Nothing Special   »   [go: up one dir, main page]

JP2020003617A - Exposure equipment, exposure method and method for production of article - Google Patents

Exposure equipment, exposure method and method for production of article Download PDF

Info

Publication number
JP2020003617A
JP2020003617A JP2018122353A JP2018122353A JP2020003617A JP 2020003617 A JP2020003617 A JP 2020003617A JP 2018122353 A JP2018122353 A JP 2018122353A JP 2018122353 A JP2018122353 A JP 2018122353A JP 2020003617 A JP2020003617 A JP 2020003617A
Authority
JP
Japan
Prior art keywords
measurement
substrate
wafer
unit
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018122353A
Other languages
Japanese (ja)
Other versions
JP7071230B2 (en
Inventor
祐司 小杉
Yuji Kosugi
祐司 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018122353A priority Critical patent/JP7071230B2/en
Priority to KR1020190072771A priority patent/KR102520864B1/en
Publication of JP2020003617A publication Critical patent/JP2020003617A/en
Application granted granted Critical
Publication of JP7071230B2 publication Critical patent/JP7071230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70641Focus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

To provide an advantageous technique for controlling a substrate posture at high accuracy in scanning exposure of the substrate.SOLUTION: Exposure equipment which performs exposure of a substrate by moving a light irradiation area on the substrate while scanning the substrate includes: a first measurement part measuring sequentially each height of plural measurement object places arranged on the substrate along a scanning direction during the scan of the substrate before each measurement object place enters the light irradiation area; a second measurement part measuring sequentially the above each height during the substrate scanning before the measurement by the first measurement part is carried out; and a control part controlling the substrate posture during the above scan. The control part specifies abnormal places among plural measurement object places on the basis of the measurement result of each object place by the second measurement part, and controls the substrate posture without using the measurement result by the first measurement part in the abnormal places.SELECTED DRAWING: Figure 1

Description

本発明は、露光装置、露光方法、および物品の製造方法に関する。   The present invention relates to an exposure apparatus, an exposure method, and a method for manufacturing an article.

半導体デバイスなどの製造工程(リソグラフィ工程)で用いられる装置の1つとして、基板を走査することにより、投影光学系からの光が照射される光照射領域を基板のショット領域上で移動させ、該ショット領域の走査露光を行う露光装置がある。このような露光装置では、ショット領域の走査露光中、光照射領域の配置に先立って基板面の高さが計測され、その計測結果に基づいて、光照射領域内の基板面が投影光学系のフォーカス許容範囲に収まるように基板の姿勢が制御される(特許文献1参照)。   As one of apparatuses used in a manufacturing process (lithography process) of a semiconductor device or the like, a substrate is scanned to move a light irradiation region irradiated with light from a projection optical system on a shot region of the substrate. There is an exposure apparatus that performs scanning exposure of a shot area. In such an exposure apparatus, during scanning exposure of the shot area, the height of the substrate surface is measured prior to the arrangement of the light irradiation area, and based on the measurement result, the substrate surface in the light irradiation area is adjusted by the projection optical system. The posture of the substrate is controlled so as to fall within the allowable focus range (see Patent Document 1).

また、露光装置では、例えば、異物などの付着により基板上に段差が生じることがある。この場合、その段差の計測結果に基づいて基板の姿勢が制御されると、基板の一部においてデフォーカスを起こし、基板上にパターンを精度よく形成することが困難になりうる。特許文献2には、先読み計測で得られた計測データのうち、所定の許容値を超えた計測データがあるときには、その計測データを除外して基板の高さ調整を行うことが開示されている。   Further, in the exposure apparatus, for example, a step may be formed on the substrate due to adhesion of a foreign substance or the like. In this case, if the posture of the substrate is controlled based on the measurement result of the step, defocus occurs in a part of the substrate, and it may be difficult to form a pattern on the substrate with high accuracy. Patent Document 2 discloses that when there is measurement data exceeding a predetermined allowable value among measurement data obtained by pre-read measurement, the height of the substrate is adjusted by excluding the measurement data. .

特開平9−45608号公報JP-A-9-45608 特開2003−115454号公報JP 2003-115454 A

露光装置では、スループットを向上させるため、基板の走査速度を大きくすることが望まれており、先読み計測が行われてから光照射領域が配置されるまでの期間が短くなる傾向にある。そのため、特許文献2に記載されたように、先読み計測で得られた計測データに基づいて、その計測データ自身を基板の高さ調整に使用可能か否かを判断する方法では、判断期間が短く、基板の高さ調整を基板の走査に追従させることが困難になりうる。   In the exposure apparatus, it is desired to increase the scanning speed of the substrate in order to improve the throughput, and the period from when the pre-read measurement is performed to when the light irradiation area is arranged tends to be shorter. Therefore, as described in Patent Document 2, in the method of determining whether or not the measurement data itself can be used for adjusting the height of the substrate based on the measurement data obtained by the pre-read measurement, the determination period is short. It may be difficult to adjust the height of the substrate to follow the scanning of the substrate.

そこで、本発明は、基板の走査露光において基板の姿勢を精度よく制御するために有利な技術を提供することを目的とする。   Therefore, an object of the present invention is to provide an advantageous technique for accurately controlling the posture of a substrate in scanning exposure of the substrate.

上記目的を達成するために、本発明の一側面としての露光装置は、基板を走査しながら光照射領域を該基板上で移動させることにより該基板の露光を行う露光装置であって、前記基板の走査中に、走査方向に沿って前記基板上に配列された複数の計測対象箇所の各々の高さを、各計測対象箇所が前記光照射領域に入る前に順次計測する第1計測部と、前記基板の走査中に、前記複数の計測対象箇所の各々の高さを、前記第1計測部での計測が行われる前に順次計測する第2計測部と、前記第1計測部での計測結果に基づいて、前記基板の走査中における前記基板の姿勢を制御する制御部と、を含み、前記制御部は、前記第2計測部による各計測対象箇所の計測結果に基づいて、前記複数の計測対象箇所の中から異常箇所を特定し、前記異常箇所における前記第1計測部での計測結果を用いずに前記基板の姿勢を制御する、ことを特徴とする。   In order to achieve the above object, an exposure apparatus as one aspect of the present invention is an exposure apparatus that performs exposure of a substrate by moving a light irradiation area on the substrate while scanning the substrate, During the scanning, a first measurement unit that sequentially measures the height of each of the plurality of measurement target locations arranged on the substrate along the scanning direction before each measurement target location enters the light irradiation region. A second measuring unit that sequentially measures the height of each of the plurality of measurement target positions before the first measuring unit performs the measurement, during the scanning of the substrate, A control unit that controls the posture of the substrate during scanning of the substrate, based on the measurement result, wherein the control unit performs the plurality of measurement based on the measurement result of each measurement target portion by the second measurement unit. An abnormal point is identified from the measurement target points of Wherein controlling the attitude of the substrate without using the measurement result in the first measurement unit in, characterized in that.

本発明の更なる目的又はその他の側面は、以下、添付図面を参照して説明される好ましい実施形態によって明らかにされるであろう。   Further objects and other aspects of the present invention will become apparent from the preferred embodiments described below with reference to the accompanying drawings.

本発明によれば、例えば、基板の走査露光において基板の姿勢を精度よく制御するために有利な技術を提供することができる。   According to the present invention, for example, it is possible to provide an advantageous technique for accurately controlling the posture of a substrate in scanning exposure of the substrate.

第1実施形態の露光装置の全体構成を示す図である。FIG. 1 is a diagram illustrating an overall configuration of an exposure apparatus according to a first embodiment. ショット領域、フォーカスチルト計測部による複数の計測点、および光照射領域の位置関係を示す図である。FIG. 3 is a diagram illustrating a positional relationship between a shot area, a plurality of measurement points by a focus tilt measurement unit, and a light irradiation area. 第1実施形態の露光処理のフローチャートを示す図である。FIG. 3 is a diagram illustrating a flowchart of an exposure process according to the first embodiment. ショット領域、フォーカスチルト計測部による複数の計測点、および光照射領域の位置関係を経時的に示す図である。FIG. 3 is a diagram showing the positional relationship between a shot area, a plurality of measurement points by a focus tilt measurement unit, and a light irradiation area over time. 異常箇所を特定するための処理を説明するための図である。It is a figure for explaining processing for specifying an abnormal place. 第2実施形態の露光装置の全体構成を示す図である。FIG. 6 is a diagram illustrating an overall configuration of an exposure apparatus according to a second embodiment.

以下、添付図面を参照して、本発明の好適な実施の形態について説明する。なお、各図において、同一の部材ないし要素については同一の参照番号を付し、重複する説明は省略する。また、以下の実施形態で用いる「計測点」とは、特に計測箇所における複数の計測マークの1つ1つのエレメントと定義する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In each of the drawings, the same members or elements are denoted by the same reference numerals, and redundant description will be omitted. A “measurement point” used in the following embodiments is defined as an element of each of a plurality of measurement marks at a measurement location.

<第1実施形態>
[露光装置の構成]
本発明に係る第1実施形態について説明する。図1は、本実施形態の露光装置1の全体構成を示す図である。図1において、露光装置1は、基板を走査することにより、投影光学系からの光が照射される光照射領域を基板のショット領域上で移動させて、該ショット領域の走査露光を行うステップ・アンド・スキャン方式の露光装置である。このような露光装置1は、走査露光装置やスキャナとも呼ばれ、ショット領域の走査露光を行うことにより、原版に形成された回路パターンを基板上に転写することができる。本実施形態では、原版は、例えば石英製のレチクルRであり、基板の各ショット領域に転写されるべき回路パターンが形成されている。また、基板は、フォトレジストが塗布されたウェハWであり、例えば単結晶シリコン基板等が用いられうる。
<First embodiment>
[Configuration of exposure apparatus]
A first embodiment according to the present invention will be described. FIG. 1 is a diagram illustrating an overall configuration of an exposure apparatus 1 according to the present embodiment. In FIG. 1, an exposure apparatus 1 scans a substrate to move a light irradiation area irradiated with light from a projection optical system on a shot area of the substrate, and performs scanning exposure of the shot area. This is an AND-scan type exposure apparatus. Such an exposure apparatus 1 is also called a scanning exposure apparatus or a scanner, and is capable of transferring a circuit pattern formed on an original onto a substrate by performing scanning exposure of a shot area. In the present embodiment, the original is a reticle R made of, for example, quartz, on which a circuit pattern to be transferred to each shot area of the substrate is formed. Further, the substrate is a wafer W coated with a photoresist, and for example, a single crystal silicon substrate or the like can be used.

露光装置1は、照明装置10と、レチクルRを保持して移動可能なレチクルステージ25と、投影光学系30と、ウェハWを保持して移動可能なウェハステージ45と、フォーカスチルト計測部50と、アライメント検出部70と、制御部60とを含みうる。制御部60は、例えばCPUやメモリを有するコンピュータによって構成されるとともに、装置内の各部に電気的に接続され、装置全体の動作を統括して制御する。   The exposure apparatus 1 includes an illumination device 10, a reticle stage 25 capable of holding and moving a reticle R, a projection optical system 30, a wafer stage 45 capable of holding and moving a wafer W, and a focus tilt measuring unit 50. , An alignment detection unit 70, and a control unit 60. The control unit 60 is configured by, for example, a computer having a CPU and a memory, and is electrically connected to each unit in the apparatus, and controls the overall operation of the apparatus.

照明装置10は、光源部12と照明光学系14とを含み、ウェハWに転写すべき回路パターンが形成されたレチクルRの一部を照明する。   The illumination device 10 includes a light source unit 12 and an illumination optical system 14, and illuminates a part of the reticle R on which a circuit pattern to be transferred to the wafer W is formed.

光源部12は、例えば、波長約248nmのレーザ光を射出するKrFエキシマレーザや、波長約193nmのレーザ光を射出するArFエキシマレーザなどを含みうる。また、光源部12は、それらのエキシマレーザに限定されるものではなく、波長約157nmのレーザ光を射出するFレーザや、波長20nm以下の光を射出するEUV(Extreme Ultra Violet)光源などを含んでもよい。 The light source unit 12 may include, for example, a KrF excimer laser that emits a laser beam having a wavelength of about 248 nm, an ArF excimer laser that emits a laser beam having a wavelength of about 193 nm, or the like. The light source unit 12 is not limited to those of the excimer laser, F 2 laser or for emitting a laser beam having a wavelength of approximately 157 nm, and EUV (Extreme Ultra Violet) light source for emitting light below a wavelength 20nm May be included.

照明光学系14は、光源部12から射出された光束を用いてレチクルRを照明する光学系であり、該光束を露光に最適な所定のスリット光に整形してレチクルRの一部を照明する。照明光学系14は、レンズ、ミラー、オプティカルインテグレータ、絞り等を含み、例えば、コンデンサレンズ、ハエの目レンズ、開口絞り、コンデンサレンズ、スリット、結像光学系の順で配置される。照明光学系14は、軸上光、軸外光を問わず使用することができる。オプティカルインテグレータは、ハエの目レンズや2組のシリンドリカルレンズアレイ(またはレンチキュラーレンズ)板を重ねることによって構成されるインテグレータを含むが、光学ロッドや回折素子に置換される場合もある。   The illumination optical system 14 is an optical system that illuminates the reticle R using the light beam emitted from the light source unit 12, and shapes the light beam into predetermined slit light optimal for exposure to illuminate a part of the reticle R. . The illumination optical system 14 includes a lens, a mirror, an optical integrator, a stop, and the like. For example, a condenser lens, a fly-eye lens, an aperture stop, a condenser lens, a slit, and an imaging optical system are arranged in this order. The illumination optical system 14 can be used regardless of on-axis light or off-axis light. The optical integrator includes a fly-eye lens and an integrator formed by stacking two sets of cylindrical lens array (or lenticular lens) plates, but may be replaced with an optical rod or a diffraction element.

レチクルステージ25は、レチクルRを保持するレチクルチャックと、レチクルチャックとともにレチクルRを駆動する駆動機構とを含みうる。この駆動機構は、例えばリニアモータ等で構成され、X軸方向、Y軸方向、Z軸方向および各軸の回転方向にレチクルRを駆動することができる。したがって、レチクルステージ25は、ウェハWの走査露光中において、走査方向であるY方向にレチクルRを駆動することができる。また、レチクルステージ25の位置は、例えばレーザ干渉計によって監視されうる。   Reticle stage 25 may include a reticle chuck that holds reticle R, and a drive mechanism that drives reticle R together with the reticle chuck. This drive mechanism is configured by, for example, a linear motor or the like, and can drive the reticle R in the X-axis direction, the Y-axis direction, the Z-axis direction, and the rotation direction of each axis. Therefore, reticle stage 25 can drive reticle R in the Y direction, which is the scanning direction, during the scanning exposure of wafer W. The position of the reticle stage 25 can be monitored by, for example, a laser interferometer.

ウェハステージ45は、ウェハWを保持するウェハチャック46と、ウェハチャックとともにウェハWを駆動する駆動機構とを含みうる。この駆動機構は、例えばリニアモータ等で構成され、X軸方向、Y軸方向、Z軸方向および各軸の回転方向にウェハWを駆動することができる。したがって、ウェハステージ45は、ウェハWの走査露光中において、走査方向であるY方向にウェハWを駆動することができる。また、ウェハステージ45の位置は、例えばレーザ干渉計によって監視されうる。   The wafer stage 45 may include a wafer chuck 46 for holding the wafer W, and a driving mechanism for driving the wafer W together with the wafer chuck. The driving mechanism is configured by, for example, a linear motor or the like, and can drive the wafer W in the X-axis direction, the Y-axis direction, the Z-axis direction, and the rotation direction of each axis. Accordingly, the wafer stage 45 can drive the wafer W in the Y direction, which is the scanning direction, during the scanning exposure of the wafer W. The position of the wafer stage 45 can be monitored by, for example, a laser interferometer.

投影光学系30は、物体面からの光束を像面に結像する機能を有し、照明光学系14により照明されたレチクルRの一部のパターンを、所定の投影倍率でウェハW上に結像(投影)することができる。投影光学系30からの光が照射されるウェハW上の領域を、以下では「光照射領域」と呼ぶことがある。また、アライメント検出部70は、ウェハW上のマークを検出して、ウェハW上における各ショット領域の配置(位置)を求める。図1に示す例では、投影光学系30を介さずにウェハW上のマークを検出するオフアクシス方式として構成されているが、投影光学系30を介してウェハW上のマークを検出するTTL(Through The Lens)方式として構成されてもよい。   The projection optical system 30 has a function of forming a light beam from an object plane on an image plane, and forms a partial pattern of the reticle R illuminated by the illumination optical system 14 onto the wafer W at a predetermined projection magnification. Image (projection). An area on the wafer W to which light from the projection optical system 30 is irradiated may be referred to as a “light irradiation area” below. Further, the alignment detection unit 70 detects a mark on the wafer W, and obtains an arrangement (position) of each shot area on the wafer W. In the example shown in FIG. 1, the off-axis system is configured to detect the mark on the wafer W without the intervention of the projection optical system 30, but the TTL (TTL) for detecting the mark on the wafer W via the projection optical system 30 is used. Through The Lens) method.

このように構成された露光装置1において、レチクルRおよびウェハWは、投影光学系30を介して光学的にほぼ共役な位置(投影光学系30の物体面および像面)にそれぞれ配置される。制御部60は、レチクルステージ25およびウェハステージ45により、レチクルRとウェハWとを投影光学系30の投影倍率に応じた速度比で相対的に同期走査することにより、レチクルRのパターンをウェハW上に転写することができる。そして、このような走査露光を、ウェハステージ45をステップ移動させながら、ウェハWにおける複数のショット領域の各々について順次繰り返すことにより、1枚のウェハWにおける露光処理を完了させることができる。   In the exposure apparatus 1 configured as described above, the reticle R and the wafer W are arranged at positions substantially optically conjugate via the projection optical system 30 (the object plane and the image plane of the projection optical system 30). The control section 60 relatively synchronously scans the reticle R and the wafer W with the reticle stage 25 and the wafer stage 45 at a speed ratio corresponding to the projection magnification of the projection optical system 30, thereby changing the pattern of the reticle R to the wafer W. Can be transferred on top. Then, such scanning exposure is sequentially repeated for each of the plurality of shot areas on the wafer W while moving the wafer stage 45 stepwise, whereby the exposure processing on one wafer W can be completed.

[フォーカスチルト計測部の構成]
次に、フォーカスチルト計測部50の構成について説明する。フォーカスチルト計測部50は、計測光をウェハW上に投光する投光器52と、ウェハWで反射された計測光を受光する受光器54とを含み、ウェハWの走査中に、ウェハWの表面高さ(Z軸方向の表面位置)を順次計測する。投光器52は、ドット状またはスリット状の計測光(計測マーク)をウェハW上に高入射角度で投光する。本実施形態では、ドット状の計測光をウェハW上に投光する例について説明する。また、投光器52は、例えばCMOSセンサ等の光電変換素子を有し、ウェハWで反射された計測光を光電変換素子に結像するとともに、光電変換素子からの信号に基づいて、計測光が投光された箇所の表面高さを求める。
[Configuration of focus tilt measurement unit]
Next, the configuration of the focus tilt measuring unit 50 will be described. The focus tilt measurement unit 50 includes a light projector 52 that projects measurement light onto the wafer W, and a light receiver 54 that receives measurement light reflected by the wafer W, and scans the surface of the wafer W during scanning of the wafer W. The height (surface position in the Z-axis direction) is sequentially measured. The light projector 52 projects the dot-shaped or slit-shaped measurement light (measurement mark) onto the wafer W at a high incident angle. In the present embodiment, an example in which dot-shaped measurement light is projected on the wafer W will be described. The light projector 52 has a photoelectric conversion element such as a CMOS sensor, for example, and forms an image of the measurement light reflected by the wafer W on the photoelectric conversion element, and projects the measurement light based on a signal from the photoelectric conversion element. Find the surface height of the illuminated location.

図2は、ウェハWのショット領域SR、フォーカスチルト計測部50による複数の計測点MP、および光照射領域ESの位置関係を示す図である。計測点MPは、投光器52によりドット状の計測光が投光されてウェハWの表面高さが計測されるウェハW上の位置のことであり、ウェハWの走査に応じて、光照射領域ESとともにウェハW上を移動しうる。また、図中の矢印Fおよび矢印RはウェハWの走査方向を示しており、ショット領域SRごとに切り替えられうる。   FIG. 2 is a diagram illustrating a positional relationship between the shot region SR of the wafer W, a plurality of measurement points MP by the focus tilt measurement unit 50, and the light irradiation region ES. The measurement point MP is a position on the wafer W at which the surface height of the wafer W is measured by emitting the dot-shaped measurement light by the light projector 52, and according to the scanning of the wafer W, the light irradiation area ES Together with the wafer W. Arrows F and R in the figure indicate the scanning direction of the wafer W, and can be switched for each shot region SR.

本実施形態のフォーカスチルト計測部50は、光照射領域ES内で表面高さを計測する領域計測部と、光照射領域ESの配置に先立って表面高さを計測する第1計測部と、第1計測部による計測に先立って表面高さを計測する第2計測部とを含みうる。図2に示す例では、領域計測部は、光照射領域ES内の計測点MP3〜MP5においてウェハWの表面高さを計測する。第1計測部は、いわゆる先読み計測部とも呼ばれ、光照射領域ESから距離Lp1だけ離れた計測点MP6〜MP8または計測点MP12〜MP14においてウェハWの表面高さを計測する。また、第2計測部は、いわゆる先先読み計測部とも呼ばれ、光照射領域ESから距離Lp2だけ離れた計測点MP9〜MP11または計測点MP15〜MP17においてウェハWの表面高さを計測する。距離Lp1と距離Lp2との関係は、Lp1<Lp2である。   The focus tilt measurement unit 50 of the present embodiment includes an area measurement unit that measures a surface height in the light irradiation area ES, a first measurement unit that measures the surface height prior to the arrangement of the light irradiation area ES, A second measurement unit that measures the surface height prior to measurement by the first measurement unit. In the example illustrated in FIG. 2, the area measurement unit measures the surface height of the wafer W at the measurement points MP3 to MP5 in the light irradiation area ES. The first measurement unit is also referred to as a so-called pre-read measurement unit, and measures the surface height of the wafer W at the measurement points MP6 to MP8 or the measurement points MP12 to MP14 separated from the light irradiation area ES by a distance Lp1. The second measurement unit is also called a prefetch measurement unit, and measures the surface height of the wafer W at the measurement points MP9 to MP11 or the measurement points MP15 to MP17 separated from the light irradiation area ES by the distance Lp2. The relationship between the distance Lp1 and the distance Lp2 is Lp1 <Lp2.

ここで、計測点MP3〜MP5は、ウェハWの走査方向と異なる方向(例えば、該走査方向と垂直な方向(X方向))に互いに離間して配列されうる。計測点MP6〜MP8、計測点MP9〜MP11、計測点MP12〜MP14、計測点MP15〜MP17の各組についても同様であり、ウェハWの走査方向と交差する方向に計測点が互いに離間して配置される。また、MP3、MP6、MP9、MP12およびMP15は、ほぼ同一のX座標位置に配置されうる。同様に、MP4、MP7、MP10、MP13およびMP16は、ほぼ同一のX座標位置に配置され、MP5、MP8、MP11、MP14およびMP17は、ほぼ同一のX座標位置に配置されうる。さらに、図2では、ウェハWの走査方向と異なる方向(X方向)に3個の計測点が配列した例を示したが、該異なる方向に配列される計測点の数は3個に限られるものではなく、2個または4個以上であってもよい。   Here, the measurement points MP3 to MP5 may be arranged apart from each other in a direction different from the scanning direction of the wafer W (for example, a direction (X direction) perpendicular to the scanning direction). The same applies to each set of the measurement points MP6 to MP8, the measurement points MP9 to MP11, the measurement points MP12 to MP14, and the measurement points MP15 to MP17, and the measurement points are arranged apart from each other in a direction intersecting the scanning direction of the wafer W. Is done. Further, MP3, MP6, MP9, MP12 and MP15 can be arranged at substantially the same X coordinate position. Similarly, MP4, MP7, MP10, MP13 and MP16 can be arranged at substantially the same X coordinate position, and MP5, MP8, MP11, MP14 and MP17 can be arranged at substantially the same X coordinate position. Further, FIG. 2 shows an example in which three measurement points are arranged in a direction (X direction) different from the scanning direction of the wafer W, but the number of measurement points arranged in the different directions is limited to three. Instead, two or four or more may be used.

このように構成されたフォーカスチルト計測部50では、各計測点MP3〜MP17での計測タイミングが制御部60によって制御されうる。例えば、制御部60は、光照射領域ESと各計測点MP3〜MP17との距離、および、ウェハステージ45の走査方向、走査速度に基づいて、フォーカスチルト計測部50による各計測点MP3〜MP17の計測タイミングを制御する。これにより、ほぼ同一のX座標に配置された複数の計測点MPの各々により、ウェハWをY方向に走査しながら、ウェハW上における同一の計測対象箇所(同一のXY座標位置)の高さを計測することができる。   In the focus tilt measurement unit 50 configured as described above, the measurement timing at each of the measurement points MP3 to MP17 can be controlled by the control unit 60. For example, based on the distance between the light irradiation area ES and each of the measurement points MP3 to MP17, the scanning direction and the scanning speed of the wafer stage 45, the control unit 60 determines the measurement points MP3 to MP17 of the focus tilt measurement unit 50. Controls measurement timing. Accordingly, the height of the same measurement target portion (the same XY coordinate position) on the wafer W while scanning the wafer W in the Y direction by each of the plurality of measurement points MP arranged at substantially the same X coordinate. Can be measured.

[走査露光について]
上記のように構成された露光装置1では、ショット領域SRの走査露光中、ウェハWを走査しながら、光照射領域ESの配置に先立ってウェハWの表面高さがフォーカスチルト計測部50によって計測される(先読み計測が行われる)。そして、その計測結果に基づいて、光照射領域ES内におけるウェハWの表面が投影光学系30のフォーカス許容範囲に収まるようにウェハWの姿勢が制御(調整)される。このようなショット領域SRの走査露光では、先読み計測が行われてから光照射領域ERが配置されるまでの期間を短くした方が、走査露光中における気圧変動や温度変動などの環境経時変化の影響を受けづらくなる。したがって、本実施形態の露光装置1では、ショット領域SRの走査露光時において、フォーカスチルト計測部50の第1計測部(計測点MP6〜MP8、または計測点12〜14)での計測結果に基づいてウェハWの姿勢が制御される。
[About scanning exposure]
In the exposure apparatus 1 configured as described above, the surface tilt of the wafer W is measured by the focus tilt measurement unit 50 prior to the arrangement of the light irradiation area ES while scanning the wafer W during the scanning exposure of the shot area SR. (A prefetch measurement is performed). Then, based on the measurement result, the attitude of the wafer W is controlled (adjusted) so that the surface of the wafer W in the light irradiation area ES falls within the allowable focus range of the projection optical system 30. In such scanning exposure of the shot region SR, it is better to shorten the period from when the pre-read measurement is performed to when the light irradiation region ER is arranged, because environmental time-dependent changes such as atmospheric pressure fluctuation and temperature fluctuation during the scanning exposure are reduced. Less likely to be affected. Therefore, in the exposure apparatus 1 of the present embodiment, at the time of scanning exposure of the shot area SR, based on the measurement result of the first measuring unit (the measuring points MP6 to MP8 or the measuring points 12 to 14) of the focus tilt measuring unit 50. Thus, the attitude of the wafer W is controlled.

ところで、露光装置では、例えば、ウェハW上に異物(パーティクル)などが付着することによりウェハWに段差が生じることがある。この場合、フォーカスチルト計測部50により当該段差を計測した結果に基づいてウェハWの姿勢を制御すると、ウェハWの一部においてデフォーカスを起こし、ウェハW上にレチクルRのパターンを精度よく転写することが困難になりうる。したがって、露光装置では、フォーカスチルト計測部50の第1計測部での計測結果がウェハWの姿勢制御に使用可能か否かを判断し、使用不可と判断された計測結果を用いずにウェハWの姿勢制御を行うことが好ましい。   Incidentally, in the exposure apparatus, for example, a step may be generated on the wafer W due to foreign matter (particles) adhering to the wafer W. In this case, when the attitude of the wafer W is controlled based on the result of the measurement of the step by the focus tilt measurement unit 50, defocus occurs in a part of the wafer W, and the pattern of the reticle R is transferred onto the wafer W with high accuracy. That can be difficult. Therefore, the exposure apparatus determines whether or not the measurement result of the first measurement unit of the focus tilt measurement unit 50 can be used for controlling the attitude of the wafer W, and uses the wafer W without using the measurement result determined to be unusable. It is preferable to perform the posture control described above.

しかしながら、露光装置には、ウェハWの走査速度を大きくしてスループットを向上させることが望まれており、フォーカスチルト計測部50の第1計測部により先読み計測が行われてから光照射領域ESが配置されるまでの期間が短くなる傾向にある。このような状況下において、第1計測部での計測結果をウェハWの姿勢制御に使用可能か否かの判断を、該第1計測部での計測結果に基づいて行ってしまうと、判断期間が短く、ウェハWの姿勢制御をウェハWの走査に追従させることが困難になりうる。   However, it is desired that the exposure apparatus increase the scanning speed of the wafer W to improve the throughput, and the light irradiation area ES is not changed after the pre-read measurement is performed by the first measurement unit of the focus tilt measurement unit 50. There is a tendency for the period until it is arranged to be shorter. In such a situation, if it is determined whether or not the measurement result of the first measurement unit can be used for controlling the attitude of the wafer W based on the measurement result of the first measurement unit, a determination period And the attitude control of the wafer W may be difficult to follow the scanning of the wafer W.

そこで、本実施形態の露光装置1では、フォーカスチルト計測部50の第2計測部での計測結果に基づいて、ウェハW上に設定された複数の計測対象箇所の中から異常を有する異常箇所を特定する。そして、光照射領域ESが配置されるときのウェハWの姿勢を、フォーカスチルト計測部50の第1計測部による異常箇所での計測結果を用いずに制御する。ここで、「ウェハWの姿勢」は、ウェハWの傾き、およびウェハWの高さ(Z方向の位置)の双方を含むものとして定義されうる。また、「異常」は、例えば異物の付着などにより、フォーカスチルト計測部50で計測された表面高さが、他の計測対象箇所に対して局所的に特異な値を示すものとして定義されうる。   Therefore, in the exposure apparatus 1 of the present embodiment, based on the measurement result by the second measurement unit of the focus tilt measurement unit 50, an abnormal location having an abnormality is selected from a plurality of measurement target locations set on the wafer W. Identify. Then, the attitude of the wafer W when the light irradiation area ES is arranged is controlled without using the measurement result of the first measurement unit of the focus tilt measurement unit 50 at the abnormal location. Here, the “posture of the wafer W” can be defined as including both the inclination of the wafer W and the height (position in the Z direction) of the wafer W. Further, “abnormality” can be defined as a surface height measured by the focus tilt measurement unit 50 that is locally peculiar to another measurement target portion due to, for example, adhesion of a foreign substance.

次に、本実施形態の露光装置1における露光処理について、図3および図4を参照しながら説明する。露光処理とは、ウェハWを走査しながら、ショット領域SRの計測対象箇所の表面高さを計測してウェハWを露光する処理のことである。図3は、本実施形態の露光処理のフローチャートを示す図である。また、図4は、ウェハWのショット領域SR、フォーカスチルト計測部50による複数の計測点MP、および光照射領域ESの位置関係を経時的に示す図である。   Next, an exposure process in the exposure apparatus 1 of the present embodiment will be described with reference to FIGS. The exposure process is a process of measuring the surface height of the measurement target portion in the shot region SR while scanning the wafer W and exposing the wafer W. FIG. 3 is a diagram showing a flowchart of the exposure processing of the present embodiment. FIG. 4 is a diagram showing the positional relationship between the shot region SR of the wafer W, the plurality of measurement points MP by the focus tilt measurement unit 50, and the light irradiation region ES over time.

ショット領域SRには、図4(a)に示すように、フォーカスチルト計測部50により表面高さが計測されるべき複数の計測対象箇所TPが設定(配置)されている。計測対象箇所TP11〜TP13は、図中の矢印Fの方向にウェハWを走査した場合に、フォーカスチルト計測部50により最初に表面高さが計測される計測対象箇所である。計測対象箇所TP11〜TP13は、走査方向と異なる方向(X軸方向)に沿って配列された複数(3個)の計測点MPの位置に対応するように、走査方向と異なる方向に沿って互いに離間して配列されうる。また、計測対象箇所TP21〜TP23は、計測対象箇所TP11〜TP13の次に計測されるように、計測対象箇所TP31〜TP33は、計測対象箇所TP21〜TP23の次に計測されるようにそれぞれ設定されうる。   As shown in FIG. 4A, a plurality of measurement target locations TP whose surface heights are to be measured by the focus tilt measurement unit 50 are set (arranged) in the shot area SR. The measurement target locations TP11 to TP13 are measurement target locations where the surface height is measured first by the focus tilt measurement unit 50 when the wafer W is scanned in the direction of arrow F in the drawing. The measurement target locations TP11 to TP13 are arranged along a direction different from the scanning direction so as to correspond to positions of a plurality of (three) measurement points MP arranged along a direction (X-axis direction) different from the scanning direction. They can be spaced apart. The measurement target locations TP21 to TP23 are set so as to be measured next to the measurement target locations TP11 to TP13, and the measurement target locations TP31 to TP33 are set to be measured next to the measurement target locations TP21 to TP23. sell.

ここで、本実施形態では、ウェハWの走査方向Fにおいて、第1計測部(計測点MP6〜MP8)と第2計測部(計測点MP9〜MP11)との間隔が、計測対象箇所TP11〜TP13と計測対象箇所TP31〜TP33との間隔より大きいものとする。また、本実施形態では、説明を分かりやすくするため、計測対象箇所TP11〜TP33で表面高さを計測する例について説明し、図4では、計測対象箇所TP11〜TP33以外の計測対象箇所の図示を省略している。しかしながら、実際には、走査方向に所定の間隔をあけて配置された複数行の計測対象箇所が、ショット領域SRの全範囲にわたって設定され、計測対象箇所TP11〜TP33での処理と同様の処理が繰り返されうる。   Here, in the present embodiment, in the scanning direction F of the wafer W, the interval between the first measurement unit (measurement points MP6 to MP8) and the second measurement unit (measurement points MP9 to MP11) is determined by the measurement target locations TP11 to TP13. And the distance between the measurement target portions TP31 to TP33. Further, in the present embodiment, an example in which the surface height is measured at the measurement target locations TP11 to TP33 will be described in order to make the description easy to understand, and FIG. 4 illustrates the measurement target locations other than the measurement target locations TP11 to TP33. Omitted. However, in practice, a plurality of rows of measurement target locations arranged at predetermined intervals in the scanning direction are set over the entire range of the shot region SR, and the same processing as the processing at the measurement target locations TP11 to TP33 is performed. Can be repeated.

S11では、制御部60は、ショット領域SRの走査露光を行うためにウェハWの走査駆動を開始する。S12では、制御部60は、第2計測部(計測点MP9〜MP11)による計測対象箇所の表面高さの計測を開始する。例えば、制御部60は、ウェハWを走査しながら、第2計測部が計測対象箇所TP11〜TP13に配置されたタイミングで、第2計測部に計測対象箇所TP11〜TP13の表面高さを計測させる(図4(b))。また、制御部60は、引き続きウェハWを走査しながら、第2計測部が計測対象箇所TP21〜TP23に配置されたタイミングで、第2計測部に計測対象箇所TP21〜TP23の表面高さを計測させる(図4(c))。同様に、制御部60は、引き続きウェハWを走査しながら、第2計測部が計測対象箇所TP31〜TP33に配置されたタイミングで、第2計測部に計測対象箇所TP31〜TP33の表面高さを計測させる。   In S11, the control unit 60 starts scanning drive of the wafer W to perform scanning exposure of the shot region SR. In S12, the control unit 60 starts measuring the surface height of the measurement target location by the second measurement unit (measurement points MP9 to MP11). For example, the control unit 60 causes the second measurement unit to measure the surface height of the measurement target locations TP11 to TP13 at the timing when the second measurement unit is arranged at the measurement target locations TP11 to TP13 while scanning the wafer W. (FIG. 4 (b)). Further, the control unit 60 measures the surface heights of the measurement target locations TP21 to TP23 in the second measurement unit at the timing when the second measurement unit is arranged at the measurement target locations TP21 to TP23 while continuously scanning the wafer W. (FIG. 4C). Similarly, while continuously scanning the wafer W, the control unit 60 causes the second measurement unit to change the surface height of the measurement target locations TP31 to TP33 at the timing when the second measurement unit is disposed at the measurement target locations TP31 to TP33. Let me measure.

S13では、制御部60は、第2計測部(計測点MP9〜MP11)での計測結果に基づいて、異常を有する異常箇所を特定する。図4に示す例では、制御部60は、計測対象箇所TP11〜TP33の中から異常箇所を特定する。例えば、制御部60は、走査方向に沿って配列された複数の計測対象箇所(例えばTP11、TP21、TP31)における計測結果の相関性をそれぞれ求めることにより、その相関性が許容範囲を超えている計測対象箇所を異常箇所として特定することができる。制御部60は、相関性として、走査方向に沿って配列された複数の計測対象箇所間での計測結果の差分を求めてもよいし、該複数の計測対象箇所間での計測結果の比率を求めてもよい。また、許容範囲は、焦点深度(DOF)、パターン線幅、露光照明モードなどに基づいて設定され、例えば、ユーザインターフェースを介してユーザにより設定されてもよい。   In S13, the control unit 60 specifies an abnormal part having an abnormality based on the measurement results of the second measurement units (measurement points MP9 to MP11). In the example illustrated in FIG. 4, the control unit 60 specifies an abnormal location from the measurement target locations TP11 to TP33. For example, the control unit 60 obtains the correlation of the measurement results at a plurality of measurement target locations (for example, TP11, TP21, TP31) arranged along the scanning direction, and the correlation exceeds the allowable range. The measurement target location can be specified as an abnormal location. The control unit 60 may calculate, as the correlation, a difference between the measurement results between the plurality of measurement target locations arranged along the scanning direction, or may calculate the ratio of the measurement results between the plurality of measurement target locations. You may ask. In addition, the allowable range is set based on the depth of focus (DOF), the pattern line width, the exposure illumination mode, and the like, and may be set by a user via a user interface, for example.

図5は、複数の計測対象箇所の中から異常箇所を特定するための具体的な処理を説明するための図である。ここでは、走査方向に沿って配列した計測対象箇所TP11、TP21、TP31間での計測結果の差分を相関性として求め、当該差分から異常箇所を特定する例について説明する。図5の上図は、計測対象箇所TP11、TP21、TP31でそれぞれ計測された表面高さを示しており、図5の下図は、計測対象箇所TP11、TP21、TP31間での差分を示している。図中において、ΔZ12は、計測対象箇所TP11とTP21とでの表面高さの差分を、ΔZ23は、計測対象箇所TP21とTP31とでの表面高さの差分を、ΔZ31は、計測対象箇所TP31とTP11とでの表面高さの差分をそれぞれ表す。   FIG. 5 is a diagram illustrating a specific process for identifying an abnormal location from a plurality of measurement target locations. Here, an example will be described in which a difference between the measurement results between the measurement target portions TP11, TP21, and TP31 arranged along the scanning direction is obtained as a correlation, and an abnormal portion is identified from the difference. The upper diagram of FIG. 5 shows the surface height measured at each of the measurement target portions TP11, TP21, and TP31, and the lower diagram of FIG. 5 shows the difference between the measurement target portions TP11, TP21, and TP31. . In the figure, ΔZ12 is the difference in surface height between the measurement target locations TP11 and TP21, ΔZ23 is the difference in surface height between the measurement target locations TP21 and TP31, and ΔZ31 is the difference between the measurement target location TP31. The difference of the surface height from TP11 is shown.

図5(a)に示すように、計測対象箇所TP11、TP21、TP31での表面高さの計測結果がほぼ同じであり、ΔZ12、ΔZ23、ΔZ31がそれぞれ許容範囲ZAを超えていない場合には、制御部60は、異常箇所が存在しないと判定することができる。一方、図5(b)に示すように、ΔZ23は許容範囲ZAを超えていないが、ΔZ12、Δ31が許容範囲ZAを超えている場合には、制御部60は、計測対象箇所TP11が異常箇所であると判定(特定)することができる。また、図5(c)に示すように、ΔZ31は許容範囲ZAを超えていないが、ΔZ12、ΔZ23が許容範囲ZAを超えている場合には、制御部60は、計測対象箇所TP21が異常箇所であると判定(特定)することができる。同様の処理は、計測対象箇所TP12、TP22、TP32の組、および計測対象箇所TP13、TP23、TP33の組に対しても行われて、各組について異常箇所が特定されうる。ここで、図4に示す例では、上述した処理を行うことにより、▲印で示す計測対象箇所TP11が異常箇所として特定されたものとする。   As shown in FIG. 5A, when the measurement results of the surface heights at the measurement target locations TP11, TP21, and TP31 are almost the same, and ΔZ12, ΔZ23, and ΔZ31 do not exceed the allowable range ZA, respectively, The control unit 60 can determine that there is no abnormal point. On the other hand, as shown in FIG. 5B, when ΔZ23 does not exceed the allowable range ZA, but ΔZ12 and Δ31 exceed the allowable range ZA, the control unit 60 determines that the measurement target location TP11 is an abnormal location. Can be determined (specified). Further, as shown in FIG. 5C, when ΔZ31 does not exceed the allowable range ZA, but ΔZ12 and ΔZ23 exceed the allowable range ZA, the control unit 60 determines that the measurement target location TP21 is an abnormal location. Can be determined (specified). The same process is performed on the set of the measurement target locations TP12, TP22, and TP32 and the set of the measurement target locations TP13, TP23, and TP33, and the abnormal location can be specified for each set. Here, in the example illustrated in FIG. 4, it is assumed that the measurement target location TP <b> 11 indicated by the triangle is identified as an abnormal location by performing the above-described processing.

S14では、制御部60は、第1計測部(計測点MP6〜MP8)による計測対象箇所の表面高さの計測を開始する。例えば、制御部60は、ウェハWを走査しながら、第1計測部が計測対象箇所TP11〜TP13に配置されたタイミングで、第1計測部に計測対象箇所TP11〜TP13の表面高さを計測させる(図4(d))。同様に、制御部60は、引き続きウェハWを走査しながら、第1計測部が計測対象箇所TP21〜TP23に配置されたタイミングで、第1計測部に計測対象箇所TP21〜TP23の表面高さを計測させる(図4(e))。   In S14, the control unit 60 starts measuring the surface height of the measurement target location by the first measurement unit (measurement points MP6 to MP8). For example, the control unit 60 causes the first measurement unit to measure the surface heights of the measurement target locations TP11 to TP13 at the timing when the first measurement unit is arranged at the measurement target locations TP11 to TP13 while scanning the wafer W. (FIG. 4D). Similarly, while continuously scanning the wafer W, the control unit 60 causes the first measurement unit to change the surface height of the measurement target locations TP21 to TP23 at the timing when the first measurement unit is disposed at the measurement target locations TP21 to TP23. The measurement is performed (FIG. 4E).

S15では、制御部60は、第1計測部(MP6〜MP8)による計測対象箇所の表面高さの計測結果に基づいて、各計測対象箇所が光照射領域ESに入る(配置される)ときのウェハWの目標姿勢を決定(算出)する。このとき、制御部60は、光照射領域ES内におけるウェハWの表面が投影光学系30のフォーカス許容範囲に収まるようにウェハWの目標姿勢を決定しうる。また、制御部60は、S13で特定された異常箇所が計測対象箇所に含まれる場合には、制御部60は、第1計測部による異常箇所の計測結果を用いずにウェハWの目標姿勢を求める。   In S15, the control unit 60 determines whether each measurement target location enters (is placed) the light irradiation area ES based on the measurement result of the surface height of the measurement target location by the first measurement units (MP6 to MP8). The target attitude of the wafer W is determined (calculated). At this time, the control unit 60 can determine the target attitude of the wafer W such that the surface of the wafer W in the light irradiation area ES falls within the allowable focus range of the projection optical system 30. In addition, when the abnormal location specified in S13 is included in the measurement target location, the control unit 60 sets the target attitude of the wafer W without using the measurement result of the abnormal location by the first measurement unit. Ask.

例えば、計測対象箇所TP11〜TP13が光照射領域ESに入るときのウェハWの目標姿勢を求める場合を想定する。この場合、S13において、計測対象箇所TP11が異常箇所であると特定されている。そのため、制御部60は、第1計測部による計測対象箇所TP11の計測結果を用いずに、第1計測部による計測対象箇所TP12〜TP13の計測結果に基づいてウェハWの目標姿勢を求める。このとき、制御部60は、計測対象箇所TP12〜TP13の各々についての第1計測部での計測結果と第2計測部での計測結果との平均値に基づいて、ウェハWの目標姿勢を求めてもよい。この場合、平均化効果により、さらに精度よくウェハWの目標姿勢を求めることができる。   For example, it is assumed that a target attitude of the wafer W when the measurement target locations TP11 to TP13 enter the light irradiation area ES is determined. In this case, in S13, the measurement target location TP11 is specified as an abnormal location. Therefore, the control unit 60 obtains the target posture of the wafer W based on the measurement results of the measurement target locations TP12 to TP13 by the first measurement unit without using the measurement result of the measurement target location TP11 by the first measurement unit. At this time, the control unit 60 calculates the target attitude of the wafer W based on the average value of the measurement results of the first measurement unit and the second measurement unit for each of the measurement target locations TP12 to TP13. You may. In this case, the target attitude of the wafer W can be more accurately obtained by the averaging effect.

ここで、制御部60は、S15においてウェハWの目標姿勢を求める際に、異常箇所とは異なる計測対象箇所から推定された異常箇所の表面高さを用いてもよい。例えば、制御部60は、走査方向に沿って配列された複数の計測対象箇所(TP11、TP21、TP31)のうち、異常箇所以外の計測対象箇所(TP21、TP31)に基づいて該異常箇所(TP11)の表面高さを推定する。具体的には、計測対象箇所TP21、TP31について第2計測部で計測された表面高さの平均値を、異常箇所TP11の表面高さとして推定しうる。これにより、制御部60は、異常箇所TP11の表面高さの推定値と、第1計測部による計測対象箇所TP12〜TP13の表面高さの実測値とに基づいて、ウェハWの目標姿勢を求めることができる。   Here, when obtaining the target posture of the wafer W in S15, the control unit 60 may use the surface height of the abnormal location estimated from the measurement target location different from the abnormal location. For example, the control unit 60 determines the abnormal location (TP11) based on the measurement target locations (TP21, TP31) other than the abnormal location among the plurality of measurement target locations (TP11, TP21, TP31) arranged along the scanning direction. E) Estimate the surface height. Specifically, the average value of the surface heights measured by the second measurement unit for the measurement target locations TP21 and TP31 can be estimated as the surface height of the abnormal location TP11. Thereby, the control unit 60 obtains the target attitude of the wafer W based on the estimated value of the surface height of the abnormal location TP11 and the actual measurement of the surface height of the measurement target locations TP12 to TP13 by the first measurement unit. be able to.

また、制御部60は、S15においてウェハWの目標姿勢を求める際に、既に露光が行われた他のウェハ(第2基板)から推定された異常箇所の表面高さを用いてもよい。例えば、制御部は、該他の基板のうち、異常箇所(TP11)と同じ基板位置を有する計測箇所における第1計測部での計測結果に基づいて該異常箇所の表面高さを推定する。このとき、異常箇所と同じ基板位置を有する該他のウェハの計測対象箇所について第1計測部で計測された表面高さを、異常箇所TP11の表面高さとして推定してもよい。これにより、制御部60は、異常箇所TP11の表面高さの推定値と、第1計測部による計測対象箇所TP12〜TP13の表面高さの実測値とに基づいて、ウェハWの目標姿勢を求めることができる。   When obtaining the target posture of the wafer W in S15, the control unit 60 may use the surface height of the abnormal portion estimated from another wafer (second substrate) that has already been exposed. For example, the control unit estimates the surface height of the abnormal location based on the measurement result of the first measurement unit at the measurement location having the same substrate position as the abnormal location (TP11) among the other substrates. At this time, the surface height measured by the first measurement unit for the measurement target location of the other wafer having the same substrate position as the abnormal location may be estimated as the surface height of the abnormal location TP11. Thereby, the control unit 60 obtains the target attitude of the wafer W based on the estimated value of the surface height of the abnormal location TP11 and the actual measurement of the surface height of the measurement target locations TP12 to TP13 by the first measurement unit. be able to.

S16では、制御部60は、光照射領域ESへの光の照射を開始し、ショット領域SRの走査露光を開始する。このとき、制御部60は、S15で決定した目標姿勢に基づいてウェハWの姿勢を制御しながら、ショット領域SRの走査露光を行う。例えば、制御部60は、計測対象箇所TP11〜TP13が光照射領域ESに入るタイミングにおいて、S15で決定した目標姿勢になるようにウェハWの姿勢を制御する。また、このとき、制御部60は、領域計測部(MP3〜MP5)に計測対象箇所TP11〜TP13の表面高さを計測させてもよい。この領域計測部による表面高さの計測は、光照射領域ES内におけるウェハWの表面が投影光学系30のフォーカス許容範囲に収っているか否かを確認する目的で行われ、ウェハWの姿勢制御には使用されない。   In S16, the control unit 60 starts irradiating the light irradiation area ES with light, and starts scanning exposure of the shot area SR. At this time, the control unit 60 performs the scanning exposure of the shot region SR while controlling the attitude of the wafer W based on the target attitude determined in S15. For example, the control unit 60 controls the attitude of the wafer W so that the target attitude determined in S15 is at the timing when the measurement target locations TP11 to TP13 enter the light irradiation area ES. At this time, the control unit 60 may cause the area measuring units (MP3 to MP5) to measure the surface heights of the measurement target locations TP11 to TP13. The measurement of the surface height by the area measuring unit is performed for the purpose of confirming whether or not the surface of the wafer W in the light irradiation area ES is within the focus allowable range of the projection optical system 30. Not used for control.

S17では、制御部60は、ショット領域SRの走査露光を終了するか判断する。制御部60は、ウェハWの走査方向に沿って配列された複数の計測対象箇所の各々に対して、上述した第2計測部での計測、第1計測部での計測、および光照射領域での露光を繰り返し行う。そして、光照射領域ESがショット領域SRを抜け出したときにショット領域SRの走査露光を終了すると判断する。   In S17, the control unit 60 determines whether to end the scanning exposure of the shot region SR. The control unit 60 performs the measurement by the above-described second measurement unit, the measurement by the first measurement unit, and the light irradiation area for each of the plurality of measurement target locations arranged along the scanning direction of the wafer W. Is repeated. Then, it is determined that the scanning exposure of the shot region SR ends when the light irradiation region ES exits the shot region SR.

上述したように、本実施形態の露光装置1は、第2計測部での計測結果に基づいて異常箇所を特定し、光照射領域ESが配置されるときのウェハWの姿勢を、第1計測部による異常箇所での計測結果を用いずに制御する。これにより、ウェハWの走査速度を大きくする傾向にあっても、第1計測部での計測結果をウェハWの姿勢制御に使用可能か否かの判断を光照射領域ESが配置されるまでに行うことができ、ウェハWの姿勢制御を精度よく行うことができる。   As described above, the exposure apparatus 1 of the present embodiment specifies an abnormal location based on the measurement result of the second measurement unit, and determines the attitude of the wafer W when the light irradiation area ES is arranged by the first measurement. The control is performed without using the measurement result at the abnormal part by the unit. Accordingly, even if the scanning speed of the wafer W tends to increase, the determination as to whether or not the measurement result of the first measurement unit can be used for controlling the attitude of the wafer W is made until the light irradiation area ES is arranged. Therefore, the attitude control of the wafer W can be accurately performed.

ここで、本実施形態では、フォーカスチルト計測部50の第1計測部および第2計測部により、ウェハWを走査しながら、ウェハW上における同一の計測対象箇所を2回にわたって計測する例について説明した。しかしながら、それに限られるものではなく、例えば、第1計測部(または第2計測部)により、ウェハW上における同一の計測対象箇所を2回(複数回)にわたって計測してもよい。この場合、まず、ウェハW上における複数の計測対象箇所の各々について、ウェハWを走査しながら第1計測部による1回目の高さ計測を行い、その計測結果に基づいて異常箇所を特定する。その後、ウェハW上における複数の計測対象箇所の各々について、ウェハWを走査しながら第1計測部による2回目の高さ計測を行い、その計測結果に基づいてウェハWの姿勢を制御しながらウェハWの走査露光を行う。この走査露光では、第1計測部による2回目の計測結果のうち異常箇所の計測結果を用いずにウェハWの姿勢を制御する。   Here, in the present embodiment, an example in which the same measurement target portion on the wafer W is measured twice while scanning the wafer W by the first measurement unit and the second measurement unit of the focus tilt measurement unit 50 will be described. did. However, the present invention is not limited to this. For example, the same measurement target portion on the wafer W may be measured twice (a plurality of times) by the first measurement unit (or the second measurement unit). In this case, first, for each of the plurality of measurement target locations on the wafer W, the first measurement by the first measurement unit is performed while scanning the wafer W, and an abnormal location is specified based on the measurement result. Thereafter, for each of the plurality of measurement target locations on the wafer W, a second height measurement is performed by the first measurement unit while scanning the wafer W, and while controlling the attitude of the wafer W based on the measurement result, The scanning exposure of W is performed. In this scanning exposure, the attitude of the wafer W is controlled without using the measurement result of the abnormal part in the second measurement result by the first measurement unit.

<第2実施形態>
本発明に係る第2実施形態について説明する。図6は、本実施形態の露光装置1’の全体構成を示す図である。本実施形態の露光装置1’は、図1に示す露光装置1と比べて、複数のショット領域SRの各々について走査露光を行ったときの情報(以下、「ウェハ情報」と呼ぶことがある)をウェハWごとに記憶する記憶部80(メモリ等の記憶媒体)が更に設けられている。ウェハ情報とは、例えば、フォーカスチルト計測部50(第1計測部、第2計測部)での計測結果、異常箇所として特定した計測対象箇所の位置、異常箇所に適用された表面高さの推定値などの情報を含みうる。図6に示す例では、ウェハW1、ウェハW2、ウェハW3、ウェハW4・・・のようにウェハWごとに順次取得されたウェハ情報が個別に記憶されうる。なお、本実施形態の露光装置1’における記憶部80以外の構成は、図1に示す露光装置1と同様であるため、ここでは該構成についての説明を省略する。
<Second embodiment>
A second embodiment according to the present invention will be described. FIG. 6 is a diagram showing an overall configuration of an exposure apparatus 1 'of the present embodiment. The exposure apparatus 1 'of the present embodiment is different from the exposure apparatus 1 shown in FIG. 1 in that information when scanning exposure is performed for each of the plurality of shot regions SR (hereinafter, may be referred to as "wafer information"). (Storage medium such as a memory) for storing the same for each wafer W is further provided. The wafer information includes, for example, the measurement results of the focus tilt measurement unit 50 (first measurement unit and second measurement unit), the position of the measurement target location specified as the abnormal location, and the estimation of the surface height applied to the abnormal location. It may include information such as values. In the example shown in FIG. 6, wafer information sequentially acquired for each wafer W, such as wafer W1, wafer W2, wafer W3, wafer W4,..., Can be stored individually. Note that the configuration of the exposure apparatus 1 'of this embodiment other than the storage unit 80 is the same as that of the exposure apparatus 1 shown in FIG. 1, and a description thereof will be omitted here.

同じロットで管理される複数のウェハWでは、ショット領域の配列や半導体プロセス、露光制御等を同じ条件として露光処理が行われる。そのため、前回までに露光処理が行われたウェハWと、これから露光処理が行われるウェハWとでは、同じウェハ内の位置(基板位置)を有する計測対象箇所の高さ情報が同じ傾向となる。例えば、ウェハW3では、その前に露光処理が行われたウェハW2において異常箇所と特定された計測対象箇所と同じ基板位置を有する計測対象箇所で、「異常」が生じる傾向にある。そのため、本実施形態では、露光処理を行っているウェハW3における異常箇所を、該ウェハW3における第2計測部での計測結果と、既に露光処理が行われたウェハWにおける第2計測部での計測結果とを比較することにより特定する。比較対象となるウェハWは、同一ロット内のものであることが好ましい。   For a plurality of wafers W managed in the same lot, exposure processing is performed under the same conditions such as arrangement of shot areas, semiconductor processes, exposure control, and the like. Therefore, the height information of the measurement target portion having the same position (substrate position) in the wafer W has the same tendency between the wafer W on which the exposure processing has been performed up to the previous time and the wafer W on which the exposure processing is to be performed. For example, in the wafer W3, “abnormality” tends to occur at a measurement target location having the same substrate position as the measurement target location specified as an abnormal location on the wafer W2 that has been subjected to the exposure processing before that. Therefore, in the present embodiment, the abnormal location on the wafer W3 that is performing the exposure processing is determined by the measurement result of the second measurement unit on the wafer W3 and the abnormal location on the wafer W3 that has already been subjected to the exposure processing. It is specified by comparing with the measurement result. The wafers W to be compared are preferably in the same lot.

次に、本実施形態の露光装置1’における露光処理について説明する。本実施形態の露光処理は、第1実施形態において図3および図4を用いて説明した内容を基本的に引き継ぐものであるが、図3に示すフローチャートのS13において異常箇所を特定する工程が第1実施形態の露光処理と異なる。また、ここでは、ウェハW1およびウェハW2については露光処理が既に終了しており(即ち、ウェハW1およびウェハW2のウェハ情報が記憶部80に記憶されており)、ウェハW3のショット領域SRの露光処理を行う例について説明する。   Next, the exposure processing in the exposure apparatus 1 'of the present embodiment will be described. The exposure processing of this embodiment basically inherits the contents described with reference to FIGS. 3 and 4 in the first embodiment, but the step of identifying an abnormal part in S13 of the flowchart shown in FIG. This is different from the exposure processing of the first embodiment. Also, here, the exposure processing has already been completed for the wafers W1 and W2 (that is, the wafer information of the wafers W1 and W2 has been stored in the storage unit 80), and the exposure of the shot region SR of the wafer W3 has been completed. An example of performing the processing will be described.

本実施形態のS13では、制御部60は、ウェハW3のショット領域SRにおいて第2計測部により計測された各計測対象箇所TPの表面高さと、ウェハW2のウェハ情報における各計測対象箇所TPの表面高さとを比較する。該比較は、現在露光処理が行われているウェハW3と、既に露光処理が行われたウェハW2とで同じ基板位置を有する計測対象箇所TP同士で行われうる。これにより、制御部60は、比較結果に基づいて、異常箇所として特定されたウェハW2上の計測対象箇所TPに対応し、且つウェハW3とウェハW2とでの表面高さの差が閾値以下となるウェハW3上の計測対象箇所TPを異常箇所として特定することができる。閾値は、例えば、ユーザインターフェースを介してユーザにより設定されうる。   In S13 of the present embodiment, the control unit 60 determines the surface height of each measurement target location TP measured by the second measurement unit in the shot region SR of the wafer W3, and the surface height of each measurement target location TP in the wafer information of the wafer W2. Compare with height. The comparison can be performed between measurement target locations TP having the same substrate position in the wafer W3 that is currently subjected to the exposure processing and the wafer W2 that has already been subjected to the exposure processing. Thereby, the control unit 60 determines that the difference between the surface heights of the wafer W3 and the wafer W2 is equal to or less than the threshold value, corresponding to the measurement target location TP on the wafer W2 specified as the abnormal location based on the comparison result. The measurement target location TP on the wafer W3 can be specified as an abnormal location. The threshold can be set by a user via a user interface, for example.

また、制御部60は、走査方向に沿って配列された複数の計測対象箇所(例えば、TP11、TP21、TP31)における第2計測部での計測結果の相関性を、ウェハW3とウェハW2とで比較してもよい。制御部60は、相関性として、走査方向に沿って配列された複数の計測対象箇所間での計測結果の差分を用いてもよいし、該複数の計測対象箇所間での計測結果の比率を用いてもよい。この場合でも、制御部60は、比較結果に基づいて、異常箇所として特定されたウェハW2上の計測対象箇所TPに対応し、且つウェハW3とウェハW2とでの相関性の差が閾値以下となるウェハW3上の計測対象箇所TPを異常箇所として特定することができる。   The control unit 60 compares the correlation of the measurement results of the second measurement unit at a plurality of measurement target locations (for example, TP11, TP21, TP31) arranged along the scanning direction between the wafer W3 and the wafer W2. You may compare. The control unit 60 may use, as the correlation, a difference between the measurement results between a plurality of measurement target locations arranged along the scanning direction, or a ratio of the measurement result between the plurality of measurement target locations. May be used. Also in this case, the control unit 60 corresponds to the measurement target location TP on the wafer W2 specified as the abnormal location based on the comparison result, and determines that the difference between the correlation between the wafer W3 and the wafer W2 is equal to or less than the threshold. The measurement target location TP on the wafer W3 can be specified as an abnormal location.

ここで、上記の例では、ウェハW2のウェハ情報を用いてウェハW3の異常箇所を特定したが、それに限られず、ウェハW1のウェハ情報を用いてウェハW3の異常箇所を特定してもよい。即ち、既に露光処理が行われたウェハのウェハ情報を用いてウェハ3の異常箇所を特定すればよい。また、ウェハW3の異常箇所を特定する際に、ウェハW1とウェハW2とでのウェハ情報(例えば、各計測対象箇所の表面高さ)の平均値を用いてもよい。この場合、ウェハの個体差の影響を小さくして、異常箇所の特定精度を高めることができる。   Here, in the above example, the abnormal part of the wafer W3 is specified using the wafer information of the wafer W2, but the present invention is not limited thereto, and the abnormal part of the wafer W3 may be specified using the wafer information of the wafer W1. That is, the abnormal part of the wafer 3 may be specified using the wafer information of the wafer that has already been exposed. Further, when specifying an abnormal portion of the wafer W3, an average value of wafer information (for example, surface height of each measurement target portion) between the wafer W1 and the wafer W2 may be used. In this case, the influence of individual differences between wafers can be reduced, and the accuracy of specifying an abnormal portion can be increased.

上述したように、本実施形態では、現在露光処理を行っているウェハ上の異常箇所を、既に露光処理が行われたウェハWについて取得されたウェハ情報と比較することにより特定する。このような処理によっても、第1実施形態と同様に、ウェハWの姿勢制御を精度よく行うことができる。   As described above, in the present embodiment, the abnormal portion on the wafer currently being subjected to the exposure processing is specified by comparing it with the wafer information acquired for the wafer W that has already been subjected to the exposure processing. With such a process, the attitude control of the wafer W can be performed with high accuracy, as in the first embodiment.

<物品の製造方法の実施形態>
本発明の実施形態にかかる物品の製造方法は、例えば、半導体デバイス等のマイクロデバイスや微細構造を有する素子等の物品を製造するのに好適である。本実施形態の物品の製造方法は、基板に塗布された感光剤に上記の露光装置を用いて潜像パターンを形成する工程(基板を露光する工程)と、かかる工程で潜像パターンが形成された基板を現像(加工)する工程とを含む。更に、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含む。本実施形態の物品の製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
<Embodiment of Article Manufacturing Method>
The method for manufacturing an article according to the embodiment of the present invention is suitable for manufacturing an article such as a micro device such as a semiconductor device or an element having a fine structure. The method for manufacturing an article according to the present embodiment includes a step of forming a latent image pattern on a photosensitive agent applied to a substrate using the above-described exposure apparatus (a step of exposing the substrate), and a step of forming a latent image pattern in this step. Developing (working) the removed substrate. Further, such a manufacturing method includes other well-known steps (oxidation, film formation, vapor deposition, doping, planarization, etching, resist peeling, dicing, bonding, packaging, and the like). The method for manufacturing an article according to the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形および変更が可能である。   The preferred embodiments of the present invention have been described above. However, it is needless to say that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist.

1:露光装置、10:照明装置、25:レチクルステージ、30:投影光学系、45:ウェハステージ、50:フォーカスチルト計測部、60:制御部 1: exposure apparatus, 10: illumination apparatus, 25: reticle stage, 30: projection optical system, 45: wafer stage, 50: focus tilt measuring unit, 60: control unit

Claims (11)

基板を走査しながら光照射領域を該基板上で移動させることにより該基板の露光を行う露光装置であって、
前記基板の走査中に、走査方向に沿って前記基板上に配列された複数の計測対象箇所の各々の高さを、各計測対象箇所が前記光照射領域に入る前に順次計測する第1計測部と、
前記基板の走査中に、前記複数の計測対象箇所の各々の高さを、前記第1計測部での計測が行われる前に順次計測する第2計測部と、
前記第1計測部での計測結果に基づいて、前記基板の走査中における前記基板の姿勢を制御する制御部と、
を含み、
前記制御部は、前記第2計測部による各計測対象箇所の計測結果に基づいて、前記複数の計測対象箇所の中から異常箇所を特定し、前記異常箇所における前記第1計測部での計測結果を用いずに前記基板の姿勢を制御する、ことを特徴とする露光装置。
An exposure apparatus that exposes the substrate by moving a light irradiation area on the substrate while scanning the substrate,
During the scanning of the substrate, a first measurement for sequentially measuring the height of each of a plurality of measurement target locations arranged on the substrate along a scanning direction before each measurement target location enters the light irradiation area. Department and
During the scanning of the substrate, a second measurement unit that sequentially measures the height of each of the plurality of measurement target locations before the measurement by the first measurement unit is performed,
A control unit that controls a posture of the substrate during scanning of the substrate, based on a measurement result of the first measurement unit;
Including
The control unit specifies an abnormal location from among the plurality of measurement target locations based on a measurement result of each measurement target location by the second measurement unit, and measures a measurement result of the first measurement unit at the abnormal location. An exposure apparatus configured to control the attitude of the substrate without using the light source.
前記制御部は、前記複数の計測対象箇所における前記第2計測部での計測結果の相関性に基づいて前記異常箇所を特定する、ことを特徴とする請求項1に記載の露光装置。   2. The exposure apparatus according to claim 1, wherein the control unit specifies the abnormal location based on a correlation between measurement results of the plurality of measurement target locations by the second measurement unit. 3. 前記制御部は、前記複数の計測対象箇所における前記第2計測部での計測結果の差分を前記相関性として求める、ことを特徴とする請求項2に記載の露光装置。   3. The exposure apparatus according to claim 2, wherein the control unit obtains, as the correlation, a difference between measurement results of the plurality of measurement target locations at the second measurement unit. 4. 前記制御部は、前記複数の計測対象箇所における前記第2計測部での計測結果の比率を前記相関性として求める、ことを特徴とする請求項2に記載の露光装置。   3. The exposure apparatus according to claim 2, wherein the control unit obtains, as the correlation, a ratio of a measurement result obtained by the second measurement unit at the plurality of measurement target locations. 前記制御部は、前記基板における前記第2計測部での計測結果と、既に露光が行われた基板における前記第2計測部での計測結果との比較に基づいて、前記異常箇所を特定する、ことを特徴とする請求項1に記載の露光装置。   The control unit specifies the abnormal location based on a comparison between the measurement result of the second measurement unit on the substrate and the measurement result of the second measurement unit on the substrate that has already been exposed. The exposure apparatus according to claim 1, wherein: 前記制御部は、前記複数の計測対象箇所のうち前記異常箇所とは異なる箇所についての前記第2計測部での計測結果に基づいて前記異常箇所の高さを推定し、推定した前記異常箇所の高さに基づいて前記基板の姿勢を制御する、ことを特徴とする請求項1乃至5のいずれか1項に記載の露光装置。   The control unit estimates the height of the abnormal location based on the measurement result of the second measuring unit for a location different from the abnormal location among the plurality of measurement target locations, and estimates the estimated abnormal location. The exposure apparatus according to claim 1, wherein an attitude of the substrate is controlled based on a height. 前記制御部は、前記複数の計測対象箇所のうち前記異常箇所とは異なる箇所についての前記第2計測部での計測結果の平均値を、前記異常箇所の高さとして推定する、ことを特徴とする請求項6に記載の露光装置。   The control unit estimates the average value of the measurement results of the second measurement unit for a location different from the abnormal location among the plurality of measurement target locations, as the height of the abnormal location, The exposure apparatus according to claim 6, wherein 前記制御部は、既に露光が行われた基板のうち前記異常箇所と同じ基板位置を有する箇所についての前記第1計測部での計測結果に基づいて前記異常箇所の高さを推定し、推定した前記異常箇所の高さに基づいて前記基板の姿勢を制御する、ことを特徴とする請求項1乃至5のいずれか1項に記載の露光装置。   The control unit estimates the height of the abnormal portion based on the measurement result of the first measurement unit for a portion having the same substrate position as the abnormal portion in the substrate that has already been exposed, and estimates the height. The exposure apparatus according to claim 1, wherein an attitude of the substrate is controlled based on a height of the abnormal portion. 基板の走査露光を行う露光装置であって、
前記基板上に配列された複数の計測対象箇所の各々の高さを2回にわたって計測する計測部と、
前記計測部による2回目の計測結果に基づいて、前記基板の姿勢を制御する制御部と、
を含み、
前記計測部は、前記計測部による1回目の計測結果に基づいて、前記複数の計測対象箇所の中から異常箇所を特定し、前記計測部による2回目の計測結果のうち前記異常箇所の計測結果を用いずに前記基板の姿勢を制御する、ことを特徴とする露光装置。
An exposure apparatus that performs scanning exposure of a substrate,
A measurement unit that measures the height of each of the plurality of measurement target locations arranged on the substrate twice,
A control unit that controls the posture of the substrate based on a second measurement result by the measurement unit;
Including
The measurement unit specifies an abnormal location from among the plurality of measurement target locations based on a first measurement result by the measurement unit, and determines a measurement result of the abnormal location in a second measurement result by the measurement unit. An exposure apparatus configured to control the attitude of the substrate without using the light source.
請求項1乃至9のいずれか1項に記載の露光装置を用いて基板を露光する工程と、
前記工程で露光を行われた前記基板を現像する工程と、を含み、
現像された前記基板から物品を製造することを特徴とする物品の製造方法。
Exposing a substrate using the exposure apparatus according to any one of claims 1 to 9,
Developing the substrate that has been exposed in the step,
An article manufacturing method, comprising manufacturing an article from the developed substrate.
基板を走査しながら光照射領域を該基板上で移動させることにより該基板の露光を行う露光方法であって、
前記基板の走査中に、走査方向に沿って前記基板上に配列された複数の計測対象箇所の各々の高さを順次計測する第1工程と、
前記基板の走査中に、前記複数の計測対象箇所の各々の高さを前記第1工程での計測の後に順次計測する第2工程と、
前記第2工程での計測結果に基づいて、前記光照射領域内での前記基板の姿勢を制御する第3工程と、
を含み、
前記第3工程では、前記第1工程での各計測対象箇所の計測結果に基づいて、前記複数の計測対象箇所の中から異常箇所を特定し、前記異常箇所における前記第2工程での計測結果を用いずに前記基板の姿勢を制御する、ことを特徴とする露光方法。
An exposure method for exposing the substrate by moving the light irradiation area on the substrate while scanning the substrate,
During the scanning of the substrate, a first step of sequentially measuring the height of each of a plurality of measurement target locations arranged on the substrate along a scanning direction,
A second step of sequentially measuring the height of each of the plurality of measurement target locations during the scanning of the substrate after the measurement in the first step;
A third step of controlling the posture of the substrate in the light irradiation area based on the measurement result in the second step;
Including
In the third step, an abnormal point is specified from the plurality of measurement target points based on the measurement result of each measurement target point in the first step, and the measurement result in the second step at the abnormal point is determined. Controlling the attitude of the substrate without using the method.
JP2018122353A 2018-06-27 2018-06-27 Exposure equipment, exposure method, and manufacturing method of articles Active JP7071230B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018122353A JP7071230B2 (en) 2018-06-27 2018-06-27 Exposure equipment, exposure method, and manufacturing method of articles
KR1020190072771A KR102520864B1 (en) 2018-06-27 2019-06-19 Exposure apparatus, exposure method, and method of manufacturing article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018122353A JP7071230B2 (en) 2018-06-27 2018-06-27 Exposure equipment, exposure method, and manufacturing method of articles

Publications (2)

Publication Number Publication Date
JP2020003617A true JP2020003617A (en) 2020-01-09
JP7071230B2 JP7071230B2 (en) 2022-05-18

Family

ID=69099888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018122353A Active JP7071230B2 (en) 2018-06-27 2018-06-27 Exposure equipment, exposure method, and manufacturing method of articles

Country Status (2)

Country Link
JP (1) JP7071230B2 (en)
KR (1) KR102520864B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555105A (en) * 1991-08-26 1993-03-05 Canon Inc Semiconductor printing/exposing equipment
JPH09293655A (en) * 1996-04-25 1997-11-11 Nikon Corp Projection aligner
JP2001015422A (en) * 1999-07-01 2001-01-19 Canon Inc Projection exposing method, projection aligner and manufacture of device using the same
JP2002008963A (en) * 2000-06-20 2002-01-11 Nikon Corp Aligner
JP2003173960A (en) * 2001-12-06 2003-06-20 Nikon Corp Exposure device
JP2008288347A (en) * 2007-05-16 2008-11-27 Canon Inc Aligner and method of manufacturing device
US20090296057A1 (en) * 2008-05-27 2009-12-03 The Research Foundation Of State University Of New York Automated determination of height and tilt of a substrate surface within a lithography system
CN102566295A (en) * 2010-12-31 2012-07-11 上海微电子装备有限公司 Lithography device and method for measuring multi-light spot zero offset

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3781116B2 (en) 1994-05-18 2006-05-31 株式会社ニコン Scanning exposure method and scanning exposure apparatus
JP3376179B2 (en) 1995-08-03 2003-02-10 キヤノン株式会社 Surface position detection method
JP6157093B2 (en) * 2012-11-15 2017-07-05 キヤノン株式会社 Exposure apparatus, exposure method, and device manufacturing method
JP6071628B2 (en) * 2013-02-22 2017-02-01 キヤノン株式会社 Exposure apparatus, exposure method, and device manufacturing method
JP6806509B2 (en) * 2016-09-15 2021-01-06 キヤノン株式会社 Method of manufacturing exposure equipment and articles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555105A (en) * 1991-08-26 1993-03-05 Canon Inc Semiconductor printing/exposing equipment
JPH09293655A (en) * 1996-04-25 1997-11-11 Nikon Corp Projection aligner
JP2001015422A (en) * 1999-07-01 2001-01-19 Canon Inc Projection exposing method, projection aligner and manufacture of device using the same
JP2002008963A (en) * 2000-06-20 2002-01-11 Nikon Corp Aligner
JP2003173960A (en) * 2001-12-06 2003-06-20 Nikon Corp Exposure device
JP2008288347A (en) * 2007-05-16 2008-11-27 Canon Inc Aligner and method of manufacturing device
US20090296057A1 (en) * 2008-05-27 2009-12-03 The Research Foundation Of State University Of New York Automated determination of height and tilt of a substrate surface within a lithography system
CN102566295A (en) * 2010-12-31 2012-07-11 上海微电子装备有限公司 Lithography device and method for measuring multi-light spot zero offset

Also Published As

Publication number Publication date
KR20200001501A (en) 2020-01-06
JP7071230B2 (en) 2022-05-18
KR102520864B1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
JP4136067B2 (en) Detection apparatus and exposure apparatus using the same
KR101444981B1 (en) Exposure apparatus, exposure method, and method of manufacturing device
JP7328809B2 (en) DETECTION DEVICE, EXPOSURE DEVICE, AND ARTICLE MANUFACTURING METHOD
KR100870306B1 (en) Exposure apparatus and image plane detecting method and device manufacturing method
US9639008B2 (en) Lithography apparatus, and article manufacturing method
JP2005129674A (en) Scanning aligner and method of manufacturing device
JP2009192271A (en) Position detection method, exposure apparatus, and device manufacturing method
JPH1145846A (en) Scanning type exposure method and aligner
JP6882091B2 (en) Exposure equipment and manufacturing method of articles
JPWO2005088686A1 (en) Level difference measuring method and apparatus, and exposure method and apparatus
JP2006339438A (en) Exposure method and exposure device
JP6015930B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP2016100590A (en) Focus control method, pattern transfer apparatus, and manufacturing method of article
KR102520864B1 (en) Exposure apparatus, exposure method, and method of manufacturing article
KR100889843B1 (en) Scanning exposure apparatus and device manufacturing method
JPH1050600A (en) Method and device for projection exposure
JP7057655B2 (en) Measuring equipment, lithography equipment, manufacturing method of goods, and measuring method
JPH10261567A (en) Projection aligner and optical characteristic measurement method of projection optical system
JP2020003737A (en) Exposure equipment and method for production of article
CN111413850B (en) Exposure apparatus, method for controlling exposure apparatus, and method for manufacturing article
JP2001255139A (en) Controllability evaluation method for control system, and planarity measuring method of aligner and substrate
JP2019138957A (en) Control method of exposure equipment, exposure equipment and article production method
JP7105627B2 (en) Exposure method, exposure apparatus, and article manufacturing method
JP2022160187A (en) Exposure device, exposure method and manufacturing method of article
JP2024066628A (en) Exposure apparatus, exposure method, and method for manufacturing article

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220506

R151 Written notification of patent or utility model registration

Ref document number: 7071230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151