Nothing Special   »   [go: up one dir, main page]

JP2020010620A - Housing device of cells for transplantation and housing system of cells for transplantation - Google Patents

Housing device of cells for transplantation and housing system of cells for transplantation Download PDF

Info

Publication number
JP2020010620A
JP2020010620A JP2018133832A JP2018133832A JP2020010620A JP 2020010620 A JP2020010620 A JP 2020010620A JP 2018133832 A JP2018133832 A JP 2018133832A JP 2018133832 A JP2018133832 A JP 2018133832A JP 2020010620 A JP2020010620 A JP 2020010620A
Authority
JP
Japan
Prior art keywords
cell
membrane
oxygen
storage device
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018133832A
Other languages
Japanese (ja)
Inventor
優史 丸山
Yuji Maruyama
優史 丸山
正樹 松森
Masaki Matsumori
正樹 松森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018133832A priority Critical patent/JP2020010620A/en
Priority to PCT/JP2019/023372 priority patent/WO2020017195A1/en
Publication of JP2020010620A publication Critical patent/JP2020010620A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

To provide a housing device of cells for transplantation and a housing system of cells for transplantation which can suppress deflection of an oxygen permeable membrane or an immunity isolating membrane covering a cell chamber, inside a biological body.SOLUTION: A housing device of cells for transplantation comprises: an enclosure 11; a hollow part 13 which is formed inside the enclosure 11; an introduction flow path 14 which is connected to the hollow part 13 and introduces oxygen from outside into the hollow part 13; a discharge flow path 15 which is connected to the hollow part 13 and discharges gas inside the hollow part 13; a cell chamber 17 which is formed inside the enclosure 11 and in which a cell is housed; an oxygen permeable membrane 16 which is provided for the enclosure 11 so as to partition the hollow part 13 and the cell chamber 17; an immunity isolating membrane 18 which is provided for the enclosure 11 so as to close an outer side of the cell chamber 17; and a deflection suppressing member 19 which suppresses deflection of a membrane which can be a lower side of the cell chamber 17 out of the oxygen permeable membrane 16 and the immunity isolating membrane 18, and the device is transplanted into a biological body.SELECTED DRAWING: Figure 5

Description

本発明は、移植用細胞収容装置及び移植用細胞収容システムに関する。   The present invention relates to a transplant cell storage device and a transplant cell storage system.

本技術分野の背景技術として、特表平11−506696号公報(特許文献1)がある。この公報には、「バルク基板を有する多孔質膜を実現させて粒子フィルターを形成するのに表面微小加工及びバルク微小加工を採用する。フィルターは取り扱いを容易にするに十分に研究されている。フィルターは高圧下で拡散バリヤーとして使用することができる。開示したエッチング製作方法は簡単であり、信頼でき、集積回路に適合し、かくして、大量生産に従順である。流体特性、カプセル形成、又はフィルターの表面の自動清浄若しくはチャージングのようないくつかの目的で、所望に応じて、フィルターの表面に電子回路を集積してもよい。」と記載されている(要約参照)。   As a background art of this technical field, there is Japanese Patent Application Laid-Open No. 11-506696 (Patent Document 1). This publication states that "Surface microfabrication and bulk microfabrication are employed to realize a porous membrane having a bulk substrate to form a particle filter. Filters have been studied enough to facilitate handling. The filter can be used as a diffusion barrier under high pressure.The disclosed etching fabrication method is simple, reliable, compatible with integrated circuits, and thus amenable to mass production.Fluid properties, encapsulation, or filter Electronic circuits may be integrated on the surface of the filter, if desired, for some purposes, such as automatic cleaning or charging of the surface of the filter (see summary).

特表平11−506696号公報Japanese Patent Publication No. 11-506696

前記特許文献1には、シリコン製の板である微小加工多孔質膜について記載されている。このシリコン製の板は、移植用細胞収容装置の細胞を収容する細胞室を覆う膜として使用することが考えられる。しかし、シリコン製の板は硬質で重いので、極力生体内には入れたくない。
そこで、移植用細胞収容装置の筐体や免疫隔離膜、酸素透過膜等は、ある程度可撓性(柔軟性)を有していて軽量の素材を用いて形成したい。
Patent Document 1 describes a microfabricated porous film that is a silicon plate. It is conceivable that this silicon plate is used as a membrane for covering a cell room for accommodating cells of the cell accommodating device for transplantation. However, since the plate made of silicon is hard and heavy, we do not want to put it in the living body as much as possible.
Therefore, it is desirable to form the casing, the immune isolation membrane, the oxygen permeable membrane, and the like of the cell storage device for transplantation using a lightweight material having some flexibility (flexibility).

しかしながら、細胞を収納する細胞室を覆う免疫隔離膜や酸素透過膜を可撓性の材料で形成すると、生体内に移植したときに生体内で撓んで細胞室内の細胞が細胞室内の一部分に偏ってしまい、細胞の機能や生存性が低下するという不具合がある。
そこで、本発明は、細胞室を覆う酸素透過膜や免疫隔離膜が生体内で撓むのを抑制することができる移植用細胞収容装置及び移植用細胞収容システムを提供することを課題とする。
However, if an immunoisolation membrane or an oxygen permeable membrane that covers the cell chamber for accommodating the cells is formed of a flexible material, the cells in the cell chamber are bent in the living body when implanted in the living body, and the cells in the cell chamber are biased to a part of the cell chamber. As a result, there is a problem that the function and viability of the cell are reduced.
Therefore, an object of the present invention is to provide a cell storage device for transplantation and a cell storage system for transplantation that can suppress the in vivo deformation of an oxygen permeable membrane or an immunoisolation membrane covering a cell chamber.

上記課題を解決するため、本発明の一形態である移植用細胞収容装置は、筐体と、前記筐体の内部に形成された空洞部と、前記空洞部に接続され外部から当該空洞部内に酸素を導入する導入流路と、前記空洞部に接続され当該空洞部内の気体を排出する排出流路と、筐体の内部に形成され細胞が収容される細胞室と、前記空洞部と前記細胞室とを仕切るように前記筐体に設けられている酸素透過膜と、前記細胞室の外部側を閉じるように前記筐体に設けられている免疫隔離膜と、前記酸素透過膜及び前記免疫隔離膜のうち前記細胞室の下側となりうる膜の撓みを抑制する撓み抑制部材とを備え、生体内に移植されることを特徴とする。   In order to solve the above problems, a cell storage device for transplantation, which is one embodiment of the present invention, includes a housing, a cavity formed inside the housing, and a cavity connected to the cavity from the outside and into the cavity. An introduction flow path for introducing oxygen, a discharge flow path connected to the cavity and discharging gas in the cavity, a cell chamber formed inside the housing and containing cells, the cavity and the cells An oxygen permeable membrane provided in the housing so as to partition the cell compartment, an immunoisolation membrane provided in the housing so as to close the outside of the cell chamber, the oxygen permeable membrane and the immunoisolation A bending suppression member for suppressing bending of the membrane that may be below the cell chamber of the membrane, and is implanted in a living body.

本発明によれば、細胞室を覆う酸素透過膜や免疫隔離膜が生体内で撓むのを抑制することができる移植用細胞収容装置及び移植用細胞収容システムを提供することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
Advantageous Effects of Invention According to the present invention, it is possible to provide a transplant cell storage device and a transplant cell storage system that can suppress the in-vivo deformation of an oxygen-permeable membrane or an immune isolation membrane that covers a cell chamber.
Problems, configurations, and effects other than those described above will be apparent from the following description of the embodiments.

本発明の実施形態1に係る移植用細胞収容装置の縦断面図である。It is a longitudinal section of the cell storage device for transplants concerning Embodiment 1 of the present invention. 本発明の実施形態1に係る移植用細胞収容装置の酸素透過膜又は免疫隔離膜に、撓み抑制部材を埋め込んだ例を示す酸素透過膜又は免疫隔離膜の拡大縦断面図である。FIG. 2 is an enlarged vertical cross-sectional view of the oxygen permeable membrane or the immunoisolation membrane showing an example in which a deflection suppressing member is embedded in the oxygen permeable membrane or the immunoisolation membrane of the cell storage device for transplantation according to the first embodiment of the present invention. 本発明の実施形態1に係る移植用細胞収容装置の酸素透過膜又は免疫隔離膜に、下側から膜状の撓み抑制部材を形成した場合の拡大縦断面図である。FIG. 2 is an enlarged longitudinal sectional view of a case where a membrane-shaped deflection suppressing member is formed from below on an oxygen permeable membrane or an immunoisolation membrane of the cell storage device for transplantation according to the first embodiment of the present invention. 本発明の実施形態1に係る移植用細胞収容装置を含む移植用細胞収容システムの概略構成を示すブロック図である。1 is a block diagram illustrating a schematic configuration of a transplant cell storage system including a transplant cell storage device according to a first embodiment of the present invention. 本発明の実施例2に係る移植用細胞収容装置の縦断面図である。It is a longitudinal cross-sectional view of the cell storage device for transplantation which concerns on Example 2 of this invention. 本発明の実施例2に係る移植用細胞収容装置の空洞部の平面図である。It is a top view of the hollow part of the cell storage device for transplantation which concerns on Example 2 of this invention. 本発明の実施例3に係る移植用細胞収容装置の縦断面図である。It is a longitudinal section of the cell storage device for transplantation concerning Example 3 of the present invention. 本発明の実施例4に係る移植用細胞収容装置の縦断面図である。It is a longitudinal section of the cell storage device for transplantation concerning Example 4 of the present invention. 本発明の実施例5に係る移植用細胞収容装置の空洞部の平面図である。It is a top view of the hollow part of the cell storage device for transplantation which concerns on Example 5 of this invention. 本発明の実施例6に係る移植用細胞収容装置の空洞部の平面図である。It is a top view of the hollow part of the cell storage device for transplantation which concerns on Example 6 of this invention. 本発明の実施例7に係る移植用細胞収容装置の分解斜視図である。It is an exploded perspective view of the cell storage device for transplantation concerning Example 7 of the present invention. 図6の比較例である撓み抑制部材が設けられていない場合の空洞部の平面図である。FIG. 7 is a plan view of a cavity in a case where a deflection suppressing member as a comparative example of FIG. 6 is not provided.

以下、本発明の実施例について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

移植用細胞収容装置は、内部に所定の細胞を収容した状態で人間や動物の生体内に移植して、当該細胞が分泌する分泌物によって医療効果を発揮するようにした装置である。   The cell-transplanting device for transplantation is a device in which predetermined cells are accommodated therein and transplanted into a living body of a human or an animal, and a medical effect is exerted by secretions secreted by the cells.

典型的な例を説明すると、移植用細胞収容装置内に脳死状態の人体から摘出して得られた、あるいは、iPS細胞(induced Pluripotent Stem cells)由来である膵島の細胞を収容して人体に埋め込んで用いる例が挙げられる。これにより、当該膵島が分泌するインスリンによって1型糖尿病を治療することができる。   To explain a typical example, cells of a pancreatic islet obtained by excision from a human body in a brain dead state or derived from iPS cells (induced Pluripotent Stem cells) are implanted into a human cell body in a cell storage device for transplantation. The example used in is mentioned. Thereby, type 1 diabetes can be treated with insulin secreted by the pancreatic islets.

このような移植用細胞収容装置に関連する技術としては、前記特許文献1に開示のものが知られている。すなわち、特許文献1には、シリコン製の板である微小加工多孔質膜について記載されている。このシリコン製の板は、移植用細胞収容装置の細胞を収容する細胞室を覆う膜として使用することが考えられる。しかし、シリコン製の板は硬質で重いので、極力生体内には入れたくない。
そこで、移植用細胞収容装置の筐体や免疫隔離膜、酸素透過膜等は、ある程度可撓性(柔軟性)を有していて軽量の素材を用いて形成したい。
As a technique related to such a cell storage device for transplantation, a technique disclosed in Patent Document 1 is known. That is, Patent Document 1 describes a microfabricated porous membrane that is a silicon plate. It is conceivable that this silicon plate is used as a membrane for covering a cell room for accommodating cells of the cell accommodating device for transplantation. However, since the plate made of silicon is hard and heavy, we do not want to put it in the living body as much as possible.
Therefore, it is desirable to form the casing, the immune isolation membrane, the oxygen permeable membrane, and the like of the cell storage device for transplantation using a lightweight material having some flexibility (flexibility).

しかしながら、細胞を収納する細胞室を覆う免疫隔離膜や酸素透過膜を可撓性の材料で形成すると、生体内に移植したときに生体内で撓んで細胞室内の細胞が細胞室内の一部分に偏ってしまい、細胞に酸素や栄養分が十分に行き渡らない可能性がある。そのため、細胞の機能や生存性が低下する恐れがあるという不具合がある。
そこで、以下では、係る不具合を解決した移植用細胞収容装置及び移植用細胞収容システムについて説明する。
However, if an immunoisolation membrane or an oxygen permeable membrane that covers the cell chamber for accommodating the cells is formed of a flexible material, the cells in the cell chamber are bent in the living body when implanted in the living body, and the cells in the cell chamber are biased to a part of the cell chamber. Cells may not get enough oxygen and nutrients. Therefore, there is a problem that the function and viability of the cell may be reduced.
Therefore, hereinafter, a transplant cell storage device and a transplant cell storage system that solves such a problem will be described.

図1は、本実施形態1に係る移植用細胞収容装置1の縦断面図である。移植用細胞収容装置1は、筐体11を備えている。この筐体11は、上面視した外形が略長方形であってもよいし、略円形であってもよいし、様々な形状とすることができる。図1に示す例では、筐体11の縦断面外形形状は矩形状であって、筐体11の下部中央部には、筐体11と段差をなす段差部12が設けられている。筐体11及び段差部12の素材は、長期間生体内に留置しても患者等の健康面や生活面等に大きな問題を生じない材料であれば様々な材料を用いることができる。しかし、生体内に長期間留置することを考えると、あまり硬質な材料、重量のある材料は患者等にとって負担となることも考えられるので、ある程度は、可撓性、柔軟性を有し、しかも軽量な材料であることが望ましい。このような材料としては例えば樹脂等を挙げることができる。また、筐体11は、強度的に十分である限りにおいて、体積は極力小さい方が患者等の負担という点で好ましい。この点で、筐体11は、扁平な形状をしていることが望ましい。図1に示す筐体11(以下に説明する他の実施例における筐体11の縦断面図においても同様)は、便宜上、図の上下方向にある程度の厚みを持たせて作図しているが、実際の製品は、これより図の上下に扁平で薄い形態とすることが望ましい。   FIG. 1 is a longitudinal sectional view of the cell storage device 1 for transplantation according to the first embodiment. The cell storage device 1 for transplantation has a housing 11. The housing 11 may have a substantially rectangular outer shape as viewed from above, a substantially circular shape, or various shapes. In the example shown in FIG. 1, the outer shape of the vertical cross section of the housing 11 is rectangular, and a step portion 12 that forms a step with the housing 11 is provided in the lower central portion of the housing 11. Various materials can be used for the housing 11 and the stepped portion 12 as long as the material does not cause a serious problem on the health and living aspects of the patient even if it is left in the living body for a long time. However, considering the indwelling in a living body for a long period of time, a material that is too hard and a heavy material may be a burden on patients and the like, so that it has flexibility and flexibility to some extent, and Desirably, it is a lightweight material. Examples of such a material include a resin. In addition, as long as the housing 11 has sufficient strength, it is preferable that the volume be as small as possible from the viewpoint of burden on the patient or the like. From this point, it is desirable that the housing 11 has a flat shape. The housing 11 shown in FIG. 1 (similarly in a vertical cross-sectional view of the housing 11 in another embodiment described below) is drawn with a certain thickness in the vertical direction of the drawing for convenience. It is desirable that the actual product be in a flat and thin form at the top and bottom of the figure.

筐体11の内部には空洞部13が形成されている。筐体11には段差部12の下端部から空洞部13まで貫通することで空洞部13に接続された流路であり、外部から酸素を空洞部13内に導入する導入流路14が設けられている。また、同じく筐体11には段差部12の下端部から空洞部13まで貫通することで空洞部13に接続された流路であり、空洞部13内の二酸化炭素等の気体を筐体11外に排出する排出流路15も設けられている。
筐体11内には、酸素透過膜16を挟んで空洞部13と隣接する空間である細胞室17が設けられている。細胞室17は、前記した膵島の細胞等、所定の細胞組織が収容される空間である。
A cavity 13 is formed inside the housing 11. The casing 11 is a flow path connected to the cavity 13 by penetrating from the lower end of the step portion 12 to the cavity 13, and is provided with an introduction flow path 14 for introducing oxygen into the cavity 13 from the outside. ing. Similarly, the flow path is connected to the cavity 13 by penetrating the housing 11 from the lower end of the step portion 12 to the cavity 13. There is also provided a discharge flow path 15 for discharging the water.
In the housing 11, a cell room 17 which is a space adjacent to the cavity 13 with the oxygen permeable membrane 16 interposed therebetween is provided. The cell room 17 is a space in which a predetermined cell tissue such as the above-mentioned pancreatic islet cells is stored.

酸素透過膜16は、空洞部13と細胞室17とを仕切るように筐体11に設けられている。酸素透過膜16は、細胞や体液等の水分は通過させないが酸素は透過させる性質を有する膜である。これにより、酸素透過膜16を介して酸素が細胞室17に供給され、細胞室17で発生した二酸化炭素は酸素透過膜16を介して細胞室17外に排出される。このような目的により、酸素透過膜は広い表面積を有することが望ましい。   The oxygen permeable membrane 16 is provided in the housing 11 so as to partition the cavity 13 from the cell chamber 17. The oxygen permeable film 16 is a film that does not allow moisture such as cells and body fluids to pass therethrough but allows oxygen to permeate. Thereby, oxygen is supplied to the cell chamber 17 through the oxygen permeable membrane 16, and carbon dioxide generated in the cell chamber 17 is discharged out of the cell chamber 17 through the oxygen permeable membrane 16. For such a purpose, it is desirable that the oxygen permeable membrane has a large surface area.

酸素透過膜16としては、酸素の透過係数がある程度大きな材料であれば様々な材料を使用できるが、例えば物理的に微細な孔が空いている膜を用いることができる。例えば、薄いシリコーン系材料の膜を用いることができる。また、W.L.Gore&Associates,Incが開発したePTFE(expanded polytetrafluoroethylene)膜や、PTFE(polytetrafluoroethylene)不織布などは、疎水性が高いため水分が沁み込みにくく、水分と接した状態でも酸素透過膜16として機能する。   As the oxygen permeable film 16, various materials can be used as long as the material has a relatively high oxygen permeability coefficient. For example, a film having physically fine holes can be used. For example, a thin film of a silicone material can be used. Further, ePTFE (expanded polytetrafluoroethylene) membrane and PTFE (polytetrafluoroethylene) non-woven fabric developed by W.L.

細胞室17の空洞部13とは反対側、図1において筐体11の上側は外部側に開口していて、その開口部を閉じるように、筐体11には免疫隔離膜18が設けられている。免疫隔離膜18は、細胞は通過させないが、体液等の水分は通過させる性質を有する膜である。これにより、細胞室17内の細胞は生体の免疫細胞によって攻撃されることが防止され、また、細胞室17内の細胞が移植用細胞収容装置1の外に漏れ出ることも防止される。また、免疫隔離膜18は、生体の体液中の栄養分等が透過して細胞室17内の細胞に供給可能で、かつ、当該細胞の代謝物や有用分泌物が透過して生体の組織に物質移動可能な環境を作るための膜でもある。そのため、免疫隔離膜18も広い表面積を有することが望ましい。
免疫隔離膜18の材料としては、これらの機能を発揮できる材料であれば様々な材料を用いることができる。免疫隔離膜18の材料としては、例えば、多孔質ポリカーボネートなどを挙げることができる。
On the side opposite to the cavity 13 of the cell chamber 17, the upper side of the housing 11 in FIG. 1 is open to the outside, and the housing 11 is provided with an immunoisolation membrane 18 so as to close the opening. I have. The immunoisolation membrane 18 is a membrane that does not allow cells to pass therethrough but allows moisture such as body fluids to pass. This prevents the cells in the cell chamber 17 from being attacked by the immune cells of the living body, and prevents the cells in the cell chamber 17 from leaking out of the cell storage device 1 for transplantation. The immune isolation membrane 18 is capable of transmitting nutrients and the like in a body fluid of a living body and supplying the cells in the cell compartment 17, and is capable of transmitting metabolites and useful secretions of the cells and transmitting substances to tissues of the living body. It is also a membrane for creating a mobile environment. Therefore, it is desirable that the immunoisolation membrane 18 also has a large surface area.
Various materials can be used as the material of the immunoisolation film 18 as long as these materials can exhibit these functions. Examples of the material for the immunoisolation membrane 18 include porous polycarbonate.

前記のとおり、筐体11は、扁平な形状であることが望ましい。このような扁平な筐体11の細胞室17内に細胞を導入する際には、細胞を含む細胞懸濁液を細胞室17に収容することで実現することができる。この細胞懸濁液は、酸素透過膜16のような薄い膜に力が加わる、すなわち酸素透過膜16が変形する状態で注ぎ込まれる。これは、前記のように、図1の下側が主に鉛直下方側となる場合である。一方、図1の上側が主に鉛直下方側となる場合は、免疫隔離膜18のような薄い膜に力が加わる、すなわち免疫隔離膜18が変形する状態で注ぎ込まれることとなる。   As described above, it is desirable that the housing 11 has a flat shape. When cells are introduced into the cell chamber 17 of such a flat casing 11, it can be realized by storing a cell suspension containing cells in the cell chamber 17. This cell suspension is poured in a state where a force is applied to a thin film such as the oxygen permeable membrane 16, that is, the oxygen permeable membrane 16 is deformed. This is the case where the lower side of FIG. 1 is mainly the vertical lower side as described above. On the other hand, when the upper side in FIG. 1 is mainly a vertical lower side, a force is applied to a thin film such as the immune isolation film 18, that is, the immune isolation film 18 is poured in a deformed state.

その結果、細胞懸濁液の細胞分布に偏りが生じ、酸素や栄養分の不足によって、細胞の機能や生存性が低下する。例えば、細胞室17に導入する細胞が接着細胞であった場合、変形の結果生じる酸素透過膜16や免疫隔離膜18の凹部に細胞が重力で集まった状態で細胞が当該膜に定着し、当該膜の中央部に細胞が多く分布して、周辺部には細胞が少ない状態となる。また、細胞を懸濁液の状態で細胞室17に導入した後にゲル化させて閉じ込めるような場合(例えばポリ乳酸系のインジェクタブルゲル)を考えても、酸素透過膜16や免疫隔離膜18の凹部に細胞が重力で集まった状態でゲル化すると、当該膜の中央部に細胞が多く、周辺部には細胞が少ない状態となる。   As a result, the cell distribution of the cell suspension is biased, and the function and viability of the cells are reduced due to lack of oxygen and nutrients. For example, when the cells to be introduced into the cell chamber 17 are adherent cells, the cells settle on the membrane in a state where the cells gather by gravity in the recesses of the oxygen permeable membrane 16 and the immunoisolation membrane 18 resulting from the deformation. A large number of cells are distributed in the center of the membrane, and there are few cells in the periphery. Further, even in the case where cells are introduced into the cell chamber 17 in the form of a suspension and then gelled and confined (for example, a polylactic acid-based injectable gel), the oxygen permeable membrane 16 and the When the cells are gelled in a state where the cells are gathered by gravity in the concave portion, a large number of cells are located in the central portion of the membrane and a small number of cells are located in the peripheral portion.

そこで、酸素透過膜16及び免疫隔離膜18のうち少なくとも細胞室17の下側となりうる膜の撓みを抑制する撓み抑制部材19(図2、図3参照)を、移植用細胞収容装置1に設けるようにする。ここで、移植用細胞収容装置1を移植された人間や動物は、活動するため、図1における「下側」を鉛直下方側として移植用細胞収容装置1を移植したとしても、常に酸素透過膜16が細胞室17の鉛直下方側になるわけではないが、移植用細胞収容装置1を移植された患者等がおおむね立った又は座った状態で酸素透過膜16が細胞室17の鉛直下方側に位置するのであれば、少なくとも酸素透過膜16に撓み抑制部材19を設ける。同様に、おおむね立った又は座った状態で免疫隔離膜18が細胞室17の鉛直下方側に位置するのであれば、少なくとも免疫隔離膜18に撓み抑制部材19を設ける。   Therefore, a bending suppression member 19 (see FIGS. 2 and 3) for suppressing bending of at least the lower side of the cell chamber 17 among the oxygen permeable membrane 16 and the immunoisolation membrane 18 is provided in the cell storage device 1 for transplantation. To do. Here, since the human or animal transplanted with the cell storage device 1 for transplantation is active, even if the cell storage device 1 for transplantation is transplanted with the “lower side” in FIG. The oxygen permeable membrane 16 is not positioned vertically below the cell chamber 17 while the patient or the like transplanted with the cell storage device 1 is generally standing or sitting, although the cell 16 is not positioned vertically below the cell chamber 17. If it is located, at least the deflection suppressing member 19 is provided on the oxygen-permeable film 16. Similarly, if the immune isolation membrane 18 is positioned vertically below the cell compartment 17 in a generally standing or sitting state, at least the immunoisolation membrane 18 is provided with a deflection suppressing member 19.

まず、図2は、酸素透過膜16又は免疫隔離膜18に、撓み抑制部材19を埋め込んだ例を示す酸素透過膜16又は免疫隔離膜18の拡大縦断面図である。撓み抑制部材19は、図2に示すように、酸素透過膜16又は免疫隔離膜18中に分散させて設けて、酸素透過膜16又は免疫隔離膜18の機能を阻害しないようにしてもよい。あるいは、酸素透過膜16又は免疫隔離膜18の機能を阻害しないように多孔質材料等で撓み抑制部材19を形成してもよい。後者の場合は、酸素透過膜16又は免疫隔離膜18内の膜の幅方向全体に撓み抑制部材19を形成するようにしてもよい。   First, FIG. 2 is an enlarged vertical sectional view of the oxygen permeable film 16 or the immunoisolation film 18 showing an example in which the deflection suppressing member 19 is embedded in the oxygen permeable film 16 or the immunoisolation film 18. As shown in FIG. 2, the deflection suppressing member 19 may be provided dispersed in the oxygen permeable membrane 16 or the immunoisolation membrane 18 so as not to hinder the function of the oxygen permeable membrane 16 or the immunoisolation membrane 18. Alternatively, the deflection suppressing member 19 may be formed of a porous material or the like so as not to impair the function of the oxygen permeable membrane 16 or the immunoisolation membrane 18. In the latter case, the deflection suppressing member 19 may be formed over the entire width of the oxygen permeable membrane 16 or the immunoisolation membrane 18 in the width direction.

図3は、酸素透過膜16又は免疫隔離膜18に、下側から膜状の撓み抑制部材19を形成した場合の拡大縦断面図である。すなわち、図3に示すように、酸素透過膜16又は免疫隔離膜18に、下側から支持する支持膜である撓み抑制部材19を形成して、筐体11の内周面13aにその端部が支持されるようにしてもよい。また、この場合も、酸素透過膜16又は免疫隔離膜18の機能を阻害しないようにする。具体的には、支持膜である撓み抑制部材19は酸素透過膜16又は免疫隔離膜18の部分々を覆うようにしてもよい。あるいは、支持膜である撓み抑制部材19を多孔質材料によって形成してもよい。   FIG. 3 is an enlarged vertical cross-sectional view of a case where a membrane-shaped deflection suppressing member 19 is formed on the oxygen permeable membrane 16 or the immunoisolation membrane 18 from below. That is, as shown in FIG. 3, a deflection suppressing member 19, which is a supporting film for supporting from below, is formed on the oxygen permeable membrane 16 or the immunoisolation membrane 18, and the end portion is formed on the inner peripheral surface 13a of the housing 11. May be supported. Also in this case, the function of the oxygen permeable membrane 16 or the immunoisolation membrane 18 is not inhibited. Specifically, the deflection suppressing member 19 serving as a support film may cover portions of the oxygen permeable film 16 or the immunoisolation film 18. Alternatively, the deflection suppressing member 19 as a support film may be formed of a porous material.

より具体的には、酸素透過膜16としてシリコン系材料を用いる場合、不織布などの多孔質性のフィルムに含浸させた状態でエラストマーを硬化させることで、支持膜である撓み抑制部材19とすることができる。また、免疫隔離膜18についても、多孔質性のフィルムを支持膜である撓み抑制部材19として免疫隔離膜18にラミネートしたものを用いることができる。   More specifically, when a silicon-based material is used as the oxygen-permeable film 16, the elastomer is cured while being impregnated in a porous film such as a nonwoven fabric, so that the deflection suppressing member 19 serving as a support film is formed. Can be. As the immunoisolation membrane 18, a laminate obtained by laminating a porous film on the immunoisolation membrane 18 as the deflection suppressing member 19 as a support membrane can be used.

図4は、移植用細胞収容装置1を含む移植用細胞収容システム21の概略構成を示すブロック図である。移植用細胞収容システム21は、移植用細胞収容装置1と酸素供給装置22とを備えている。酸素供給装置22は、配管23を介して外気を取り込んで送給するポンプ24と、このポンプ24の吐出側と移植用細胞収容装置1の導入流路14とを接続する配管25とを備えている。ポンプ24は、制御部26の制御に基づいて駆動する。また、図示はされていないが、ポンプ24及び制御部26は、酸素供給装置22に内蔵されている1次電池又は2次電池等を電源として駆動する。   FIG. 4 is a block diagram showing a schematic configuration of a transplant cell storage system 21 including the transplant cell storage device 1. The transplant cell storage system 21 includes the transplant cell storage device 1 and an oxygen supply device 22. The oxygen supply device 22 includes a pump 24 that takes in and supplies outside air via a pipe 23, and a pipe 25 that connects the discharge side of the pump 24 and the introduction flow path 14 of the cell storage device 1 for transplantation. I have. The pump 24 is driven based on the control of the control unit 26. Although not shown, the pump 24 and the control unit 26 are driven by using a primary battery or a secondary battery or the like incorporated in the oxygen supply device 22 as a power supply.

移植用細胞収容装置1は、生体の移植先組織100内に移植されていて、配管23が移植先組織100から生体外部に延びている。また、排出流路15に接続された配管27も移植先組織100から生体外部に延びている。酸素供給装置22は、純粋な酸素を移植用細胞収容装置1に供給するのではなく、ポンプ24によって配管23から空気を取り込んで、配管25を介して移植用細胞収容装置1に供給する。よって、空洞部13に供給する気体には酸素以外にも窒素等、空気中の気体成分が含まれる。なお、配管23,27には、空気中の塵埃等の異物が、極力、空洞部13に入り込まないようにフィルタを設けることが望ましい。   The cell storage device for transplantation 1 is transplanted into a living body transplant destination tissue 100, and a pipe 23 extends from the transplant destination tissue 100 to the outside of the living body. Further, a pipe 27 connected to the discharge channel 15 also extends outside the living body from the transplantation target tissue 100. The oxygen supply device 22 does not supply pure oxygen to the transplant cell storage device 1, but takes in air from a pipe 23 by a pump 24 and supplies the air to the transplant cell storage device 1 via a pipe 25. Therefore, the gas supplied to the cavity 13 includes gas components in the air, such as nitrogen, in addition to oxygen. In addition, it is desirable to provide a filter in the pipes 23 and 27 so that foreign substances such as dust in the air do not enter the hollow portion 13 as much as possible.

次に、移植用細胞収容装置1及び移植用細胞収容システム21の作用効果について説明する。
ここでは、移植用細胞収容装置1に膵島の細胞を収容し、1型糖尿病を治療する例で説明する。移植用細胞収容システム21においては、移植用細胞収容装置1の細胞室17内に膵島の細胞を収容して、移植用細胞収容装置1を生体の移植先組織100内に移植する。この状態で、配管25,27は一端側が移植用細胞収容装置1に接続されていて他端側が生体外に延びている。
Next, the function and effect of the transplant cell storage device 1 and the transplant cell storage system 21 will be described.
Here, an example in which cells of pancreatic islets are stored in the cell storage device 1 for transplantation and type 1 diabetes is treated will be described. In the transplant cell storage system 21, the cells of the pancreatic islet are stored in the cell chamber 17 of the cell storage device 1 for transplantation, and the cell storage device 1 for transplantation is transplanted into the transplant destination tissue 100 of the living body. In this state, one ends of the pipes 25 and 27 are connected to the cell storage device 1 for transplantation, and the other ends extend outside the living body.

酸素供給装置22は比較的ポータブルな装置であり、移植用細胞収容システム21を使用する患者は、当該酸素供給装置22を自身の腰部等に装着して移植用細胞収容システム21を自らの体に装着した状態で移動可能である。この酸素供給装置22には、配管25が接続されている。そして、制御部26の制御により、ポンプ24が駆動して、配管23から酸素を含む空気を取り込み、これを移植用細胞収容装置1の空洞部13に送り込む。この送り込まれた空気中の酸素は、酸素透過膜16を透過して膵島の細胞に供給される。
一方、酸素透過膜16が空洞部13と細胞室17とを仕切っているため、導入流路14から空気と一緒に入り込んだ細かな塵埃等の異物は酸素透過膜16によりシャットダウンされて、細胞室17内には入り込めない。
The oxygen supply device 22 is a relatively portable device, and a patient using the transplant cell storage system 21 can attach the oxygen supply device 22 to his / her lumbar region or the like and attach the transplant cell storage system 21 to its own body. It can be moved with it attached. A pipe 25 is connected to the oxygen supply device 22. Then, under the control of the control unit 26, the pump 24 is driven to take in air containing oxygen from the pipe 23 and send it to the cavity 13 of the cell storage device 1 for transplantation. The sent oxygen in the air passes through the oxygen permeable membrane 16 and is supplied to the cells of the pancreatic islets.
On the other hand, since the oxygen permeable membrane 16 separates the cavity 13 from the cell chamber 17, foreign matter such as fine dust that has entered together with air from the introduction channel 14 is shut down by the oxygen permeable membrane 16, 17 cannot enter.

細胞室17内の膵島が排出した二酸化炭素(酸素透過膜16を介して細胞室17に流入する)や、膵島で消費されず残存した酸素、空洞部13に導入された空気中における酸素以外の窒素等の気体は体外に排出される。すなわち、導入流路14から新たな気体が空洞部13に導入されることで、これらの気体は負圧によって排出流路15を介して空洞部13から生体外に排出される。なお、細胞室17内における膵島の細胞の代謝物は免疫隔離膜18を透過する。また、細胞室17内の膵島の細胞は、免疫隔離膜18を介して生体の体液等から栄養成分を吸収する。細胞室17内の膵島は、インスリンを分泌し、このインスリンは免疫隔離膜18を透過して患者の体内に吸収されるので、1型糖尿病を患っている患者に対して治療効果を発揮することができる。   Except for carbon dioxide discharged from the pancreatic islets in the cell chamber 17 (flowing into the cell chamber 17 through the oxygen permeable membrane 16), oxygen remaining without being consumed in the pancreatic islets, and oxygen in the air introduced into the cavity 13 Gases such as nitrogen are discharged outside the body. That is, when new gases are introduced into the cavity 13 from the introduction channel 14, these gases are discharged from the cavity 13 through the discharge channel 15 to the outside of the living body by negative pressure. The metabolites of the cells of the pancreatic islets in the cell compartment 17 penetrate the immune isolating membrane 18. In addition, the cells of the pancreatic islets in the cell compartment 17 absorb nutrient components from the body fluid or the like of the living body via the immune isolation membrane 18. The pancreatic islets in the cell compartment 17 secrete insulin, which is absorbed into the patient's body by permeating the immune isolating membrane 18, thereby exerting a therapeutic effect on patients with type 1 diabetes. Can be.

移植用細胞収容装置1及び移植用細胞収容システム21によれば、酸素透過膜16及び免疫隔離膜18のうち下側となる膜は、撓み抑制部材19によって支持される。そのため、酸素透過膜16又は免疫隔離膜18が細胞室17内における膵島の細胞等の重みによって撓んでしまうことがない。そのため、細胞室17内の膵島の細胞等が一カ所に偏ってしまうことがなく、細胞室17の酸素透過膜16又は免疫隔離膜18の上に均等に細胞が配置される。よって、細胞にまんべんなく酸素や栄養分を供給することができる。   According to the transplant cell storage device 1 and the transplant cell storage system 21, the lower membrane of the oxygen permeable membrane 16 and the immunoisolation membrane 18 is supported by the deflection suppressing member 19. Therefore, the oxygen permeable membrane 16 or the immunoisolation membrane 18 does not bend due to the weight of the pancreatic islet cells or the like in the cell chamber 17. Therefore, the cells of the pancreatic islets and the like in the cell chamber 17 are not biased to one place, and the cells are evenly arranged on the oxygen permeable membrane 16 or the immunoisolation membrane 18 in the cell chamber 17. Therefore, oxygen and nutrients can be evenly supplied to the cells.

[実験例1]
実験例として、セルロース不織布にシリコーン粘着材7-9900を含浸させた状態で硬化させて撓み抑制部材19を埋め込まれた酸素透過膜16を形成した。これを、3Dプリンタを用いて造形した筐体11に接着し、酸素透過膜16の上に細胞懸濁液を導入した。そして、目視したところ、酸素透過膜の変形は観察されなかった。
[Experimental example 1]
As an experimental example, the cellulosic nonwoven fabric was cured while being impregnated with the silicone adhesive 7-9900 to form the oxygen permeable membrane 16 in which the deflection suppressing member 19 was embedded. This was adhered to the casing 11 formed using a 3D printer, and the cell suspension was introduced onto the oxygen permeable membrane 16. Then, when visually observed, no deformation of the oxygen-permeable film was observed.

[実験例2]
免疫隔離膜18が不織布状の撓み抑制部材19を備える例を検討した。アレンタウン社製のポリエステル不織布Reemay(登録商標である)をラミネートした多孔質PTFE膜(免疫隔離膜18)を筐体11に接着し、細胞室17の免疫隔離膜18の上に細胞懸濁液を導入した。この場合、目視によっても免疫隔離膜18の変形は観察されなかった。
[Experimental example 2]
An example in which the immunoisolation membrane 18 includes a nonwoven fabric-like deflection suppressing member 19 was examined. A porous PTFE membrane (immunoisolation membrane 18) laminated with Allentown polyester nonwoven fabric Reemay (registered trademark) is adhered to the housing 11, and the cell suspension is placed on the immunoisolation membrane 18 in the cell compartment 17. Was introduced. In this case, no deformation of the immunoisolation membrane 18 was observed visually.

以下の実施例2〜6は、実施例1と撓み抑制部材19の構成が異なるのみである。そのため、実施例1と共通の部材等には実施例1と共通の符号を用い、詳細な説明は省略する。実施例2〜6は、何れも細胞室17の下側の膜となる酸素透過膜16を支持する撓み抑制部材19に関する実施例である。   The following Examples 2 to 6 are different from Example 1 only in the configuration of the deflection suppressing member 19. Therefore, the same reference numerals are used for members and the like common to the first embodiment, and detailed description is omitted. Embodiments 2 to 6 are all related to the bending suppression member 19 that supports the oxygen permeable membrane 16 which is the membrane below the cell chamber 17.

図5は、実施例2に係る移植用細胞収容装置1の縦断面図である。空洞部13内には、空洞部13内の内壁面13bにおける導入流路14の出口と排出流路15の入口との間から延出していて、その先端19aが酸素透過膜16と接することにより当該酸素透過膜16を支持する撓み抑制部材19が設けられている。なお、実施例2〜6の例において、撓み抑制部材19は1本だけで酸素透過膜16を支持しているが、複数本の撓み抑制部材19を設けて、複数本の撓み抑制部材19で酸素透過膜16を支持するようにしてもよい。
図5の例では、撓み抑制部材19の先端19aが酸素透過膜16の撓みを抑制する。そのため、細胞室17内の膵島の細胞等が一カ所に偏ってしまうことがなく、細胞室17の酸素透過膜16の上に均等に細胞が配置される。よって、膵島の細胞にまんべんなく酸素や栄養分を供給することができる。
FIG. 5 is a longitudinal sectional view of the transplant cell storage device 1 according to the second embodiment. In the hollow portion 13, the inner wall surface 13 b of the hollow portion 13 extends from between the outlet of the introduction flow channel 14 and the inlet of the discharge flow channel 15, and its tip 19 a contacts the oxygen permeable membrane 16. A deflection suppressing member 19 that supports the oxygen permeable film 16 is provided. In the examples of the second to sixth embodiments, only one bending suppression member 19 supports the oxygen permeable membrane 16, but a plurality of bending suppression members 19 are provided, and a plurality of bending suppression members 19 are provided. The oxygen permeable film 16 may be supported.
In the example of FIG. 5, the tip 19 a of the deflection suppressing member 19 suppresses the deflection of the oxygen permeable film 16. Therefore, the cells of the pancreatic islets in the cell chamber 17 are not biased to one place, and the cells are evenly arranged on the oxygen permeable membrane 16 in the cell chamber 17. Thus, oxygen and nutrients can be evenly supplied to the cells of the pancreatic islets.

図6は、空洞部13の平面図である。撓み抑制部材19は上面視で長方形状をしていて、導入流路14の入口と排出流路15の出口とを結ぶ方向が当該長方形状の短辺方向となっている。そして、矢印29で示すように、導入流路14の入口から空洞部13に導入された酸素は、多くは撓み抑制部材19を迂回して空洞部13中を流れ、排出流路15の出口にたどりつく。   FIG. 6 is a plan view of the cavity 13. The deflection suppressing member 19 has a rectangular shape in a top view, and a direction connecting an inlet of the introduction flow path 14 and an outlet of the discharge flow path 15 is a short side direction of the rectangular shape. As indicated by an arrow 29, the oxygen introduced into the cavity 13 from the inlet of the introduction flow path 14 flows in the cavity 13, bypassing the deflection suppressing member 19 in many cases, and flows into the outlet of the discharge flow path 15. I reach you.

ここで、図12は図6の比較例である撓み抑制部材19が設けられていない場合の空洞部13の平面図である。この場合は、撓み抑制部材19のような障害物が存在しないため、導入流路14の入口から空洞部13内に導入された酸素は、導入流路14の入口と排出流路15の出口とを直線距離で結んだ矢印111で示すルートを通過して排出流路15から排出され易くなる。そのため、導入流路14の入口と排出流路15の出口とを直線距離で結んだルートの近傍における酸素透過膜16の直下に位置する細胞室17内の膵島の細胞には十分な酸素が供給される。しかし、当該ルートから遠い空洞部13の内周面13a近傍の酸素透過膜16直下における細胞室17内の膵島の細胞には十分な酸素が供給されない恐れがある。   Here, FIG. 12 is a plan view of the cavity 13 in a case where the deflection suppressing member 19 which is a comparative example of FIG. 6 is not provided. In this case, since there is no obstacle such as the deflection suppressing member 19, oxygen introduced into the hollow portion 13 from the inlet of the introduction flow path 14 flows through the inlet of the introduction flow path 14 and the outlet of the discharge flow path 15. Are easily discharged from the discharge flow path 15 through a route indicated by an arrow 111 connecting the two at a straight line distance. Therefore, sufficient oxygen is supplied to the pancreatic islet cells in the cell chamber 17 located immediately below the oxygen-permeable membrane 16 in the vicinity of a route connecting the inlet of the introduction channel 14 and the outlet of the discharge channel 15 at a linear distance. Is done. However, there is a possibility that sufficient oxygen is not supplied to the cells of the pancreatic islets in the cell chamber 17 immediately below the oxygen permeable membrane 16 near the inner peripheral surface 13a of the cavity 13 far from the route.

このような比較例の場合に比べて、図5、図6の例では、導入流路14の入口から導入された酸素は撓み抑制部材19によって矢印29で示すように迂回して流れる。そのため、導入流路14の入口と排出流路15の出口とを直線距離で結んだルートの近傍から遠い空洞部13の内周面13a近傍の酸素透過膜16直下における細胞室17内の膵島の細胞にも、充分な酸素を供給することができる。   Compared to the case of the comparative example, in the examples of FIGS. 5 and 6, the oxygen introduced from the inlet of the introduction flow path 14 flows around by the deflection suppressing member 19 as shown by an arrow 29. Therefore, the pancreatic islets in the cell compartment 17 immediately below the oxygen permeable membrane 16 near the inner peripheral surface 13a of the cavity 13 far from the vicinity of the route connecting the inlet of the introduction flow channel 14 and the outlet of the discharge flow channel 15 at a linear distance. Cells can be supplied with sufficient oxygen.

[実験例]
3Dプリンタを用いて、撓み抑制部材19を備える筐体11を造形した後に、接着剤を用いて酸素透過膜16を接着し、酸素透過膜16の上に細胞懸濁液を導入した。この場合、目視によっても酸素透過膜16の変形は観察されなかった。
[Example of experiment]
After forming the housing 11 having the deflection suppressing member 19 using a 3D printer, the oxygen permeable membrane 16 was bonded using an adhesive, and the cell suspension was introduced onto the oxygen permeable membrane 16. In this case, the deformation of the oxygen permeable film 16 was not visually observed.

図7は、本実施例3に係る移植用細胞収容装置1の縦断面図である。本実施例3が実施例2と異なるのは、撓み抑制部材19は、先端19aに向かって先細り形状をなしている点である。
図7の例でも、撓み抑制部材19の先端19aが酸素透過膜16の撓みを抑制する。そのため、細胞室17内の膵島の細胞等が一カ所に偏ってしまうことがなく、細胞室17の酸素透過膜16の上に均等に膵島の細胞が配置される。よって、膵島の細胞にまんべんなく酸素や栄養分を供給することができる。
FIG. 7 is a vertical cross-sectional view of the transplant cell storage device 1 according to the third embodiment. The third embodiment differs from the second embodiment in that the deflection suppressing member 19 has a tapered shape toward the distal end 19a.
Also in the example of FIG. 7, the tip 19 a of the bending suppression member 19 suppresses the bending of the oxygen permeable film 16. Therefore, the cells of the pancreatic islets in the cell room 17 are not biased to one place, and the cells of the pancreatic islets are evenly arranged on the oxygen-permeable membrane 16 of the cell room 17. Thus, oxygen and nutrients can be evenly supplied to the cells of the pancreatic islets.

また、前記実施例2では、撓み抑制部材19の先端19aが酸素透過膜16と接している。そのため、導入流路14の入口と排出流路15の出口との直近のルートを通過する酸素は皆無である。導入流路14から空洞部13内に流入した全ての酸素は、図6で矢印29に示すような迂回ルートを通過し、空洞部13の酸素は効率良く細胞室17の膵島の細胞全体にまんべんなく供給し易くなる。
但し、撓み抑制部材19の先端19aが酸素透過膜16と接していることで、当該先端19aが接している酸素透過膜16の部分の直下に存在している膵島の細胞には酸素がいきわたりにくくなる可能性が生じる。
In the second embodiment, the tip 19 a of the deflection suppressing member 19 is in contact with the oxygen permeable film 16. Therefore, there is no oxygen passing through a route immediately adjacent to the inlet of the introduction channel 14 and the outlet of the discharge channel 15. All oxygen that has flowed into the cavity 13 from the introduction flow path 14 passes through a detour route as shown by an arrow 29 in FIG. 6, and oxygen in the cavity 13 is efficiently distributed evenly to the whole cells of the pancreatic islet in the cell compartment 17. It becomes easy to supply.
However, since the tip 19a of the deflection suppressing member 19 is in contact with the oxygen permeable membrane 16, oxygen is less likely to pass through the cells of the pancreatic islet existing immediately below the portion of the oxygen permeable membrane 16 with which the tip 19a is in contact. The possibility arises.

しかし、本実施例2では、撓み抑制部材19は、先端19aに向かって先細り形状をなしているため、当該先端19aが接している酸素透過膜16の部分の面積を小さくすることができる。そのため、当該先端19aが接している酸素透過膜16部分直下の細胞室17の面積を小さくすることができるので、当該部分に存在する膵島の細胞に酸素がいきわたりにくくなることを抑制することができる。   However, in the second embodiment, since the deflection suppressing member 19 has a tapered shape toward the tip 19a, the area of the portion of the oxygen permeable membrane 16 in contact with the tip 19a can be reduced. Therefore, the area of the cell chamber 17 immediately below the portion of the oxygen permeable membrane 16 with which the tip 19a is in contact can be reduced, so that it is possible to suppress the difficulty of oxygen from spreading to cells of the pancreatic islet existing in the portion. .

図8は、本実施例4に係る移植用細胞収容装置1の縦断面図である。本実施例4が実施例2と異なるのは、撓み抑制部材19は、多孔質材料で形成されている点である。
図8の例でも、撓み抑制部材19の先端19aが酸素透過膜16の撓みを抑制する。そのため、細胞室17内の膵島の細胞等が一カ所に偏ってしまうことがなく、細胞室17の酸素透過膜16の上に均等に膵島の細胞が配置される。よって、膵島の細胞にまんべんなく酸素や栄養分を供給することができる。
FIG. 8 is a longitudinal sectional view of the transplant cell storage device 1 according to the fourth embodiment. The fourth embodiment differs from the second embodiment in that the deflection suppressing member 19 is formed of a porous material.
Also in the example of FIG. 8, the tip 19 a of the deflection suppressing member 19 suppresses the deflection of the oxygen permeable film 16. Therefore, the cells of the pancreatic islets in the cell room 17 are not biased to one place, and the cells of the pancreatic islets are evenly arranged on the oxygen-permeable membrane 16 of the cell room 17. Thus, oxygen and nutrients can be evenly supplied to the cells of the pancreatic islets.

また、実施例2と同様に、本実施例4では、撓み抑制部材19の先端19aが酸素透過膜16と接している。そのため、導入流路14の入口と排出流路15の出口との直近のルートを通過する酸素は皆無である。導入流路14から空洞部13内に流入した全ての酸素は、図6で矢印29に示すような大きな迂回ルートを通過し、空洞部13の酸素は効率良く細胞室17の膵島の細胞全体にまんべんなく供給し易くなる。
但し、撓み抑制部材19の先端19aが酸素透過膜16と接していることで、当該先端19aが接している酸素透過膜16の部分の直下に存在している膵島の細胞には酸素がいきわたりにくくなる可能性が生じる。
Further, as in the second embodiment, in the fourth embodiment, the tip 19 a of the deflection suppressing member 19 is in contact with the oxygen permeable film 16. Therefore, there is no oxygen passing through a route immediately adjacent to the inlet of the introduction channel 14 and the outlet of the discharge channel 15. All the oxygen that has flowed into the cavity 13 from the introduction flow path 14 passes through a large detour route as shown by the arrow 29 in FIG. 6, and the oxygen in the cavity 13 efficiently spreads to the entire pancreatic islet cells in the cell chamber 17. It becomes easy to supply evenly.
However, since the tip 19a of the deflection suppressing member 19 is in contact with the oxygen permeable membrane 16, oxygen does not easily spread to the cells of the pancreatic islet existing immediately below the portion of the oxygen permeable membrane 16 with which the tip 19a is in contact. The possibility arises.

しかし、本実施例4では、撓み抑制部材19は多孔質材料で形成されている。そのため、空洞部13内の酸素は多孔質材料に形成された孔を通過し、撓み抑制部材19の先端19aが接している酸素透過膜16の部分を介して、当該部分直下の細胞室17における膵島の細胞に充分に酸素が供給される。よって、撓み抑制部材19の先端19aが酸素透過膜16に接していても当該部分の膵島の細胞に酸素がいきわたりにくくなることを抑制することができる。   However, in the fourth embodiment, the deflection suppressing member 19 is formed of a porous material. Therefore, the oxygen in the cavity 13 passes through the hole formed in the porous material, passes through the portion of the oxygen permeable membrane 16 where the tip 19a of the deflection suppressing member 19 is in contact with the cell chamber 17 immediately below the portion. The cells of the islets are supplied with sufficient oxygen. Therefore, even if the tip 19a of the deflection suppressing member 19 is in contact with the oxygen permeable membrane 16, it is possible to suppress the oxygen from hardly permeating the cells of the pancreatic islet in the portion.

図9は、本実施例5に係る移植用細胞収容装置1の空洞部13の平面図である。本実施例5が実施例2と異なるのは、次の点である。すなわち、撓み抑制部材19が、導入流路14の入口と排出流路15の出口とを直近で結ぶ位置の近傍19dに比べて、それ以外の部分は、導入流路14の入口と排出流路15の出口とを結ぶ方向(図12における矢印111の方向)の幅が短く形成されている。すなわち、図9に示されている撓み抑制部材19を平面視した形状は、導入流路14の入口と排出流路15の出口とを直近で結ぶ位置の近傍19dでは、図6の左右方向の幅が長い。これに対して、当該直近で結ぶ位置から遠ざかるに従って、図9の左右方向の幅が漸次短くなっている。図9に示された例では撓み抑制部材19は平面視した形状が菱形をしている。しかし、本実施例4は、係る形状を菱形に限定するものではない。
図9の例でも、撓み抑制部材19の先端19aが酸素透過膜16の撓みを抑制する。そのため、細胞室17内の膵島の細胞等が一カ所に偏ってしまうことがなく、細胞室17の酸素透過膜16の上に均等に膵島の細胞が配置される。よって、膵島の細胞にまんべんなく酸素や栄養分を供給することができる。
FIG. 9 is a plan view of the hollow portion 13 of the transplant cell storage device 1 according to the fifth embodiment. The fifth embodiment is different from the second embodiment in the following point. That is, compared with the vicinity 19d where the deflection suppressing member 19 connects the entrance of the introduction flow path 14 and the exit of the discharge flow path 15 in the immediate vicinity, the other parts are the entrance of the introduction flow path 14 and the discharge flow path. The width in the direction (the direction of arrow 111 in FIG. 12) connecting to the 15 outlets is formed short. That is, the shape of the deflection suppressing member 19 shown in FIG. 9 in a plan view is similar to the shape in the horizontal direction of FIG. 6 near the position 19d where the inlet of the introduction flow path 14 and the outlet of the discharge flow path 15 are directly connected. Long width. On the other hand, the width in the left-right direction of FIG. 9 gradually decreases as the distance from the closest connection position increases. In the example shown in FIG. 9, the deflection suppressing member 19 has a rhombic shape in plan view. However, Embodiment 4 does not limit the shape to a rhombus.
Also in the example of FIG. 9, the tip 19 a of the bending suppression member 19 suppresses the bending of the oxygen permeable film 16. Therefore, the cells of the pancreatic islets in the cell room 17 are not biased to one place, and the cells of the pancreatic islets are evenly arranged on the oxygen-permeable membrane 16 of the cell room 17. Thus, oxygen and nutrients can be evenly supplied to the cells of the pancreatic islets.

本実施例5では、導入流路14の入口と排出流路15の出口とを結ぶ方向と直交する方向の両端部19c側で撓み抑制部材19の先端19a(図5参照)の面積が狭くなることになる。これにより、図6と図9とを比較して明らかなように、本実施例5では撓み抑制部材19の先端19aの面積を全体として狭くできる。よって、撓み抑制部材19の先端19aが酸素透過膜16に接していても、当該酸素透過膜16の接触部分直下における細胞室17の面積を限定でき、当該直下に存在する膵島の細胞に酸素がいきわたりにくくなることを抑制することができる。   In the fifth embodiment, the area of the distal end 19a (see FIG. 5) of the deflection suppressing member 19 is reduced on both ends 19c in a direction orthogonal to the direction connecting the inlet of the introduction flow path 14 and the outlet of the discharge flow path 15. Will be. Thus, as is apparent from a comparison between FIG. 6 and FIG. 9, in the fifth embodiment, the area of the tip 19a of the deflection suppressing member 19 can be reduced as a whole. Therefore, even when the tip 19a of the deflection suppressing member 19 is in contact with the oxygen permeable membrane 16, the area of the cell chamber 17 immediately below the contact portion of the oxygen permeable membrane 16 can be limited, and oxygen is supplied to the cells of the pancreatic islet located immediately below. This makes it possible to suppress difficulty in passing.

図10は、本実施例6に係る移植用細胞収容装置1の空洞部13の平面図である。本実施例6が実施例2と異なるのは、次の点である。すなわち、撓み抑制部材19が、導入流路14の入口と排出流路15の出口とを直近で結ぶ位置の近傍19dに比べて、それ以外の部分は、導入流路14の入口と排出流路15の出口とを結ぶ方向(図12における矢印111の方向)の幅が長く形成されている。すなわち、図10に示されている撓み抑制部材19を平面視した形状は、導入流路14の入口と排出流路15の出口とを直近で結ぶ位置の近傍19dでは、図10の左右方向の幅が短い。これに対して、当該直近で結ぶ位置から最も遠い両端部19bでは、図10の左右方向の幅が長くなっている。図10に示された例では撓み抑制部材19は平面視した形状がH字形状をしている。しかし、本実施例5は、係る形状をH字形状に限定するものではない。
図10の例でも、撓み抑制部材19の先端19aが酸素透過膜16の撓みを抑制する。そのため、細胞室17内の膵島の細胞等が一カ所に偏ってしまうことがなく、細胞室17の酸素透過膜16の上に均等に膵島の細胞が配置される。よって、膵島の細胞にまんべんなく酸素や栄養分を供給することができる。
FIG. 10 is a plan view of the hollow portion 13 of the transplant cell storage device 1 according to the sixth embodiment. The sixth embodiment differs from the second embodiment in the following point. That is, compared with the vicinity 19d where the deflection suppressing member 19 connects the entrance of the introduction flow path 14 and the exit of the discharge flow path 15 in the immediate vicinity, the other parts are the entrance of the introduction flow path 14 and the discharge flow path. The width in the direction (the direction of arrow 111 in FIG. 12) connecting to the 15 outlets is formed long. That is, the shape of the deflection suppressing member 19 shown in FIG. 10 when viewed in a plan view is near the position 19d connecting the inlet of the introduction flow path 14 and the outlet of the discharge flow path 15 in the immediate vicinity. Short width. On the other hand, the width in the left-right direction in FIG. 10 is long at both end portions 19b farthest from the position of the closest connection. In the example shown in FIG. 10, the deflection suppressing member 19 has an H-shape when viewed in plan. However, Embodiment 5 does not limit the shape to the H-shape.
Also in the example of FIG. 10, the tip 19 a of the deflection suppressing member 19 suppresses the deflection of the oxygen permeable film 16. Therefore, the cells of the pancreatic islets in the cell room 17 are not biased to one place, and the cells of the pancreatic islets are evenly arranged on the oxygen-permeable membrane 16 of the cell room 17. Thus, oxygen and nutrients can be evenly supplied to the cells of the pancreatic islets.

この場合の導入流路14の入口から排出流路15の出口にかけての酸素の流れを矢印31で図10中に示している。撓み抑制部材19が前記の形状であるため、酸素の流れを示す矢印31も内周面13aに沿うように大きく迂回している。実施例2における図6の矢印29と比較すれば、その点は明らかである。よって、本実施例6によれば、細胞室17の広い範囲に分布している膵島の細胞に対してまんべんなく酸素を供給することが可能となる。   In this case, the flow of oxygen from the inlet of the introduction channel 14 to the outlet of the discharge channel 15 is shown in FIG. Since the deflection suppressing member 19 has the above-mentioned shape, the arrow 31 indicating the flow of oxygen also largely detours along the inner peripheral surface 13a. This is apparent from comparison with the arrow 29 in FIG. 6 in the second embodiment. Therefore, according to the sixth embodiment, it becomes possible to supply oxygen evenly to pancreatic islet cells distributed over a wide range of the cell compartment 17.

しかしながら、本実施例6では、図10を図6及び図9と比較して明らかなように、撓み抑制部材19の先端19a(図5参照)を酸素透過膜16に接触させると、その接触部分の直下における細胞室17の面積が広くなりやすい。従って、その点では細胞室17の膵島に対して充分に酸素が供給できない可能性がある。そこで、撓み抑制部材19の先端19a(図5参照)を酸素透過膜16に接触させる際には、本実施例6の撓み抑制部材19は実施例3のように先端19aを先細り形状にし、あるいは、実施例4のように撓み抑制部材19を多孔質材料で形成することが望ましい。   However, in the sixth embodiment, when the tip 19a (see FIG. 5) of the deflection suppressing member 19 is brought into contact with the oxygen permeable film 16 as is clear from FIG. 10 compared with FIGS. The area of the cell chamber 17 immediately below the space tends to be large. Therefore, there is a possibility that sufficient oxygen cannot be supplied to the pancreatic islets in the cell compartment 17 at that point. Therefore, when the tip 19a (see FIG. 5) of the deflection suppressing member 19 is brought into contact with the oxygen permeable membrane 16, the bending suppressing member 19 of the sixth embodiment has a tapered tip 19a as in the third embodiment, or It is desirable that the deflection suppressing member 19 be made of a porous material as in the fourth embodiment.

図11は、実施例7に係る移植用細胞収容装置1の分解斜視図である。本実施例7において、実施例1と共通の部材等には実施例1と共通の符号を用い、詳細な説明は省略する。   FIG. 11 is an exploded perspective view of the transplant cell storage device 1 according to the seventh embodiment. In the seventh embodiment, members common to the first embodiment are denoted by the same reference numerals as those in the first embodiment, and the detailed description is omitted.

本実施例7の移植用細胞収容装置1は、扁平で幅広な円筒である筐体11と、筐体11の上下両側の開口をそれぞれ覆う免疫隔離膜18,18とを備えている。本実施例の移植用細胞収容装置1が実施例1〜6と異なるのは、酸素透過膜16や空洞部13等を備えていないことである。これは、酸素の供給を必要としない細胞も存在するからである。筐体11の内部が細胞室17となる。   The cell storage device 1 for transplantation of Example 7 includes a housing 11 that is a flat and wide cylinder, and immunoisolation membranes 18 that cover the upper and lower openings of the housing 11, respectively. The transplant cell storage device 1 of the present embodiment differs from the first to sixth embodiments in that it does not include the oxygen permeable membrane 16, the cavity 13, and the like. This is because some cells do not need oxygen supply. The inside of the housing 11 is a cell room 17.

そして、2枚の免疫隔離膜18,18のうち、少なくとも細胞室17の下側となりうる膜の撓みを抑制する撓み抑制部材19を備えている。図11の例では、同図で下側となる免疫隔離膜18に対して実施例1における図2又は図3の手法によって、撓み抑制部材19が設けられている。もちろん、図11で上側となる免疫隔離膜18に対して実施例1における図2又は図3の手法によって、撓み抑制部材19が設けてもよい。   Further, a bending suppressing member 19 is provided for suppressing bending of a film which may be at least below the cell chamber 17 among the two immunoisolation films 18. In the example of FIG. 11, a deflection suppressing member 19 is provided on the immunoisolation film 18 on the lower side in FIG. 11 by the method of FIG. 2 or 3 in the first embodiment. As a matter of course, the deflection suppressing member 19 may be provided on the upper side of the immune isolation film 18 in FIG. 11 by the method of FIG. 2 or 3 in the first embodiment.

本実施例によれば、免疫隔離膜18が撓み抑制部材19によって支持される。そのため、免疫隔離膜18が細胞室17内の細胞等の重みによって撓んでしまうことがない。そのため、細胞室17内の細胞等が一カ所に偏ってしまうことがなく、細胞室17の免疫隔離膜18の上に均等に細胞が配置される。よって、細胞にまんべんなく栄養分を供給することができる。   According to the present embodiment, the immune isolation membrane 18 is supported by the deflection suppressing member 19. Therefore, the immune isolation film 18 does not bend due to the weight of the cells and the like in the cell chamber 17. Therefore, the cells and the like in the cell room 17 are not biased to one place, and the cells are evenly arranged on the immunoisolation membrane 18 in the cell room 17. Therefore, nutrients can be evenly supplied to the cells.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
Note that the present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described above.
Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment. Further, for a part of the configuration of each embodiment, it is also possible to add / delete / replace another configuration.

1 移植用細胞収容装置
11 筐体
13 空洞部
13b 内壁面
14 導入流路
15 排出流路
17 細胞室
16 酸素透過膜
18 免疫隔離膜
19 撓み抑制部材
19a 先端
21 移植用細胞収容システム
22 酸素供給装置
REFERENCE SIGNS LIST 1 cell transplanting device for transplantation 11 housing 13 cavity 13 b inner wall surface 14 introduction channel 15 discharge channel 17 cell room 16 oxygen permeable membrane 18 immunoisolation membrane 19 deflection suppressing member 19 a tip 21 cell transplanting system 22 oxygen supply device

Claims (10)

筐体と、
前記筐体の内部に形成された空洞部と、
前記空洞部に接続され外部から当該空洞部内に酸素を導入する導入流路と、
前記空洞部に接続され当該空洞部内の気体を排出する排出流路と、
筐体の内部に形成され細胞が収容される細胞室と、
前記空洞部と前記細胞室とを仕切るように前記筐体に設けられている酸素透過膜と、
前記細胞室の外部側を閉じるように前記筐体に設けられている免疫隔離膜と、
前記酸素透過膜及び前記免疫隔離膜のうち前記細胞室の下側となりうる膜の撓みを抑制する撓み抑制部材とを備え、
生体内に移植されることを特徴とする移植用細胞収容装置。
A housing,
A cavity formed inside the housing,
An introduction flow path connected to the cavity and introducing oxygen from the outside into the cavity,
A discharge channel connected to the hollow portion and discharging gas in the hollow portion,
A cell chamber formed inside the housing and containing cells,
An oxygen-permeable membrane provided in the housing to partition the cavity and the cell chamber,
An immune isolation membrane provided in the housing so as to close the outside of the cell chamber,
A bending suppression member that suppresses bending of a membrane that may be below the cell chamber of the oxygen permeable membrane and the immune isolation membrane,
A cell storage device for transplantation, which is transplanted into a living body.
前記撓み抑制部材は、前記酸素透過膜及び前記免疫隔離膜のうち前記細胞室の下側となりうる膜内に埋め込まれることを特徴とする請求項1に記載の移植用細胞収容装置。   The cell storage device for transplantation according to claim 1, wherein the deflection suppressing member is embedded in a membrane of the oxygen permeable membrane and the immunoisolation membrane that may be below the cell chamber. 前記撓み抑制部材は、前記酸素透過膜及び前記免疫隔離膜のうち前記細胞室の下側となる膜を下側から支持する支持膜であって、前記筐体の内周面に端部が支持されることを特徴とする請求項1に記載の移植用細胞収容装置。   The deflection suppressing member is a support film that supports a lower one of the cell chambers of the oxygen permeable membrane and the immune isolation membrane from below, and an end of the support member is supported on an inner peripheral surface of the housing. The cell storage device for transplant according to claim 1, wherein the device is used. 前記撓み抑制部材は、前記空洞部内の内壁面における前記導入流路の出口と前記排出流路の入口との間から延出していて、その先端は前記酸素透過膜と接することにより当該酸素透過膜を支持することを特徴とする請求項1に記載の移植用細胞収容装置。   The deflection suppressing member extends from between the outlet of the introduction flow path and the inlet of the discharge flow path on the inner wall surface in the cavity, and the tip thereof is in contact with the oxygen permeable membrane, so that the oxygen permeable membrane is The cell storage device for transplantation according to claim 1, wherein the cell storage device supports the cell. 前記撓み抑制部材は、その先端が前記酸素透過膜に向かって先細り形状をなすことを特徴とする請求項4に記載の移植用細胞収容装置。   The cell storage device for transplant according to claim 4, wherein a tip of the deflection suppressing member is tapered toward the oxygen permeable membrane. 前記撓み抑制部材は、多孔質材料で形成されることを特徴とする請求項4に記載の移植用細胞収容装置。   The cell storage device for transplant according to claim 4, wherein the deflection suppressing member is formed of a porous material. 前記撓み抑制部材は、前記出口と前記入口とを直近で結ぶ位置の近傍に比べて、それ以外の部分は、前記出口と前記入口とを結ぶ方向の幅が短く形成されることを特徴とする請求項4に記載の移植用細胞収容装置。   The deflection suppressing member is characterized in that a width in a direction connecting the outlet and the inlet is shorter than that near a position connecting the outlet and the inlet immediately. The transplant cell storage device according to claim 4. 前記撓み抑制部材は、前記出口と前記入口とを直近で結ぶ位置の近傍に比べて、それ以外の部分は、前記出口と前記入口とを結ぶ方向の幅が長く形成されることを特徴とする請求項4に記載の移植用細胞収容装置。   The deflection suppressing member is characterized in that a width in a direction connecting the outlet and the inlet is longer than that in a vicinity of a position connecting the outlet and the inlet in the immediate vicinity. The transplant cell storage device according to claim 4. 筐体と、
筐体の内部に形成され細胞が収容される細胞室と、
前記細胞室の両側の開口をそれぞれ覆う免疫隔離膜と、
前記両免疫隔離膜のうち前記細胞室の下側となる膜の撓みを抑制する撓み抑制部材とを備え、
生体内に移植されることを特徴とする移植用細胞収容装置。
A housing,
A cell chamber formed inside the housing and containing cells,
An immunoisolation membrane covering the openings on both sides of the cell compartment,
A flexure suppressing member that suppresses flexure of the membrane below the cell chamber of the two immunoisolation membranes,
A cell storage device for transplantation, which is transplanted into a living body.
請求項1乃至請求項8の何れかの一項に記載の移植用細胞収容装置と、
前記移植用細胞収容装置の前記導入流路と配管で接続され当該導入流路を介して前記空洞部に酸素を供給する酸素供給装置とを備える移植用細胞収容システム。
A cell storage device for transplantation according to any one of claims 1 to 8,
A transplant cell storage system comprising: an oxygen supply device connected to the introduction channel of the transplant cell storage device by a pipe and supplying oxygen to the cavity via the introduction channel.
JP2018133832A 2018-07-17 2018-07-17 Housing device of cells for transplantation and housing system of cells for transplantation Pending JP2020010620A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018133832A JP2020010620A (en) 2018-07-17 2018-07-17 Housing device of cells for transplantation and housing system of cells for transplantation
PCT/JP2019/023372 WO2020017195A1 (en) 2018-07-17 2019-06-12 Cell storage device for implantation, cell storage system for implantation, and oxygen supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018133832A JP2020010620A (en) 2018-07-17 2018-07-17 Housing device of cells for transplantation and housing system of cells for transplantation

Publications (1)

Publication Number Publication Date
JP2020010620A true JP2020010620A (en) 2020-01-23

Family

ID=69170483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018133832A Pending JP2020010620A (en) 2018-07-17 2018-07-17 Housing device of cells for transplantation and housing system of cells for transplantation

Country Status (1)

Country Link
JP (1) JP2020010620A (en)

Similar Documents

Publication Publication Date Title
AU2019253889B2 (en) 3-dimensional large capacity cell encapsulation device assembly
US20220062525A1 (en) Reduced-pressure, multi-orientation, liquid-collection canister
JP6602905B2 (en) Vacuum, liquid collection canister with multi-directional filter
US4242459A (en) Cell culture device
JP2020518397A (en) Robust implantable gas delivery device and methods, systems and devices including same
TW201217017A (en) Reduced-pressure, multi-orientation, liquid-collection canister
US9718029B2 (en) Serviceable bioreactor
JP2020010620A (en) Housing device of cells for transplantation and housing system of cells for transplantation
WO2020017195A1 (en) Cell storage device for implantation, cell storage system for implantation, and oxygen supply device
ES2232629T3 (en) REACTOR MODULE WITH CAPILLARY MEMBRANES.
JP2020010619A (en) Housing device of cells for transplantation, and cells for transplantation housing system
JP2020010618A (en) Housing device of cells for transplantation, and housing system of cells for transplantation
KR20190006017A (en) A culture apparatus, a culture method, and a culture organ produced by the culture method
CN101563464B (en) System and method for applying reduced pressure to cell culture
EP4480581A1 (en) Fluidic device and use of the same
CN118995415A (en) Blood vessel chip, culture method, blood vessel model and model application
JP2020010787A (en) Cell storage device for transplantation
JPS6112699B2 (en)