫黄原子を表す。R及びRは、各々独立して、水素原子、又は上記一般式(2)で表される基を表し、R及びRのうち少なくとも一つは、上記一般式(2)で表される基である。 In the arylamine compound represented by the general formula (1), X represents an oxygen atom or a sulfur atom. R 1 and R 2 each independently represent a hydrogen atom or a group represented by the above general formula (2), and at least one of R 1 and R 2 is represented by the above general formula (2). Is the basis for being.

上記の一般式(2)において、m及びnは、0または1を表す。A及びBは、ベンゼン環を形成していてもよい。 In the above general formula (2), m and n represent 0 or 1. A and B may form a benzene ring.

A及びBがベンゼン環を形成する場合、結果としてフェナントレニル基が形成され、A及びBがベンゼン環を形成しない場合、当該部分については、ナフタレニル基が形成されることになる。 When A and B form a benzene ring, a phenanthrenyl group is formed as a result, and when A and B do not form a benzene ring, a naphthalenyl group is formed for the portion.

m又はnが0のときは、当該部分のベンゼン環(フェニレン基)が存在しない状態となり、ナフタレニル基又はフェナントレニル基がアミノ基と結合することになる。 When m or n is 0, the benzene ring (phenylene group) of the relevant portion does not exist, and the naphthalenyl group or the phenanthrenyl group is bonded to the amino group.

m又はnが1のときは、当該部分にベンゼン環(フェニレン基)が存在する状態となるが、この時のフェニレン基の結合については、特に限定されるものではなく、o−フェニレン基、m−フェニレン基、及びp−フェニレン基のいずれであってもよい。 When m or n is 1, a benzene ring (phenylene group) is present in the portion, but the bond of the phenylene group at this time is not particularly limited, and the o-phenylene group and m It may be either a −phenylene group or a p-phenylene group.

上記一般式(2)としては、特に限定するものではないが、その一部として、例えば、N,N−ビス(1−ナフタレニル)アミノ基、N,N−ビス(2−ナフタレニル)アミノ基、N−(1−ナフタレニル)−N−(2−ナフタレニル)アミノ基、N,N−ビス(9−フェナントレニル)アミノ基、N−(1−ナフタレニル)−N−(9−フェナントレニル)アミノ基、N−(2−ナフタレニル)−N−(9−フェナントレニル)アミノ基、N,N−ビス[4−(1−ナフタレニル)フェニル]アミノ基、N,N−ビス[4−(2−ナフタレニル)フェニル]アミノ基、N−[4−(1−ナフタレニル)フェニル]−N−[4−(2−ナフタレニル)フェニル]アミノ基、N,N−ビス[4−(9−フェナントレニル)フェニル]アミノ基、N−[4−(1−ナフタレニル)フェニル]−N−[4−(9−フェナントレニル)フェニル]アミノ基、又はN−[4−(2−ナフタレニル)フェニル]−N−[4−(9−フェナントレニル)フェニル]アミノ基等を挙げることができ、これらを含めたその他の例について、後段にて構造式を用いて示す。 The general formula (2) is not particularly limited, but as a part thereof, for example, N, N-bis (1-naphthalenyl) amino group, N, N-bis (2-naphthalenyl) amino group, and the like. N- (1-naphthalenyl) -N- (2-naphthalenyl) amino group, N, N-bis (9-phenanthrenyl) amino group, N- (1-naphthalenyl) -N- (9-phenanthrenyl) amino group, N -(2-Naphthalenyl) -N- (9-phenanthrenyl) amino group, N, N-bis [4- (1-naphthalenyl) phenyl] amino group, N, N-bis [4- (2-naphthalenyl) phenyl] Amino group, N- [4- (1-naphthalenyl) phenyl] -N- [4- (2-naphthalenyl) phenyl] amino group, N, N-bis [4- (9-phenanthrenyl) phenyl] amino group, N -[4- (1-naphthalenyl) phenyl] -N- [4- (9-phenanthrenyl) phenyl] amino group, or N- [4- (2-naphthalenyl) phenyl] -N- [4- (9-phenanthrenyl) phenyl] ) Phenyl] Amino groups and the like can be mentioned, and other examples including these groups will be shown later using structural formulas.

なお、一般式(1)で表されるアリールアミン化合物については、素子寿命、及び原料入手の容易性の点において、R及びRのうち一つが、上記一般式(2)で表される基であり、他方が水素原子であるものが好ましく、Rが水素原子であり尚且つRが上記一般式(2)で表される基であることがより好ましい。 Regarding the arylamine compound represented by the general formula (1), one of R 1 and R 2 is represented by the above general formula (2) in terms of device life and easy availability of raw materials. It is preferable that the group is a hydrogen atom and the other is a hydrogen atom, and it is more preferable that R 1 is a hydrogen atom and R 2 is a group represented by the above general formula (2).

一般式(1)で表されるアリールアミン化合物については、素子寿命に優れる点で、Xは酸素原子であることが好ましい。 Regarding the arylamine compound represented by the general formula (1), it is preferable that X is an oxygen atom in terms of excellent device life.

また、上記の一般式(2)で表される基については、素子寿命に優れる点で、下記の一般式(2’)で表される基であることが好ましい。 Further, the group represented by the above general formula (2) is preferably a group represented by the following general formula (2') in terms of excellent device life.

(式中、m及びnは、0または1を表す。)
以下に、一般式(1)で表されるカルバゾール化合物について、好ましい化合物を具体的に例示するが、本願発明はこれらの化合物に限定されるものではない。
(In the formula, m and n represent 0 or 1.)
Hereinafter, preferred compounds are specifically exemplified with respect to the carbazole compound represented by the general formula (1), but the present invention is not limited to these compounds.

これらのアリールアミン化合物のうち、素子寿命に優れる点で、式(A4)、(A25)、(A31)、(A49)、(A70)、(A76)、(A94)、(A115)、(A121)、(A139)、(A160)、又は(A166)で表されるものが好ましい。 Among these arylamine compounds, the formulas (A4), (A25), (A31), (A49), (A70), (A76), (A94), (A115), and (A121) are excellent in device life. ), (A139), (A160), or (A166) is preferable.

本願の一般式(1)で表されるアリールアミン化合物は、特に限定するものではないが、例えば、有機EL素子用の発光ホスト材料、正孔輸送材料、及び/又は正孔注入材料として好ましく使用することができる。本願の一般式(1)で表されるアリールアミン化合物は正孔輸送能に優れることから、正孔輸送層及び/又は正孔注入層として使用した際に、有機EL素子の長寿命化を実現することができる。 The arylamine compound represented by the general formula (1) of the present application is not particularly limited, but is preferably used as, for example, a light emitting host material for an organic EL device, a hole transport material, and / or a hole injection material. can do. Since the arylamine compound represented by the general formula (1) of the present application is excellent in hole transporting ability, the life of the organic EL device can be extended when used as a hole transporting layer and / or a hole injecting layer. can do.

前記一般式(1)で表されるアリールアミン化合物を有機EL素子の発光層、正孔注入層、及び/又は正孔輸送層として使用する際の発光層における発光材料としては、従来から使用されている公知の蛍光若しくは燐光発光材料を使用することができる。発光層は1種類の発光材料のみで形成されていても、ホスト材料中に1種類以上の発光材料がドープされていてもよい。 Conventionally, it has been used as a light emitting material in a light emitting layer when the arylamine compound represented by the general formula (1) is used as a light emitting layer, a hole injection layer, and / or a hole transporting layer of an organic EL device. Known fluorescent or phosphorescent materials can be used. The light emitting layer may be formed of only one kind of light emitting material, or may be doped with one or more kinds of light emitting materials in the host material.

前記一般式(1)で表されるアリールアミン化合物を含む正孔注入層及び/又は正孔輸送層を形成する際には、前記アリールアミン化合物を単独で用いることもできるし、必要に応じて2種類以上の材料を含有若しくは積層させてもよく、例えば、酸化モリブデン等の酸化物、7,7,8,8−テトラシアノキノジメタン、2,3,5,6−テトラフルオロ−7,7,8,8−テトラシアノキノジメタン、ヘキサシアノヘキサアザトリフェニレン等の公知の電子受容性材料を含有若しくは積層させてもよい。 When forming the hole injection layer and / or the hole transport layer containing the arylamine compound represented by the general formula (1), the arylamine compound can be used alone, or if necessary. Two or more materials may be contained or laminated, for example, oxides such as molybdenum oxide, 7,7,8,8-tetracyanoquinodimethane, 2,3,5,6-tetrafluoro-7, Known electron-accepting materials such as 7,8,8-tetracyanoquinodimethane and hexacyanohexazatriphenylene may be contained or laminated.

また、本発明の前記一般式(1)で表されるアリールアミン化合物は、有機EL素子の発光層としても使用することができる。前記一般式(1)で表されるアリールアミン化合物を有機EL素子の発光層として使用する場合には、アリールアミン化合物を単独で使用、公知の発光ホスト材料にドープして使用、又は公知の発光ドーパントをドープして使用することができる。 Further, the arylamine compound represented by the general formula (1) of the present invention can also be used as a light emitting layer of an organic EL device. When the arylamine compound represented by the general formula (1) is used as a light emitting layer of an organic EL device, the arylamine compound is used alone, doped with a known light emitting host material, or known light emission. It can be used by doping with a dopant.

前記一般式(1)で表されるアリールアミン化合物を含有する正孔注入層、正孔輸送層又は発光層を形成する方法としては、例えば、真空蒸着法、スピンコート法、キャスト法等の公知の方法を適用することができる。 Known methods for forming the hole injection layer, hole transport layer, or light emitting layer containing the arylamine compound represented by the general formula (1) include, for example, a vacuum deposition method, a spin coating method, and a casting method. Method can be applied.

本発明の効果が得られる有機EL素子の基本的な構造としては、基板、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、及び陰極を含むものが好ましく、一部の層が省略されていても、また逆に追加されていてもよい。 The basic structure of the organic EL device from which the effects of the present invention can be obtained preferably includes a substrate, an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode, and some of them are included. Layers may be omitted or vice versa.

有機EL素子の陽極及び陰極は、電気的な導体を介して電源に接続されている。陽極と陰極との間に電位を加えることにより、有機EL素子は作動する。 The anode and cathode of the organic EL element are connected to the power supply via an electric conductor. The organic EL element operates by applying an electric potential between the anode and the cathode.

正孔は陽極から有機EL素子内に注入され、電子は陰極で有機EL素子内に注入される。 Holes are injected into the organic EL device from the anode, and electrons are injected into the organic EL device at the cathode.

有機EL素子は典型的には基板に被せられ、陽極又は陰極は基板と接触することができる。基板と接触する電極は便宜上、下側電極と呼ばれる。一般的には、下側電極は陽極であるが、本発明の有機EL素子においては、そのような形態に限定されるものではない。 The organic EL element is typically overlaid on the substrate and the anode or cathode can be in contact with the substrate. The electrodes that come into contact with the substrate are called lower electrodes for convenience. Generally, the lower electrode is an anode, but the organic EL device of the present invention is not limited to such a form.

基板は、意図される発光方向に応じて、光透過性又は不透明であってもよい。光透過特性は、基板を通してエレクトロルミネッセンス発光により確認できる。一般的には、透明ガラス又はプラスチックがこのような場合に基板として採用される。基板は、多重の材料層を含む複合構造であってもよい。 The substrate may be light transmissive or opaque, depending on the intended emission direction. The light transmission characteristics can be confirmed by electroluminescence emission through the substrate. Generally, transparent glass or plastic is adopted as a substrate in such a case. The substrate may have a composite structure including multiple material layers.

エレクトロルミネッセンス発光を、陽極を通して確認する場合、陽極は当該発光を通すか又は実質的に通すもので形成される。 When the electroluminescence emission is confirmed through the anode, the anode is formed by passing or substantially passing the emission.

本発明において使用される一般的な透明アノード(陽極)材料は、特に限定するものではないが、インジウム−錫酸化物(ITO)、インジウム−亜鉛酸化物(IZO)、又は酸化錫等が挙げられる。その他の金属酸化物、例えばアルミニウム又はインジウム・ドープ型酸化錫、マグネシウム−インジウム酸化物、又はニッケル−タングステン酸化物も使用可能である。これらの酸化物に加えて、金属窒化物である、例えば窒化ガリウム、金属セレン化物である、例えばセレン化亜鉛、又は金属硫化物である、例えば硫化亜鉛を陽極として使用することができる。 The general transparent anode material used in the present invention is not particularly limited, and examples thereof include indium-tin oxide (ITO), indium-zinc oxide (IZO), and tin oxide. .. Other metal oxides such as aluminum or indium-doped tin oxide, magnesium-indium oxide, or nickel-tungsten oxide can also be used. In addition to these oxides, metal nitrides such as gallium nitride, metal selenides such as zinc selenide, or metal sulfides such as zinc sulfide can be used as the anode.

陽極は、プラズマ蒸着されたフルオロカーボンで改質することができる。陰極を通してだけエレクトロルミネッセンス発光が確認される場合、陽極の透過特性は重要ではなく、透明、不透明又は反射性の任意の導電性材料を使用することができる。この用途のための導体の一例としては、金、イリジウム、モリブデン、パラジウム、又は白金等が挙げられる。 The anode can be modified with plasma-deposited fluorocarbons. If electroluminescence emission is confirmed only through the cathode, the transmission properties of the anode are not important and any transparent, opaque or reflective conductive material can be used. Examples of conductors for this application include gold, iridium, molybdenum, palladium, platinum and the like.

陽極と発光層の間には、正孔注入層や正孔輸送層といった正孔輸送性の層を複数層設けることができる。正孔注入層や正孔輸送層は、陽極より注入された正孔を発光層に伝達する機能を有し、これらの層を陽極と発光層の間に介在させることにより、より低い電界で多くの正孔を発光層に注入することができる。 A plurality of hole-transporting layers such as a hole-injecting layer and a hole-transporting layer can be provided between the anode and the light-emitting layer. The hole injection layer and the hole transport layer have a function of transmitting holes injected from the anode to the light emitting layer, and by interposing these layers between the anode and the light emitting layer, many holes are generated at a lower electric field. Holes can be injected into the light emitting layer.

本発明の有機EL素子は、発光層、正孔輸送層、及び/又は正孔注入層に前記一般式(1)で表されるアリールアミン化合物を含むものである。 The organic EL device of the present invention contains an arylamine compound represented by the general formula (1) in a light emitting layer, a hole transport layer, and / or a hole injection layer.

正孔輸送層及び/又は正孔注入層には、前記一般式(1)で表されるアリールアミン化合物を用いることができ、当該アリールアミン化合物と共に、公知の正孔輸送材料及び/又は正孔注入材料の中から任意のものを選択して組み合わせて用いることができる。 An arylamine compound represented by the general formula (1) can be used for the hole transport layer and / or the hole injection layer, and together with the arylamine compound, a known hole transport material and / or hole Any material can be selected from the injection materials and used in combination.

公知の正孔注入材料、正孔輸送材料としては、例えばトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、又は導電性高分子オリゴマー(例えば、チオフェンオリゴマー)等が挙げられる。正孔注入材料、正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物等が挙げられ、特に芳香族第三級アミン化合物を用いることが好ましい。 Known hole injection materials and hole transport materials include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, and the like. Examples thereof include oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilben derivatives, silazane derivatives, aniline-based copolymers, and conductive polymer oligomers (for example, thiophene oligomers). As the hole injection material and the hole transport material, the above-mentioned materials can be used, and examples thereof include porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds, and in particular, aromatic tertiary amine compounds. Is preferably used.

上記芳香族第三級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N’,N’−テトラフェニル−4,4’−ジアミノフェニル、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−[1,1’−ビフェニル]−4,4’−ジアミン(TPD)、2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン、1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン、N,N,N’,N’−テトラ−p−トリル−4,4’−ジアミノビフェニル、1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン、ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン、ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン、N,N’−ジフェニル−N,N’−ジ(4−メトキシフェニル)−4,4’−ジアミノビフェニル、N,N,N’,N’−テトラフェニル−4,4’−ジアミノジフェニルエーテル、4,4’−ビス(ジフェニルアミノ)クオードリフェニル、N,N,N−トリ(p−トリル)アミン、4−(ジ−p−トリルアミノ)−4’−[4−(ジ−p−トリルアミノ)スチリル]スチルベン、4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン、3−メトキシ−4’−N,N−ジフェニルアミノスチルベンゼン、N−フェニルカルバゾール、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(NPD)、又は4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(MTDATA)等が挙げられる。 Typical examples of the above aromatic tertiary amine compound and styrylamine compound are N, N, N', N'-tetraphenyl-4,4'-diaminophenyl, N, N'-diphenyl-N, N'. -Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1- Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p-) Trillaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'-diphenyl-N, N '-Di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N, N, N', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (diphenylamino) Audriphenyl, N, N, N-tri (p-tolyl) amine, 4- (di-p-tolylamino) -4'-[4- (di-p-tolylamino) styryl] stilben, 4-N, N- Diphenylamino- (2-diphenylvinyl) benzene, 3-methoxy-4'-N, N-diphenylaminostylbenzene, N-phenylcarbazole, 4,4'-bis [N- (1-naphthyl) -N-phenyl Examples thereof include amino] biphenyl (NPD), 4,4', 4''-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA) and the like.

又、p型−Si、p型−SiCなどの無機化合物も正孔注入材料、正孔輸送材料として使用することができる。正孔注入層、正孔輸送層は、上記材料の一種又は二種以上からなる一層構造であってもよく、同一組成又は異種組成の複数層からなる積層構造であってもよい。 Inorganic compounds such as p-type-Si and p-type-SiC can also be used as hole injection materials and hole transport materials. The hole injection layer and the hole transport layer may have a one-layer structure composed of one or more of the above materials, or may have a laminated structure composed of a plurality of layers having the same composition or a different composition.

有機EL素子の発光層は、燐光材料又は蛍光材料を含むことが好ましく、この領域で電子・正孔対が再結合された結果として発光を生ずるが、一成分として、前記一般式(1)で表されるアリールアミン化合物を含んでいてもよい。 The light emitting layer of the organic EL element preferably contains a phosphorescent material or a fluorescent material, and emits light as a result of the recombination of electron / hole pairs in this region. As one component, the general formula (1) is used. It may contain the represented arylamine compound.

発光層は、低分子及びポリマー双方を含む単一材料から成っていてもよいが、より一般的には、ゲスト化合物でドーピングされたホスト材料から成っており、発光は主としてドーパントから生じ、任意の色を有することができる。 The light emitting layer may consist of a single material containing both small molecules and polymers, but more generally it consists of a host material doped with a guest compound, the emission of which originates primarily from dopants and is optional. Can have a color.

発光層のホスト材料としては、例えば、前記一般式(1)で表されるアリールアミン化合物、ビフェニル基、フルオレニル基、トリフェニルシリル基、カルバゾール基、ピレニル基、又はアントラニル基を有する化合物が挙げられる。例えば、DPVBi(4,4’−ビス(2,2−ジフェニルビニル)−1,1’−ビフェニル)、BCzVBi(4,4’−ビス(9−エチル−3−カルバゾビニレン)1,1’−ビフェニル)、TBADN(2−ターシャルブチル−9,10−ジ(2−ナフチル)アントラセン)、ADN(9,10−ジ(2−ナフチル)アントラセン)、CBP(4,4’−ビス(カルバゾール−9−イル)ビフェニル)、CDBP(4,4’−ビス(カルバゾール−9−イル)−2,2’−ジメチルビフェニル)、又は9,10−ビス(ビフェニル)アントラセン等が挙げられる。 Examples of the host material of the light emitting layer include an arylamine compound represented by the general formula (1), a biphenyl group, a fluorenyl group, a triphenylsilyl group, a carbazole group, a pyrenyl group, and a compound having an anthranil group. .. For example, DPVBi (4,4'-bis (2,2-diphenylvinyl) -1,1'-biphenyl), BCzVBi (4,4'-bis (9-ethyl-3-carbazobinylene) 1,1'-biphenyl. ), TBADN (2-talshalbutyl-9,10-di (2-naphthyl) anthracene), ADN (9,10-di (2-naphthyl) anthracene), CBP (4,4'-bis (carbazole-9) -Il) biphenyl), CDBP (4,4'-bis (carbazole-9-yl) -2,2'-dimethylbiphenyl), 9,10-bis (biphenyl) anthracene and the like.

発光層内のホスト材料としては、下記に定義する電子輸送材料、上記に定義する正孔輸送材料、正孔・電子再結合を助ける(サポート)別の材料、又はこれら材料の組み合わせであってもよい。 The host material in the light emitting layer may be an electron transport material as defined below, a hole transport material as defined above, another material that assists (supports) hole / electron recombination, or a combination of these materials. Good.

蛍光ドーパントの一例としては、アントラセン、ピレン、テトラセン、キサンテン、ペリレン、ルブレン、クマリン、ローダミン、キナクリドン、ジシアノメチレンピラン化合物、チオピラン化合物、ポリメチン化合物、ピリリウム又はチアピリリウム化合物、フルオレン誘導体、ペリフランテン誘導体、インデノペリレン誘導体、ビス(アジニル)アミンホウ素化合物、ビス(アジニル)メタン化合物、又はカルボスチリル化合物等が挙げられる。 Examples of fluorescent dopants include anthracene, pyrene, tetracene, xanthene, perylene, rubrene, coumarin, rhodamine, quinacridone, dicyanomethylenepyrane compound, thiopyrene compound, polymethine compound, pyrylium or thiapyrylium compound, fluorene derivative, perifrantene derivative, indenoperylene. Examples thereof include derivatives, bis (azinyl) amine boron compounds, bis (azinyl) methane compounds, and carbostyryl compounds.

燐光ドーパントの一例としては、イリジウム、白金、パラジウム、又はオスミウム等の遷移金属の有機金属錯体が挙げられる。 Examples of phosphorescent dopants include organometallic complexes of transition metals such as iridium, platinum, palladium, or osmium.

ドーパントの一例として、Alq(トリス(8−ヒドロキシキノリン)アルミニウム))、DPAVBi(4,4’−ビス[4−(ジ−パラ−トリルアミノ)スチリル]ビフェニル)、ペリレン、Ir(PPy)(トリス(2−フェニルピリジン)イリジウム(III)、又はFlrPic(ビス(3,5−ジフルオロ−2−(2−ピリジル)フェニル−(2−カルボキシピリジル)イリジウム(III)等が挙げられる。 Examples of dopants are Alq 3 (tris (8-hydroxyquinoline) aluminum)), DPAVBi (4,4'-bis [4- (di-para-tolylamino) styryl] biphenyl), perylene, Ir (PPy) 3 ( Examples thereof include tris (2-phenylpyridine) iridium (III) and FlrPic (bis (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium (III)).

電子輸送性材料としては、アルカリ金属錯体、アルカリ土類金属錯体、土類金属錯体等が挙げられる。アルカリ金属錯体、アルカリ土類金属錯体、又は土類金属錯体としては、例えば、8−ヒドロキシキノリナートリチウム(Liq)、ビス(8−ヒドロキシキノリナート)亜鉛、ビス(8−ヒドロキシキノリナート)銅、ビス(8−ヒドロキシキノリナート)マンガン、トリス(8−ヒドロキシキノリナート)アルミニウム、トリス(2−メチル−8−ヒドロキシキノリナート)アルミニウム、トリス(8−ヒドロキシキノリナート)ガリウム、ビス(10−ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(10−ヒドロキシベンゾ[h]キノリナート)亜鉛、ビス(2−メチル−8−キノリナート)クロロガリウム、ビス(2−メチル−8−キノリナート)(o−クレゾラート)ガリウム、ビス(2−メチル−8−キノリナート)−1−ナフトラートアルミニウム、又はビス(2−メチル−8−キノリナート)−2−ナフトラートガリウム等が挙げられる。 Examples of the electron transporting material include an alkali metal complex, an alkaline earth metal complex, and an earth metal complex. Examples of the alkali metal complex, alkaline earth metal complex, or earth metal complex include 8-hydroxyquinolinate lithium (Liq), bis (8-hydroxyquinolinate) zinc, and bis (8-hydroxyquinolinate). Copper, bis (8-hydroxyquinolinate) manganese, tris (8-hydroxyquinolinate) aluminum, tris (2-methyl-8-hydroxyquinolinate) aluminum, tris (8-hydroxyquinolinate) gallium, Bis (10-hydroxybenzo [h] quinolinate) berylium, bis (10-hydroxybenzo [h] quinolinate) zinc, bis (2-methyl-8-quinolinate) chlorogallium, bis (2-methyl-8-quinolinate) ( Examples thereof include o-cresolate) gallium, bis (2-methyl-8-quinolinate) -1-naphtholate aluminum, and bis (2-methyl-8-quinolinate) -2-naphtholate gallium.

発光層と電子輸送層との間に、キャリアバランスを改善させる目的で、正孔阻止層を設けてもよい。正孔素子層として望ましい化合物は、BCP(2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン)、Bphen(4,7−ジフェニル−1,10−フェナントロリン)、BAlq(ビス(2−メチル−8−キノリノラート)−4−(フェニルフェノラート)アルミニウム)、又はビス(10−ヒドロキシベンゾ[h]キノリナート)ベリリウム)等が挙げられる。 A hole blocking layer may be provided between the light emitting layer and the electron transporting layer for the purpose of improving the carrier balance. Desirable compounds for the hole element layer are BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphenyl (4,7-diphenyl-1,10-phenanthroline), BAlq (bis (2). −Methyl-8-quinolinolate) -4- (phenylphenolate) aluminum), bis (10-hydroxybenzo [h] quinolinate) berylium) and the like.

本発明の有機EL素子においては、電子注入性を向上させ、素子特性(例えば、発光効率、定電圧駆動、又は高耐久性)を向上させる目的で、電子注入層を設けてもよい。 In the organic EL device of the present invention, an electron injection layer may be provided for the purpose of improving the electron injection property and the device characteristics (for example, luminous efficiency, constant voltage drive, or high durability).

電子注入層として望ましい化合物としては、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、又はアントロン等が挙げられる。また、上記に記した金属錯体やアルカリ金属酸化物、アルカリ土類酸化物、希土類酸化物、アルカリ金属ハロゲン化物、アルカリ土類ハロゲン化物、希土類ハロゲン化物、SiO、AlO、SiN、SiON、AlON、GeO、LiO、LiON、TiO、TiON、TaO、TaON、TaN、又はCなどの各種酸化物、窒化物、及び酸化窒化物のような無機化合物等も使用できる。 Desirable compounds for the electron injection layer include fluorenone, anthraquinodimethane, diphenoquinone, thiopyrandioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fleolenilidenemethane, anthraquinodimethane, or anthron. And so on. In addition, the metal complexes, alkali metal oxides, alkaline earth oxides, rare earth oxides, alkali metal halides, alkaline earth halides, rare earth halides, SiO 2 , AlO, SiN, SiON, AlON, as described above, Various oxides such as GeO, LiO, LiON, TiO, TiON, TaO, TaON, TaN, or C, nitrides, and inorganic compounds such as oxide nitrides can also be used.

発光が陽極を通してのみ確認される場合、本発明において使用される陰極は、任意の導電性材料から形成することができる。望ましい陰極材料としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、又は希土類金属等が挙げられる。 The cathode used in the present invention can be formed from any conductive material if the emission is confirmed only through the anode. Desirable cathode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, indium. , Lithium / aluminum mixture, rare earth metals and the like.

化合物(A76)のサイクリックボルタモグラムを表す。Represents a cyclic voltammogram of compound (A76).

以下、本発明を実施例に基づき、さらに詳細に説明するが、本発明はこれら実施例に何ら限定されて解釈されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not construed as being limited to these Examples.

なお、本実施例で用いた分析機器及び測定方法を以下に列記する。 The analytical instruments and measurement methods used in this example are listed below.

[材料純度測定(HPLC分析)]
測定装置:東ソー製 マルチステーションLC−8020
測定条件:カラム Inertsil ODS−3V(4.6mmΦ×250mm)
検出器 UV検出(波長 254nm)
溶離液 メタノール/テトラヒドロフラン=9/1(v/v比)
[NMR測定]
測定装置:バリアン社製 Gemini200
[質量分析]
質量分析装置:日立製作所 M−80B
測定方法:FD−MS分析
[Material purity measurement (HPLC analysis)]
Measuring device: Tosoh Multi-Station LC-8020
Measurement conditions: Column Inertsil ODS-3V (4.6 mmΦ x 250 mm)
Detector UV detection (wavelength 254 nm)
Eluent Methanol / tetrahydrofuran = 9/1 (v / v ratio)
[NMR measurement]
Measuring device: Gemini200 manufactured by Varian
[Mass spectrometry]
Mass spectrometer: Hitachi M-80B
Measurement method: FD-MS analysis

実施例1 (化合物(A25)の合成)
窒素雰囲気下、100mLの4つ口フラスコに、上記化合物(3) 0.93g(3.06mmol)、N,N−ビス[4−(1−ナフタレニル)フェニル]アミン 1.23g(2.92mmol)、o−キシレン 14mL、酢酸パラジウム 3.3mg(0.015mmol)、トリ−tert−ブチルホスフィン 8.9mg(0.044mmol)、及びtert−ブトキシナトリウム 0.39g(4.09mmol)を加え、140℃に加熱した。5時間後、加熱を終了し、室温まで放冷した。この反応溶液に純水30mLを加え析出した結晶をろ取し、純水及びメタノールで洗浄した。得られた白色粉末をトルエンで再結晶し、化合物(A25)の白色粉末 1.83gを得た(収率 91%、純度 99.9%)。質量分析(FD−MS)から、得られた白色粉末は目的の化合物(A25)であることを確認した。
Example 1 (Synthesis of compound (A25))
In a nitrogen atmosphere, 0.93 g (3.06 mmol) of the above compound (3) and 1.23 g (2.92 mmol) of N, N-bis [4- (1-naphthalenyl) phenyl] amine were placed in a 100 mL four-necked flask. , O-Xylene 14 mL, palladium acetate 3.3 mg (0.015 mmol), tri-tert-butylphosphine 8.9 mg (0.044 mmol), and tert-butoxysodium 0.39 g (4.09 mmol) were added at 140 ° C. Heated to. After 5 hours, heating was terminated and the mixture was allowed to cool to room temperature. 30 mL of pure water was added to this reaction solution, and the precipitated crystals were collected by filtration and washed with pure water and methanol. The obtained white powder was recrystallized from toluene to obtain 1.83 g of the white powder of compound (A25) (yield 91%, purity 99.9%). From mass spectrometry (FD-MS), it was confirmed that the obtained white powder was the target compound (A25).

質量分析(FD−MS):687(M+)。 Mass spectrometry (FD-MS): 687 (M +).

実施例2 (化合物(A31)の合成)
実施例1において、N,N−ビス[4−(1−ナフタレニル)フェニル]アミン 1.23gのかわりに、N,N−ビス[4−(2−ナフタレニル)フェニル]アミンを 1.23g(2.92mmol)用いた以外は、実施例1と同様の実験操作を行って、白色粉末を1.75g得た(収率 87%、純度 99.7%)。質量分析(FD−MS)から、得られた白色粉末は目的の化合物(A31)であることを確認した。
Example 2 (Synthesis of compound (A31))
In Example 1, instead of 1.23 g of N, N-bis [4- (1-naphthalenyl) phenyl] amine, 1.23 g (2) of N, N-bis [4- (2-naphthalenyl) phenyl] amine was used. The same experimental procedure as in Example 1 was carried out except that .92 mmol) was used to obtain 1.75 g of white powder (yield 87%, purity 99.7%). From mass spectrometry (FD-MS), it was confirmed that the obtained white powder was the target compound (A31).

質量分析(FD−MS):687(M+)。 Mass spectrometry (FD-MS): 687 (M +).

実施例3 (化合物(A4)の合成)
実施例1において、N,N−ビス[4−(1−ナフタレニル)フェニル]アミン 1.23gのかわりに、N,4−ビス(1−ナフタレニル)アニリンを 1.01g(2.93mmol)用いた以外は、実施例1と同様の実験操作を行って、白色粉末を1.51g得た(収率 84%、純度 99.9%)。質量分析(FD−MS)から、得られた白色粉末は目的の化合物(A4)であることを確認した。
Example 3 (Synthesis of compound (A4))
In Example 1, 1.01 g (2.93 mmol) of N,4-bis (1-naphthalenyl) aniline was used instead of 1.23 g of N, N-bis [4- (1-naphthalenyl) phenyl] amine. Except for the above, the same experimental procedure as in Example 1 was carried out to obtain 1.51 g of white powder (yield 84%, purity 99.9%). From mass spectrometry (FD-MS), it was confirmed that the obtained white powder was the target compound (A4).

質量分析(FD−MS):611(M+)。 Mass spectrometry (FD-MS): 611 (M +).

実施例4 (化合物(A70)の合成)
実施例1において、化合物(3) 0.93gのかわりに、上記化合物(4) 0.93gを用いた以外は、実施例1と同様の実験操作を行って、白色粉末を1.91g得た(収率 95%、純度 99.2%)。質量分析(FD−MS)から、得られた白色粉末は目的の化合物(A70)であることを確認した。
Example 4 (Synthesis of compound (A70))
In Example 1, 1.91 g of white powder was obtained by performing the same experimental operation as in Example 1 except that 0.93 g of the above compound (4) was used instead of 0.93 g of the compound (3). (Yield 95%, purity 99.2%). From mass spectrometry (FD-MS), it was confirmed that the obtained white powder was the target compound (A70).

質量分析(FD−MS):687(M+)。 Mass spectrometry (FD-MS): 687 (M +).

実施例5 (化合物(A76)の合成)
実施例1において、化合物(3) 0.93gのかわりに、上記化合物(4) 0.93gを用い、さらに、N,N−ビス[4−(1−ナフタレニル)フェニル]アミン 1.23gのかわりに、N,N−ビス[4−(2−ナフタレニル)フェニル]アミンを 1.23g(2.92mmol)用いた以外は、実施例1と同様の実験操作を行って、白色粉末を1.61g得た(収率 80%、純度 99.8%)。質量分析(FD−MS)から、得られた白色粉末は目的の化合物(A76)であることを確認した。
Example 5 (Synthesis of compound (A76))
In Example 1, 0.93 g of the above compound (4) was used instead of 0.93 g of compound (3), and 1.23 g of N, N-bis [4- (1-naphthalenyl) phenyl] amine was further used. In addition, 1.21 g (2.92 mmol) of N, N-bis [4- (2-naphthalenyl) phenyl] amine was used, and the same experimental procedure as in Example 1 was carried out to obtain 1.61 g of white powder. Obtained (yield 80%, purity 99.8%). From mass spectrometry (FD-MS), it was confirmed that the obtained white powder was the target compound (A76).

質量分析(FD−MS):687(M+)。 Mass spectrometry (FD-MS): 687 (M +).

実施例6 (化合物(A49)の合成)
実施例1において、化合物(3) 0.93gのかわりに、上記化合物(4) 0.93g(3.06mmol)を用い、N,N−ビス[4−(1−ナフタレニル)フェニル]アミン 1.23gのかわりに、N,4−ビス(1−ナフタレニル)アニリンを 1.01g(2.93mmol)用いた以外は、実施例1と同様の実験操作を行って、白色粉末を1.77g得た(収率 99%、純度 99.4%)。質量分析(FD−MS)から、得られた白色粉末は目的の化合物(A49)であることを確認した。
Example 6 (Synthesis of compound (A49))
In Example 1, 0.93 g (3.06 mmol) of the above compound (4) was used instead of 0.93 g of the compound (3), and N, N-bis [4- (1-naphthalenyl) phenyl] amine 1. The same experimental procedure as in Example 1 was carried out except that 1.01 g (2.93 mmol) of N,4-bis (1-naphthalenyl) aniline was used instead of 23 g to obtain 1.77 g of white powder. (Yield 99%, Purity 99.4%). From mass spectrometry (FD-MS), it was confirmed that the obtained white powder was the target compound (A49).

質量分析(FD−MS):611(M+)。 Mass spectrometry (FD-MS): 611 (M +).

実施例7 (化合物(A115)の合成)
実施例1において、化合物(3) 0.93gのかわりに、上記化合物(5) 0.98g(3.06mmol)を用いた以外は、実施例1と同様の実験操作を行って、白色粉末を1.85g得た(収率 90%、純度 99.0%)。質量分析(FD−MS)から、得られた白色粉末は目的の化合物(A115)であることを確認した。
Example 7 (Synthesis of compound (A115))
In Example 1, the same experimental procedure as in Example 1 was carried out except that 0.98 g (3.06 mmol) of the above compound (5) was used instead of 0.93 g of the compound (3) to obtain a white powder. 1.85 g was obtained (yield 90%, purity 99.0%). From mass spectrometry (FD-MS), it was confirmed that the obtained white powder was the target compound (A115).

質量分析(FD−MS):703(M+)。 Mass spectrometry (FD-MS): 703 (M +).

実施例8 (化合物(A121)の合成)
実施例1において、化合物(3) 0.93gのかわりに、上記化合物(5) 0.98g(3.06mmol)を用い、N,N−ビス[4−(1−ナフタレニル)フェニル]アミン 1.23gのかわりに、N,N−ビス[4−(2−ナフタレニル)フェニル]アミンを 1.23g(2.92mmol)用いた以外は、実施例1と同様の実験操作を行って、白色粉末を1.77g得た(収率 86%、純度 99.5%)。質量分析(FD−MS)から、得られた白色粉末は目的の化合物(A121)であることを確認した。
Example 8 (Synthesis of compound (A121))
In Example 1, 0.98 g (3.06 mmol) of the above compound (5) was used instead of 0.93 g of the compound (3), and N, N-bis [4- (1-naphthalenyl) phenyl] amine 1. The same experimental procedure as in Example 1 was carried out to obtain a white powder, except that 1.23 g (2.92 mmol) of N, N-bis [4- (2-naphthalenyl) phenyl] amine was used instead of 23 g. 1.77 g was obtained (yield 86%, purity 99.5%). From mass spectrometry (FD-MS), it was confirmed that the obtained white powder was the target compound (A121).

質量分析(FD−MS):703(M+)。 Mass spectrometry (FD-MS): 703 (M +).

実施例9 (化合物(A94)の合成)
実施例1において、化合物(3) 0.93gのかわりに、上記化合物(5) 0.98g(3.06mmol)を用い、N,N−ビス[4−(1−ナフタレニル)フェニル]アミン 1.23gのかわりに、N,4−ビス(1−ナフタレニル)アニリンを 1.01g(2.93mmol)用いた以外は、実施例1と同様の実験操作を行って、白色粉末を1.47g得た(収率 80%、純度 99.8%)。質量分析(FD−MS)から、得られた白色粉末は目的の化合物(A94)であることを確認した。
Example 9 (Synthesis of compound (A94))
In Example 1, 0.98 g (3.06 mmol) of the above compound (5) was used instead of 0.93 g of the compound (3), and N, N-bis [4- (1-naphthalenyl) phenyl] amine 1. The same experimental procedure as in Example 1 was carried out except that 1.01 g (2.93 mmol) of N,4-bis (1-naphthalenyl) aniline was used instead of 23 g to obtain 1.47 g of white powder. (Yield 80%, purity 99.8%). From mass spectrometry (FD-MS), it was confirmed that the obtained white powder was the target compound (A94).

質量分析(FD−MS):627(M+)。 Mass spectrometry (FD-MS): 627 (M +).

実施例10 (化合物(A160)の合成)
実施例1において、化合物(3) 0.93gのかわりに、上記化合物(6) 0.98g(3.06mmol)を用いた以外は、実施例1と同様の実験操作を行って、白色粉末を1.83g得た(収率 89%、純度 99.3%)。質量分析(FD−MS)から、得られた白色粉末は目的の化合物(A160)であることを確認した。
Example 10 (Synthesis of compound (A160))
In Example 1, the same experimental procedure as in Example 1 was carried out except that 0.98 g (3.06 mmol) of the above compound (6) was used instead of 0.93 g of the compound (3) to obtain a white powder. 1.83 g was obtained (yield 89%, purity 99.3%). From mass spectrometry (FD-MS), it was confirmed that the obtained white powder was the target compound (A160).

質量分析(FD−MS):703(M+)。 Mass spectrometry (FD-MS): 703 (M +).

実施例11 (化合物(A166)の合成)
実施例1において、化合物(3) 0.93gのかわりに、上記化合物(6) 0.98g(3.06mmol)を用い、N,N−ビス[4−(1−ナフタレニル)フェニル]アミン 1.23gのかわりに、N,N−ビス[4−(2−ナフタレニル)フェニル]アミンを 1.23g(2.92mmol)用いた以外は、実施例1と同様の実験操作を行って、白色粉末を1.60g得た(収率 78%、純度 99.3%)。質量分析(FD−MS)から、得られた白色粉末は目的の化合物(A166)であることを確認した。
Example 11 (Synthesis of compound (A166))
In Example 1, 0.98 g (3.06 mmol) of the above compound (6) was used instead of 0.93 g of the compound (3), and N, N-bis [4- (1-naphthalenyl) phenyl] amine 1. The same experimental procedure as in Example 1 was carried out to obtain a white powder, except that 1.23 g (2.92 mmol) of N, N-bis [4- (2-naphthalenyl) phenyl] amine was used instead of 23 g. 1.60 g was obtained (yield 78%, purity 99.3%). From mass spectrometry (FD-MS), it was confirmed that the obtained white powder was the target compound (A166).

質量分析(FD−MS):703(M+)。 Mass spectrometry (FD-MS): 703 (M +).

実施例12 (化合物(A139)の合成)
実施例1において、化合物(3) 0.93gのかわりに、上記化合物(6) 0.98g(3.06mmol)を用い、N,N−ビス[4−(1−ナフタレニル)フェニル]アミン 1.23gのかわりに、N,4−ビス(1−ナフタレニル)アニリンを 1.01g(2.93mmol)用いた以外は、実施例1と同様の実験操作を行って、白色粉末を1.58g得た(収率 86%、純度 99.2%)。質量分析(FD−MS)から、得られた白色粉末は目的の化合物(A139)であることを確認した。
Example 12 (Synthesis of compound (A139))
In Example 1, 0.98 g (3.06 mmol) of the above compound (6) was used instead of 0.93 g of the compound (3), and N, N-bis [4- (1-naphthalenyl) phenyl] amine 1. The same experimental procedure as in Example 1 was carried out except that 1.01 g (2.93 mmol) of N,4-bis (1-naphthalenyl) aniline was used instead of 23 g to obtain 1.58 g of white powder. (Yield 86%, purity 99.2%). From mass spectrometry (FD-MS), it was confirmed that the obtained white powder was the target compound (A139).

質量分析(FD−MS):627(M+)。 Mass spectrometry (FD-MS): 627 (M +).

実施例13 (化合物(A25)の素子評価)
厚さ200nmのITO透明電極(陽極)を積層したガラス基板を、アセトン及び純水による超音波洗浄、イソプロピルアルコールによる沸騰洗浄を行なった。さらに、紫外線/オゾン洗浄を行ない、真空蒸着装置へ設置後、1×10−4Paになるまで真空ポンプにて排気した。まず、ITO透明電極上に銅フタロシアニンを蒸着速度0.1nm/秒で蒸着し、10nmの正孔注入層とし、引続き、化合物(A25)を蒸着速度0.3nm/秒で30nm蒸着して正孔輸送層とした。続いて、燐光ドーパント材料であるトリス(2−フェニルピリジン)イリジウム(Ir(ppy))とホスト材料である4,4’−ビス(N−カルバゾリル)ビフェニル(CBP)を重量比が1:11.5になるように蒸着速度0.25nm/秒で共蒸着し、30nmの発光層とした。次に、BAlq(ビス(2−メチル−8−キノリノラト)(p−フェニルフェノラート)アルミニウム)を蒸着速度0.3nm/秒で蒸着し、5nmのエキシトンブロック層とした後、さらにAlq(トリス(8−キノリノラト)アルミニウム)を0.3nm/秒で蒸着し、45nmの電子輸送層とした。引続き、電子注入層として沸化リチウムを蒸着速度0.01nm/秒で1nm蒸着し、さらにアルミニウムを蒸着速度0.25nm/秒で100nm蒸着して陰極を形成した。窒素雰囲気下、封止用のガラス板をUV硬化樹脂で接着し、評価用の有機EL素子とした。このように作製した素子に20mA/cmの電流を印加し、駆動電圧及び電流効率を測定した。また、素子に6.25mA/cmの電流を印加して輝度の経時変化を測定し、輝度が初期の半分になる時間(輝度半減期)を調べた。当該輝度半減期を素子寿命として評価した。結果を表1に示した。なお、素子寿命については、後述する比較例1の素子寿命(輝度半減期)を100とした相対値で表した。
Example 13 (Evaluation of element of compound (A25))
A glass substrate on which an ITO transparent electrode (anode) having a thickness of 200 nm was laminated was subjected to ultrasonic cleaning with acetone and pure water and boiling cleaning with isopropyl alcohol. Further, it was washed with ultraviolet rays / ozone, installed in a vacuum vapor deposition apparatus, and exhausted with a vacuum pump until it became 1 × 10 -4 Pa. First, copper phthalocyanine was vapor-deposited on an ITO transparent electrode at a vapor deposition rate of 0.1 nm / sec to form a hole injection layer of 10 nm, and subsequently, compound (A25) was vapor-deposited at a vapor deposition rate of 0.3 nm / sec at 30 nm to form holes. It was used as a transport layer. Subsequently, the phosphorescent dopant material tris (2-phenylpyridine) iridium (Ir (ppy) 3 ) and the host material 4,4'-bis (N-carbazolyl) biphenyl (CBP) have a weight ratio of 1:11. Co-deposited at a vapor deposition rate of 0.25 nm / sec so as to be 0.5 to obtain a light emitting layer of 30 nm. Next, BAlq (bis (2-methyl-8-quinolinolat) (p-phenylphenolate) aluminum) was vapor-deposited at a vapor deposition rate of 0.3 nm / sec to form an exciton block layer of 5 nm, and then Alq 3 (Tris) was further deposited. (8-Kinolinolato) aluminum) was vapor-deposited at 0.3 nm / sec to form a 45 nm electron transport layer. Subsequently, lithium boiled lithium was deposited at a vapor deposition rate of 0.01 nm / sec for 1 nm as an electron injection layer, and aluminum was further deposited at a vapor deposition rate of 0.25 nm / sec for 100 nm to form a cathode. Under a nitrogen atmosphere, a glass plate for sealing was adhered with a UV curable resin to obtain an organic EL element for evaluation. A current of 20 mA / cm 2 was applied to the device thus produced, and the drive voltage and current efficiency were measured. Further, a current of 6.25 mA / cm 2 was applied to the element to measure the change with time of the brightness, and the time (brightness half-life) at which the brightness became half of the initial value was examined. The brightness half-life was evaluated as the device life. The results are shown in Table 1. The element life was expressed as a relative value with the element life (luminance half-life) of Comparative Example 1 described later as 100.

実施例14 (化合物(A31)の素子評価)
化合物(A25)の代わりに、化合物(A31)を用いた以外は実施例13と同じ方法で有機EL素子を作製した。前記有機EL素子について、実施例13と同じ方法で測定した駆動電圧、電流効率、及び素子寿命を表1に示した。
Example 14 (Device evaluation of compound (A31))
An organic EL device was produced by the same method as in Example 13 except that compound (A31) was used instead of compound (A25). Table 1 shows the drive voltage, current efficiency, and device life of the organic EL device measured by the same method as in Example 13.

実施例15 (化合物(A4)の素子評価)
化合物(A25)の代わりに、化合物(A4)を用いた以外は実施例13と同じ方法で有機EL素子を作製した。前記有機EL素子について、実施例13と同じ方法で測定した駆動電圧、電流効率、及び素子寿命を表1に示した。
Example 15 (Device evaluation of compound (A4))
An organic EL device was produced by the same method as in Example 13 except that compound (A4) was used instead of compound (A25). Table 1 shows the drive voltage, current efficiency, and device life of the organic EL device measured by the same method as in Example 13.

実施例16 (化合物(A70)の素子評価)
化合物(A25)の代わりに、化合物(A70)を用いた以外は実施例13と同じ方法で有機EL素子を作製した。前記有機EL素子について、実施例13と同じ方法で測定した駆動電圧、電流効率、及び素子寿命を表1に示した。
Example 16 (Device evaluation of compound (A70))
An organic EL device was produced by the same method as in Example 13 except that compound (A70) was used instead of compound (A25). Table 1 shows the drive voltage, current efficiency, and device life of the organic EL device measured by the same method as in Example 13.

実施例17 (化合物(A76)の素子評価)
化合物(A25)の代わりに、化合物(A76)を用いた以外は実施例13と同じ方法で有機EL素子を作製した。前記有機EL素子について、実施例13と同じ方法で測定した駆動電圧、電流効率、及び素子寿命を表1に示した。
Example 17 (Device evaluation of compound (A76))
An organic EL device was produced in the same manner as in Example 13 except that compound (A76) was used instead of compound (A25). Table 1 shows the drive voltage, current efficiency, and device life of the organic EL device measured by the same method as in Example 13.

実施例18 (化合物(A49)の素子評価)
化合物(A25)の代わりに、化合物(A49)を用いた以外は実施例13と同じ方法で有機EL素子を作製した。前記有機EL素子について、実施例13と同じ方法で測定した駆動電圧、電流効率、及び素子寿命を表1に示した。
Example 18 (Device evaluation of compound (A49))
An organic EL device was produced in the same manner as in Example 13 except that compound (A49) was used instead of compound (A25). Table 1 shows the drive voltage, current efficiency, and device life of the organic EL device measured by the same method as in Example 13.

実施例19 (化合物(A115)の素子評価)
化合物(A25)の代わりに、化合物(A115)を用いた以外は実施例13と同じ方法で有機EL素子を作製した。前記有機EL素子について、実施例13と同じ方法で測定した駆動電圧、電流効率、及び素子寿命を表1に示した。
Example 19 (Device evaluation of compound (A115))
An organic EL device was produced by the same method as in Example 13 except that compound (A115) was used instead of compound (A25). Table 1 shows the drive voltage, current efficiency, and device life of the organic EL device measured by the same method as in Example 13.

実施例20 (化合物(A121)の素子評価)
化合物(A25)の代わりに、化合物(A121)を用いた以外は実施例13と同じ方法で有機EL素子を作製した。前記有機EL素子について、実施例13と同じ方法で測定した駆動電圧、電流効率、及び素子寿命を表1に示した。
Example 20 (Evaluation of element of compound (A121))
An organic EL device was produced by the same method as in Example 13 except that compound (A121) was used instead of compound (A25). Table 1 shows the drive voltage, current efficiency, and device life of the organic EL device measured by the same method as in Example 13.

実施例21 (化合物(A94)の素子評価)
化合物(A25)の代わりに、化合物(A94)を用いた以外は実施例13と同じ方法で有機EL素子を作製した。前記有機EL素子について、実施例13と同じ方法で測定した駆動電圧、電流効率、及び素子寿命を表1に示した。
Example 21 (Device evaluation of compound (A94))
An organic EL device was produced in the same manner as in Example 13 except that compound (A94) was used instead of compound (A25). Table 1 shows the drive voltage, current efficiency, and device life of the organic EL device measured by the same method as in Example 13.

実施例22 (化合物(A160)の素子評価)
化合物(A25)の代わりに、化合物(A160)を用いた以外は実施例13と同じ方法で有機EL素子を作製した。前記有機EL素子について、実施例13と同じ方法で測定した駆動電圧、電流効率、及び素子寿命を表1に示した。
Example 22 (Device evaluation of compound (A160))
An organic EL device was produced by the same method as in Example 13 except that compound (A160) was used instead of compound (A25). Table 1 shows the drive voltage, current efficiency, and device life of the organic EL device measured by the same method as in Example 13.

実施例23 (化合物(A166)の素子評価)
化合物(A25)の代わりに、化合物(A166)を用いた以外は実施例13と同じ方法で有機EL素子を作製した。前記有機EL素子について、実施例13と同じ方法で測定した駆動電圧、電流効率、及び素子寿命を表1に示した。
Example 23 (Device evaluation of compound (A166))
An organic EL device was produced by the same method as in Example 13 except that compound (A166) was used instead of compound (A25). Table 1 shows the drive voltage, current efficiency, and device life of the organic EL device measured by the same method as in Example 13.

実施例24 (化合物(A139)の素子評価)
化合物(A25)の代わりに、化合物(A139)を用いた以外は実施例13と同じ方法で有機EL素子を作製した。前記有機EL素子について、実施例13と同じ方法で測定した駆動電圧、電流効率、及び素子寿命を表1に示した。
Example 24 (Device Evaluation of Compound (A139))
An organic EL device was produced by the same method as in Example 13 except that compound (A139) was used instead of compound (A25). Table 1 shows the drive voltage, current efficiency, and device life of the organic EL device measured by the same method as in Example 13.

比較例1 (NPDの素子評価)
化合物(A25)の代わりに、市販品を昇華精製したNPD(4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル)を用いた以外は実施例13と同じ方法で有機EL素子を作製した。前記有機EL素子について、実施例13と同じ方法で測定した駆動電圧、電流効率、及び素子寿命を表1に示した。
Comparative Example 1 (NPD element evaluation)
In the same manner as in Example 13 except that NPD (4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) obtained by sublimating and purifying a commercially available product was used instead of compound (A25). An organic EL element was manufactured. Table 1 shows the drive voltage, current efficiency, and device life of the organic EL device measured by the same method as in Example 13.

参考例1 (化合物(a)の素子評価)
化合物(A25)の代わりに、下記化合物(a)を用いた以外は実施例13と同じ方法で有機EL素子を作製した。前記有機EL素子について、実施例13と同じ方法で測定した駆動電圧、電流効率、及び素子寿命を表1に示した。
Reference Example 1 (Evaluation of element of compound (a))
An organic EL device was produced by the same method as in Example 13 except that the following compound (a) was used instead of the compound (A25). Table 1 shows the drive voltage, current efficiency, and device life of the organic EL device measured by the same method as in Example 13.

実施例25 (化合物(A76)の酸化還元安定性評価)
サイクリックボルタンメトリーで化合物(A76)の酸化還元安定性を評価した。過塩素酸テトラブチルアンモニウムの濃度が0.1mol/Lである無水ジクロロメタン溶液に化合物(A76)を0.001mol/Lの濃度で溶解させ、作用電極にグラッシーカーボン、対極に白金線、参照電極にAgNOのアセトニトリル溶液に浸した銀線を用いて、化合物(A76)のサイクリックボルタモグラムを得た(図1)。化合物(A76)は可逆な酸化還元波を示し、酸化還元サイクルを50回繰り返しても波形の変化は見られず、酸化還元に対して安定であった。
Example 25 (Evaluation of Redox Stability of Compound (A76))
The redox stability of compound (A76) was evaluated by cyclic voltammetry. Compound (A76) was dissolved in an anhydrous dichloromethane solution having a concentration of tetrabutylammonium perchlorate of 0.1 mol / L at a concentration of 0.001 mol / L, glassy carbon on the working electrode, platinum wire on the counter electrode, and reference electrode. using a silver wire immersed in acetonitrile AgNO 3, to obtain a cyclic voltammogram of the compound (A76) (Fig. 1). Compound (A76) showed a reversible redox wave, and no change in waveform was observed even after repeating the redox cycle 50 times, and the compound (A76) was stable to redox.

本発明のアリールアミン化合物は、有機EL素子の正孔注入材料、正孔輸送材料又は発光層のホスト材料として利用可能であり、従来の材料以上に素子寿命特性に優れ、低電圧な材料となることが期待される。さらには、有機EL素子又は電子写真感光体の正孔注入材料、正孔輸送材料又は発光材料としてのみでなく、光電変換素子、太陽電池、又はイメージセンサー等の有機光導電材料への分野にも応用可能である。 The arylamine compound of the present invention can be used as a hole injection material, a hole transport material, or a host material for a light emitting layer of an organic EL device, and has excellent device life characteristics and a low voltage material more than conventional materials. It is expected. Furthermore, not only as a hole injection material, a hole transport material or a light emitting material for an organic EL element or an electrophotographic photosensitive member, but also in the field of an organic photoconductive material such as a photoelectric conversion element, a solar cell, or an image sensor. It can be applied.

Claims (7)

一般式(1)で表されるアリールアミン化合物。
(式中、Xは、酸素原子又は硫黄原子を表す。R及びRは、各々独立して、水素原子、又は下記一般式(2)で表される基を表し、R及びRのうち少なくとも一つは、下記一般式(2)で表される基である。)
(式中、m及びnは、0または1を表す。A及びBは、ベンゼン環を形成してもよい。)
An arylamine compound represented by the general formula (1).
(In the formula, X represents an oxygen atom or a sulfur atom. R 1 and R 2 each independently represent a hydrogen atom or a group represented by the following general formula (2), and R 1 and R 2 respectively. At least one of them is a group represented by the following general formula (2).)
(In the formula, m and n represent 0 or 1. A and B may form a benzene ring.)
及びRのうち一つが、上記一般式(2)で表される基であり、他方が水素原子であることを特徴とする、請求項1に記載のアリールアミン化合物。 The arylamine compound according to claim 1, wherein one of R 1 and R 2 is a group represented by the above general formula (2), and the other is a hydrogen atom. が水素原子であり尚且つRが上記一般式(2)で表される基であることを特徴とする、請求項1又は2に記載のアリールアミン化合物。 The arylamine compound according to claim 1 or 2, wherein R 1 is a hydrogen atom and R 2 is a group represented by the above general formula (2). Xが酸素原子であることを特徴とする、請求項1乃至3のいずれか一項に記載のアリールアミン化合物。 The arylamine compound according to any one of claims 1 to 3, wherein X is an oxygen atom. 一般式(2)で表される基が、下記一般式(2’)で表される基であることを特徴とする、請求項1乃至4のいずれか一項に記載のアリールアミン化合物。
(式中、m及びnは、0または1を表す。)
The arylamine compound according to any one of claims 1 to 4, wherein the group represented by the general formula (2) is a group represented by the following general formula (2').
(In the formula, m and n represent 0 or 1.)
下記のいずれかの式で表される、請求項1乃至5のいずれか一項に記載のアリールアミン化合物。
The arylamine compound according to any one of claims 1 to 5, which is represented by any of the following formulas.
請求項1乃至6のいずれか一項に記載のアリールアミン化合物を含むことを特徴とする、有機EL素子用材料。 A material for an organic EL device, which comprises the arylamine compound according to any one of claims 1 to 6.
JP2019050813A 2019-03-19 2019-03-19 Benzoheterophenanthrene compound having condensed ring group and use thereof Pending JP2020152655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019050813A JP2020152655A (en) 2019-03-19 2019-03-19 Benzoheterophenanthrene compound having condensed ring group and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019050813A JP2020152655A (en) 2019-03-19 2019-03-19 Benzoheterophenanthrene compound having condensed ring group and use thereof

Publications (1)

Publication Number Publication Date
JP2020152655A true JP2020152655A (en) 2020-09-24

Family

ID=72557731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019050813A Pending JP2020152655A (en) 2019-03-19 2019-03-19 Benzoheterophenanthrene compound having condensed ring group and use thereof

Country Status (1)

Country Link
JP (1) JP2020152655A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013055132A2 (en) * 2011-10-13 2013-04-18 덕산하이메탈(주) Compound for organic electrical device, organic electrical device using same, and electronic device thereof
JP2013544776A (en) * 2010-10-07 2013-12-19 ビーエーエスエフ ソシエタス・ヨーロピア Phenanthro [9,10-b] furan for electronic applications
JP2015096484A (en) * 2013-05-10 2015-05-21 東ソー株式会社 Arylamine compound and use thereof
US20160099423A1 (en) * 2014-10-06 2016-04-07 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
JP2017022196A (en) * 2015-07-08 2017-01-26 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Material for organo electroluminescent element and organo electroluminescent element using the same
WO2017188655A1 (en) * 2016-04-26 2017-11-02 덕산네오룩스 주식회사 Compound for organic electric element, organic electric element using same, and electronic device comprising same organic electronic element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544776A (en) * 2010-10-07 2013-12-19 ビーエーエスエフ ソシエタス・ヨーロピア Phenanthro [9,10-b] furan for electronic applications
WO2013055132A2 (en) * 2011-10-13 2013-04-18 덕산하이메탈(주) Compound for organic electrical device, organic electrical device using same, and electronic device thereof
JP2015096484A (en) * 2013-05-10 2015-05-21 東ソー株式会社 Arylamine compound and use thereof
US20160099423A1 (en) * 2014-10-06 2016-04-07 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
JP2017022196A (en) * 2015-07-08 2017-01-26 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Material for organo electroluminescent element and organo electroluminescent element using the same
WO2017188655A1 (en) * 2016-04-26 2017-11-02 덕산네오룩스 주식회사 Compound for organic electric element, organic electric element using same, and electronic device comprising same organic electronic element

Similar Documents

Publication Publication Date Title
JP7026405B2 (en) Organic compounds and organic electroluminescent devices containing them
KR20120027180A (en) Light-emitting element material and light-emitting element
EP3379593A1 (en) Organic electroluminescence element
JP7040583B2 (en) Quinoxaline compounds and their uses
CN106255695B (en) Compound and organic light-emitting element comprising same
KR102280834B1 (en) 2-aminocarbazole compound and use thereof
JP7009877B2 (en) New carbazole compounds and their uses
JP6672774B2 (en) Novel carbazole compounds and their uses
JP2017109929A (en) Aminocarbazole compound and use therefor
JP7363045B2 (en) Triphenylene compounds and their uses
JP7066979B2 (en) Carbazole compounds with di-substituted benzene and their uses
JP7215065B2 (en) Aminocarbazole compound and use thereof
JP6350191B2 (en) Arylamine compounds and uses thereof
JP6848424B2 (en) Carbazole compounds and their uses
JP7143670B2 (en) Triphenylene compound and use thereof
JP7234532B2 (en) Dibenzo[g,p]chrysene compound
JP6855129B2 (en) Organic electroluminescent device containing a polycyclic aromatic compound as a constituent
JP2021109878A (en) Indenoacridine compound and applications thereof
JP6890882B2 (en) Triazine compound and organic electroluminescent device using it
JP7095324B2 (en) 2-Aminocarbazole compound and its uses
JP2020152655A (en) Benzoheterophenanthrene compound having condensed ring group and use thereof
WO2017122669A1 (en) Carbazole compound and application thereof
WO2015034093A1 (en) 2-aminocarbazole compound and use thereof
JP2019116472A (en) Condensed-ring compound and material for organic electroluminescent element
JP2018127409A (en) Aminocarbazole compound and use therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307