JP2020086378A - 液体現像剤 - Google Patents
液体現像剤 Download PDFInfo
- Publication number
- JP2020086378A JP2020086378A JP2018225199A JP2018225199A JP2020086378A JP 2020086378 A JP2020086378 A JP 2020086378A JP 2018225199 A JP2018225199 A JP 2018225199A JP 2018225199 A JP2018225199 A JP 2018225199A JP 2020086378 A JP2020086378 A JP 2020086378A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- mass
- monomer
- less
- viewpoint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Developers In Electrophotography (AREA)
Abstract
【課題】低温定着性及び耐ドキュメントオフセット性に優れ、帯電性に優れた画像が得られる液体現像剤に関すること。【解決手段】非晶質複合樹脂A、結晶性樹脂B、及び着色剤を含有するトナー粒子と、絶縁性液体を含有する液体現像剤であって、前記非晶質複合樹脂Aが、非晶質ポリエステル樹脂とスチレン系樹脂が、非晶質ポリエステル樹脂の原料モノマーとスチレン系樹脂の原料モノマーのいずれとも反応し得る両反応性モノマー由来の構成単位を介して化学的に結合してなる樹脂であり、前記非晶質複合樹脂Aが、スチレン系モノマー由来の構成単位とアクリル系モノマー由来の構成単位とを有し、前記非晶質複合樹脂Aにおけるスチレン系モノマー由来の構成単位とアクリル系モノマー由来の構成単位の質量比(スチレン系モノマー由来の構成単位/アクリル系モノマー由来の構成単位)が75/25以上100/0未満である、液体現像剤。【選択図】なし
Description
本発明は、例えば、電子写真法、静電記録法、静電印刷法等において形成される潜像の現像に用いられる液体現像剤に関する。
電子写真用現像剤として、着色剤及び結着樹脂を含む材料からなるトナー粒子が絶縁性液体中に分散した液体現像剤が知られている。液体現像剤は、トナーの小粒径化が可能であることから、画質の面で優れている。
特許文献1には、トナー粒子と、特定の高分子分散剤(C)と、キャリア液(D)とを含んでなる液体現像剤であって、前記トナー粒子が、結着樹脂(A)と着色剤(B)とを含んでなり、かつ、前記結着樹脂(A)が、結晶性樹脂(A−1)と非結晶性樹脂(A−2)とを含んでなる液体現像剤が開示されている。そして、その実施例には、非結晶性のポリエステル樹脂800部、スチレン115部、アクリル酸2-エチルヘキシル62部、アクリル酸n−ブチル20部及びジ−t−ブチルパーオキサイド3部を重合し、ポリエステル樹脂とスチレン−アクリル共重合樹脂を含む非結晶性樹脂を得たことが開示されている。
特許文献2には、ポリエステル樹脂と顔料とを含有するトナー粒子が絶縁性液体中に分散してなる液体現像剤であって、前記ポリエステル樹脂が、炭素数8以上14以下の脂肪族ジオールを60モル%以上100モル%以下含有するアルコール成分と、炭素数8以上14以下の脂肪族ジカルボン酸化合物を60モル%以上100モル%以下含有するカルボン酸成分とを含む原料モノマーを重縮合して得られる結晶性ポリエステルを含有し、ポリエステル樹脂が、さらに非晶質ポリエステルを含有することが開示されている。
近年、高画質かつ高速化への要求が高まっていることから、少ない熱量で溶融定着可能なトナー、すなわち低温定着性に優れるトナーが求められている。そのため、非晶質樹脂に結晶性ポリエステルを含有させることで、トナー粒子の溶融粘度が低下し低温定着化が可能となる。しかしながら、トナー粒子の溶融粘度が低下したことにより、メディアへと印字されたトナー粒子は溶融性を維持したままであるため、画像同士を重ね合わせ荷重がかかった状態で、高温・高湿環境下で保管したときに、画像同士が接着し剥がれにくくなる現象、すなわちドキュメントオフセットが発生する現象が生じる傾向がある。
また、結晶性ポリエステルは芳香環濃度が低いため電荷を保持することができず帯電性に劣る傾向がある。
また、結晶性ポリエステルは芳香環濃度が低いため電荷を保持することができず帯電性に劣る傾向がある。
本発明は、低温定着性及び耐ドキュメントオフセット性に優れ、帯電性に優れた画像が得られる液体現像剤に関する。
本発明は、非晶質複合樹脂A、結晶性樹脂B、及び着色剤を含有するトナー粒子と、絶縁性液体を含有する液体現像剤であって、前記非晶質複合樹脂Aが、非晶質ポリエステル樹脂とスチレン系樹脂が、非晶質ポリエステル樹脂の原料モノマーとスチレン系樹脂の原料モノマーのいずれとも反応し得る両反応性モノマー由来の構成単位を介して化学的に結合してなる樹脂であり、前記非晶質複合樹脂Aが、スチレン系モノマー由来の構成単位とアクリル系モノマー由来の構成単位とを有し、前記非晶質複合樹脂Aにおけるスチレン系モノマー由来の構成単位とアクリル系モノマー由来の構成単位の質量比(スチレン系モノマー由来の構成単位/アクリル系モノマー由来の構成単位)が75/25以上100/0未満である、液体現像剤に関する。
本発明の液体現像剤は、低温定着性及び耐ドキュメントオフセット性に優れ、帯電性に優れた画像が得られるものである。
本発明の液体現像剤は、トナー粒子が非晶質ポリエステル樹脂と所定量以上のスチレン系モノマー由来の構成単位を含むスチレン系樹脂とを有する非晶質複合樹脂Aと結晶性樹脂Bとを含む点に大きな特徴を有する。
両者の樹脂を含むことで、定着時には結晶性樹脂Bが速やかに溶融し、非晶質ポリエステル樹脂を含む非晶質複合樹脂Aを相溶・可塑化することで低温定着性が向上するとともに、定着後の室温では、スチレン系樹脂を含む非晶質複合樹脂Aと結晶性樹脂Bの相溶性が低下し、結晶性樹脂Bの結晶化が促進されることにより定着時に一旦低下した非晶性複合樹脂のガラス転移温度が回復しやすく、ドキュメントオフセットの発生が抑制されるものと推察される。また、非晶質ポリエステル樹脂とスチレン系モノマー由来の構成単位の割合が高いスチレン系樹脂との組み合わせにより、芳香環濃度が高まり、帯電性が向上するものと考えられる。
両者の樹脂を含むことで、定着時には結晶性樹脂Bが速やかに溶融し、非晶質ポリエステル樹脂を含む非晶質複合樹脂Aを相溶・可塑化することで低温定着性が向上するとともに、定着後の室温では、スチレン系樹脂を含む非晶質複合樹脂Aと結晶性樹脂Bの相溶性が低下し、結晶性樹脂Bの結晶化が促進されることにより定着時に一旦低下した非晶性複合樹脂のガラス転移温度が回復しやすく、ドキュメントオフセットの発生が抑制されるものと推察される。また、非晶質ポリエステル樹脂とスチレン系モノマー由来の構成単位の割合が高いスチレン系樹脂との組み合わせにより、芳香環濃度が高まり、帯電性が向上するものと考えられる。
本発明の液体現像剤において、トナー粒子は、非晶質複合樹脂A、結晶性樹脂B、及び着色剤を含有する。
なお、樹脂の結晶性は、軟化点と示差走査熱量計による吸熱の最高ピーク温度との比、即ち[軟化点/吸熱の最高ピーク温度]の値で定義される結晶性指数によって表わされる。結晶性樹脂は、結晶性指数が0.6以上、好ましくは0.7以上、より好ましくは0.9以上であり、そして、1.4以下、好ましくは1.2以下の樹脂である一方、非晶質樹脂は、結晶性指数が1.4を超える、好ましくは1.5以上、より好ましくは1.5を超える、さらに好ましくは1.6以上の樹脂であるか、または、0.6未満、好ましくは0.5以下の樹脂である。樹脂の結晶性は、原料モノマーの種類とその比率、及び製造条件(例えば、反応温度、反応時間、冷却速度)等により調整することができる。なお、吸熱の最高ピーク温度とは、観測される吸熱ピークのうち、最も高温側にあるピークの温度を指す。結晶性樹脂においては、吸熱の最高ピーク温度を融点とする。
なお、樹脂の結晶性は、軟化点と示差走査熱量計による吸熱の最高ピーク温度との比、即ち[軟化点/吸熱の最高ピーク温度]の値で定義される結晶性指数によって表わされる。結晶性樹脂は、結晶性指数が0.6以上、好ましくは0.7以上、より好ましくは0.9以上であり、そして、1.4以下、好ましくは1.2以下の樹脂である一方、非晶質樹脂は、結晶性指数が1.4を超える、好ましくは1.5以上、より好ましくは1.5を超える、さらに好ましくは1.6以上の樹脂であるか、または、0.6未満、好ましくは0.5以下の樹脂である。樹脂の結晶性は、原料モノマーの種類とその比率、及び製造条件(例えば、反応温度、反応時間、冷却速度)等により調整することができる。なお、吸熱の最高ピーク温度とは、観測される吸熱ピークのうち、最も高温側にあるピークの温度を指す。結晶性樹脂においては、吸熱の最高ピーク温度を融点とする。
非晶質複合樹脂Aは、非晶質ポリエステル樹脂とスチレン系樹脂が、非晶質ポリエステル樹脂の原料モノマーとスチレン系樹脂の原料モノマーのいずれとも反応し得る両反応性モノマー由来の構成単位を介して化学的に結合した樹脂である。
非晶質複合樹脂において、非晶質ポリエステル樹脂は、アルコール成分とカルボン酸成分の重縮合物であることが好ましい。
アルコール成分は、トナーの低温定着性を向上させる観点、トナーの粉砕性を向上させ小粒径の液体現像剤を得る観点、及びトナー粒子の分散安定性を向上させ保存安定性を向上させる観点から、式(I):
(式中、OR及びROはオキシアルキレン基であり、Rはエチレン及び/又はプロピレン基であり、x及びyはアルキレンオキサイドの平均付加モル数を示し、それぞれ正の数であり、xとyの和の値は、1以上、好ましくは1.5以上であり、16以下、好ましくは8以下、より好ましくは4以下である)
で表されるビスフェノールAのアルキレンオキサイド付加物を含むことが好ましい。
で表されるビスフェノールAのアルキレンオキサイド付加物を含むことが好ましい。
ビスフェノールAのアルキレンオキサイド付加物の含有量は、アルコール成分中、80モル%以上であり、好ましくは90モル%以上、より好ましくは95モル%以上、さらに好ましくは100モル%である。
他のアルコール成分としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-ブテンジオール、1,3-ブタンジオール、ネオペンチルグリコール等の脂肪族ジオール、グリセリン等の3価以上のアルコール等が挙げられる。
カルボン酸成分としては、帯電性の観点から、芳香族ジカルボン酸系化合物を含んでいることが好ましい。なお、本発明において、カルボン酸系化合物には、遊離酸だけでなく、反応中に分解して酸を生成する無水物、及びアルキル基の炭素数が1以上3以下のアルキルエステルも含まれる。
芳香族ジカルボン酸系化合物としては、フタル酸、イソフタル酸、テレフタル酸;それらの酸の無水物又はそれらの酸のアルキル(炭素数1〜3)エステル等が挙げられる。これらの中では、低温定着性の観点から、テレフタル酸又はイソフタル酸が好ましく、テレフタル酸がより好ましい。
芳香族ジカルボン酸系化合物の含有量は、カルボン酸成分中、好ましくは30モル%以上、より好ましくは40モル%以上、さらに好ましくは50モル%以上であり、そして、低温定着性の観点から、好ましくは95モル%以下、より好ましくは85モル%以下、さらに好ましくは80モル%以下である。
他のカルボン酸成分としては、脂肪族ジカルボン酸、3価以上のカルボン酸、これらの酸の無水物及びそれらの酸の炭素数が1以上3以下のアルキルエステル等が挙げられる。
カルボン酸成分は、保存性及び耐久性の観点から、3価以上のカルボン酸系化合物を含有していることが好ましい。
3価以上のカルボン酸系化合物としては、1,2,4-ベンゼントリカルボン酸(トリメリット酸)、1,2,4,5-ベンゼンテトラカルボン酸(ピロメリット酸)、又はそれらの酸無水物等が挙げられる。
3価以上のカルボン酸系化合物の含有量は、カルボン酸成分中、好ましくは3モル%以上、より好ましくは5モル%以上、さらに好ましくは7モル%以上であり、そして、低温定着性の観点から、好ましくは30モル%以下、より好ましくは25モル%以下、さらに好ましくは20モル%以下である。
なお、アルコール成分には1価のアルコールが、カルボン酸成分には1価のカルボン酸系化合物が、ポリエステル樹脂の分子量及び軟化点を調整する観点から、適宜含有されていてもよい。
ポリエステル樹脂におけるカルボン酸成分とアルコール成分との当量比(COOH基/OH基)は、ポリエステル樹脂の軟化点を調整する観点から、好ましくは0.6以上、より好ましくは0.7以上、さらに好ましくは0.75以上であり、そして、好ましくは1.1以下、より好ましくは1.05以下である。
アルコール成分とカルボン酸成分の重縮合反応は、例えば、不活性ガス雰囲気中、好ましくはエステル化触媒の存在下、さらに必要に応じて、エステル化助触媒、重合禁止剤等の存在下、好ましくは130℃以上、より好ましくは170℃以上、そして、好ましくは250℃以下、より好ましくは240℃以下の温度で行うことができる。
エステル化触媒としては、酸化ジブチル錫、2-エチルヘキサン酸錫(II)等の錫化合物、チタンジイソプロピレートビストリエタノールアミネート等のチタン化合物等が挙げられ、錫化合物が好ましい。エステル化触媒の使用量は、アルコール成分とカルボン酸成分の総量100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上であり、そして、好ましくは1.5質量部以下、より好ましくは1質量部以下である。エステル化助触媒としては、没食子酸等が挙げられる。エステル化助触媒の使用量は、アルコール成分とカルボン酸成分の総量100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.01質量部以上であり、そして、好ましくは0.5質量部以下、より好ましくは0.1質量部以下である。重合禁止剤としては、t-ブチルカテコール等が挙げられる。重合禁止剤の使用量は、アルコール成分とカルボン酸成分の総量100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.01質量部以上であり、そして、好ましくは0.5質量部以下、より好ましくは0.1質量部以下である。
なお、本発明において、ポリエステル樹脂は、実質的にその特性を損なわない程度に変性されたポリエステル樹脂であってもよい。変性されたポリエステル樹脂としては、例えば、特開平11−133668号公報、特開平10−239903号公報、特開平8−20636号公報等に記載の方法によりフェノール、ウレタン、エポキシ等によりグラフト化やブロック化したポリエステル樹脂が挙げられるが、変性されたポリエステル樹脂のなかでは、ポリエステル樹脂をポリイソシアネート化合物でウレタン伸長したウレタン変性ポリエステル樹脂が好ましい。
非晶質複合樹脂において、スチレン系樹脂は、少なくとも、スチレン、α−メチルスチレン、ビニルトルエン等のスチレン誘導体等のスチレン系モノマーを含む原料モノマーの付加重合物である。
スチレン系モノマー、好ましくはスチレンの含有量は、スチレン系樹脂の原料モノマー中、帯電性の観点から、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは100質量%である。
スチレン系樹脂の原料モノマーは、低温定着性の観点から、さらに、アクリル酸アルキルエステル及びメタクリル酸アルキルエステルから選ばれる1種以上のアクリル系モノマーを含有していることが好ましい。
スチレン系樹脂の原料モノマーとしてのアクリル酸アルキルエステル及びメタクリル酸アルキルエステルにおけるアルキル基の炭素数は、トナーの低温定着性を向上させる観点から、好ましくは7以上であり、より好ましくは8以上であり、そして、好ましくは12以下、より好ましくは10以下である。なお、該アルキルエステルの炭素数は、エステルを構成するアルコール成分由来の炭素数をいう。
アルキル基の炭素数が7以上の(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸(イソ)オクチル、(メタ)アクリル酸(イソ)デシル、(メタ)アクリル酸(イソ)ステアリル等が挙げられる。これらの1種又は2種以上を用いることが好ましい。なお、本明細書において、「(イソ)」は、この基が存在している場合とそうでない場合の双方を含むことを意味し、これらの基が存在していない場合には、ノルマルであることを示す。また、「(メタ)アクリル酸」は、アクリル酸、メタクリル酸、又はその両者を示す。
アクリル系モノマーの含有量は、スチレン系樹脂の原料モノマー中、好ましくは30質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下、さらに好ましくは5質量%以下である。
スチレン系樹脂の原料モノマーには、スチレン系モノマー及びアクリル系モノマー以外の原料モノマー、例えば、エチレン、プロピレン等のエチレン性不飽和モノオレフィン類;ブタジエン等のジオレフィン類;塩化ビニル等のハロビニル類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;(メタ)アクリル酸ジメチルアミノエチル等のエチレン性モノカルボン酸エステル;メチルビニルエーテル等のビニルエーテル類;ビニリデンクロリド等のビニリデンハロゲン化物;N−ビニルピロリドン等のN−ビニル化合物類等が含まれていてもよい。
スチレン系樹脂の原料モノマーの付加重合反応は、例えば、ジクミルパーオキサイド等の重合開始剤、重合禁止剤、架橋剤等の存在下、有機溶媒存在下又は無溶媒下で、常法により行うことができるが、温度条件としては、好ましくは110℃以上、より好ましくは140℃以上であり、そして、好ましくは200℃以下、より好ましくは170℃以下である。
付加重合反応の際に有機溶媒を使用する場合、キシレン、トルエン、メチルエチルケトン、アセトン等を用いることができる。有機溶媒の使用量は、スチレン系樹脂の原料モノマー100質量部に対して、10質量部以上50質量部以下が好ましい。
両反応性モノマー由来の構成単位は、非晶質ポリエステル樹脂とスチレン系樹脂のいずれとも化学的に結合している。両反応性モノマー由来の構成単位は、例えば、非晶質ポリエステル樹脂のカルボキシ基及び水酸基から選ばれる1種以上の官能基と、両反応性モノマーの水酸基、カルボキシ基、エポキシ基、第1級アミノ基及び第2級アミノ基から選ばれる1種以上の官能基とが化学反応により結合し、スチレン系樹脂のエチレン性不飽和結合と、両反応性モノマーのエチレン性不飽和結合とが化学反応により結合した構成単位が挙げられる。両反応性モノマー由来の構成単位としては、アクリル酸由来及びメタクリル酸由来から選ばれる1種以上の構成単位が挙げられる。
両反応性モノマーは、分子内に、水酸基、カルボキシ基、エポキシ基、第1級アミノ基及び第2級アミノ基からなる群より選ばれた少なくとも1種の官能基、好ましくは水酸基及び/又はカルボキシ基、より好ましくはカルボキシ基と、エチレン性不飽和結合とを有する化合物が好ましい。両反応性モノマーは、アクリル酸及びメタクリル酸から選ばれる1種以上のアクリル系モノマーが好ましい。但し、重合禁止剤と共に用いた場合は、フマル酸等のエチレン性不飽和結合を有する多価カルボン酸系化合物は、ポリエステル樹脂の原料モノマーとして機能する。この場合、フマル酸等は両反応性モノマーではなく、ポリエステル樹脂の原料モノマーである。
両反応性モノマーの使用量は、低温定着性の観点から、非晶質ポリエステル樹脂のアルコール成分の合計100モルに対して、好ましくは1モル以上、より好ましくは2モル以上であり、そして、スチレン系樹脂と非晶質ポリエステル樹脂との分散性を高め、トナーの耐久性を向上させる観点から、好ましくは30モル以下、より好ましくは20モル以下、さらに好ましくは10モル以下である。
また、両反応性モノマーの使用量は、低温定着性の観点から、スチレン系樹脂の原料モノマーの合計100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上であり、そして、スチレン系樹脂と非晶質ポリエステル樹脂との分散性を高め、トナーの耐久性を向上させる観点から、好ましくは30質量部以下、より好ましくは20質量部以下、さらに好ましくは10質量部以下である。ここで、スチレン系樹脂の原料モノマーの合計に重合開始剤は含める。
また、両反応性モノマーの使用量は、低温定着性の観点から、スチレン系樹脂の原料モノマーの合計100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上であり、そして、スチレン系樹脂と非晶質ポリエステル樹脂との分散性を高め、トナーの耐久性を向上させる観点から、好ましくは30質量部以下、より好ましくは20質量部以下、さらに好ましくは10質量部以下である。ここで、スチレン系樹脂の原料モノマーの合計に重合開始剤は含める。
非晶質複合樹脂は、具体的には、以下の方法により製造することが好ましい。両反応性モノマーを用いる場合、両反応性モノマーは、トナーの耐久性を向上させる観点、トナーの低温定着性及び耐熱保存性を向上させる観点から、スチレン系樹脂の原料モノマーとともに付加重合反応に用いることが好ましい。
(i) ポリエステル樹脂の原料モノマーによる重縮合反応の工程(A)の後に、スチレン系樹脂の原料モノマー及び両反応性モノマーによる付加重合反応の工程(B)を行う方法
この方法では、重縮合反応に適した反応温度条件下で工程(A)を行い、反応温度を低下させ、付加重合反応に適した温度条件下で工程(B)を行う。スチレン系樹脂の原料モノマー及び両反応性モノマーは、付加重合反応に適した温度で反応系内に添加にすることが好ましい。両反応性モノマーは付加重合反応をすると共に非晶質ポリエステル樹脂とも反応する。
工程(B)の後に、再度反応温度を上昇させ、必要に応じて架橋剤となる3価以上の非晶質ポリエステル樹脂の原料モノマー等を重合系に添加し、工程(A)の重縮合反応や両反応性モノマーとの反応をさらに進めることができる。
この方法では、重縮合反応に適した反応温度条件下で工程(A)を行い、反応温度を低下させ、付加重合反応に適した温度条件下で工程(B)を行う。スチレン系樹脂の原料モノマー及び両反応性モノマーは、付加重合反応に適した温度で反応系内に添加にすることが好ましい。両反応性モノマーは付加重合反応をすると共に非晶質ポリエステル樹脂とも反応する。
工程(B)の後に、再度反応温度を上昇させ、必要に応じて架橋剤となる3価以上の非晶質ポリエステル樹脂の原料モノマー等を重合系に添加し、工程(A)の重縮合反応や両反応性モノマーとの反応をさらに進めることができる。
(ii) スチレン系樹脂の原料モノマー及び両反応性モノマーによる付加重合反応の工程(B)の後に、非晶質ポリエステル樹脂の原料モノマーによる重縮合反応の工程(A)を行う方法
この方法では、付加重合反応に適した反応温度条件下で工程(B)を行い、反応温度を上昇させ、重縮合反応に適した温度条件下で、工程(A)の重縮合反応を行う。両反応性モノマーは付加重合反応と共に重縮合反応にも関与する。
非晶質ポリエステル樹脂の原料モノマーは、付加重合反応時に反応系内に存在してもよく、重縮合反応に適した温度条件下で反応系内に添加してもよい。前者の場合は、重縮合反応に適した温度でエステル化触媒を添加することで重縮合反応の進行を調節できる。
この方法では、付加重合反応に適した反応温度条件下で工程(B)を行い、反応温度を上昇させ、重縮合反応に適した温度条件下で、工程(A)の重縮合反応を行う。両反応性モノマーは付加重合反応と共に重縮合反応にも関与する。
非晶質ポリエステル樹脂の原料モノマーは、付加重合反応時に反応系内に存在してもよく、重縮合反応に適した温度条件下で反応系内に添加してもよい。前者の場合は、重縮合反応に適した温度でエステル化触媒を添加することで重縮合反応の進行を調節できる。
(iii) 非晶質ポリエステル樹脂の原料モノマーによる重縮合反応の工程(A)とスチレン系樹脂の原料モノマー及び両反応性モノマーによる付加重合反応の工程(B)とを、並行して進行する条件で反応を行う方法
この方法では、付加重合反応に適した反応温度条件下で工程(A)と工程(B)とを並行して行い、反応温度を上昇させ、重縮合反応に適した温度条件下で、必要に応じて架橋剤となる3価以上の非晶質ポリエステル樹脂の原料モノマーを重合系に添加し、工程(A)の重縮合反応をさらに行うことが好ましい。その際、重縮合反応に適した温度条件下では、重合禁止剤を添加して重縮合反応だけを進めることもできる。両反応性モノマーは付加重合反応と共に重縮合反応にも関与する。
この方法では、付加重合反応に適した反応温度条件下で工程(A)と工程(B)とを並行して行い、反応温度を上昇させ、重縮合反応に適した温度条件下で、必要に応じて架橋剤となる3価以上の非晶質ポリエステル樹脂の原料モノマーを重合系に添加し、工程(A)の重縮合反応をさらに行うことが好ましい。その際、重縮合反応に適した温度条件下では、重合禁止剤を添加して重縮合反応だけを進めることもできる。両反応性モノマーは付加重合反応と共に重縮合反応にも関与する。
上記(i)の方法においては、重縮合反応を行う工程(A)の代わりに、予め重合した重縮合系樹脂を用いてもよい。上記(iii)の方法において、工程(A)と工程(B)を並行して進行する条件で反応を行う際には、非晶質ポリエステル樹脂の原料モノマーを含有した混合物中に、スチレン系樹脂の原料モノマーを含有した混合物を滴下して反応させることもできる。
上記(i)〜(iii)の方法は、同一容器内で行うことが好ましい。
非晶質複合樹脂Aにおけるスチレン系モノマー由来の構成単位とアクリル系モノマー由来の構成単位の質量比(スチレン系モノマーの構成単位/アクリル系モノマーの構成単位)は、トナー粒子の帯電性を向上する観点から、75/25以上であり、好ましくは80/20以上、より好ましくは82/18以上、さらに好ましくは85/15以上であり、そして、低温定着性の観点から、99/1以下であり、好ましくは98/2以下、より好ましくは100/0未満である。なお、ここで、アクリル系モノマーとは、アクリル酸、メタクリル酸及びこれらのアルキルエステルであり、スチレン系樹脂の原料モノマーとして用いられたアクリル系モノマーだけでなく、両反応性モノマーとして用いられたアクリル系モノマーも含める。
スチレン系モノマー由来の構成単位とアクリル系モノマー由来の構成単位の質量比は、非晶質複合樹脂の原料モノマーの質量から算出することができる。
スチレン系モノマー由来の構成単位とアクリル系モノマー由来の構成単位の質量比は、非晶質複合樹脂の原料モノマーの質量から算出することができる。
非晶質複合樹脂Aにおける非晶質ポリエステル樹脂とスチレン系樹脂の質量比(非晶質ポリエステル樹脂/スチレン系樹脂)は、低温定着性の観点から、好ましくは60/40以上、より好ましくは70/30以上、さらに好ましくは80/20以上であり、そして、粉砕性の観点から、好ましくは98/2以下、より好ましくは97/3以下、さらに好ましくは96/4以下である。なお、上記の計算において、非晶質ポリエステル樹脂の質量は、用いられる非晶質ポリエステル樹脂の原料モノマーの質量から、重縮合反応により脱水される反応水の量(計算値)を除いた量であり、両反応性モノマーの量は、非晶質ポリエステル樹脂の原料モノマー量に含める。また、スチレン系樹脂の量は、スチレン系樹脂の原料モノマーと重合開始剤の合計量である。
非晶質複合樹脂Aの軟化点は、保存安定性の観点から、好ましくは80℃以上、より好ましくは85℃以上であり、そして、低温定着性の観点から、好ましくは130℃以下、より好ましくは120℃以下である。
非晶質複合樹脂Aのガラス転移温度は、保存安定性の観点から、好ましくは40℃以上、より好ましくは50℃以上であり、そして、低温定着性の観点から、好ましくは80℃以下、より好ましくは70℃以下である。
非晶質複合樹脂Aの酸価は、帯電の立ち上がり性の観点から、好ましくは5mgKOH/g以上、より好ましくは10mgKOH/g以上であり、そして、吸湿性の観点から、好ましくは50mgKOH/g以下、より好ましくは40mgKOH/g以下である。
非晶質複合樹脂Aの含有量は、トナー粒子中、好ましくは55質量%以上、より好ましくは60質量%以上、さらに好ましくは65質量%以上であり、そして、粉砕性の観点から、好ましくは97質量%以下、より好ましくは95質量%以下、さらに好ましくは90質量%以下である。
結晶性樹脂Bとしては、低温定着性と保存性の観点から、結晶性ポリエステル樹脂がより好ましい。
結晶性ポリエステル樹脂としては、脂肪族ジオールを含有するアルコール成分と脂肪族ジカルボン酸化合物を含有するカルボン酸成分との重縮合物が好ましい。
脂肪族ジオールの炭素数は、結晶性ポリエステルの結晶回復の観点から、好ましくは2以上、より好ましくは4以上、さらに好ましくは5以上であり、そして、低温定着性の観点から、好ましくは9以下、より好ましくは8以下、さらに好ましくは7以下である。
炭素数2以上9以下の脂肪族ジオールとしては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、ネオペンチルグリコール、1,9-ノナンジオール等が挙げられる。
また、炭素数2以上9以下の脂肪族ジオールは、トナーの低温定着性を向上させる観点から、水酸基を炭素鎖の末端に有有するα,ω−脂肪族ジオールが好ましく、α,ω−直鎖アルカンジオールであることがより好ましい。
アルコール成分には、脂肪族ジオール以外のアルコールが含まれていてもよいが、脂肪族ジオール、好ましくは炭素数2以上9以下の脂肪族ジオールの含有量は、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上、さらに好ましくは100モル%である。
脂肪族ジオール以外のアルコール成分としては、ビスフェノールAのアルキレンオキサイド付加物等の芳香族ジオール、グリセリン等の3価以上のアルコール等が挙げられる。
脂肪族ジカルボン酸化合物としては、コハク酸(炭素数:4)、フマル酸(炭素数:4)、グルタル酸(炭素数:5)、アジピン酸(炭素数:6)、スベリン酸(炭素数:8)、アゼライン酸(炭素数:9)、セバシン酸(炭素数:10)、ドデカン2酸(炭素数:12)、テトラデカン2酸(炭素数:14)、側鎖にアルキル基又はアルケニル基を有するコハク酸、これらの酸の無水物、それらの炭素数1〜3のアルキルエステル等が挙げられる。
脂肪族ジカルボン酸化合物における鎖状炭化水素基は直鎖であっても分岐鎖であってもよく、脂肪族ジカルボン酸化合物の炭素数は、耐久性の観点から、好ましくは1以上、より好ましくは2以上であり、そして、低温定着性の観点から、好ましくは22以下、より好ましくは20以下である。なお、アルキルエステル部のアルキル基の炭素数は、脂肪族ジカルボン酸化合物の炭素数には含めない。
また、脂肪族ジカルボン酸化合物は、低温定着性の観点から、飽和脂肪族ジカルボン酸化合物が好ましい。
カルボン酸成分には、脂肪族ジカルボン酸化合物以外のカルボン酸化合物が含まれていてもよいが、脂肪族ジカルボン酸化合物の含有量は、カルボン酸成分中、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上、さらに好ましくは100モル%である。
他のカルボン酸化合物としては、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸化合物、炭素数2〜3の脂肪族ジカルボン酸化合物、炭素数15以上の脂肪族ジカルボン酸化合物、トリメリット酸、ピロメリット酸等の3価以上のカルボン酸化合物等が挙げられる。
なお、アルコール成分には1価のアルコールが、カルボン酸成分には1価のカルボン酸系化合物が、ポリエステル樹脂の分子量及び軟化点を調整する観点から、適宜含有されていてもよい。
結晶性ポリエステル樹脂におけるカルボン酸成分とアルコール成分との当量比(COOH基/OH基)は、複合樹脂の軟化点を調整する観点から、好ましくは0.70以上、より好ましくは0.85以上であり、また、好ましくは1.10以下、より好ましくは1.05以下である。
カルボン酸成分及びアルコール成分との重縮合反応は、例えば、不活性ガス雰囲気中にて、好ましくはエステル化触媒の存在下、さらに必要に応じて、エステル化助触媒、重合禁止剤等の存在下、180℃以上250℃以下の温度で行うことができる。
エステル化触媒としては、酸化ジブチル錫、2-エチルヘキサン酸錫(II)等の錫化合物、チタンジイソプロピレートビストリエタノールアミネート等のチタン化合物等が挙げられる。エステル化触媒とともに用い得るエステル化助触媒としては、没食子酸等が挙げられる。エステル化触媒の使用量は、アルコール成分及びカルボン酸成分の総量100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上であり、そして、好ましくは1質量部以下、より好ましくは0.6質量部以下である。エステル化助触媒の使用量は、アルコール成分及びカルボン酸成分の総量100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.01質量部以上であり、そして、好ましくは0.5質量部以下、より好ましくは0.1質量部以下である。
結晶性ポリエステル樹脂の含有量は、結晶性樹脂B中、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは100質量%である。
結晶性樹脂Bの融点は、結晶性ポリエステル樹脂を印刷後に速やかに非晶質ポリエステル樹脂と相分離させてドキュメントオフセットを抑制する観点から、好ましくは55℃以上であり、より好ましくは75℃以上、さらに好ましくは90℃以上であり、そして、低温定着性の観点から、好ましくは130℃以下、より好ましくは125℃以下、さらに好ましくは120℃以下である。
結晶性樹脂Bの酸価は、低温定着性の観点から、好ましくは1mgKOH/g以上、より好ましくは2mgKOH/g以上、さらに好ましくは3mgKOH/g以上であり、そして、耐ドキュメントオフセット性の観点から、好ましくは25mgKOH/g以下、より好ましくは20mgKOH/g以下である。
非晶質複合樹脂Aと結晶性樹脂Bの質量比(非晶質複合樹脂A/結晶性樹脂B)は、耐ドキュメントオフセット性の観点から、好ましくは65/35以上、より好ましくは70/30以上、さらに好ましくは80/20以上であり、そして、低温定着性の観点から、好ましくは97/3以下、より好ましくは95/5以下、さらに好ましくは90/10以下である。
非晶質複合樹脂Aと結晶性樹脂Bの合計含有量は、トナー粒子中、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上であり、そして、耐ドキュメントオフセット性の観点から、好ましくは98質量%以下、より好ましくは95質量%以下、さらに好ましくは92質量%以下である。
本発明において、トナー粒子は、前記の非晶質複合樹脂Aと結晶性樹脂Bを結着樹脂として含有しており、これらの樹脂以外の結着樹脂が含有されていてもよいが、これらの樹脂の合計含有量は、結着樹脂中、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは100質量%である。他の結着樹脂としては、スチレン-アクリル樹脂等のビニル系樹脂、エポキシ樹脂、ポリカーボネート、ポリウレタン、これらの樹脂を2種以上含む複合樹脂等が挙げられる。
着色剤としては、トナー用着色剤として用いられている染料、顔料、磁性体等を使用することができる。例えば、カーボンブラック、フタロシアニンブルー、パーマネントブラウンFG、ブリリアントファーストスカーレット、ピグメントレッド122、ピグメントグリーンB、ローダミン−Bベース、ソルベントレッド49、ソルベントレッド146、ソルベントブルー35、キナクリドン、カーミン6B、イソインドリン、ジスアゾエロー等が挙げられる。なお、本発明において、トナー粒子は、黒トナー、カラートナーのいずれであってもよい。
着色剤の含有量は、画像濃度を向上させる観点から、結着樹脂100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、さらに好ましくは15質量部以上であり、そして、トナーの粉砕性を向上させて小粒径にできる観点、低温定着性を向上させる観点、及びトナー粒子の分散安定性を向上させて保存安定性を向上させる観点から、結着樹脂100質量部に対して、好ましくは100質量部以下、より好ましくは70質量部以下、さらに好ましくは50質量部以下、さらに好ましくは30質量部以下である。
トナー粒子の製造方法としては、非晶質複合樹脂A、結晶性樹脂B、及び着色剤を含有するトナー原料を溶融混練し、得られた溶融混練物を粉砕して得る方法、水系結着樹脂分散液と水系着色剤分散液を混合し結着樹脂粒子と着色剤粒子を合一させる方法、又は水系結着樹脂分散液と着色剤を高速攪拌する方法等が挙げられる。現像性及び定着性を向上させる観点から、トナー原料を溶融混練した後に粉砕する方法が好ましい。
先ず、非晶質複合樹脂A、結晶性樹脂B、着色剤、必要に応じて用いる添加剤等を含有するトナー原料は、あらかじめヘンシェルミキサー、スーパーミキサー、ボールミル等の混合機で混合した後、混練機に供給することが好ましく、結着樹脂中での着色剤の分散性を向上させる観点から、ヘンシェルミキサーがより好ましい。前記の非晶質ポリエステル系樹脂と結晶性ポリエステル樹脂は、予め混合していても、トナー粒子を製造する際に、それぞれの樹脂を直接原料の混合に供してもよい。
ヘンシェルミキサーでの混合は、攪拌の周速度、及び攪拌時間を調整しながら行う。周速度は、着色剤の分散性を向上させる観点から、好ましくは10m/sec以上30m/sec以下である。また、攪拌時間は、着色剤の分散性を向上させる観点から、好ましくは1分以上10分以下である。
次いで、トナー原料の溶融混練は、密閉式ニーダー、一軸もしくは二軸の混練機、連続式オープンロール型混練機等の公知の混練機を用いて行うことができる。本発明においては、着色剤の分散性を向上させる観点、及び粉砕後のトナー粒子の収率を向上させる観点から、オープンロール型混練機が好ましい。
オープンロール型混練機とは、溶融混練部が密閉されておらず開放されているものをいい、溶融混練の際に発生する混練熱を容易に放熱することができる。本発明で使用するオープンロール型混練機は、ロールの軸方向に沿って設けられた複数の原料供給口と混練物排出口を備えており、生産効率の観点から、連続式オープンロール型混練機であることが好ましい。
オープンロール型混練機は、少なくとも温度の異なる2本の混練用ロールを有していることが好ましい。
トナー原料の混合性を向上させる観点から、ロールの設定温度は、樹脂の軟化点より10℃高い温度以下であることが好ましい。
また、上流側で混練物のロールへの張り付きを良好にして、下流側で強く混練する観点から、上流側のロールの設定温度は下流側のものよりも高いことが好ましい。
ロールは、互いに周速度が異なっていることが好ましい。前記の2本のロールを備えたオープンロール型混練機においては、液体現像剤の定着性を向上させる観点から、温度の高い加熱ロールが高回転側ロールであり、温度の低い冷却ロールが低回転側ロールであることが好ましい。
高回転側ロールの周速度は、好ましくは2m/min以上、より好ましくは5m/min以上であり、そして、好ましくは100m/min以下、より好ましくは75m/min以下である。低回転側ロールの周速度は、好ましくは2m/min以上、より好ましくは4m/min以上であり、そして、好ましくは100m/min以下、より好ましくは60m/min以下、さらに好ましくは50m/min以下である。また、2本のロールの周速度の比(低回転側ロール/高回転側ロール)は、好ましくは1/10以上、より好ましくは3/10以上であり、そして、好ましくは9/10以下、より好ましくは8/10以下である。
また、各ロールの構造、大きさ、材料等について特に限定はない。ロール表面は、混練に用いられる溝を有しており、この形状は直線状、螺旋状、波型、凸凹型等が挙げられる。
次いで、溶融混練物を粉砕が可能な程度に冷却した後、粉砕工程、及び必要に応じて分級工程等を経て、トナー粒子を得ることができる。
粉砕工程は、多段階に分けてもよい。例えば、溶融混練物を、約1〜5mmに粗粉砕した後、さらに微粉砕してもよい。また、粉砕工程時の生産性を向上させるために、溶融混練物を疎水性シリカ等の無機微粒子と混合した後、粉砕してもよい。
粗粉砕に好適に用いられる粉砕機としては、例えば、アトマイザー、ロートプレックス等が挙げられるが、ハンマーミル等を用いてもよい。また、微粉砕に好適に用いられる粉砕機としては、流動層式ジェットミル、気流式ジェットミル、機械式ミル等が挙げられる。
分級工程に用いられる分級機としては、気流式分級機、慣性式分級機、篩式分級機等が挙げられる。なお、必要に応じて粉砕工程と分級工程とを繰り返してもよい。
この工程で得られるトナー粒子の体積中位粒径(D50)は、後述の湿式粉砕工程の生産性を向上させる観点から、好ましくは3μm以上、より好ましくは4μm以上であり、そして好ましくは15μm以下、より好ましくは12μm以下である。なお、体積中位粒径(D50)とは、体積分率で計算した累積体積頻度が粒径の小さい方から計算して50%になる粒径を意味する。なお、トナー粒子は、分散剤及び絶縁性液体と混合後、湿式粉砕等によりさらに微細化されることが好ましい。
湿式粉砕に供するトナー粒子の含有量は、絶縁性液体100質量部に対して、粉砕効率の観点から、好ましくは30質量部以上、より好ましくは40質量部以上、さらに好ましくは50質量部以上であり、そして、分散安定性の向上の観点から、好ましくは100質量部以下、より好ましくは80質量部以下、さらに好ましくは70質量部以下、さらに好ましくは60質量部以下である。
本発明の液体現像剤は、トナー粒子を均一に絶縁性液体中に分散させる観点から、分散剤を含有することが好ましい。分散剤は、酸性基を有する樹脂への吸着性が高い観点から、塩基性窒素含有基を有する塩基性分散剤が好ましい。塩基性窒素含有基としては、アミノ基(-NH2、-NHR、-NHRR’)、アミド基(-C(=O)-NRR’)、イミド基(-N(COR)2)、ニトロ基(-NO2)、イミノ基(=NH)、シアノ基(-CN)、アゾ基(-N=N-)、ジアゾ基(=N2)、及びアジ基(-N3)からなる群より選ばれた少なくとも1種が好ましい。ここで、R、R’は炭素数1〜5の炭化水素基を表す。分散剤のトナー粒子への吸着性の観点からは、アミノ基及び/又はイミノ基が好ましく、トナー粒子の帯電性の観点からは、イミノ基がより好ましい。
塩基性窒素含有基以外に含まれる官能基としては、例えば、ヒドロキシ基、ホルミル基、アセタール基、オキシム基、チオール基等が挙げられる。
塩基性分散剤における塩基性窒素含有基の占める割合は、分散安定性の観点から、ヘテロ原子の個数換算で、好ましくは70個数%以上、より好ましくは80個数%以上、さらに好ましくは90個数%以上、さらに好ましくは95個数%以上、さらに好ましくは100個数%である。
塩基性分散剤は、液体現像剤の分散性の観点から、炭素数16以上の炭化水素、ハロゲン原子で一部置換された炭素数16以上の炭化水素、反応性の官能基を有する炭素数16以上の炭化水素、炭素数16以上のヒドロキシカルボン酸の重合体、炭素数2以上22以下の二塩基酸と炭素数2以上22以下のジオールの重合体、炭素数16以上のアルキル(メタ)アクリレートの重合体、ポリオレフィン等に由来する基(以下、「分散性基」ともいう)を含んでいることが好ましい。
炭素数16以上の炭化水素としては、炭素数16以上24以下の炭化水素が好ましく、例えば、ヘキサデセン、オクタデセン、エイコサン、ドコサン等が挙げられる。
ハロゲン原子で一部置換された炭素数16以上の炭化水素としては、ハロゲン原子で一部置換された炭素数16以上24以下の炭化水素が好ましく、例えば、クロロヘキサデカン、ブロモヘキサデカン、クロロオクタデカン、ブロモオクタデカン、クロロエイコサン、ブロモエイコサン、クロロドコサン、ブロモドコサン等が挙げられる。
反応性の官能基を有する炭素数16以上の炭化水素としては、反応性の官能基を有する炭素数16以上24以下の炭化水素が好ましく、例えば、ヘキサデセニルコハク酸、オクタデセニルコハク酸、エイコセニルコハク酸、ドコセニルコハク酸、ヘキサデシルグリシジルエーテル、オクタデシルグリシジルエーテル、エイコシルグリシジルエーテル、ドコシルグリシジルエーテル等が挙げられる。
炭素数16以上のヒドロキシカルボン酸の重合体としては、炭素数16以上24以下のヒドロキシカルボン酸の重合体が好ましく、例えば、18-ヒドロキシステアリン酸の重合体等が挙げられる。
炭素数2以上22以下の二塩基酸と炭素数2以上22以下のジオールの重合体としては、例えば、エチレングリコールとセバシン酸の重合体、1,4-ブタンジオールとフマル酸の重合体、1,6-ヘキサンジオールとフマル酸の重合体、1,10-デカンジオールとセバシン酸の重合体、1,12-ドデカンジオールと1,12-ドデカン二酸の重合体等が挙げられる。
炭素数16以上のアルキル(メタ)アクリレートの重合体としては、炭素数16以上24以下のアルキル(メタ)アクリレートの重合体が好ましく、例えば、ヘキサデシルメタクリレートの重合体、オクタデシルメタクリレートの重合体、ドコシルメタクリレートの重合体等が挙げられる。
ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、ポリブチレン、ポリイソブテン、ポリメチルペンテン、ポリテトラデセン、ポリヘキサデセン、ポリオクタデセン、ポリエイコセン、ポリドコセン等が挙げられる。
塩基性分散剤は、トナー粒子の分散性の観点から、ポリオレフィン骨格を有することが好ましく、ポリプロピレン骨格及び/又はポリイソブテン骨格を有することがより好ましく、分散剤のキャリアへの溶解性の観点から、ポリイソブテン骨格を有することがさらに好ましい。従って、前記分散性基のなかでは、ポリオレフィンに由来する基が好ましく、ポリプロピレンに由来する基及び/又はポリイソブテンに由来する基がより好ましく、ポリイソブテンに由来する基がさらに好ましい。
塩基性分散剤は、特に限定されるものではないが、例えば、塩基性窒素含有基原料と分散性基原料とを反応させて得られる。
塩基性窒素含有基原料としては、ポリエチレンイミン等のポリアルキレンイミン、ポリアリルアミン、ポリジメチルアミノエチルメタクリレート等のポリアミノアルキルメタクリレート等が挙げられる。
塩基性窒素含有基原料の数平均分子量は、酸性基の有する樹脂への吸着性の観点から、好ましくは100以上、より好ましくは500以上、さらに好ましくは1,000以上であり、そして、トナー粒子の分散性の観点から、好ましくは15,000以下、より好ましくは10,000以下、さらに好ましくは5,000以下である。
分散性基原料としては、ハロゲン化された炭素数16以上の炭化水素、反応性の官能基を有する炭素数16以上の炭化水素、炭素数16以上のヒドロキシカルボン酸の重合体、炭素数2以上22以下の二塩基酸と炭素数2以上22以下のジオールの重合体、反応性の官能基を有する炭素数16以上のアルキル(メタ)アクリレートの重合体、反応性の官能基を有するポリオレフィン等が挙げられる。これらのなかでは、原料の入手性及び反応性の観点から、ハロゲン化された炭素数16以上の炭化水素、反応性の官能基を有する炭素数16以上の炭化水素、反応性の官能基を有する炭素数16以上24以下のアルキル(メタ)アクリレートの重合体、又は反応性の官能基を有するポリオレフィンが好ましい。反応性の官能基としては、カルボキシ基、エポキシ基、ホルミル基、イソシアネート基等が挙げられ、これらの中では、安全性及び反応性の観点から、カルボキシ基又はエポキシ基が好ましい。従って、反応性の官能基を有する化合物としては、カルボン酸系化合物が好ましい。カルボン酸系化合物としては、フマル酸、マレイン酸、エタン酸、プロパン酸、ブタン酸、コハク酸、シュウ酸、マロン酸、酒石酸、それらの無水物、又はそれらの炭素数が1以上3以下のアルキルエステル等が挙げられる。分散性基原料の具体例としては、クロロオクタデカン等のハロゲン化アルカン、エポキシ変性されたポリオクタデシルメタクリレート、ポリエチレン無水コハク酸、塩素化ポリプロピレン、ポリプロピレン無水コハク酸、ポリイソブテン無水コハク酸等が挙げられる。
分散性基原料におけるポリオレフィン骨格を有する化合物の含有量は、トナー粒子の分散性の観点から、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは100質量%である。
分散性基原料の数平均分子量は、トナー粒子の分散性の観点から、好ましくは500以上、より好ましくは700以上、さらに好ましくは900以上であり、そして、分散剤のトナー粒子への吸着性の観点から、好ましくは5,000以下、より好ましくは4,000以下、さらに好ましくは3,000以下である。
塩基性分散剤における塩基性窒素含有基と分散性基の質量比(塩基性窒素含有基/分散性基)は、トナー粒子への吸着性の観点から、好ましくは3/97以上であり、より好ましくは5/95以上であり、そして、トナー粒子の分散安定性の観点から、好ましくは20/80以下であり、より好ましくは15/85以下である。なお、塩基性分散剤における塩基性窒素含有基と分散性基の質量比は、塩基性分散剤のNMRで測定できるが、塩基性窒素含有基原料と分散性基原料とを反応させる塩基性分散剤の製造において、反応した原料化合物の質量比を、分散剤中の塩基性窒素含有基と分散性基の質量比(塩基性窒素含有基/分散性基)とみることもできる。
また、塩基性分散剤の数平均分子量は、低粘度化及び低温定着性の観点から、好ましくは2,000以上、より好ましくは2,500以上、さらに好ましくは3,000以上、さらに好ましくは3,500以上であり、そして、同様の観点から、好ましくは10,000以下、より好ましくは9,000以下、さらに好ましくは8,000以下である。
塩基性分散剤の含有量は、トナー粒子100質量部に対して、トナー粒子の分散安定性の観点から、好ましくは0.5質量部以上、より好ましくは1質量部以上、さらに好ましくは2質量部以上であり、そして、トナーの帯電性観点から、好ましくは10質量部以下、より好ましくは8質量部以下、さらに好ましくは5質量部以下である。
本発明の液体現像剤には、前記塩基性分散剤以外の公知の分散剤が含まれていてもよいが、前記塩基性分散剤の含有量は、分散剤中、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは実質的に100質量%、さらに好ましくは100質量%である。
本発明における絶縁性液体とは、電気が流れにくい液体のことを意味するが、本発明においては、絶縁性液体の導電率は、好ましくは1.0×10-11S/m以下、より好ましくは5.0×10-12S/m以下であり、そして、好ましくは1.0×10-13S/m以上である。
本発明の液体現像剤における絶縁性液体Cとして、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素系絶縁性液体、ハロゲン化炭化水素、ポリシロキサン、植物油等が挙げられ、これらの中では、分散安定性及び帯電性の観点から、炭化水素系絶縁性液体を含有していることが好ましい。炭化水素系絶縁性液体としては、非環状炭化水素系絶縁性液体が好ましく、脂肪族炭化水素系溶媒がより好ましく、分散安定性及び帯電性の観点から、ポリイソブテンがさらに好ましい。
本発明においてポリイソブテンとは、イソブテンを公知の方法、例えば触媒を用いたカチオン重合法によって重合した後、末端の二重結合に水素添加を行って得られるものである。
カチオン重合法に使用される触媒としては、例えば、塩化アルミニウム、酸性イオン交換樹脂、硫酸、フッ化ホウ素及びその錯体等が挙げられる。また、前記触媒に塩基を加えることで重合反応を制御することもできる。
ポリイソブテンの重合度は、トナーの低温定着性を向上させる観点から、好ましくは8以下、より好ましくは6以下、さらに好ましくは5以下、さらに好ましくは4以下、さらに好ましくは3以下である。また、チャージャー汚染を抑制する観点から、好ましくは2以上、より好ましくは3以上である。
重合反応の際に生じるイソブテンの未反応成分や重合度の高い高沸点成分は、蒸留により除去されることが好ましい。蒸留の方法としては、例えば、単蒸留法、連続蒸留法、水蒸気蒸留法等が挙げられ、これらの方法を単独でまたは組み合わせることができる。蒸留に使用する装置としては、材質、形状、型式等は特に限定されず、例えば、ラシヒリング等の充填物を充填した蒸留塔や皿状の棚を有する棚段蒸留塔等が挙げられる。また蒸留塔の分離能を示す理論段数は10段以上が好ましい。その他、蒸留塔へのフィード量、還流比、取出し量等の条件については、蒸留装置により適宣選択することが可能である。
重合反応で得られた生成物は重合末端に二重結合を有しているため、水素化反応により水素添加物を得る。水素化反応は、例えば、180〜230℃の温度でニッケルやパラジウム等を水素化触媒として用い、水素を2〜10MPaの圧力で接触させて行うことができる。
ポリイソブテンの含有量は、チャージャー汚染を抑制する観点から、絶縁性液体中、好ましくは5質量%以上、より好ましくは20質量%以上、さらに好ましくは40質量%以上、さらに好ましくは60質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上である。
ポリイソブテンを含有する絶縁性液体の市販品としては、「NAS-3」、「NAS-4」、「NAS-5H」(以上、いずれも日油(株)製)等が挙げられる。これらのうちの1種又は2種以上を組み合わせることができる。
炭化水素系絶縁性液体の含有量は、絶縁性液体中、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは100質量%である。
絶縁性液体Cの沸点は、トナー粒子の分散安定性をより向上させて保存安定性を向上させる観点から、好ましくは120℃以上、より好ましくは140℃以上、さらに好ましくは160℃以上であり、そして、トナーの低温定着性をより向上させる観点、湿式粉砕時にトナーの粉砕性をより向上させて小粒径のトナー粒子を得る観点から、好ましくは300℃以下、より好ましくは280℃以下、さらに好ましくは260℃以下である。絶縁性液体を2種以上組み合わせる場合には、組み合わせた絶縁性液体混合物の沸点が上記範囲内であることが好ましい。
絶縁性液体Cの25℃における粘度は、現像性を向上させる観点、及び液体現像剤中でのトナー粒子の保存安定性を向上させる観点から、好ましくは1mPa・s以上であり、そして、好ましくは100mPa・s以下、より好ましくは50mPa・s以下、さらに好ましくは20mPa・s以下、さらに好ましくは10mPa・s以下、さらに好ましくは5mPa・s以下である。
液体現像剤は、非晶質複合樹脂A、結晶性樹脂B、着色剤、分散剤、及び絶縁性液体に加えて、離型剤、荷電制御剤、荷電制御樹脂、磁性粉、流動性向上剤、導電性調整剤、繊維状物質等の補強充填剤、酸化防止剤、クリーニング性向上剤等の添加剤を適宜含有していてもよい。
液体現像剤は、トナー粒子を、必要に応じて分散剤の存在下で、絶縁性液体中に分散させて得られる。トナー粒子の粒径を小さくする観点、及び液体現像剤の粘度を低減する観点から、トナー粒子を絶縁性液体中に分散させた後、湿式粉砕して液体現像剤を得ることが好ましい。
トナー粒子、分散剤、及び絶縁性液体の混合方法としては、攪拌混合装置により攪拌する方法等が好ましい。
撹拌混合装置は、特に限定はされないが、トナー粒子分散液の生産性及び保存安定性を向上させる観点から、高速攪拌混合装置が好ましく、具体的には、デスパ(浅田鉄工(株)製)、T.K.ホモミクサー、T.K.ホモディスパー、T.K.ロボミックス(以上、いずれもプライミクス(株)製)、クレアミックス(エム・テクニック(株)製)、ケイディーミル(ケイディー・インターナショナル社製)等が好ましい。
高速攪拌混合装置による混合によって、トナー粒子が予備分散され、トナー粒子分散液を得ることができ、次の湿式粉砕による液体現像剤の生産性が向上する。
トナー粒子分散液の固形分濃度は、画像濃度を向上させる観点から、好ましくは20質量%以上、より好ましくは30質量%以上、さらに好ましくは33質量%以上であり、そして、トナー粒子の分散安定性を向上させ保存安定性を向上させる観点から、好ましくは50質量%以下、より好ましくは45質量%以下、さらに好ましくは40質量%以下である。
湿式粉砕とは、絶縁性液体中に分散させたトナー粒子を、絶縁性液体に分散した状態で機械的に粉砕処理する方法である。
使用する装置としては、例えば、アンカー翼等の一般に用いられている撹拌混合装置を用いることができる。撹拌混合装置の中では、デスパ(浅田鉄工(株)製)、T.K.ホモミクサー(プライミクス(株)製)等の高速攪拌混合装置、ロールミル、ビーズミル、ニーダー、エクストルーダ等の粉砕機又は混練機等が挙げられる。これらの装置は複数を組み合わせることもできる。
これらの中では、トナー粒子の粒径を小さくする観点、及びトナー粒子の分散安定性を向上させて保存安定性を向上させる観点、及びその分散液の粘度を低減する観点から、ビーズミルの使用が好ましい。
ビーズミルでは、用いるメディアの粒径や充填率、ローターの周速度、滞留時間等を制御することにより所望の粒径、粒径分布を持ったトナー粒子を得ることができる。
液体現像剤の固形分濃度は、画像濃度を向上させる観点から、好ましくは10質量%以上、より好ましくは15質量%以上、さらに好ましくは20質量%以上であり、そして、トナー粒子の分散安定性を向上させて保存安定性を向上させる観点から、好ましくは50質量%以下、より好ましくは45質量%以下、さらに好ましくは40質量%以下である。
液体現像剤中のトナー粒子の体積中位粒径(D50)は、液体現像剤の粘度を低減する観点から、好ましくは0.5μm以上、より好ましくは1μm以上、さらに好ましくは1.5μm以上であり、そして、液体現像剤の画質を向上させる観点から、好ましくは5μm以下、より好ましくは4μm以下、さらに好ましくは3μm以下である。
液体現像剤中のトナー粒子の含有量は、高速印刷の観点から、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは15質量%以上であり、そして、トナー粒子の分散安定性の観点から、好ましくは45質量%以下、より好ましくは40質量%以下、さらに好ましくは35質量%以下である。
液体現像剤中の絶縁性液体の含有量は、トナー粒子の分散安定性の観点から、好ましくは50質量%以上、より好ましくは55質量%以上、さらに好ましくは60質量%以上であり、そして、高速印刷の観点から、好ましくは90質量%以下、より好ましくは85質量%以下、さらに好ましくは80質量%以下である。
固形分濃度が25質量%の液体現像剤の25℃における粘度は、トナー粒子の分散安定性を向上させて保存安定性を向上させる観点から、好ましくは3mPa・s以上、より好ましくは5mPa・s以上、さらに好ましくは6mPa・s以上、さらに好ましくは7mPa・s以上であり、そして、液体現像剤の定着性を向上させる観点から、好ましくは50mPa・s以下、より好ましくは40mPa・s以下、さらに好ましくは30mPa・s以下、さらに好ましくは25mPa・s以下である。なお、ここでいう固形分濃度が25質量%の液体現像剤の粘度とは、液体現像剤の固形分濃度を25質量%に調整して測定した粘度を意味する。液体現像剤の固形分濃度は、25質量%より高い場合は、同じ絶縁性液体により希釈することにより、25質量%よりも低い場合は、絶縁性液体を濃縮等により除去することによって、それぞれ調整することができる。
以下に、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。樹脂等の物性は、以下の方法により測定した。
〔樹脂の軟化点〕
フローテスター「CFT-500D」((株)島津製作所製)を用い、1gの試料を昇温速度6℃/minで加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出す。温度に対し、フローテスターのプランジャー降下量をプロットし、試料の半量が流出した温度を軟化点とする。
フローテスター「CFT-500D」((株)島津製作所製)を用い、1gの試料を昇温速度6℃/minで加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出す。温度に対し、フローテスターのプランジャー降下量をプロットし、試料の半量が流出した温度を軟化点とする。
〔樹脂の吸熱の最高ピーク温度〕
示差走査熱量計「Q-100」(ティー・エイ・インスツルメント・ジャパン(株)製)を用いて、試料0.01〜0.02gをアルミパンに計量し、室温(25℃)から降温速度10℃/minで0℃まで冷却し、0℃にて1分間維持する。その後、昇温速度10℃/minで測定する。観測される吸熱ピークのうち、最も高温側にあるピークの温度を吸熱の最高ピーク温度とする。
示差走査熱量計「Q-100」(ティー・エイ・インスツルメント・ジャパン(株)製)を用いて、試料0.01〜0.02gをアルミパンに計量し、室温(25℃)から降温速度10℃/minで0℃まで冷却し、0℃にて1分間維持する。その後、昇温速度10℃/minで測定する。観測される吸熱ピークのうち、最も高温側にあるピークの温度を吸熱の最高ピーク温度とする。
〔樹脂のガラス転移温度〕
示差走査熱量計「DSC210」(セイコー電子工業(株)製)を用いて、試料0.01〜0.02gをアルミパンに計量し、200℃まで昇温し、その温度から降温速度10℃/minで0℃まで冷却する。次に試料を昇温速度10℃/minで昇温し、吸熱ピークを測定する。吸熱の最高ピーク温度以下のベースラインの延長線とピークの立ち上がり部分からピークの頂点までの最大傾斜を示す接線との交点の温度をガラス転移温度とする。
示差走査熱量計「DSC210」(セイコー電子工業(株)製)を用いて、試料0.01〜0.02gをアルミパンに計量し、200℃まで昇温し、その温度から降温速度10℃/minで0℃まで冷却する。次に試料を昇温速度10℃/minで昇温し、吸熱ピークを測定する。吸熱の最高ピーク温度以下のベースラインの延長線とピークの立ち上がり部分からピークの頂点までの最大傾斜を示す接線との交点の温度をガラス転移温度とする。
〔樹脂の酸価〕
JIS K 0070:1992の方法に基づき測定する。ただし、測定溶媒のみJIS K 0070の規定のエタノールとエーテルの混合溶媒から、非晶質樹脂はアセトンとトルエンの混合溶媒(アセトン:トルエン=1:1(容量比))に、結晶性化合物はクロロホルム:ジメチルホルムアミドの混合溶媒(クロロホルム:ジメチルホルムアミド=7:3(容量比))に、それぞれ変更する。
JIS K 0070:1992の方法に基づき測定する。ただし、測定溶媒のみJIS K 0070の規定のエタノールとエーテルの混合溶媒から、非晶質樹脂はアセトンとトルエンの混合溶媒(アセトン:トルエン=1:1(容量比))に、結晶性化合物はクロロホルム:ジメチルホルムアミドの混合溶媒(クロロホルム:ジメチルホルムアミド=7:3(容量比))に、それぞれ変更する。
〔絶縁性液体と混合する前のトナー粒子の体積中位粒径〕
測定機:コールターマルチサイザーII(ベックマン・コールター(株)製)
アパチャー径:100μm
解析ソフト:コールターマルチサイザーアキュコンプ バージョン 1.19(ベックマン・コールター(株)製)
電解液:アイソトンII(ベックマン・コールター(株)製)
分散液:電解液にエマルゲン109P(花王(株)製、ポリオキシエチレンラウリルエーテル、HLB(グリフィン):13.6)を溶解して5質量%に調整したもの
分散条件:前記分散液5mLに測定試料10mgを添加し、超音波分散機(機械名:(株)エスエヌディー製US-1、出力:80W)にて1分間分散させる。その後、前記電解液25mLを添加し、さらに、超音波分散機にて1分間分散させて、試料分散液を調製する。
測定条件:前記電解液100mLに、3万個の粒子の粒径を20秒間で測定できる濃度となるように、前記試料分散液を加え、3万個の粒子を測定し、その粒度分布から体積中位粒径(D50)を求める。
測定機:コールターマルチサイザーII(ベックマン・コールター(株)製)
アパチャー径:100μm
解析ソフト:コールターマルチサイザーアキュコンプ バージョン 1.19(ベックマン・コールター(株)製)
電解液:アイソトンII(ベックマン・コールター(株)製)
分散液:電解液にエマルゲン109P(花王(株)製、ポリオキシエチレンラウリルエーテル、HLB(グリフィン):13.6)を溶解して5質量%に調整したもの
分散条件:前記分散液5mLに測定試料10mgを添加し、超音波分散機(機械名:(株)エスエヌディー製US-1、出力:80W)にて1分間分散させる。その後、前記電解液25mLを添加し、さらに、超音波分散機にて1分間分散させて、試料分散液を調製する。
測定条件:前記電解液100mLに、3万個の粒子の粒径を20秒間で測定できる濃度となるように、前記試料分散液を加え、3万個の粒子を測定し、その粒度分布から体積中位粒径(D50)を求める。
〔塩基性窒素含有基原料の数平均分子量〕
以下に示す、ゲル浸透クロマトグラフィー(GPC)法により分子量分布を測定し、数平均分子量を求める。
(1) 試料溶液の調製
濃度が0.2g/100mLになるように、試料を0.15mol/LでNa2SO4を1%酢酸水溶液に溶解させた溶液に溶解させる。次いで、この溶液をポアサイズ0.2μmのフッ素樹脂フィルター「FP-200」(住友電気工業(株)製)を用いて濾過して不溶解成分を除き、試料溶液とする。
(2) 分子量測定
下記の測定装置と分析カラムを用い、溶離液として0.15mol/LでNa2SO4を1%酢酸水溶液に溶解させた溶液を、毎分1mLの流速で流し、40℃の恒温槽中でカラムを安定させる。そこに試料溶液100μLを注入して測定を行う。試料の分子量は、あらかじめ作成した検量線に基づき算出する。このときの検量線には、数種類の標準プルラン(昭和電工(株)製のP-5(Mw 5.9×103)、P-50(Mw 4.73×104)、P-200(Mw 2.12×105)、P-800(Mw 7.08×105))を標準試料として作成したものを用いる。括弧内は分子量を示す。
測定装置:HLC-8320GPC(東ソー(株)製)
分析カラム:α+α-M+α-M(東ソー(株)製)
以下に示す、ゲル浸透クロマトグラフィー(GPC)法により分子量分布を測定し、数平均分子量を求める。
(1) 試料溶液の調製
濃度が0.2g/100mLになるように、試料を0.15mol/LでNa2SO4を1%酢酸水溶液に溶解させた溶液に溶解させる。次いで、この溶液をポアサイズ0.2μmのフッ素樹脂フィルター「FP-200」(住友電気工業(株)製)を用いて濾過して不溶解成分を除き、試料溶液とする。
(2) 分子量測定
下記の測定装置と分析カラムを用い、溶離液として0.15mol/LでNa2SO4を1%酢酸水溶液に溶解させた溶液を、毎分1mLの流速で流し、40℃の恒温槽中でカラムを安定させる。そこに試料溶液100μLを注入して測定を行う。試料の分子量は、あらかじめ作成した検量線に基づき算出する。このときの検量線には、数種類の標準プルラン(昭和電工(株)製のP-5(Mw 5.9×103)、P-50(Mw 4.73×104)、P-200(Mw 2.12×105)、P-800(Mw 7.08×105))を標準試料として作成したものを用いる。括弧内は分子量を示す。
測定装置:HLC-8320GPC(東ソー(株)製)
分析カラム:α+α-M+α-M(東ソー(株)製)
〔分散性基原料の数平均分子量〕
(1) 試料溶液の調製
濃度が0.5g/100mLになるように、分散性基原料をテトラヒドロフランに溶解させる。次いで、この溶液をポアサイズ2μmのフッ素樹脂フィルター「FP-200」(住友電気工業(株)製)を用いて濾過して不溶解成分を除き、試料溶液とする。
(2) 分子量分布測定
下記の測定装置と分析カラムを用い、溶離液としてテトラヒドロフランを、毎分1mLの流速で流し、40℃の恒温槽中でカラムを安定させる。そこに試料溶液100μLを注入して測定を行う。試料の分子量は、あらかじめ作成した検量線に基づき算出する。このときの検量線には、数種類の単分散ポリスチレン(東ソー(株)製のA-500(Mw 5.0×102)、A-1000(Mw 1.01×103)、A-2500(Mw 2.63×103)、A-5000(Mw 5.97×103)、F-1(Mw 1.02×104)、F-2(Mw 1.81×104)、F-4(Mw 3.97×104)、F-10(Mw 9.64×104)、F-20(Mw 1.90×105)、F-40(Mw 4.27×105)、F-80(Mw 7.06×105)、F-128(Mw 1.09×106))を標準試料として作成したものを用いる。括弧内は分子量を示す。
測定装置:HLC-8220GPC(東ソー(株)製)
分析カラム:TSKgel GMHXL+TSKgel G3000HXL(東ソー(株)製)
(1) 試料溶液の調製
濃度が0.5g/100mLになるように、分散性基原料をテトラヒドロフランに溶解させる。次いで、この溶液をポアサイズ2μmのフッ素樹脂フィルター「FP-200」(住友電気工業(株)製)を用いて濾過して不溶解成分を除き、試料溶液とする。
(2) 分子量分布測定
下記の測定装置と分析カラムを用い、溶離液としてテトラヒドロフランを、毎分1mLの流速で流し、40℃の恒温槽中でカラムを安定させる。そこに試料溶液100μLを注入して測定を行う。試料の分子量は、あらかじめ作成した検量線に基づき算出する。このときの検量線には、数種類の単分散ポリスチレン(東ソー(株)製のA-500(Mw 5.0×102)、A-1000(Mw 1.01×103)、A-2500(Mw 2.63×103)、A-5000(Mw 5.97×103)、F-1(Mw 1.02×104)、F-2(Mw 1.81×104)、F-4(Mw 3.97×104)、F-10(Mw 9.64×104)、F-20(Mw 1.90×105)、F-40(Mw 4.27×105)、F-80(Mw 7.06×105)、F-128(Mw 1.09×106))を標準試料として作成したものを用いる。括弧内は分子量を示す。
測定装置:HLC-8220GPC(東ソー(株)製)
分析カラム:TSKgel GMHXL+TSKgel G3000HXL(東ソー(株)製)
〔分散剤の数平均分子量〕
以下に示す、ゲル浸透クロマトグラフィー(GPC)法により分子量分布を測定し、数平均分子量を求める。
(1) 試料溶液の調製
濃度が0.2g/100mLになるように、分散剤をクロロホルムに溶解させる。次いで、この溶液をポアサイズ0.2μmのフッ素樹脂フィルター「FP-200」(住友電気工業(株)製)を用いて濾過して不溶解成分を除き、試料溶液とする。
(2) 分子量測定
下記の測定装置と分析カラムを用い、溶離液として1.00mmol/LのファーミンDM2098(花王(株)製)のクロロホルム溶液を、毎分1mLの流速で流し、40℃の恒温槽中でカラムを安定させる。そこに試料溶液100μLを注入して測定を行う。試料の分子量は、予め作成した検量線に基づき算出する。このときの検量線には、数種類の単分散ポリスチレン(東ソー(株)製のA-500(Mw 5.0×102)、A-5000(Mw 5.97×103)、F-2(Mw 1.81×104)、F-10(Mw 9.64×104)、F-40(Mw 4.27×105))を標準試料として作成したものを用いる。括弧内は分子量を示す。
測定装置:HLC-8220GPC(東ソー(株)製)
分析カラム:K-804L(昭和電工(株)製)
以下に示す、ゲル浸透クロマトグラフィー(GPC)法により分子量分布を測定し、数平均分子量を求める。
(1) 試料溶液の調製
濃度が0.2g/100mLになるように、分散剤をクロロホルムに溶解させる。次いで、この溶液をポアサイズ0.2μmのフッ素樹脂フィルター「FP-200」(住友電気工業(株)製)を用いて濾過して不溶解成分を除き、試料溶液とする。
(2) 分子量測定
下記の測定装置と分析カラムを用い、溶離液として1.00mmol/LのファーミンDM2098(花王(株)製)のクロロホルム溶液を、毎分1mLの流速で流し、40℃の恒温槽中でカラムを安定させる。そこに試料溶液100μLを注入して測定を行う。試料の分子量は、予め作成した検量線に基づき算出する。このときの検量線には、数種類の単分散ポリスチレン(東ソー(株)製のA-500(Mw 5.0×102)、A-5000(Mw 5.97×103)、F-2(Mw 1.81×104)、F-10(Mw 9.64×104)、F-40(Mw 4.27×105))を標準試料として作成したものを用いる。括弧内は分子量を示す。
測定装置:HLC-8220GPC(東ソー(株)製)
分析カラム:K-804L(昭和電工(株)製)
〔絶縁性液体の導電率〕
絶縁性液体25gを40mL容のガラス製サンプル管「スクリューNo.7」((株)マルエム製)に入れ、非水系導電率計「DT-700」(Dispersion Technology社製)を用いて、電極を絶縁性液体に浸し、25℃で20回測定を行って平均値を算出し、導電率を測定する。数値が小さいほど高抵抗であることを示す。
絶縁性液体25gを40mL容のガラス製サンプル管「スクリューNo.7」((株)マルエム製)に入れ、非水系導電率計「DT-700」(Dispersion Technology社製)を用いて、電極を絶縁性液体に浸し、25℃で20回測定を行って平均値を算出し、導電率を測定する。数値が小さいほど高抵抗であることを示す。
〔絶縁性液体の沸点〕
示差走査熱量計「DSC210」(セイコー電子工業(株)製)を用いて、試料6.0〜8.0mgをアルミパンに計量し、昇温速度10℃/minで350℃まで昇温し、吸熱ピークを測定する。最も高温側の吸熱ピークを沸点とする。
示差走査熱量計「DSC210」(セイコー電子工業(株)製)を用いて、試料6.0〜8.0mgをアルミパンに計量し、昇温速度10℃/minで350℃まで昇温し、吸熱ピークを測定する。最も高温側の吸熱ピークを沸点とする。
〔絶縁性液体及び液体現像剤の25℃における粘度〕
10mL容のスクリュー管に測定液を6〜7mL入れ、回転振動式粘度計「ビスコメイトVM-10A-L」((株)セコニック製、検出端子:チタン製、φ8mm)を用い、検出端子の先端部の15mm上に液面が来る位置にスクリュー管を固定し、25℃にて粘度を測定する。
10mL容のスクリュー管に測定液を6〜7mL入れ、回転振動式粘度計「ビスコメイトVM-10A-L」((株)セコニック製、検出端子:チタン製、φ8mm)を用い、検出端子の先端部の15mm上に液面が来る位置にスクリュー管を固定し、25℃にて粘度を測定する。
〔トナー粒子分散液及び液体現像剤の固形分濃度〕
試料10質量部をヘキサン90質量部で希釈し、遠心分離装置「H-201F」((株)コクサン製)を用いて、回転数25,000r/minにて、20分間回転させる。静置後、上澄み液をデカンテーションにて除去した後、90質量部のヘキサンで希釈し、同様の条件で再び遠心分離を行う。上澄み液をデカンテーションにて除去した後、下層を真空乾燥機にて0.5kPa、40℃にて8時間乾燥させ、以下の式より固形分濃度を計算する。
試料10質量部をヘキサン90質量部で希釈し、遠心分離装置「H-201F」((株)コクサン製)を用いて、回転数25,000r/minにて、20分間回転させる。静置後、上澄み液をデカンテーションにて除去した後、90質量部のヘキサンで希釈し、同様の条件で再び遠心分離を行う。上澄み液をデカンテーションにて除去した後、下層を真空乾燥機にて0.5kPa、40℃にて8時間乾燥させ、以下の式より固形分濃度を計算する。
〔液体現像剤中のトナー粒子の体積中位粒径(D50)〕
レーザー回折/散乱式粒径測定装置「マスターサイザー2000」(マルバーン社製)を用いて、測定用セルにアイソパーL(エクソンモービル社製、イソパラフィン、25℃における粘度1mPa・s)を加え、散乱強度が5〜15%になる濃度で、粒子屈折率1.58(虚数部0.1)、分散媒屈折率1.42の条件にて、体積中位粒径(D50)を測定する。
レーザー回折/散乱式粒径測定装置「マスターサイザー2000」(マルバーン社製)を用いて、測定用セルにアイソパーL(エクソンモービル社製、イソパラフィン、25℃における粘度1mPa・s)を加え、散乱強度が5〜15%になる濃度で、粒子屈折率1.58(虚数部0.1)、分散媒屈折率1.42の条件にて、体積中位粒径(D50)を測定する。
非晶質樹脂の製造例1
表1に示す非晶質ポリエステル樹脂の原料モノマー、エステル化触媒、及びエステル化助触媒を窒素導入管、脱水管、攪拌器及び熱電対を装備した10L容の四つ口フラスコに入れ、230℃に昇温した後、230℃にて8時間反応させ、さらに8.3kPaに減圧して1時間反応させた。170℃に降温し、表1に示すスチレン系樹脂の原料モノマー、両反応性モノマー及び重合開始剤を1時間かけて滴下した。170℃に保持したまま1時間付加重合反応を熟成させた後、210℃に昇温し、8.3kPaにて1時間両反応性モノマーとポリエステル樹脂部位の反応を行い、表1に示す軟化点に達するまで反応を行って、表1に示す物性を有する非晶質複合樹脂(樹脂A1〜A7、A9、A11)を得た。
表1に示す非晶質ポリエステル樹脂の原料モノマー、エステル化触媒、及びエステル化助触媒を窒素導入管、脱水管、攪拌器及び熱電対を装備した10L容の四つ口フラスコに入れ、230℃に昇温した後、230℃にて8時間反応させ、さらに8.3kPaに減圧して1時間反応させた。170℃に降温し、表1に示すスチレン系樹脂の原料モノマー、両反応性モノマー及び重合開始剤を1時間かけて滴下した。170℃に保持したまま1時間付加重合反応を熟成させた後、210℃に昇温し、8.3kPaにて1時間両反応性モノマーとポリエステル樹脂部位の反応を行い、表1に示す軟化点に達するまで反応を行って、表1に示す物性を有する非晶質複合樹脂(樹脂A1〜A7、A9、A11)を得た。
非晶質樹脂の製造例2
表1に示す非晶質ポリエステル樹脂の原料モノマー、エステル化触媒、及びエステル化助触媒を、窒素導入管、脱水管、攪拌機及び熱電対を装備した10L容の四つ口フラスコに入れ、210℃で反応を行い、反応率が90%に達するまで反応させ、さらに8.3kPaにて反応を行い、目的の軟化点に達した時点で反応を終了し、表1に示す物性を有する非晶質ポリエステル樹脂(樹脂A8)を得た。
表1に示す非晶質ポリエステル樹脂の原料モノマー、エステル化触媒、及びエステル化助触媒を、窒素導入管、脱水管、攪拌機及び熱電対を装備した10L容の四つ口フラスコに入れ、210℃で反応を行い、反応率が90%に達するまで反応させ、さらに8.3kPaにて反応を行い、目的の軟化点に達した時点で反応を終了し、表1に示す物性を有する非晶質ポリエステル樹脂(樹脂A8)を得た。
非晶質樹脂の製造例3
10リットル容のキシレンを、温度計、ステンレス製撹拌棒、流下式コンデンサー、滴下ロート及び窒素導入管を装備した20リットル容の四つ口フラスコに入れ、表1に示すスチレン系樹脂の原料モノマー、両反応性モノマー及びラジカル重合開始剤を四つ口フラスコに装備した滴下ロートに入れた。その後、四つ口フラスコ中のキシレンを窒素雰囲気下で135℃に昇温し、滴下ロートから原料モノマーと重合開始剤の混合物を1時間かけてキシレン中に滴下した。さらに200℃まで昇温し、200℃で2時間保持した。その後、さらに8kPaの減圧下で1時間保持することによりキシレンを除去して、スチレン系樹脂(樹脂A10)を得た。
10リットル容のキシレンを、温度計、ステンレス製撹拌棒、流下式コンデンサー、滴下ロート及び窒素導入管を装備した20リットル容の四つ口フラスコに入れ、表1に示すスチレン系樹脂の原料モノマー、両反応性モノマー及びラジカル重合開始剤を四つ口フラスコに装備した滴下ロートに入れた。その後、四つ口フラスコ中のキシレンを窒素雰囲気下で135℃に昇温し、滴下ロートから原料モノマーと重合開始剤の混合物を1時間かけてキシレン中に滴下した。さらに200℃まで昇温し、200℃で2時間保持した。その後、さらに8kPaの減圧下で1時間保持することによりキシレンを除去して、スチレン系樹脂(樹脂A10)を得た。
結晶性樹脂の製造例1
表2に示す原料モノマー、エステル化触媒、及び重合禁止剤を窒素導入管、脱水管、攪拌器及び熱電対を装備した10リットル容の四つ口フラスコに入れ、160℃で5時間反応させた。その後、200℃に昇温して1時間反応させ、その後8.3kPaの減圧下、さらに1時間反応させて、結晶性ポリエステル樹脂(樹脂B1〜B3)を得た。
表2に示す原料モノマー、エステル化触媒、及び重合禁止剤を窒素導入管、脱水管、攪拌器及び熱電対を装備した10リットル容の四つ口フラスコに入れ、160℃で5時間反応させた。その後、200℃に昇温して1時間反応させ、その後8.3kPaの減圧下、さらに1時間反応させて、結晶性ポリエステル樹脂(樹脂B1〜B3)を得た。
分散剤の製造例1
塩基性窒素含有基原料として表3に示すポリエチレンイミン(ポリエチレンイミン600、純正化学(株)製)を冷却管、窒素導入管、撹拌機、脱水管及び熱電対を装備した2L容の四つ口フラスコに入れ、窒素ガスで反応容器内を置換した。撹拌しながら、分散性基原料として表3に示すポリイソブテン無水コハク酸(PIBSA)(OLOA15500、シェブロンジャパン(株)製、有効分:78質量%)を表3に示すキシレンに溶解した溶液を25℃で1時間かけて滴下した。滴下終了後、30分間室温で保持した。その後、反応容器内を150℃に加温して1時間保持した後、160℃に昇温して1時間保持した。160℃で8.3kPaに減圧してキシレンを留去し、IR分析からPIBSA由来の酸無水物のピーク(1780cm-1)が消失し、イミド結合由来のピーク(1700cm-1)が生じた時点を反応終点として、表3に示す物性を有する分散剤Aを得た。
塩基性窒素含有基原料として表3に示すポリエチレンイミン(ポリエチレンイミン600、純正化学(株)製)を冷却管、窒素導入管、撹拌機、脱水管及び熱電対を装備した2L容の四つ口フラスコに入れ、窒素ガスで反応容器内を置換した。撹拌しながら、分散性基原料として表3に示すポリイソブテン無水コハク酸(PIBSA)(OLOA15500、シェブロンジャパン(株)製、有効分:78質量%)を表3に示すキシレンに溶解した溶液を25℃で1時間かけて滴下した。滴下終了後、30分間室温で保持した。その後、反応容器内を150℃に加温して1時間保持した後、160℃に昇温して1時間保持した。160℃で8.3kPaに減圧してキシレンを留去し、IR分析からPIBSA由来の酸無水物のピーク(1780cm-1)が消失し、イミド結合由来のピーク(1700cm-1)が生じた時点を反応終点として、表3に示す物性を有する分散剤Aを得た。
実施例1〜10及び比較例1〜4
表4に示す非晶質樹脂A 70質量部と結晶性樹脂B 10質量部、及び着色剤「ECB-301」(大日精化工業(株)製、フタロシアニンブルー15:3)20質量部を、予め20L容のヘンシェルミキサーを使用し、回転数1500r/min(周速度21.6m/sec)で3分間攪拌混合後、以下に示す条件で溶融混練した。なお、比較例3の非晶質樹脂Aは、樹脂A8 66.5質量部と樹脂A10 3.5質量部との併用である。
表4に示す非晶質樹脂A 70質量部と結晶性樹脂B 10質量部、及び着色剤「ECB-301」(大日精化工業(株)製、フタロシアニンブルー15:3)20質量部を、予め20L容のヘンシェルミキサーを使用し、回転数1500r/min(周速度21.6m/sec)で3分間攪拌混合後、以下に示す条件で溶融混練した。なお、比較例3の非晶質樹脂Aは、樹脂A8 66.5質量部と樹脂A10 3.5質量部との併用である。
〔溶融混練条件〕
連続式二本オープンロール型混練機「ニーデックス」(日本コークス工業(株)製、ロール外径:14cm、有効ロール長:55cm)を使用した。連続式二本オープンロール型混練機の運転条件は、高回転側ロール(フロントロール)回転数75r/min(周速度32.4m/min)、低回転側ロール(バックロール)回転数35r/min(周速度15.0m/min)、混練物供給口側端部のロール間隙0.1mmであった。ロール内の加熱媒体温度及び冷却媒体温度は、高回転側ロールの原料投入側が90℃及び混練物排出側が85℃であり、低回転側ロールの原料投入側が35℃及び混練物排出側が35℃であった。また、原料混合物の上記混練機への供給速度は10kg/h、上記混練機中の平均滞留時間は約3分間であった。
連続式二本オープンロール型混練機「ニーデックス」(日本コークス工業(株)製、ロール外径:14cm、有効ロール長:55cm)を使用した。連続式二本オープンロール型混練機の運転条件は、高回転側ロール(フロントロール)回転数75r/min(周速度32.4m/min)、低回転側ロール(バックロール)回転数35r/min(周速度15.0m/min)、混練物供給口側端部のロール間隙0.1mmであった。ロール内の加熱媒体温度及び冷却媒体温度は、高回転側ロールの原料投入側が90℃及び混練物排出側が85℃であり、低回転側ロールの原料投入側が35℃及び混練物排出側が35℃であった。また、原料混合物の上記混練機への供給速度は10kg/h、上記混練機中の平均滞留時間は約3分間であった。
得られた混練物を冷却ロールで圧延冷却した後、ハンマーミルを用いて1mm程度に粗粉砕した。得られた粗粉砕物を気流式ジェットミル「IDS」(日本ニューマチック(株)製)により微粉砕及び分級し、体積中位粒径(D50)が10μmのトナー粒子を得た。
得られたトナー粒子35質量部と絶縁性液体「NAS-4」(日油(株)製、ポリイソブテン、導電率:1.52×10-12S/m、沸点:247℃、25℃における粘度:2mPa・s)63.95質量部、及び分散剤A 1.05質量部を1L容のポリエチレン製容器に入れ、「T.K.ロボミックス」(プライミクス(株)製)を用いて、氷冷下、回転数7000r/minにて30分間攪拌を行い、固形分濃度36質量%のトナー粒子分散液を得た。
次に、得られたトナー粒子分散液を、直径0.8mmのジルコニアビーズを用いて、体積充填率60体積%にて、6筒式サンドミル「TSG-6」(アイメックス(株)製)で回転数1300r/min(周速度4.8m/sec)にて湿式粉砕した。ビーズをろ過により除去した後、ろ液100質量部に対し絶縁性液体「NAS-4」(日油(株)製)44質量部を加えて希釈し、固形分濃度を25質量%の液体現像剤を得た。
試験例1〔低温定着性〕
「OKトップコート紙」(王子製紙(株)製、坪量:127.9g/m2、紙厚:約103μm)に液体現像剤を滴下し、ワイヤーバーにより乾燥後のトナー質量が3.4g/m2になるように薄膜を作製した。その後、80℃の恒温槽中で10秒間保持した。
続いて、「OKI MICROLINE 3010」((株)沖データ製)から取り出した定着機を用いて、定着ロールの温度が80℃、定着速度が280mm/secで定着処理を行った。その後、定着ロール温度を160℃まで10℃ずつ上昇させながら、上記のような定着処理を行い、各温度で定着画像を得た。
得られた定着画像にメンディングテープ「Scotchメンディングテープ810」(スリーエムジャパン(株)製、幅18mm)を貼り付け、500gの荷重がかかるようにローラーでテープに圧力をかけた後、テープを剥離した。テープ剥離前と剥離後の画像濃度を、色彩計「GretagMacbeth Spectroeye」(グレタグ社製)を用いて測定した。画像印字部分を各3点測定し、その平均値を画像濃度として算出した。定着率(%)は、剥離後の画像濃度/剥離前の画像濃度×100の値から算出し、定着率が最初に90%以上となる定着ロールの温度を最低定着温度とし、低温定着性を評価した。結果を表4に示す。最低定着温度が低いほど低温定着性に優れることを示す。
「OKトップコート紙」(王子製紙(株)製、坪量:127.9g/m2、紙厚:約103μm)に液体現像剤を滴下し、ワイヤーバーにより乾燥後のトナー質量が3.4g/m2になるように薄膜を作製した。その後、80℃の恒温槽中で10秒間保持した。
続いて、「OKI MICROLINE 3010」((株)沖データ製)から取り出した定着機を用いて、定着ロールの温度が80℃、定着速度が280mm/secで定着処理を行った。その後、定着ロール温度を160℃まで10℃ずつ上昇させながら、上記のような定着処理を行い、各温度で定着画像を得た。
得られた定着画像にメンディングテープ「Scotchメンディングテープ810」(スリーエムジャパン(株)製、幅18mm)を貼り付け、500gの荷重がかかるようにローラーでテープに圧力をかけた後、テープを剥離した。テープ剥離前と剥離後の画像濃度を、色彩計「GretagMacbeth Spectroeye」(グレタグ社製)を用いて測定した。画像印字部分を各3点測定し、その平均値を画像濃度として算出した。定着率(%)は、剥離後の画像濃度/剥離前の画像濃度×100の値から算出し、定着率が最初に90%以上となる定着ロールの温度を最低定着温度とし、低温定着性を評価した。結果を表4に示す。最低定着温度が低いほど低温定着性に優れることを示す。
試験例2〔耐ドキュメントオフセット性(耐DO性)〕
「PODグロスコート紙」(王子製紙(株)製)に液体現像剤を滴下し、ワイヤーバーにより乾燥後の質量が1.2g/m2になるように薄膜を作製した。その後、80℃の恒温槽中で10秒間保持した。続いて、「OKI MICROLINE 3010」((株)沖データ製)から取り出した定着機を用いて、定着ロールの温度が120℃、定着速度が280mm/secで定着処理を行った。
同じものを2枚用意し、定着画像部が対向するように2枚の用紙を重ね合わせたサンプルを、面圧80g/cm2の荷重をかけて温度50℃の環境下で1日静置した。その後、重ね合わせた用紙を取り出し、剥離した。10個のサンプルを準備し、開いた後の定着画像部の状態を目視にて観察し、以下の評価基準に従って、耐ドキュメントオフセット性を評価した。結果を表4に示す。
「PODグロスコート紙」(王子製紙(株)製)に液体現像剤を滴下し、ワイヤーバーにより乾燥後の質量が1.2g/m2になるように薄膜を作製した。その後、80℃の恒温槽中で10秒間保持した。続いて、「OKI MICROLINE 3010」((株)沖データ製)から取り出した定着機を用いて、定着ロールの温度が120℃、定着速度が280mm/secで定着処理を行った。
同じものを2枚用意し、定着画像部が対向するように2枚の用紙を重ね合わせたサンプルを、面圧80g/cm2の荷重をかけて温度50℃の環境下で1日静置した。その後、重ね合わせた用紙を取り出し、剥離した。10個のサンプルを準備し、開いた後の定着画像部の状態を目視にて観察し、以下の評価基準に従って、耐ドキュメントオフセット性を評価した。結果を表4に示す。
〔評価基準〕
A:剥離時に10個のサンプル全てで剥離音がなく、画像の欠損も見られない
B:剥離時に10個中1個又は2個のサンプルで剥離音がするが、画像の欠損は見られない
C:剥離時に10個中3個以上のサンプルで剥離音がするが、画像の欠損は見られない
D:剥離時に10個中3個以上のサンプルで剥離音がし、10個のサンプル(用紙20枚)の画像部分の総面積の1/3未満の面積で画像の欠損が見られる
E:剥離時に10個中3個以上のサンプルで剥離音がし、10個のサンプル(用紙20枚)の画像部分の総面積の1/3以上の面積で画像の欠損が見られる
A:剥離時に10個のサンプル全てで剥離音がなく、画像の欠損も見られない
B:剥離時に10個中1個又は2個のサンプルで剥離音がするが、画像の欠損は見られない
C:剥離時に10個中3個以上のサンプルで剥離音がするが、画像の欠損は見られない
D:剥離時に10個中3個以上のサンプルで剥離音がし、10個のサンプル(用紙20枚)の画像部分の総面積の1/3未満の面積で画像の欠損が見られる
E:剥離時に10個中3個以上のサンプルで剥離音がし、10個のサンプル(用紙20枚)の画像部分の総面積の1/3以上の面積で画像の欠損が見られる
試験例3〔帯電性〕
固形分濃度が25質量%の液体現像剤を、帯電減衰性測定装置(ナノシーズ社製)を用いて、アルミパン(径:10mm)に0.03g計量し、測定時間10秒で、表面電位を測定し、下記式から、最大表面電位からの帯電減衰速度(1/√秒)を算出した。結果を表4に示す。数値が小さいほど帯電保持性に優れることを示す。
固形分濃度が25質量%の液体現像剤を、帯電減衰性測定装置(ナノシーズ社製)を用いて、アルミパン(径:10mm)に0.03g計量し、測定時間10秒で、表面電位を測定し、下記式から、最大表面電位からの帯電減衰速度(1/√秒)を算出した。結果を表4に示す。数値が小さいほど帯電保持性に優れることを示す。
V=V0・exp(-α√t)
V:表面電位
V0:初期表面電位
α:減衰速度
t:減衰時間
V:表面電位
V0:初期表面電位
α:減衰速度
t:減衰時間
以上の結果より、実施例1〜10の液体現像剤は、低温定着性、帯電性及び耐ドキュメントオフセット性のいずれもが良好であることが分かる。なかでも、実施例1、7〜10の対比から、非晶質複合樹脂におけるスチレン系モノマー由来の構成単位の割合が高くなるほど帯電性が向上していることが分かる。
これに対して、非晶質樹脂がスチレン系樹脂を有していない比較例1は、帯電性に欠けており、非晶質樹脂におけるアクリル系モノマーの割合が高い比較例2は、結晶性ポリエステル樹脂の結晶化が促進されないため、耐ドキュメントオフセット性が低く、スチレン系モノマーの比率が低いため帯電性も低下している。非晶質ポリエステル樹脂とスチレン系樹脂が複合していない比較例3では、結晶性ポリエステル樹脂がスチレン系樹脂とのみ相溶し、結晶性ポリエステル樹脂の結晶化が促進されないため、耐ドキュメントオフセット性に欠けている。また、結晶性ポリエステル樹脂を用いていない比較例4では、低温定着性に欠けている。
これに対して、非晶質樹脂がスチレン系樹脂を有していない比較例1は、帯電性に欠けており、非晶質樹脂におけるアクリル系モノマーの割合が高い比較例2は、結晶性ポリエステル樹脂の結晶化が促進されないため、耐ドキュメントオフセット性が低く、スチレン系モノマーの比率が低いため帯電性も低下している。非晶質ポリエステル樹脂とスチレン系樹脂が複合していない比較例3では、結晶性ポリエステル樹脂がスチレン系樹脂とのみ相溶し、結晶性ポリエステル樹脂の結晶化が促進されないため、耐ドキュメントオフセット性に欠けている。また、結晶性ポリエステル樹脂を用いていない比較例4では、低温定着性に欠けている。
本発明の液体現像剤は、例えば、電子写真法、静電記録法、静電印刷法等において形成される潜像の現像等に好適に用いられるものである。
Claims (6)
- 非晶質複合樹脂A、結晶性樹脂B、及び着色剤を含有するトナー粒子と、絶縁性液体を含有する液体現像剤であって、前記非晶質複合樹脂Aが、非晶質ポリエステル樹脂とスチレン系樹脂が、非晶質ポリエステル樹脂の原料モノマーとスチレン系樹脂の原料モノマーのいずれとも反応し得る両反応性モノマー由来の構成単位を介して化学的に結合してなる樹脂であり、前記非晶質複合樹脂Aが、スチレン系モノマー由来の構成単位とアクリル系モノマー由来の構成単位とを有し、前記非晶質複合樹脂Aにおけるスチレン系モノマー由来の構成単位とアクリル系モノマー由来の構成単位の質量比(スチレン系モノマー由来の構成単位/アクリル系モノマー由来の構成単位)が75/25以上100/0未満である、液体現像剤。
- 非晶質複合樹脂Aにおける非晶質ポリエステル樹脂とスチレン系樹脂の質量比(非晶質ポリエステル樹脂/スチレン系樹脂)が、60/40以上98/2以下である、請求項1記載の液体現像剤。
- 非晶質複合樹脂Aにおけるスチレン系樹脂の原料モノマーが、アクリル酸アルキルエステル及びメタクリル酸アルキルエステルから選ばれる1種以上のアクリル系モノマーを含有する、請求項1又は2記載の液体現像剤。
- 両反応性モノマーが、アクリル酸及びメタクリル酸から選ばれる1種以上のアクリル系モノマーである、請求項1〜3いずれか記載の液体現像剤。
- 結晶性樹脂Bが、結晶性ポリエステル樹脂を含有する、請求項1〜4いずれか記載の液体現像剤。
- 非晶質複合樹脂Aと結晶性樹脂Bの質量比(非晶質複合樹脂A/結晶性樹脂B)が、65/35以上97/3以下である、請求項1〜5いずれか記載の液体現像剤。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018225199A JP2020086378A (ja) | 2018-11-30 | 2018-11-30 | 液体現像剤 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018225199A JP2020086378A (ja) | 2018-11-30 | 2018-11-30 | 液体現像剤 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020086378A true JP2020086378A (ja) | 2020-06-04 |
Family
ID=70907973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018225199A Pending JP2020086378A (ja) | 2018-11-30 | 2018-11-30 | 液体現像剤 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020086378A (ja) |
-
2018
- 2018-11-30 JP JP2018225199A patent/JP2020086378A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11774872B2 (en) | Toner binder | |
JP5840038B2 (ja) | 液体現像剤 | |
US10852655B2 (en) | Liquid developer | |
WO2018043327A1 (ja) | 液体現像剤 | |
JP6986409B2 (ja) | 乾式現像剤 | |
JP2020086378A (ja) | 液体現像剤 | |
JP6838827B2 (ja) | 液体現像剤 | |
JP2018205484A (ja) | 液体現像剤 | |
US11156932B2 (en) | Toner binder and toner | |
JP2020086377A (ja) | 液体現像剤 | |
JP6822902B2 (ja) | 液体現像剤 | |
US10120297B2 (en) | Liquid developer | |
JP2021173957A (ja) | 液体現像剤 | |
US20200379367A1 (en) | Liquid developer | |
JP2022039494A (ja) | 液体現像剤 | |
JP2020095214A (ja) | 液体現像剤 | |
JP6986941B2 (ja) | 液体現像剤 | |
JP2020079916A (ja) | 液体現像剤 | |
JP2019066685A (ja) | 液体現像剤 | |
JP2022083282A (ja) | 液体現像剤 | |
JP2022001914A (ja) | 液体現像剤 | |
JP2022072363A (ja) | 液体現像剤 | |
JP2022087651A (ja) | 液体現像剤 | |
JP2019012220A (ja) | 液体現像剤の製造方法 | |
JP2019184873A (ja) | 液体現像剤の製造方法 |