Nothing Special   »   [go: up one dir, main page]

JP2020085431A - Drive control system of tunnel type plane heating device, and device thereof - Google Patents

Drive control system of tunnel type plane heating device, and device thereof Download PDF

Info

Publication number
JP2020085431A
JP2020085431A JP2018226103A JP2018226103A JP2020085431A JP 2020085431 A JP2020085431 A JP 2020085431A JP 2018226103 A JP2018226103 A JP 2018226103A JP 2018226103 A JP2018226103 A JP 2018226103A JP 2020085431 A JP2020085431 A JP 2020085431A
Authority
JP
Japan
Prior art keywords
tunnel
heating device
ground surface
floor heating
elongated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018226103A
Other languages
Japanese (ja)
Inventor
隆一郎 大貝
Ryuichiro Okai
隆一郎 大貝
毅一 高瀬
Kiichi Takase
毅一 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ths Co Ltd
Original Assignee
Ths Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ths Co Ltd filed Critical Ths Co Ltd
Priority to JP2018226103A priority Critical patent/JP2020085431A/en
Publication of JP2020085431A publication Critical patent/JP2020085431A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Central Heating Systems (AREA)
  • Road Paving Structures (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

To provide a drive control system that although having a simple structure, drives an inexpensive floor surface heating device with excellent economical efficiency.SOLUTION: A drive control system of a tunnel type ground surface or floor surface heating device is configured that a tunnel type ground surface or floor surface heating device 1 comprises power supply control means designed to arbitrarily and selectively supply power supplied to the entire linear or strip-shaped long heating element at a predetermined maximum power and power reduced from the predetermined maximum power by a predetermined ratio.SELECTED DRAWING: Figure 1

Description

本発明は、トンネル式の地表面或いはトンネル式の床面暖房装置又はトンネル式の地面暖房装置を含むトンネル式の平面暖房装置の駆動制御方法或いはそのシステムに関するものであり、更に詳しくは、簡易な構成でありながら、施工性が良く且つ、安価で経済性にも優れた、特に屋内外の大衆が集まる地域或いは建物に於ける地表面或いは床面を効果的に暖房する事が可能なトンネル式の地表面或いはトンネル式の床面暖房装置を含むトンネル式の面暖房装置を駆動する為の駆動制御方法或いはその駆動制御システム並びにその装置に関するものである。 The present invention relates to a drive control method for a tunnel-type ground surface or tunnel-type floor heating system or a tunnel-type plane heating system including a tunnel-type ground heating system, or a system thereof, and more specifically, a simple method. Despite its structure, it is a tunnel type that has good workability, is inexpensive, and is economically efficient, and can effectively heat the ground surface or floor surface in areas where indoors and outdoors are crowded or in buildings. The present invention relates to a drive control method for driving a tunnel type surface heating device including a ground surface or a tunnel type floor surface heating device, a drive control system thereof, and a device thereof.

従来より、地表面や屋内の床面を含む一般的基底面部を加熱保温したり蓄熱保温する技術に関しては多数の異なる技術が開発され、一般的に実用化されてきている。
例えば、屋内の特に戸建住宅やマンションの個室等における床面を加熱保温する技術としては、通称、床暖房技術として周知されている通り、板体、繊維層体、プラスチック層体或いは大理石等を含む石材層からなる表面層部の下面層部に、通電により発熱する電気式発熱シートを配置するか、適宜の支持体層の間に、適宜の中空管をジグザグ状に引き回し配管し、当該中空管内に温水或いは温風を流通させるか、或いは当該中空管の代わりに、通電により発熱する線状発熱体を同じ形状で引き回し配設したブロックパネル材を複数個隣接して配列する方法が知られており、又、工場や倉庫等の大型建屋内或いは屋外の適宜の地表面に於いても、当該地表面を必要に応じて加熱したり、保温しておく必要のある部位は多数存在しており、例えば、当該工場や倉庫の内部温度を一定の温度に維持したいとか、道路や橋梁の表面或いは公衆が集まる公共施設等の地表面に凍結状態が発生すると危険な為、当該凍結防止のためにその地表面を加熱保温したり、特定の動植物の育成に際して、地中や地表面更には雰囲気温度を所望の温度に制御したい様な場合が多く存在しており、その何れの場合でも、地表面である基底面を主にコンクリートで構成し当該コンクリート層を主体とする本体部の表面部やその内部に適宜の中空管を配設し、当該中空管内に温水や温泉水、或いは温風を流通させるか、或いは当該中空管の代わりに、通電により発熱する面状発熱体を配置するか、通電により発熱する線状発熱体をジグザグ状に引き回し配線する方法、更には、当該コンクリート層を主体とする本体部の表面部やその内部に赤外線或いは電磁波を受けて発熱する発熱部材を配置する技術等が知られている。
BACKGROUND ART Conventionally, a number of different techniques have been developed and generally put into practical use as a technique for heating and retaining heat of a general basal plane portion including a ground surface and an indoor floor surface.
For example, as a technique for heating and keeping heat of a floor surface in an interior, especially in a detached house or a private room of a condominium, a plate body, a fiber layer body, a plastic layer body or marble is commonly known as a floor heating technology. In the lower surface layer portion of the surface layer portion including a stone material layer, an electric heating sheet that generates heat by energization is arranged, or between appropriate support layers, a suitable hollow tube is laid out in a zigzag manner and piped, There is a method in which hot water or warm air is circulated in the hollow tube, or instead of the hollow tube, a plurality of block panel materials in which linear heating elements that generate heat when energized are drawn around in the same shape are arranged adjacent to each other. There are many parts that need to be heated or kept warm as necessary even on the appropriate ground surface inside or outside large buildings such as factories and warehouses. For example, it is dangerous to maintain the internal temperature of the factory or warehouse at a constant temperature, or if a frozen state occurs on the surface of roads or bridges or the ground surface of public facilities where the public gathers. There are many cases where it is desired to control the temperature of the ground or the surface of the ground, and further the atmospheric temperature to a desired temperature, in order to heat and keep the ground surface for the purpose of heating or growing specific animals and plants. , A bottom surface which is the ground surface is mainly made of concrete, and an appropriate hollow pipe is disposed inside or inside the surface portion of the main body mainly composed of the concrete layer, and hot water or hot spring water in the hollow pipe, or A method in which hot air is circulated, or instead of the hollow tube, a planar heating element that generates heat by energizing is arranged, or a linear heating element that generates heat by energizing is laid out in a zigzag pattern and wired, further, 2. Description of the Related Art There is known a technique of arranging a heat generating member which receives infrared rays or electromagnetic waves to generate heat on the surface of a main body mainly composed of a concrete layer or inside thereof.

上記従来技術のそれぞれは、何れも個々の特徴を有しており、使用部位、使用目的、得られる作用効果等に於いて利点並びに欠点を有するものであるが、構造の簡易性、設置コスト、維持管理を含めたランニングコスト及び制御性等を勘案すると、例えば、特開2001−003307号公報(特許文献1)、特開2001−262507号公報(特許文献2)、特開2003−114283号公報(特許文献3)、特開2005−315063号公報(特許文献4)或いは特開2014−202001号公報(特許文献5)等に示される様な、通電により発熱する線状発熱体をコンクリート層内に配置した構造のものが、本発明に於けるトンネル式地表面或いは床面暖房装置の基本構成に使用可能な技術として望ましいものと考えられる。 Each of the above-mentioned conventional techniques has individual characteristics, and has advantages and disadvantages in terms of use site, purpose of use, obtained effect, etc., but the simplicity of the structure, installation cost, Considering running costs and controllability including maintenance, for example, JP 2001-003307 A (Patent Document 1), JP 2001-262507 A (Patent Document 2), and JP 2003-114283 A are used. (Patent Document 3), Japanese Patent Laid-Open No. 2005-315063 (Patent Document 4), Japanese Patent Laid-Open No. 2014-202001 (Patent Document 5), and the like, a linear heating element that generates heat by energization is provided in the concrete layer. It is considered that the structure having the above-mentioned structure is desirable as a technique that can be used for the basic configuration of the tunnel-type ground surface or floor heating device according to the present invention.

然しながら、上記した各公知技術に於いては、何れも、一つの大きなコンクリートブロック内に、一本の線状発熱体を、低コストで且つ有効に活用する為に、ジグザグ状に多数箇所に於いて屈曲させた状態で配置するものである為、当該線状発熱体の平均有効活性寿命が5年程度である事を考慮すると、当該線状発熱体の特性値が数年で低下した場合には、当該線状発熱体のみを当該コンクリートブロックから引き抜いて、新しい当該線状発熱体と差し替えて使用する事は全く不可能であるので、当該コンクリートブロック毎、新しい発熱保温性コンクリートブロックに取り替える必要があり、経済的コストの負担はかなり厳しいものとなると言う欠点がある。 However, in each of the above-mentioned publicly known techniques, in order to effectively use one linear heating element in one large concrete block at low cost and in a zigzag manner, it is provided at a large number of locations. Since the linear heating element is placed in a bent state, the average effective active life of the linear heating element is about 5 years. Since it is completely impossible to pull out only the linear heating element from the concrete block and replace it with a new linear heating element, it is necessary to replace each concrete block with a new heat retaining concrete block. However, there is a disadvantage in that the burden of economic cost becomes considerably severe.

更に、当該従来の技術に於いては、当該コンクリートブロック内に配置される当該線状発熱体の表面が均一に当該コンクリート部の内面部と接触出来ない箇所が多発している事から、当該線状発熱から発生される熱エネルギーの全てが確実に当該コンクリートブロック内に伝達される補償はなく、その結果、当該線状発熱体から発生される熱エネルギーの一部が無駄となっていると言う欠点も存在していた。
更には、上記した従来例に於いては、一つの発熱性コンクリートブロックには、一定の長さの当該線状発熱体のみが配線固定されているので、当該発熱性コンクリートブロックは何れも同じ程度の発熱効果しか発揮できないので、単一の用途のみにしか使用できず、用途の汎用性が不足しており、多様性に欠けると言う欠点も有するものであった。
Further, in the related art, since the surface of the linear heating element arranged in the concrete block frequently cannot contact with the inner surface of the concrete part, the wire is often broken. There is no compensation to ensure that all the heat energy generated from the linear heating is transferred into the concrete block, and as a result, part of the heat energy generated from the linear heating element is wasted. There were also shortcomings.
Furthermore, in the above-mentioned conventional example, since only one linear heating element of a certain length is fixed to one exothermic concrete block by wiring, the exothermic concrete blocks are of the same degree. Since it can exert only the heat-generating effect of No. 1, it can be used only for a single purpose, lacks versatility of use, and has a drawback of lacking versatility.

然も、上記した従来例に於いては、個々の部材の製造に高い製造コストが要求される他、構造が複雑で重量が重く、大型化が困難であり、施工コスト及び維持管理に係るランニングコストが高く、大型化する際の経済的課題が多く、産業的に実現が困難な状況にあった。
係る技術上の欠点や問題点を解消させるため、本願発明者等は、鋭意検討を重ねた結果、特願2017-138653号(特許文献6)や実願2018-002478号(特許文献7)の各明細書に開示されている様な、トンネル状の溝部を形成した基板本体部と当該溝部に挿入・引抜自在に構成された帯状或いは線状の長尺状発熱体とを組とした新規且つ進歩性を有する実用的な地平面或いは床面用の暖房装置を提案している。
However, in the above-mentioned conventional example, in addition to the high manufacturing cost required for manufacturing the individual members, the structure is complicated and heavy, and it is difficult to increase the size. The cost was high, and there were many economic issues when increasing the size, making it difficult to achieve industrially.
In order to solve the technical drawbacks and problems, the inventors of the present application have conducted extensive studies, and as a result, have disclosed Japanese Patent Application No. 2017-138653 (Patent Document 6) and Japanese Patent Application No. 2018-002478 (Patent Document 7). As disclosed in each specification, a new structure including a pair of a substrate main body having a tunnel-shaped groove formed therein and a strip-shaped or linear elongated heating element configured to be insertable into and withdrawal from the groove It proposes an innovative and practical heating device for a horizontal or floor surface.

より詳細に述べるならば、上記従来例に於いては、図2乃至図4に示されている通り、当該地平面或いは床面用の暖房装置1の構成は、具体的には、断熱性を有し、矩形状の平面形状を有する基板部7と、当該基板部7上に、所望の間隔を介して配置されている、熱伝導性の大なる材料で構成された天井部2とで構成され、且つ当該基板部7と当該天井部2との間には、保温性或いは蓄熱性若しくは断熱性を有する適宜の材料で構成された支持部材3が挿入された発熱構造体本体部1であって、且つ当該発熱構造体本体部1に於ける当該支持部材3には、当該基板部7の一方の長手方向と平行して、少なくとも一つの長尺状空間領域部4が形成されており、然も、当該長尺状空間領域部4の内部に、線状或いは帯状の長尺状発熱体5が挿入・引き抜き自在に嵌入せしめられる様に形成されている事を特徴とするトンネル式構造を持つ地表面用或いは床面用暖房装置1であり、換言するならば、断熱性を有し、所望の矩形状の平面形状を有する基板部7と、当該基板部7上に、所望の間隔を介して配置されている、放熱性或いは熱伝導性の大なる材料で構成された、所望の矩矩形状の平面形状を有する板状部材からなる天井部2と、当該天井部2の下方面に積層配置されており、当該天井部2の平面形状と同一の平面形状を有し、且つ保温性或いは蓄熱性若しくは断熱性を有する適宜の材料で構成された所望の厚みを有する支持部材3とから構成された発熱構造体本体部1、つまりトンネル式構造を持つ地表面用或いは床面用暖房装置1であって、当該支持部材3には、当該支持部材3に於ける当該天井部2に当接する表面部からその下方部に向かって、所定の深さを持ち、所定の幅を有する少なくとも一本の長尺状の溝部4が、当該支持部材3に於ける一方の長手方向と平行な方向に形成されているパネル基板部つまり発熱構造体本体部1と、当該支持部材3に於ける当該長尺状の溝部4内部10に挿入・引抜き自在に嵌合せしめられる少なくとも一本の線状或いは帯状の長尺状発熱体5との組で構成されている発熱構造体を使用するトンネル式構造を持つ地表面用或いは床面用暖房装置1である。 More specifically, in the above-mentioned conventional example, as shown in FIGS. 2 to 4, the configuration of the heating device 1 for the ground plane or the floor has a specific heat insulating property. And a ceiling portion 2 made of a material having a large thermal conductivity, which is disposed on the substrate portion 7 with a desired interval and has a rectangular planar shape. In addition, the heat generating structure body portion 1 in which the supporting member 3 made of an appropriate material having a heat retaining property, a heat accumulating property or a heat insulating property is inserted between the substrate part 7 and the ceiling part 2. In addition, at least one elongated space region portion 4 is formed in the supporting member 3 in the heat generating structure body portion 1 in parallel with one longitudinal direction of the substrate portion 7, However, a tunnel-type structure is characterized in that a linear or strip-shaped elongated heating element 5 is formed in the elongated space region portion 4 so that it can be inserted and extracted freely. It is the heating device 1 for the ground surface or the floor having the same, in other words, it has a heat insulating property and a substrate portion 7 having a desired rectangular planar shape, and a desired space is provided on the substrate portion 7. A ceiling portion 2 formed of a plate-like member having a desired rectangular-rectangular planar shape and made of a material having large heat dissipation or thermal conductivity, and a lower surface of the ceiling portion 2. A support member 3 which is arranged in a stack and has the same planar shape as that of the ceiling portion 2 and which has a desired thickness and is made of an appropriate material having heat retention, heat storage or heat insulation. A heat generating structure body portion 1 configured, that is, a heating device 1 for a ground surface or a floor surface having a tunnel type structure, in which the supporting member 3 corresponds to the ceiling portion 2 in the supporting member 3. A direction parallel to one longitudinal direction of the support member 3 in which at least one elongated groove portion 4 having a predetermined depth and a predetermined width extends from the contacting surface portion toward the lower portion thereof. The panel substrate portion, that is, the heat-generating structure body portion 1 and the elongated groove portion 4 inside 10 of the supporting member 3, and at least one linear or A heating device 1 for a ground surface or a floor having a tunnel-type structure that uses a heat-generating structure composed of a set of strip-shaped elongated heat-generating elements 5.

当該トンネル式構造を持つ地表面用或いは床面用暖房装置1に関する各種のディメンジョンの設定や構成素材の選択或いは施工方法、施工デザイン並びに配置・配線方法等は、上記した特許文献6及び7に詳細に説明されているので、本願では、繰り返しその詳細を述べる事は省略するが、基本的な問題点としては、当該トンネル式構造を持つ地表面用或いは床面用暖房装置1に使用される当該線状或いは帯状の長尺状発熱体5の構成とその発熱特性に注目する必要がある。
此処で、上記した従来例に係る当該線状或いは帯状の長尺状発熱体5の構成について以下に説明する。
即ち、上記従来例に係る当該線状或いは帯状の長尺状発熱体5は、本従来例に係るユニット状の当該トンネル式構造を持つ地表面用或いは床面用暖房装置1と組みを構成し、それぞれが本従来例に係る当該地表面或いは床面暖房装置1を構成する基本技術要素となっているものである。
Regarding the setting of various dimensions, the selection of constituent materials, the construction method, the construction design, the layout and wiring method, and the like regarding the ground surface or floor surface heating device 1 having the tunnel type structure, the details are described in Patent Documents 6 and 7 above. The detailed description thereof will be omitted in the present application, but the basic problem is that the ground surface or floor heating device 1 having the tunnel structure is used. It is necessary to pay attention to the configuration of the linear or strip-shaped elongated heating element 5 and its heat generation characteristics.
Here, the configuration of the linear or strip-shaped elongated heating element 5 according to the above-described conventional example will be described below.
That is, the linear or strip-shaped elongated heating element 5 according to the conventional example described above constitutes a set with the ground surface or floor heating device 1 having the unit type tunnel type structure according to the conventional example. , Respectively, are the basic technical elements constituting the ground surface or floor surface heating device 1 according to the conventional example.

此処で、当該従来例に係る当該線状或いは帯状の長尺状発熱体5の具体的構成例を図5を参照しながら詳細に説明するが、当該従来例に係る当該線状或いは帯状の長尺状発熱体5は係る具体例の構成に限定されるものでは無いことは言うまでもない。
即ち、本従来例に於いて使用する当該線状或いは帯状の長尺状発熱体5について説明するならば、本従来例に於いて使用される当該長尺状発熱体5はその構成は特に限定されるものではないが、例えば、図5に示す様に、一対の電極51,52の間に、炭素粒子と適宜の合成樹脂接着粒子とが混合された発熱層53を配置して、それを適宜の絶縁性合成樹脂材料層54で被覆した構造を有し、当該電極51,52を所定の電源手段70に接続させて通電すると、当該発熱層53が発熱するという構成の発熱体5を使用する事が望ましい。
上記した当該線状或いは帯状の長尺状発熱体5は、当該合成樹脂粒子が温度によってその体積が変化する様に設計されている場合には、当該発熱層53に対する通電量が変化するので、所謂、自己温度制御機能を有する線状若しくは帯状の長尺状発熱体部(PTC発熱線)として知られており、係る構成の長尺状発熱体部を使用する事が望ましい。
然も、上記した通り、従来例に於ける当該長尺状発熱体5は、特に、線状或いは帯状の長尺状発熱体を使用する事が必要であり、その形状も円形断面を有する線状体構造のものであっても良く或いは、楕円形の断面形状を有するものや、扁平状の断面を有する帯状の発熱体で有っても良い。
Here, a specific configuration example of the linear or strip-shaped elongated heating element 5 according to the conventional example will be described in detail with reference to FIG. 5, but the linear or strip-shaped long length according to the conventional example will be described. Needless to say, the lengthy heating element 5 is not limited to the configuration of the specific example.
That is, if the linear or strip-shaped elongated heating element 5 used in this conventional example is described, the configuration of the elongated heating element 5 used in this conventional example is particularly limited. Although not shown, for example, as shown in FIG. 5, a heat generating layer 53 in which carbon particles and appropriate synthetic resin adhesive particles are mixed is arranged between a pair of electrodes 51 and 52, and the heat generating layer 53 is disposed between the electrodes 51 and 52. A heating element 5 having a structure covered with an appropriate insulating synthetic resin material layer 54 and configured to generate heat in the heating layer 53 when the electrodes 51 and 52 are connected to a predetermined power source means 70 and energized It is desirable to do.
When the synthetic resin particles are designed such that the volume thereof changes depending on the temperature, the above-mentioned linear or strip-shaped elongated heating element 5 changes the amount of electricity supplied to the heating layer 53. It is known as a so-called linear or strip-shaped elongated heating element portion (PTC heating wire) having a self-temperature control function, and it is desirable to use the elongated heating element portion having such a configuration.
However, as described above, in particular, the elongated heating element 5 in the conventional example needs to use a linear or strip-shaped elongated heating element, and the shape thereof has a circular cross section. It may have a strip structure, or may have an elliptical cross-sectional shape or a strip-shaped heating element having a flat cross section.

更に、従来例に於いて使用される当該長尺状発熱体部5は、従来の電気エネルギーを使用した線条発熱体、例えば、ニクロム線等を使用する場合に比べて、発熱温度調整のために、サーモスタット手段等の余計な制御回路部品を使用する必要がないので、コストの低減の構造の簡素化が実現される。
然も、従来例に於いて使用される当該線状或いは帯状の長尺状発熱体5は、低温下でも十分に発熱し、しかも発熱体が自己温度制御性があるため、サミスターなどの温度制御装置が要らないと言う特徴を有している。
一方、従来例に於いては、当該長尺状発熱体5は、少なくとも前記した当該長尺状の溝部4よりもその長さが長く設定されている必要があり、それによって、当該長尺状発熱体5を当該長尺状の溝部4内に挿入配置した場合に、図6に示す様に、その一方の端部63の一部、或いは、例えば当該電極部51、52、若しくは当該電極部51、52に接続されている適宜の構成を有する着脱自在機能を持ったコネクター部55、56が、当該支持部材3の一方の端縁部59に設けられている当該長尺状の溝部4の一方の開放端部400から外方に突出して配置されるので、当該長尺状発熱体5の当該電極部51、52の端部を要すれば当該コネクター部55、56を介して、後述する適宜の電源手段70と電気的に接合する際に便利となる。
尚、従来例に於いては、当該パネル基板部1に形成されている当該長尺状の溝部4の当該支持部材3に於ける、当該一方の端部59に対向する当該他方の端部59’に形成される当該長尺状の溝部4の他方の端部は、当該他方の端縁部59’の側面部に開口部400を形成するものであっても良く、或いは密閉されている状態であっても良い事は言うまでもない。
従来例に係る当該線状或いは帯状の長尺状発熱体5の全体的な外観形状の一例を図5に示すが、その断面に於ける高さや幅、或いは直径は、当該長尺状の溝部4の内部空間内に嵌入出来る寸法に制限されるものであることが望ましい。
Further, the elongated heating element portion 5 used in the conventional example is for adjusting the heat generation temperature as compared with the case of using a conventional filament heating element using electric energy, for example, a nichrome wire. In addition, since it is not necessary to use extra control circuit parts such as thermostat means, cost reduction and simplification of the structure are realized.
Needless to say, the linear or strip-shaped long heating element 5 used in the conventional example sufficiently generates heat even at a low temperature, and since the heating element has self-temperature controllability, temperature control of a thermistor or the like is possible. It has the feature that no device is required.
On the other hand, in the conventional example, the length of the elongated heating element 5 needs to be set to be at least longer than the length of the elongated groove portion 4 described above. When the heating element 5 is inserted and arranged in the elongated groove portion 4, as shown in FIG. 6, a part of one end portion 63 thereof, for example, the electrode portion 51, 52, or the electrode portion. Connector parts 55 and 56, which are connected to 51 and 52 and have an appropriate configuration and having a detachable function, are provided in the elongated groove part 4 provided on one end edge part 59 of the support member 3. Since it is arranged so as to project outward from one open end portion 400, it will be described later via the connector portions 55 and 56 if the end portions of the electrode portions 51 and 52 of the elongated heating element 5 are required. This is convenient when electrically connecting to an appropriate power supply means 70.
In the conventional example, the other end 59 of the elongated groove 4 formed in the panel substrate 1 is opposed to the one end 59 of the support member 3 of the elongated groove 4. The other end portion of the elongated groove portion 4 formed in the'may form the opening portion 400 on the side surface portion of the other end edge portion 59', or in a sealed state. Needless to say, even if it is
FIG. 5 shows an example of the overall appearance of the linear or strip-shaped elongated heating element 5 according to the conventional example. The height, width, or diameter in the cross section is the elongated groove portion. It is desirable that the size is limited to the size that can be fitted into the internal space of 4.

一方、従来例に係る当該線状或いは帯状の長尺状発熱体5の長尺方向の長さLは、特に限定されるものではなく、当該パネル基板部1の単体の長さや、後述する通り、当該パネル基板部1を複数個、当該長尺状の溝部4の中心軸線を一致させるように隣接配置された当該パネル基板部群1の当該長尺方向の長さに依存して個別に決定されるものであって、例えば、300mm(0.3m)乃至300m超迄広範囲に選定される事になる。
従来例に於いては、最終的には、当該トンネル式地表面或いは床面暖房装置1内の当該長尺状の溝部4内に所定本数の当該線状或いは帯状の長尺状発熱体5を挿入嵌合させることによって、図6に示す様に、1枚の当該パネル状基板部を構成するユニット状の地表面或いは床面暖房装置1が完成することになる。
On the other hand, the length L in the longitudinal direction of the linear or strip-shaped elongated heating element 5 according to the conventional example is not particularly limited, and may be the length of the single unit of the panel substrate unit 1 or as described later. , The plurality of panel substrate parts 1 are individually determined depending on the length of the panel substrate part group 1 adjacently arranged so that the central axes of the elongated groove parts 4 coincide with each other in the longitudinal direction. For example, a wide range from 300 mm (0.3 m) to over 300 m can be selected.
In the conventional example, finally, a predetermined number of the linear or strip-shaped elongated heating elements 5 are provided in the elongated grooves 4 in the tunnel-type ground surface or floor heating device 1. By inserting and fitting, as shown in FIG. 6, the unit-shaped ground surface or floor surface heating device 1 constituting one panel-shaped substrate portion is completed.

此処で、従来例に於いて、当該パネル基板部1の当該長尺状の溝部4内に所定本数の当該線状或いは帯状の長尺状発熱体5を挿入嵌合させる操作が行われる時期は特に限定はされないが、好ましい具体例にあっては、1つ或いは複数個の当該パネル基板部1をコンクリート或いは合板や木材等で予め形成された適宜の床面或いは基底面47上に適宜の固定手段43、95等により固定させた後に、当該線状或いは帯状の長尺状発熱体5を当該固定されたパネル基板部1の当該長尺状の溝部4の一方の開口端部400から挿入することが好ましい具体例である。
つまり、従来例に於いては、当該トンネル状に形成された、当該パネル基板部1の当該長尺状の溝部4の空間領域10内に所定の線状或いは帯状の長尺状発熱体5を挿入し、当該線状或いは帯状の長尺状発熱体5に適宜通電処理を行う事によって、当該地表面或いは床面暖房装置1全体を加熱・発熱させるものである。
Here, in the conventional example, when the operation of inserting and fitting a predetermined number of the linear or strip-shaped elongated heating elements 5 into the elongated grooves 4 of the panel substrate portion 1 is performed, Although not particularly limited, in a preferred specific example, one or a plurality of the panel substrate parts 1 are appropriately fixed on an appropriate floor surface or base surface 47 formed in advance by concrete, plywood, wood, or the like. After being fixed by means 43, 95 or the like, the linear or strip-shaped elongated heating element 5 is inserted from one open end 400 of the elongated groove 4 of the fixed panel substrate portion 1. Is a preferred specific example.
That is, in the conventional example, a predetermined linear or strip-shaped elongated heating element 5 is provided in the space region 10 of the elongated groove portion 4 of the panel substrate portion 1 formed in the tunnel shape. By inserting and subjecting the linear or strip-shaped elongated heating element 5 to an energization as appropriate, the entire ground surface or floor heating device 1 is heated and generates heat.

上記従来例に於いては、従来の同様の床暖房装置に於ける当該線状或いは帯状の長尺状発熱体5の使用構成とは、根本的に異なる構成を採用したものであり、特に、当該線状或いは帯状の長尺状発熱体5を必ず直線状体で使用するものであり、それによって、当該線状或いは帯状の長尺状発熱体5を、作業者が何らかの設備装置を使用することなく、当該空間領域10内に、手作業により挿入操作が実行出来、且つ不良、不調となった当該線状或いは帯状の長尺状発熱体5或いは発熱作動が不可能となった当該線状或いは帯状の長尺状発熱体5を、それのみを単独に且つ自由自在に、然も、作業者が何らかの設備装置を使用することなく、当該空間領域10内から手作業により当該空間領域10から取り出す事が可能となる様に構成したものである。 In the above-mentioned conventional example, a configuration that is fundamentally different from the configuration in which the linear or strip-shaped elongated heating element 5 is used in the same conventional floor heating device is adopted, and in particular, The linear or strip-shaped long heating element 5 is always used as a linear body, whereby an operator uses the linear or strip-shaped long heating element 5 with any facility equipment. Without any trouble, the insertion operation can be manually performed in the space area 10 and the linear or strip-shaped elongated heating element 5 that is defective or malfunctioning or the linear shape that cannot perform the heat generation operation Alternatively, the strip-shaped long heating element 5 can be freely and independently used from the space area 10 by hand from inside the space area 10 without the operator using any equipment. It is configured so that it can be taken out.

上記従来例に於いては、係る新規な技術構成を採用する事によって、従来の技術に於いては、例え一本の当該線状或いは帯状の長尺状発熱体5でも故障し、作動不能となった場合には、当該床暖房装置全体を取り換える必要があったのに対し、従来例に於いては、当該地表面或いは床面暖房装置1そのものはそのまま使用する事が可能であり、問題となった当該線状或いは帯状の長尺状発熱体5のみを取り換える事で、修理が完了すると言う優れた作用効果を発揮する事ができるのである。
更に、従来例に於いて使用される当該長尺状発熱体5は、従来の電気エネルギーを使用した線条発熱体、例えば、ニクロム線等を使用する場合に比べて、発熱温度調整のために、サーモスタット手段等の余計な制御回路部品を使用する必要がないので、コストの低減の構造の簡素化が実現される。
然も、従来例に於いて使用される当該線状或いは帯状の長尺状発熱体5は、低温下でも十分に発熱し、しかも発熱体が自己温度制御性があるため、サミスターなどの温度制御装置が要らないと言う特徴を有している。
In the above-mentioned conventional example, by adopting such a new technical configuration, even in the conventional technology, even one of the linear or strip-shaped long heating elements 5 fails and becomes inoperable. In that case, the entire floor heating system had to be replaced, whereas in the conventional example, the ground surface or floor heating system 1 itself can be used as it is. By exchanging only the elongated linear or strip-shaped heating element 5 that has become defective, it is possible to exhibit an excellent effect that repair is completed.
Further, the elongated heating element 5 used in the conventional example is for adjusting the heat generation temperature as compared with the case of using a conventional filament heating element using electric energy, for example, a nichrome wire or the like. Since it is not necessary to use extra control circuit components such as thermostat means, cost reduction and simplification of the structure are realized.
Needless to say, the linear or strip-shaped long heating element 5 used in the conventional example sufficiently generates heat even at a low temperature, and since the heating element has self-temperature controllability, temperature control of a thermistor or the like is possible. It has the feature that no device is required.

一方、上記従来例に於いては、当該長尺状発熱体5の長さは、少なくとも前記した当該長尺状の溝部4の当該空間領域10よりも若干長く設定されている必要があり、それによって、当該長尺状発熱体5を当該長尺状の溝部4の当該空間領域10内に挿入配置した場合に、その一方の端部63の一部が当該長尺状の溝部4の開放端部400から外方に突出して配置されるので、当該長尺状発熱体5の端部63を後述する適宜の電源手段200と電気的に接合する際に便利となる。 On the other hand, in the above conventional example, the length of the elongated heating element 5 needs to be set to be at least slightly longer than the space region 10 of the elongated groove portion 4 described above. Thus, when the elongated heating element 5 is inserted and arranged in the space region 10 of the elongated groove portion 4, a part of one end 63 thereof is an open end of the elongated groove portion 4. Since it is arranged so as to project outward from the portion 400, it becomes convenient when electrically connecting the end portion 63 of the elongated heating element 5 to an appropriate power supply means 200 described later.

上記従来例に於いては、当該長尺状の溝部4の当該空間領域10を中空状の直線状管構造のトンネル状構造となし、これに当該長尺状発熱体5を挿入・引き抜き自在の構成としたことにより、当該長尺状発熱体5の寿命が5年前後である事を考慮すると、使用中の当該長尺状発熱体5の少なくとも一本でも、その発熱特性が劣化した場合には、当該発熱特性が劣化した当該長尺状発熱体5のみを当該空間領域10から抜き出して取り外し、その代わりに、新規の当該長尺状発熱体5を空となった当該空間領域10内に簡単に挿入する事が出来るので、従来例に係るトンネル式地表面或いは床面暖房装置1全体を廃棄して新しい当該トンネル式地表面或いは床面暖房装置1とそっくり取り換えると言う無駄でコストの掛る維持管理方法を採用しなくても済むと言う大きなコストメリットが得られる事になる。 In the above-mentioned conventional example, the space region 10 of the elongated groove portion 4 is formed as a tunnel-like structure having a hollow linear tube structure, and the elongated heating element 5 can be inserted and pulled out. Considering that the life of the long heating element 5 is about 5 years due to the configuration, even if at least one of the long heating elements 5 in use has deteriorated heat generation characteristics. Removes only the elongated heating element 5 having the deteriorated heat generation characteristic from the space area 10 and removes the new elongated heating element 5 into the empty space area 10 instead. Since it can be easily inserted, it is wasteful and costly to discard the entire tunnel-type ground surface or floor heating apparatus 1 according to the conventional example and replace it entirely with the new tunnel-type ground surface or floor heating apparatus 1. A big cost merit is obtained that there is no need to adopt a maintenance method.

更に、上記した従来の技術に於いては、基本的に、当該蓄熱コンクリート基板部内部に当該長尺状発熱体5を、コストの低減と発熱効果を出来るだけ高く維持する目的で、ジグザグ状に幾重にも折り曲げて挿入しているため、当該長尺状発熱体5のみを当該コンクリート基板部から自在に取り外す事が不可能であり、従って、使用中の複数本の当該長尺状発熱体5の内、一本でも発熱効果が劣化した場合には、当該蓄熱コンクリート基板部自体をそっくりそのまま新品の蓄熱コンクリート基板部自体と交換しなければならないので、修繕費を含むランニングコストは大幅に増大していたのに対し、従来例では、係る問題点を極めて容易な構成により、効率的に然も安価に補修修理が出来ると言う著しい作用効果を達成出来るのである。 Further, in the above-mentioned conventional technique, basically, the elongated heating element 5 is formed in a zigzag shape in order to reduce the cost and maintain the heating effect as high as possible inside the heat storage concrete substrate portion. Since it is bent and inserted in multiple layers, it is impossible to freely remove only the elongated heating element 5 from the concrete substrate portion. Therefore, a plurality of the elongated heating elements 5 in use are in use. If the heat-generating effect of even one of them deteriorates, it is necessary to replace the heat-storing concrete board part itself with the new heat-storing concrete board part as it is, so running costs including repair costs increase significantly. On the other hand, in the conventional example, such a problem can be achieved with a remarkable effect that repair and repair can be efficiently performed at low cost with an extremely easy configuration.

尚、従来例に於いては、当該長尺状発熱体5の発熱特性値を適宜の時間間隔で測定し、当該長尺状発熱体5の取り換え時期を早期に発見して、故障が顕出される前に、早めに補修修理を行う事が望ましい。
次に、上記した従来例に関連するトンネル式の地表面或いは床面暖房装置1を所望の地表面或いは床面等に配置・施工し、適宜の電気的接続手段及び又は電気的制御手段等を介して、当該線状或いは帯状の長尺状発熱体5の個々の電極51,52を適宜の電源70に連結されている個々の電源線72、73と接続させて、当該トンネル式地表面或いは床面暖房装置1の制御システムを形成する方法の例を以下に説明する。
In the conventional example, the heat generation characteristic value of the elongated heating element 5 is measured at an appropriate time interval, and the replacement time of the elongated heating element 5 is found early so that a failure is revealed. It is desirable to carry out repairs and repairs as soon as possible before being repaired.
Next, the tunnel-type ground surface or floor heating device 1 related to the above-mentioned conventional example is arranged and constructed on a desired ground surface or floor surface, and an appropriate electrical connecting means and/or electric control means is provided. The respective electrodes 51, 52 of the linear or strip-shaped elongated heating element 5 are connected to the respective power source lines 72, 73 connected to an appropriate power source 70 via the tunnel type ground surface or An example of a method of forming a control system for the floor heating system 1 will be described below.

即ち、当該地表面或いは床面暖房装置1に於ける、当該それぞれの線状或いは帯状の長尺状発熱体5と適宜の正極・負極からなる電源線72,73及び適宜の制御手段を含む電源手段70との配線接続の施工方法に関する具体例を図6乃至図8を参照しながら詳細に説明する。
即ち、従来例に於ける当該トンネル式地表面或いは床面暖房装置1の施工方法としては、特に限定されるものではないが、例えば、上記した複数個の当該長尺状の溝部4を所望の本数、所望の間隔で図1乃至図3に例示する方法で当該支持部材3内に複数本の当該長尺状の溝部4を配置形成したトンネル式地表面或いは床面暖房装置1を所定の工場内で製造し、これを所定の個数、施工現場に搬送し、所望の設計に沿って、当該基底面部47上の所定の部位に配置固定した後、当該それぞれのトンネル式地表面或いは床面暖房装置1の個々の当該長尺状の溝部4内部に所望の当該線状或いは帯状の長尺状発熱体5を手作業によって作業員により挿入し、その後、当該トンネル式地表面或いは床面暖房装置1の個々の当該長尺状の溝部4内部に挿入された当該個々の線状或いは帯状の長尺状発熱体5の端部に配置されているそれぞれの電極51,52を、作業員の手作業によって、当該トンネル式地表面或いは床面暖房装置1の表面或いはその近傍に設けられた電源手段70と適宜のコネクター手段78を介して接続する操作を行ってその施工を完了させるものである。
That is, in the ground surface or floor heating device 1, a power source including the respective linear or strip-shaped elongated heating elements 5 and power supply lines 72 and 73 composed of appropriate positive and negative electrodes and appropriate control means. A specific example of the method for constructing the wiring connection with the means 70 will be described in detail with reference to FIGS. 6 to 8.
That is, the construction method of the tunnel-type ground surface or floor heating device 1 in the conventional example is not particularly limited, but, for example, a plurality of the elongated groove portions 4 described above are desired. A tunnel type ground surface or floor heating device 1 in which a plurality of the elongated grooves 4 are formed in the support member 3 by a method illustrated in FIGS. After being manufactured inside, it is transported to a construction site in a predetermined number, placed and fixed at a predetermined site on the base bottom surface 47 according to the desired design, and then each tunnel type ground surface or floor heating The desired linear or strip-shaped elongated heating element 5 is manually inserted into the individual elongated groove portion 4 of the device 1 by an operator, and then the tunnel-type ground surface or floor heating device. One of the electrodes 51, 52 arranged at the end of the individual linear or strip-shaped elongated heating element 5 inserted in the individual elongated groove portion 4 of the operator 1 By the work, the construction is completed by performing an operation of connecting to the power source means 70 provided on the surface of the tunnel type ground surface or the surface of the floor heating device 1 or in the vicinity thereof through an appropriate connector means 78.

従来例に係る当該電源手段7は、当該パネル基板部1の適宜の端縁部の近傍で、当該トンネル式地表面或いは床面暖房装置1の側壁面59或いはその天井部2の一部に直接接合して配置形成されているものであっても良く、或いは、当該側壁面59或いはその天井部2と非接触の形で配置形成されていても良い。
従来例に於ける当該電源手段70の構成としては、例えば、図6及び8に示す様に、適宜の外部電源と接続された直流電源部71と、当該直流電源部71から延展された正電極線部72と負電極線部73と、当該各電極線部から当該複数の線状或いは帯状の長尺状発熱体5に於ける個々の電極線51と52とに電力を供給する分岐部79を含む複数個のスイッチング部77と、当該スイッチング部77に接続されている、当該正電極線部72と負電極線部73とを当該電極線51と52とを個々に接続する為の着脱自在に接続可能に構成された適宜のコネクター部78と、当該個々のスイッチング部77のON/OFF動作を個別に制御する為に、当該個々のスイッチング部77と個別的に接続されている制御回路部74と、当該制御回路部74に接続されているタイマー手段75並びに当該制御回路部74の動作を制御する制御プログラムが内蔵されている記憶手段76とから構成されている事が望ましい具体例である。
The power supply means 7 according to the conventional example is directly near the appropriate edge portion of the panel substrate portion 1 and directly on the tunnel-type ground surface or the side wall surface 59 of the floor heating device 1 or a part of the ceiling portion 2. It may be arranged and formed by being joined, or may be arranged and formed in a non-contact form with the side wall surface 59 or the ceiling portion 2.
As a configuration of the power supply means 70 in the conventional example, for example, as shown in FIGS. 6 and 8, a DC power supply unit 71 connected to an appropriate external power supply, and a positive electrode extended from the DC power supply unit 71. The line portion 72, the negative electrode line portion 73, and the branch portion 79 that supplies electric power from the respective electrode line portions to the individual electrode lines 51 and 52 in the plurality of linear or strip-shaped elongated heating elements 5. And a plurality of switching units 77 each including, and the positive electrode line portion 72 and the negative electrode line portion 73, which are connected to the switching unit 77, are detachable for individually connecting the electrode lines 51 and 52. An appropriate connector unit 78 configured to be connectable to the individual switching unit 77 and a control circuit unit individually connected to the individual switching unit 77 in order to individually control the ON/OFF operation of the individual switching unit 77. It is a preferable specific example that the control means 74 is composed of a timer means 75 connected to the control circuit portion 74 and a storage means 76 containing a control program for controlling the operation of the control circuit portion 74. ..

従来例に於ける当該電源手段70の配置例としては、図6に示す様に、所定の当該パネル基板部1の一方の端縁部59に隣接して配置される事が望ましい具体例であり、又、場合によっては、当該電源手段70を当該トンネル式地表面或いは床面暖房装置1に於ける当該天井部2の一部に配置する事も可能である。
上記した何れの具体例に於いても、当該線状或いは帯状の長尺状発熱体5の一方の端部に形成される当該電極線51と52は、作業者が手作業で当該コネクター手段78を介して、当該電源手段70と接続させると共に、当該制御回路部74にも接続させるものである。
As an arrangement example of the power supply means 70 in the conventional example, as shown in FIG. 6, it is preferable that the power supply means 70 is arranged adjacent to one end edge portion 59 of the predetermined panel board portion 1. In some cases, the power supply means 70 may be arranged on the tunnel-type ground surface or a part of the ceiling portion 2 of the floor heating device 1.
In any of the above-described specific examples, the electrode wires 51 and 52 formed at one end of the linear or strip-shaped elongated heating element 5 are manually connected by the worker to the connector means 78. It is connected to the power supply means 70 and also to the control circuit section 74 via the.

次に、従来例に係る上記の様な具体例を基本とする当該地表面或いは床面暖房装置1の、より具体的な施工例を図6乃至図9を参照しながら詳細に説明する。
即ち、従来例に於いて、当該地表面或いは床面暖房装置1を所定の室内或いは講堂や体育館等の屋内施設内部に設置施工する場合には、当該室内或いは屋内施設の所望の壁部300に近接した床部分に、当該トンネル式地表面或いは床面暖房装置1内の当該支持部材3に設けられた当該長尺状の溝部4内部に当該線状或いは帯状の長尺状発熱体5を挿入したり、そこから引き抜いたりするための操作を実行するために必要な作業用空間領域302が設けられる事が望ましい事具体例である。
Next, a more specific construction example of the ground surface or floor heating apparatus 1 based on the above-described specific example according to the conventional example will be described in detail with reference to FIGS. 6 to 9.
That is, in the conventional example, when the ground surface or floor heating device 1 is installed in a predetermined room or inside an indoor facility such as an auditorium or a gymnasium, a desired wall portion 300 of the room or indoor facility is installed. In the adjacent floor portion, the linear or strip-shaped elongated heating element 5 is inserted into the elongated groove portion 4 provided in the support member 3 in the tunnel-type ground surface or floor heating device 1. It is a specific example that it is desirable to provide the work space area 302 necessary for performing the operation for pulling out or pulling out from the work space area 302.

より具体的には、当該従来例に係る当該地表面或いは床面暖房装置1としては、当該複数個のトンネル式地表面或いは床面暖房装置1が、適宜の当該基底面部47の表面に、略矩形状に隣接配置されて構成されたトンネル式地表面或いは床面暖房装置1群に於ける、当該複数本の長尺状発熱体5の当該配線接続用コネクタ部材55、56が外方に突出せしめられている側の当該トンネル式地表面或いは床面暖房装置1群の端縁部側59の側面の外方部に形成される空間部302に、当該長尺状発熱体5を当該トンネル式地表面或いは床面暖房装置1に形成された当該長尺状溝部4内に挿入させるか引き抜きする為、若しくは、当該配線接続用コネクタ部材55、56を電源用配線72、73に設けられた別の接続用コネクタ部材57、58とを接続させるための操作を実行する為の作業及び点検作業を行うための空間領域部302が設けられているものである。
更に、上記具体例について詳述するならば、図8に示す様に、当該電源部70と当該線状或いは帯状の長尺状発熱体5のリード線51及び52との接続部は、所望の室内或いは施設内に於ける端部であって、当該部位における壁部300と当該基底部47との交差部に設けられる事が好ましい具体例である。
More specifically, as the ground surface or floor heating device 1 according to the conventional example, the plurality of tunnel-type ground surfaces or floor heating devices 1 are provided on the surface of the appropriate base bottom surface portion 47. In the tunnel type ground surface or floor surface heating device group 1 configured to be arranged adjacent to each other in a rectangular shape, the wiring connection connector members 55 and 56 of the plurality of long heating elements 5 project outward. The elongated heating element 5 is provided in a space portion 302 formed on the outer surface of the tunnel-type ground surface on the side where it is squeezed or the side surface on the edge side 59 of the floor heating device 1 group. In order to insert or pull out into or from the elongated groove portion 4 formed in the ground surface or floor heating device 1, or to connect the wiring connection connector members 55 and 56 to the power supply wirings 72 and 73. A space area portion 302 is provided for performing an operation for performing an operation for connecting the connection connector members 57 and 58 of FIG.
Further, if the above specific example is described in detail, as shown in FIG. 8, the connecting portion between the power supply unit 70 and the lead wires 51 and 52 of the linear or strip-shaped elongated heating element 5 is desired. It is a specific example that is preferably provided at the end of the room or the facility and at the intersection of the wall portion 300 and the base portion 47 at the relevant portion.

つまり、本具体例に於いては、当該所望の室内或いは施設内の当該基底部47と当該壁部300との交差部近傍であって、当該基底部47の表面上で、且つ当該壁部300に沿って2本の根太と称される保持材部301を所定の間隔を開けた状態で相互に平行となる様に配置固定し、その間隙部を当該リード線接続通路を兼ねた、上記線状或いは帯状の長尺状発熱体5の当該長尺状の溝部4内への挿入操作或いは引き抜き操作或いは点検操作として利用出来る空間部、つまり作業用空間領域302として形成した後、当該リード線接続通路兼当該作業用空間領域302を、適宜の被覆材304で被覆保護するものである。
当該被覆材304は、特にその構成材料は特定されるものではないが、例えば、最終段階で、当該パネル基板部1の上面に一般的に配置される大理石等の天然石材や合成樹脂、木材或いは合板材、床タイル等から成る床材46と同じものを使用する事が望ましい。
That is, in this specific example, it is on the surface of the base part 47 and near the intersection of the base part 47 and the wall part 300 in the desired room or facility. Along the line, two holding material portions 301 called joists are arranged and fixed so as to be parallel to each other with a predetermined gap, and the gap portion also serves as the lead wire connecting passage. After forming a space portion that can be used as an insertion operation, a withdrawal operation, or an inspection operation of the strip-shaped or strip-shaped elongated heating element 5 into the elongated groove portion 4, that is, a working space area 302, the lead wire connection The working space area 302 that also serves as a passage is covered and protected by an appropriate covering material 304.
Although the constituent material of the covering material 304 is not particularly specified, for example, a natural stone material such as marble or a synthetic resin, wood, or wood, which is generally arranged on the upper surface of the panel substrate portion 1 in the final stage. It is desirable to use the same material as the floor material 46 composed of plywood material, floor tiles and the like.

又、当該作業用空間領域302内には、図7及び図8に示す様に、当該線状或いは帯状の長尺状発熱体5の先端部から突出されている当該リード線51及び52とその先端部に取付られた第1のコネクター部55、56が予め配設されていると同時に、当該正・負の電源線部72、73と当該個々の電源線部72、73の少なくとも一部に設けられている分岐部分79から分離された分岐配線部86とその先端部に取り付けられ、当該第1のコネクター部55、56のそれぞれと個々に着脱自在に嵌合・分離出来る第2のコネクター部57、58とを含むコネクター部78とからなるスイッチング部77とが収納される事になる。 Further, in the working space area 302, as shown in FIGS. 7 and 8, the lead wires 51 and 52 protruding from the tip of the linear or strip-shaped elongated heating element 5 and the lead wires 51 and 52. At the same time that the first connector portions 55, 56 attached to the tip end portions are arranged in advance, the positive/negative power source line portions 72, 73 and at least a part of the individual power source line portions 72, 73 are provided. A branch wiring portion 86 separated from the provided branch portion 79 and a second connector portion which is attached to the tip portion thereof and can be detachably fitted and separated from the respective first connector portions 55 and 56 individually. The switching unit 77 including the connector unit 78 including 57 and 58 is housed.

処で、従来例に於いて使用される当該線状或いは帯状の長尺状発熱体5は、当初、電力が最初に供給された段階では、一時的に大量の電力を消費する特性があり、以後通常の発熱動作を実行している間は、一定の安定した少量の消費電力を使用する特性を有している。
その為、従来例に於ける様に、通電開始時に複数個の当該線状或いは帯状の長尺状発熱体5に同時に通電を開始すると、複数個の当該線状或いは帯状の長尺状発熱体5がその瞬間、それぞれが大量の電力を消費するので、そこで大きな電圧降下が発生し、ブレーカーの遮断が発生したり、電力の供給が不安定となり、当該システムの動作が正常に機能しない事態や照明のちらつきや暗度化が発生する危険が存在する事が判明した。
By the way, the linear or strip-shaped elongated heating element 5 used in the conventional example initially has a characteristic of temporarily consuming a large amount of electric power when the electric power is first supplied, After that, during the normal heat generation operation, it has a characteristic of using a constant and stable small amount of power consumption.
Therefore, as in the conventional example, when the plurality of linear or strip-shaped elongated heating elements 5 are simultaneously energized at the start of the energization, the plurality of linear or strip-shaped elongated heating elements 5 are simultaneously started. 5 consumes a large amount of power at that moment, a large voltage drop occurs at that point, the breaker is cut off, the power supply becomes unstable, and the system does not operate normally. It has been found that there is a risk of flickering and darkening of the lighting.

その為、当該従来例の開発者は、鋭意検討した結果、従来例に係る当該トンネル式地表面或いは床面暖房装置1をその稼働停止状態から次の稼働状態に移動させる際に、当該トンネル式地表面或いは床面暖房装置1の当該支持部材3内に配置されている全ての或いはその一部の当該長尺状の溝部4内に挿入されている全ての当該線状或いは帯状の長尺状発熱体5に同時に所定の電圧を印加するのではなく、先ず第1番目の(その配置されている部位は無関係に順次一つづく選択する事が望ましい)当該長尺状の溝部4内に挿入されている第1の当該線状或いは帯状の長尺状発熱体5のみに所定の電圧を印加した後、当該線状或いは帯状の長尺状発熱体5の消費電力が顕著に高騰する時期を経過した後で、当該線状或いは帯状の長尺状発熱体5の消費電力が略安定した状態に到達する間、第2の当該線状或いは帯状の長尺状発熱体5を含む他の全ての当該線状或いは帯状の長尺状発熱体5に対する電力供給は遮断状態に維持しておき、当該第1の線状或いは帯状の長尺状発熱体5の消費電力が略安定した状態に到達した後に、当該第1の線状或いは帯状の長尺状発熱体5に対する電力の供給は維持したまま、第3以降の全ての当該線状或いは帯状の長尺状発熱体5に対する電力供給は遮断状態に維持した状態で、選択された当該第2の線状或いは帯状の長尺状発熱体5に対して、所定の電力供給を開始し、その後、当該第2の線状或いは帯状の長尺状発熱体5に於ける当該消費電力が略安定した状態に到達した後、当該第1と第2の線状或いは帯状の長尺状発熱体5に対する電力の供給は維持したまま、当該第4以降の全ての当該線状或いは帯状の長尺状発熱体5に対する電力供給は遮断状態に維持しておき、当該第3の線状或いは帯状の長尺状発熱体5に対して、所定の電力供給を開始する様にし、以下同様の操作を繰り返して、逐次、使用されている全ての当該線状或いは帯状の長尺状発熱体5を所定の遅延時間間隔で、順次電圧供給を開始する様に制御する逐次通電方式を採用する事が望ましい事を知得した。 Therefore, as a result of diligent study, the developer of the conventional example has the tunnel type ground surface or floor heating device 1 according to the conventional example, when moving from the operation stop state to the next operation state. All the linear or strip-shaped elongated shapes that are inserted into all or some of the elongated grooves 4 that are arranged in the supporting member 3 of the ground surface or floor heating apparatus 1. Rather than applying a predetermined voltage to the heating element 5 at the same time, the first heating element 5 is preferably inserted into the elongated groove portion 4 (it is preferable to select one by one irrespective of the location of the arrangement). After a predetermined voltage is applied only to the first linear or strip-shaped elongated heating element 5, the time when the power consumption of the linear or strip-shaped elongated heating element 5 significantly increases. After that, while the power consumption of the linear or strip-shaped elongated heating element 5 reaches a substantially stable state, all the other linear or strip-shaped elongated heating elements 5 are included. The power supply to the linear or strip-shaped elongated heating element 5 is maintained in a cutoff state, and the power consumption of the first linear or strip-shaped elongated heating element 5 reaches a substantially stable state. After that, while the power supply to the first linear or strip-shaped long heating element 5 is maintained, the power supply to all the third or subsequent linear or strip-shaped long heating elements 5 is cut off. In the state of being maintained at, the predetermined electric power is started to be supplied to the selected second linear or strip-shaped elongated heating element 5, and then the second linear or strip-shaped elongated After the power consumption of the heating element 5 reaches a substantially stable state, the power supply to the first and second linear or strip-shaped elongated heating elements 5 is maintained, and the fourth and subsequent steps are performed. The power supply to all the linear or strip-shaped elongated heating elements 5 is kept in the cutoff state, and a predetermined power supply is supplied to the third linear or strip-shaped elongated heating elements 5. Then, the same operation is repeated to sequentially start voltage supply to all the linear or strip-shaped elongated heating elements 5 that are being used at a predetermined delay time interval. We have learned that it is desirable to adopt a sequential energization method to control.

即ち、上記の改良技術に於ける当該個々の線状或いは帯状の長尺状発熱体5に対して、所定の遅延時間間隔で、順次電圧供給を開始する様に制御する逐次通電方式は、例えば、図7に示す当該制御回路部74に於いて、当該線状或いは帯状の長尺状発熱体5に通電を開始する時刻を当該タイマー手段75からの時刻情報から検出して判断し、それと同時に、当該記憶手段76に内蔵されている制御プログラムの中から、所望の遅延時間により、当該スイッチング部77を逐次起動される様に構成されている特定の制御プログラムを選択し、当該選択されたプログラムを使用して、当該第1番目から第n番目迄の当該個々のスイッチング部77を、当該選択された所定の遅延時間間隔で、順にON状態に切り替えてゆくことで実行されることになる。
従来例に於いては、最初に当該線状或いは帯状の長尺状発熱体5の一つに電力が供給された時点から当該制御回路部74によって、当該所望の遅延時間を介して、順次他の当該線状或いは帯状の長尺状発熱体5に通電を開始して行き、最後の当該線状或いは帯状の長尺状発熱体5に通電が開始されて当該最後の遅延時間が経過した時点迄の時間間隔を電力供給初期駆動時間と称している。
That is, the sequential energization method of controlling the individual linear or strip-shaped elongated heating elements 5 in the above-mentioned improved technology so as to sequentially start voltage supply at a predetermined delay time interval is, for example, In the control circuit section 74 shown in FIG. 7, the time at which power supply to the linear or strip-shaped elongated heating element 5 is started is detected from the time information from the timer means 75, and is determined at the same time. , A specific control program configured to sequentially activate the switching unit 77 with a desired delay time is selected from the control programs stored in the storage unit 76, and the selected program is selected. Is executed by sequentially switching the individual switching units 77 from the first to the n-th to ON states at the selected predetermined delay time intervals.
In the conventional example, from the time when power is first supplied to one of the linear or strip-shaped elongated heating elements 5, the control circuit section 74 sequentially performs the other delays through the desired delay time. When the energization is started to the linear or strip-shaped long heating element 5 and the last delay time has elapsed since the energization to the last linear or strip-shaped long heating element 5 was started. The time interval up to this point is referred to as the power supply initial drive time.

即ち、従来例に於ける他の具体例としては、当該トンネル式地表面或いは床面暖房装置1に於ける当該電源手段70には、それぞれの当該線状或いは帯状の長尺状発熱体5の一端部51,52が個別的に接続されており、所望の電力が当該線状或いは帯状の長尺状発熱体5の一つに最初に供給された時点から所望の初期駆動時間の間に於いて、当該複数本の線状或いは帯状の長尺状発熱体5のそれぞれを、所望の遅延時間を介して、順次に当該電力供給電源72,73と接続させる様に機能する長尺状発熱体部逐次個別駆動制御手段74が設けられている事が望ましい具体例である。
尚、当該改良技術に於いて、当該トンネル式地表面或いは床面暖房装置1を稼働させる必要のない場合には、当該電源部70を遮断しておく事は当然のことであり、それを再度、再開させる場合には、再び上記した接続制御操作が作動する事になる。
In other words, as another specific example of the conventional example, the power source means 70 in the tunnel-type ground surface or floor surface heating device 1 is provided with the linear or strip-shaped elongated heating element 5, respectively. The one ends 51 and 52 are individually connected, and a desired electric power is first supplied to one of the linear or strip-shaped elongated heating elements 5 and a desired initial drive time is reached. In addition, a long heating element that functions so as to sequentially connect each of the plurality of linear or strip-shaped long heating elements 5 to the power supply sources 72 and 73 with a desired delay time. It is a specific example in which it is desirable to provide the partial sequential individual drive control means 74.
In the improved technology, it is natural to turn off the power supply unit 70 when it is not necessary to operate the tunnel-type ground surface or floor heating device 1, and to turn it off again. When restarting, the above-mentioned connection control operation is activated again.

然しながら、上記した当該トンネル式構造を持つ地表面用或いは床面用暖房装置の制御駆動に於いては、リレー手段を使用する必要があり、又、当該リレー手段を使用する事によって、コストの上昇他、当該リレー手段を操作する為の別途の電源の必要性が存在する他、当該リレー手段の寿命が極めて短いため、修理保全作業が増大し、経済的コストの大幅な上昇につながると云う大きな問題が発生してきている。
その為、当該トンネル式構造を持つ地表面用或いは床面用暖房装置1の制御駆動方法に於いては、当該リレー手段を使用しない効率的な発熱温度制御方法の開発が求められている。
However, in the control drive of the above-mentioned heating device for the ground surface or floor having the tunnel type structure, it is necessary to use the relay means, and the use of the relay means increases the cost. In addition, there is a need for a separate power source for operating the relay means, and the life of the relay means is extremely short, which increases repair and maintenance work and leads to a significant increase in economic cost. Problems are occurring.
Therefore, in the control driving method of the heating device 1 for the ground surface or floor surface having the tunnel type structure, it is required to develop an efficient heat generation temperature control method that does not use the relay means.

特開2001−003307号公報JP 2001-003307 A 特開2001−262507号公報JP 2001-262507 A 特開2003−114283号公報JP, 2003-114283, A 特開2005−315063号公報JP, 2005-315063, A 特開2014−202001号公報JP, 2014-202001, A 特願2017−138653号明細書Japanese Patent Application No. 2017-138653 実願2018−002478号明細書Japanese Patent Application No. 2018-002478

従って、本発明の目的は、上記した従来技術の問題点を改良し、構成が簡易で、リレー手段を使用せずに電力波形を利用して、PCT型発熱線を主体とする当該トンネル式の地表面或いは床面暖房装置1を効率的に且つ経済的に然も無音状態で高速に且つ電磁波の漏えいもなく適正に制御する事を可能とするトンネル式の地表面或いは床面暖房装置の駆動制御システム及びその装置を提供するものである。 Therefore, an object of the present invention is to improve the above-mentioned problems of the prior art, to have a simple structure, to utilize a power waveform without using relay means, and to use the tunnel-type PCT-type heating wire as a main body. Driving a tunnel-type ground surface or floor heating system that enables efficient and economical control of the ground surface or floor heating system 1 efficiently and economically at high speed and without leakage of electromagnetic waves. A control system and its device are provided.

本発明は、上記した従来技術の問題点を解決し、上記した本発明の目的を達成する為に、基本的には、以下に示す様な技術構成を採用するものである。
即ち、本発明の基本的な態様は、断熱性を有し、矩形状の平面形状を有する基板部と、当該基板部上に、所望の間隔を介して配置されている、熱伝導性の大なる材料で構成された天井部とで構成され、且つ当該基板部と当該天井部との間には、保温性或いは蓄熱性若しくは断熱性を有する適宜の材料で構成された支持部材が挿入された発熱構造体本体部であって、且つ当該発熱構造体本体部に於ける当該支持部材には、当該基板部の一方の長手方向と平行して、少なくとも一つの長尺状空間領域部が形成されており、然も、当該長尺状空間領域部の内部には、線状或いは帯状の長尺状発熱体が配設されているトンネル式の地表面或いは床面暖房装置であって、且つ、当該トンネル式の地表面或いは床面暖房装置は、所望の長さに設定されている直線状の線状或いは帯状の長尺状発熱体が、当該長尺状発熱体の直線状態を維持したままの状態で、挿入・引き抜き自在に嵌入せしめられる様に構成されているトンネル式の地表面或いは床面暖房装置に於いて、当該それぞれの長尺状の空間領域内に配置されている当該線状或いは帯状の長尺状発熱体は、その一方の端部が当該長尺状空間領域部の一方の端部側より空間に突出せしめられ、当該端部が当該トンネル式の地表面或いは床面暖房装置に直接或いはそれに近接して設けられている適宜の電力供給手段と着脱自在に接続されているトンネル式の地表面或いは床面暖房システムに於いて、当該直線状の線状或いは帯状の長尺状発熱体全体に供給される電力を、所定の最大電力の供給と、当該所定の最大電力より所定の比率だけ低減させた電力とを任意に且つ選択的に供給する様に設計された電力供給制御手段が設けられている事を特徴とするトンネル式の地表面或いは床面暖房装置の駆動制御システムである。
The present invention basically adopts the following technical configurations in order to solve the problems of the above-mentioned conventional techniques and achieve the above-mentioned objects of the present invention.
That is, a basic aspect of the present invention is that it has a heat insulating property, a substrate portion having a rectangular planar shape, and a large thermal conductivity that is arranged on the substrate portion with a desired interval. A supporting member made of an appropriate material having a heat retaining property, a heat storage property, or a heat insulating property is inserted between the substrate part and the ceiling part. At least one elongated space area portion is formed in the heat generating structure body portion and in the supporting member in the heat generating structure body portion in parallel with one longitudinal direction of the substrate portion. It is, of course, a tunnel-type ground surface or floor heating device in which a linear or strip-shaped elongated heating element is disposed inside the elongated space region portion, and In the tunnel-type ground surface or floor heating device, a linear linear or strip-shaped elongated heating element set to a desired length is maintained while maintaining the linear state of the elongated heating element. In a tunnel-type ground surface or floor heating device that is configured to be inserted/pulled in such a state that the linear shapes are arranged in the respective long space areas. Alternatively, the strip-shaped long heating element is configured such that one end of the strip-shaped heating element is projected into the space from one end side of the long space region portion, and the end is the tunnel-type ground surface or floor heating. In a tunnel-type ground surface or floor heating system that is detachably connected to an appropriate power supply means provided directly to or near the device, the linear linear or strip-shaped long length Power supply designed to arbitrarily and selectively supply a predetermined maximum power and a power obtained by reducing the power supplied to the entire heating element by a predetermined ratio. A drive control system for a tunnel-type ground surface or floor heating device, characterized in that a control means is provided.

本発明に係る当該トンネル式地表面或いは床面暖房装置及び当該大型面状暖房装置はそれぞれが上記した様な、技術構成を採用している事から、従来技術の問題点を改良し、構成が簡易で、設置作業が容易であり、且つ、設計や施工並びにそれらの保全や修理が容易かつ簡易であり、更に当該施工・維持管理に要する費用が安価であり、又、本体部分である当該発熱被覆体部は、故障がなく、長期間に亘って連続的に使用可能であり、更に、均一な発熱状態を顕出させると共に、効率的な熱エネルギーの利用から消費エネルギーに対するコストも低減化され、然も、発熱量或いは蓄熱量を自由に調整する事が可能であることから、使用用途を大幅に汎用化させる事が可能なトンネル式地表面或いは床面暖房装置及び大型面状暖房装置の駆動制御方法やそのシステム並びにその装置を提供するものである。
又、本発明に於いては、本発明の基礎を構成するトンネル式地表面或いは床面暖房装置は、主に地表面或いは床面に配置して地表面或いは床面を暖房する面状の暖房装置として使用する事を中心として具体例の説明を行うが、本発明の基礎を構成するトンネル式地表面或いは床面暖房装置は、地表面或いは床面を暖房する事はもとより、これを垂直に立設して使用する事も可能であるから、例えば、家屋の内装材としての壁材や家具等の側壁面或いは天板や底板、寝台の底板、更には、椅子等の腰掛け部や背もたれ部等の家具用の一部分に使用される部材の暖房装置にも使用する事が可能である事は言うまでもないことであり、当該家屋の壁面や家具等の壁面或いは平端部面の暖房用面状暖房装置として使用する例も後述する。
Since the tunnel-type ground surface or floor heating apparatus and the large-scale planar heating apparatus according to the present invention each employ the technical configuration as described above, the problems of the conventional technology are improved and the configuration is improved. It is simple, easy to install, easy to design and install, and easy to maintain and repair, and the cost required for the installation and maintenance is low. The coating part has no failure and can be used continuously for a long period of time. Furthermore, a uniform heat generation state is revealed, and the cost for energy consumption is reduced due to efficient use of heat energy. Of course, since it is possible to freely adjust the amount of heat generation or the amount of heat storage, it is possible to greatly generalize the use of tunnel type ground surface or floor heating device and large-scale planar heating device. The present invention provides a drive control method, its system, and its apparatus.
Further, in the present invention, the tunnel type ground surface or floor heating device which constitutes the basis of the present invention is a planar heating device which is mainly arranged on the ground surface or floor surface to heat the ground surface or floor surface. Although a specific example will be described focusing on the use as a device, the tunnel-type ground surface or floor heating device that forms the basis of the present invention is not only for heating the ground surface or floor surface, but also for vertically heating it. Since it is possible to use it upright, for example, the side wall surface or the top plate or the bottom plate of the wall material or furniture as the interior material of the house, the bottom plate of the bed, the seating part or the back part of the chair, etc. It is needless to say that it can also be used for a heating device for a member used for a part of furniture, such as a surface heating for heating the wall surface of a house or furniture, or a flat end surface. An example of using it as a device will also be described later.

図1は、本発明に係るトンネル式地表面或いは床面暖房装置の駆動制御システムの一具体例の構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of the configuration of a specific example of a drive control system for a tunnel-type ground surface or floor heating apparatus according to the present invention. 図2は、従来技術に係るトンネル式地表面或いは床面暖房装置の一具体例の構成の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of the configuration of a specific example of a tunnel-type ground surface or floor heating device according to the related art. 図3は、従来技術に係るトンネル式地表面或いは床面暖房装置の一具体例の構成を説明する図である。FIG. 3 is a diagram illustrating a configuration of a specific example of a tunnel-type ground surface or floor heating device according to the related art. 図4は、従来技術に係る当該パネル基板部に於ける、当該長尺状の溝部の中心軸線と直交する方向から見た構成例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of the configuration of the panel substrate portion according to the conventional technique as seen from a direction orthogonal to the central axis of the elongated groove portion. 図5は、従来技術に係る線状或いは帯状の長尺状発熱体の一具体例に於ける構成を示す断面図である。FIG. 5 is a cross-sectional view showing the configuration of a specific example of a linear or strip-shaped long heating element according to the prior art. 図6は、従来技術に係る当該パネル基板部に於いて当該線状或いは帯状の長尺状発熱体が当該支持部材の当該長尺状の溝部に挿入されている場合の構成例を示す斜視図であり、図6(B)は、図6(A)に於ける当該線状或いは帯状の長尺状発熱体の挿入面側から当該パネル基板部の側面図である。FIG. 6 is a perspective view showing a configuration example when the linear or strip-shaped elongated heating element is inserted into the elongated groove portion of the support member in the panel substrate portion according to the prior art. 6B is a side view of the panel substrate section from the insertion surface side of the linear or strip-shaped long heating element in FIG. 6A. 図7は、従来技術に係る地表面或いは床面暖房装置に於ける、電源手段との接続構造の一具体例の構成を説明する図である。FIG. 7 is a diagram for explaining the configuration of a specific example of a connection structure with a power supply means in a ground surface or floor heating device according to a conventional technique. 図8は、従来技術に係る地表面或いは床面暖房装置に於ける作業用空間領域内の構成例を示す側断面図である。FIG. 8 is a side sectional view showing a configuration example in a working space area in a ground surface or floor heating apparatus according to a conventional technique. 図9は、従来技術に係る地表面或いは床面暖房装置に於ける作業用空間領域内の構成例を示す平面図である。FIG. 9 is a plan view showing a configuration example in a working space area in a ground surface or floor heating apparatus according to a conventional technique. 図10は、本発明に係る当該線状或いは帯状の長尺状発熱体の発熱量特性と抵抗値特性の例を示すグラフである。FIG. 10 is a graph showing an example of heat generation amount characteristics and resistance value characteristics of the linear or strip-shaped elongated heating element according to the present invention. 図11は、本発明に係るトンネル式の地表面或いは床面暖房装置の駆動制御システムで使用される電源手段の一具体例の構成を示すブロックダイアグラムである。FIG. 11 is a block diagram showing the configuration of a specific example of the power supply means used in the drive control system of the tunnel-type ground surface or floor heating apparatus according to the present invention. 図12は、本発明に係るゼロクロス制御方法の原理を説明するグラフである。FIG. 12 is a graph illustrating the principle of the zero-cross control method according to the present invention. 図13は、本発明に係るトンネル式の地表面或いは床面暖房装置の駆動制御システムで使用される調整比率Pを制御する為のプログラムの一例を説明するグラフである。FIG. 13 is a graph illustrating an example of a program for controlling the adjustment ratio P used in the drive control system of the tunnel-type ground surface or floor heating apparatus according to the present invention.

以下に本発明に係る当該トンネル式の地表面或いはトンネル式の床面暖房装置の駆動制御システム及びその装置に付いてその構成例を、図面を参照しながら詳細に説明する。
先ず、本発明に係る第1の態様である当該トンネル式の地表面或いは床面暖房装置1に関する駆動制御システムの具体的な構成の例を説明する。
A drive control system for a tunnel-type ground surface or tunnel-type floor surface heating apparatus according to the present invention and a configuration example thereof will be described in detail with reference to the drawings.
First, an example of a specific configuration of a drive control system for the tunnel-type ground surface or floor heating apparatus 1 according to the first aspect of the present invention will be described.

即ち、図1は、本発明に係る第1の態様である当該トンネル式の地表面或いは床面暖房装置1に関する駆動制御システム100の概略を説明するブロックダイアグラムであって、図中、断熱性を有し、矩形状の平面形状を有する基板部7と、当該基板部7上に、所望の間隔を介して配置されている、熱伝導性の大なる材料で構成された天井部2とで構成され、且つ当該基板部7と当該天井部2との間には、保温性或いは蓄熱性若しくは断熱性を有する適宜の材料で構成された支持部材3が挿入された発熱構造体本体部1であって、且つ当該発熱構造体本体部1に於ける当該支持部材3には、当該基板部7の一方の長手方向と平行して、少なくとも一つの長尺状空間領域部4が形成されており、然も、当該長尺状空間領域部4の内部には、線状或いは帯状の長尺状発熱体5が配設されているトンネル式の地表面或いは床面暖房装置1であって、且つ、当該トンネル式の地表面或いは床面暖房装置1は、所望の長さに設定されている直線状の線状或いは帯状の長尺状発熱体5が、当該長尺状発熱体5の直線状態を維持したままの状態で、挿入・引き抜き自在に嵌入せしめられる様に構成されているトンネル式の地表面或いは床面暖房装置1に於いて、当該それぞれの長尺状の空間領域4内に配置されている当該線状或いは帯状の長尺状発熱体5は、その一方の端部63が当該長尺状空間領域部4の一方の端部59側より空間に突出せしめられ、当該端部が当該トンネル式の地表面或いは床面暖房装置1に直接或いはそれに近接して設けられている適宜の電力供給手段71を含む適宜の電源手段170と着脱自在に接続されているトンネル式の地表面或いは床面暖房システム100に於いて、当該適宜の電源手段170から当該トンネル式の地表面或いは床面暖房装置1に使用されている当該直線状の線状或いは帯状の長尺状発熱体5全体に供給される電力TWを、所定の最大電力TWmaxの供給と、当該所定の最大電力TWmaxより所定の調整比率Pだけ低減させた電力TWnを任意に供給する様に設計された当該適宜の電源手段170に含まれる適宜の電力供給制御手段(CTR)174が設けられている事を特徴とするトンネル式の地表面或いは床面暖房装置の駆動制御システム100が示されている。 That is, FIG. 1 is a block diagram illustrating an outline of a drive control system 100 relating to the tunnel-type ground surface or floor heating apparatus 1 according to the first aspect of the present invention. And a ceiling portion 2 made of a material having a large thermal conductivity, which is disposed on the substrate portion 7 with a desired interval and has a rectangular planar shape. In addition, the heat generating structure body portion 1 in which the supporting member 3 made of an appropriate material having a heat retaining property, a heat accumulating property or a heat insulating property is inserted between the substrate part 7 and the ceiling part 2. In addition, at least one elongated space region portion 4 is formed in the supporting member 3 in the heat generating structure body portion 1 in parallel with one longitudinal direction of the substrate portion 7, Of course, a tunnel-type ground surface or floor heating device 1 in which a linear or strip-shaped elongated heating element 5 is disposed inside the elongated space region portion 4, and In the tunnel type ground surface or floor heating apparatus 1, the linear linear or strip-shaped elongated heating element 5 set to a desired length is used to change the linear state of the elongated heating element 5. In the tunnel-type ground surface or floor heating device 1 which is configured to be insertably/pullably inserted in a state where it is maintained, it is arranged in each of the long space regions 4 concerned. The linear or strip-shaped elongated heating element 5 has one end 63 thereof projected into the space from the one end 59 side of the elongated space area portion 4, and the end portion is concerned. Tunnel-type ground surface or floor, which is detachably connected to appropriate power supply means 170 including appropriate power supply means 71 provided directly or close to the tunnel-type ground surface or floor heating device 1. In the surface heating system 100, the power is supplied from the appropriate power supply means 170 to the entire straight line-shaped or strip-shaped elongated heating element 5 used in the tunnel-type ground surface or floor surface heating device 1. To the appropriate power supply means 170 designed to arbitrarily supply the predetermined maximum power TWmax and the power TWn reduced by the predetermined adjustment ratio P from the predetermined maximum power TWmax. A drive control system 100 for a tunnel-type ground surface or floor heating system is shown which is provided with an appropriate power supply control means (CTR) 174 included therein.

即ち、本発明に於いては、上記した従来技術の欠点を効果的且つ経済的に解決する為に、リレー手段の様なコスト高で、故障の多い制御手段を一切使用せずに、且つ、当該PTC線状或いは帯状の発熱体5の温度特性と電気的特性を適切に活用して、当該トンネル式の地表面或いは床面暖房装置1の起動立ち上がり時期に於ける過剰電流の発生とそれによるブレーカーの遮断を完全に防止する為に、当該トンネル式の地表面或いは床面暖房装置1の起動立ち上がり時期に於ける当該PTC線状或いは帯状の発熱体5への電力供給を少なめに抑える様に構成したものであり、具体的には、適宜の電源手段170と接続されている適宜の電力供給制御手段174を設け、これを適宜の制御プログラムを内蔵したCPU200等の制御に応答して、当該適宜の電源手段71からPTC線状或いは帯状の発熱体5へ供給される、供給電力、例えば100Vの交流電圧を利用した電力を、当該システム100に供給可能な最大電力TWmaxに対して所定の調整比率Pだけ低減させた電力TWnに調整して供給する様に構成したものである。 That is, in the present invention, in order to effectively and economically solve the above-mentioned drawbacks of the prior art, without using any control means such as a relay means, which is expensive and has many failures, and By appropriately utilizing the temperature characteristics and electrical characteristics of the PTC linear or strip heating element 5, generation of excess current at the time of starting and rising of the tunnel-type ground surface or floor heating apparatus 1 and the resulting In order to completely prevent the breaker from being interrupted, the power supply to the PTC linear or strip heating element 5 at the time of starting and rising of the tunnel-type ground surface or floor heating device 1 is suppressed to a small extent. More specifically, an appropriate power supply control means 174 connected to an appropriate power supply means 170 is provided, and the power supply control means 174 is provided in response to the control of the CPU 200 having an appropriate control program. A predetermined adjustment is made to the maximum electric power TWmax that can be supplied to the system 100, which is an electric power supplied from an appropriate power supply means 71 to the PTC linear or strip heating element 5, for example, electric power using an AC voltage of 100V. The electric power TWn reduced by the ratio P is adjusted and supplied.

本発明に於いて、当該トンネル式の地表面或いは床面暖房装置1の起動立ち上がり時期に於いて、当該PTC線状或いは帯状の発熱体5への電力供給量TWnを当該システム100に供給可能な最大電力TWmaxに対して所定の調整比率Pを適用して低減させた電力TWn0として供給する場合の当該所定の調整比率Pは、特定されるものでは無いが、例えば、当該トンネル式の地表面或いは床面暖房装置1の駆動制御システムに供給可能な最大電力量TWmaxの30%乃至100%の間の任意の低減比率に設定する事が望ましい具体例である。
更に、本発明に於いては、上記した通り、当該電力供給制御手段174に於いて使用される当該供給電力量TWnの調整比率Pは、図10に示す様に、当該トンネル式の地表面或いは床面暖房装置1の駆動制御システム100の起動時T0に於いては、低い調整比率Pに設定されるものであるが、その後に於いては、つまり、当該トンネル式の地表面或いは床面暖房装置1の駆動制御システム100の起動時T0以降は、経時時間に応答して当該調整比率Pを漸次、連続的或いは間歇的に増加させる様に設定される事も好ましい具体例である。
In the present invention, the power supply amount TWn to the PTC linear or strip heating element 5 can be supplied to the system 100 at the time of starting and rising of the tunnel type ground surface or floor heating device 1. The predetermined adjustment ratio P in the case of applying the predetermined adjustment ratio P to the maximum power TWmax and supplying the reduced power TWn0 is not specified, but for example, the tunnel type ground surface or It is a specific example in which it is desirable to set an arbitrary reduction ratio between 30% and 100% of the maximum electric power TWmax that can be supplied to the drive control system of the floor heating system 1.
Further, in the present invention, as described above, the adjustment ratio P of the power supply amount TWn used in the power supply control means 174 is, as shown in FIG. At the start-up time T0 of the drive control system 100 of the floor heating system 1, the low adjustment ratio P is set, but after that, that is, the tunnel-type ground surface or floor heating. It is also a preferable specific example that after the start-up T0 of the drive control system 100 of the device 1, the adjustment ratio P is set to be gradually, continuously or intermittently increased in response to the elapsed time.

処で、本発明に於いて使用される当該PTC線状或いは帯状の発熱体5の一般的な発熱量と電気的抵抗値の特性を図10に示すが、図10から理解される通り、当該PTC線状或いは帯状の発熱体5は、起動直後から時間経過に従って電気的抵抗値が急激に上昇変化を示し、起動時間T0後、凡そ7分後Tstには、略サチュレートされた状態になり、更にそこから起動時間Tn後には、当該PTC発熱体5の抵抗値が更に安定状態に移行する様に変化する(この時点Tnは、大凡当該PTC発熱体5に所望の電力の供給が開始されてから略20分程度経過した時間となる)
ることから、前記した当該調整比率Pは、当該PTC線状或いは帯状の発熱体5の起動時期T0から当該略サチュレートされた状態に至る迄の期間Tst中、経過時間に応答して、適宜に増加させる方向で変化させる事が望ましい。
或いは、更に、当該略サチュレートされた状態に至る迄の期間Tstから当該安定状態に移行する時点Tnの期間の間でも適宜に当該調整比率Pを増加させる方向で変化させる事もより望ましい具体例である。
最も、当該期間中は、所定の固定された調整比率P、例えば35%等に固定して使用するものであってもよい事は言うまでもない。
Here, the general heat generation amount and electric resistance value characteristics of the PTC linear or strip heating element 5 used in the present invention are shown in FIG. 10, but as can be understood from FIG. The electric resistance value of the PTC linear or belt-shaped heating element 5 shows a sharp increase and decrease with time from immediately after the start-up, and after about 7 minutes after the start-up time Tst, it is in a substantially saturated state at Tst, Further, after the startup time Tn from there, the resistance value of the PTC heating element 5 changes so as to shift to a more stable state (at this time Tn, supply of desired power to the PTC heating element 5 is started generally. It will be about 20 minutes after that)
Therefore, the adjustment ratio P is appropriately set in response to the elapsed time during the period Tst from the start time T0 of the PTC linear or strip heating element 5 to the substantially saturated state. It is desirable to change it in the increasing direction.
Alternatively, it is a more preferable specific example that the adjustment ratio P is appropriately changed during the period from the period Tst until reaching the substantially saturated state to the time point Tn at which the stable state is reached. is there.
Needless to say, during the period, the fixed adjustment ratio P, for example, 35% may be fixed and used.

例えば、具体的には、起動後 T1時間迄は、当該調整比率Pは、Y1%、T1時間後、T2時間迄は、Y2%、T2時間後、T3時間迄は、Y3%(Y1<Y2<Y3)となる様に調整制御する事が望ましい。
又、上記した様な当該安定状態に移行する時点Tnの期間は一切考慮せずに、当該期間Tstを最終的な調整比率Pの変化調整時期と定め、後述する時点Tn以降の操作を開始する様にしても良い事は言うまでもない。
一方、当該PTC線状或いは帯状の発熱体5が当該サチュレート状態に入った以後(Tst時点若しくはTn時点)の当該調整比率Psは特に限定されるものではないが、好ましい具体例としては、当該トンネル式の地表面或いは床面暖房装置1に対してそれを使用するユーザーがどの程度の発熱効果を要求しているかによって、設定する事が望ましい。
For example, specifically, the adjustment ratio P is Y1% up to T1 hours after activation, Y2% after T1 hours and T2 hours, and Y3% (Y1<Y2 after T2 hours and T3 hours). It is desirable to adjust and control so that <Y3).
Further, the period Tst is set as the final change adjustment time of the adjustment ratio P without considering the period of the time point Tn at which the stable state is changed as described above, and the operation after the time point Tn described later is started. It goes without saying that you can do it as well.
On the other hand, the adjustment ratio Ps after the PTC linear or strip heating element 5 enters the saturating state (at Tst time or Tn time) is not particularly limited, but a preferable specific example is the tunnel. It is desirable to set it depending on how much heat generation effect the user who uses the above-mentioned ground surface or floor heating device 1 requires.

つまり、当該トンネル式の地表面或いは床面暖房装置1に対してそれを使用するユーザーが、当該トンネル式の地表面或いは床面暖房装置1の発熱温度を例えば、30度(つまり、低温度Lレベル)に設定したいと希望するか、40度(つまり、中温度Mレベル)に設定したいと希望するか、更には50度(つまり、高温度Hレベル)に設定したいと希望するかににより当該サチュレート状態に入った時点(Tst時点若しくはTn時点)以後の当該調整比率Psは、変更出来る様に設計されている事が望ましい。
本発明に於いては、上記した様な、例えば3段階の調整システムを採用することが可能であるが、当該3段階の調整システムに限定されるものではなく、5段階でも10段階でも任意に変化出来る様に構成する事は可能である。
そして、当該サチュレート状態に入った以後に当該調整比率Psが設定された場合には、当然のことながら、当該PTC線状或いは帯状の発熱体5に於ける起動時点T0から当該サチュレート状態に入る迄(Tst若しくはTn)の当該調整比率Psの時系列的な変化状態は、当該サチュレート状態に入った以後の当該調整比率Psに応じて変化させる事も可能であるが、当該サチュレート状態に入った以後の当該調整比率Psには拘わらず一定の値に設定しておく事も可能である。
That is, a user who uses the tunnel-type ground surface or floor heating device 1 sets the heat generation temperature of the tunnel-type ground surface or floor heating device 1 to, for example, 30 degrees (that is, the low temperature L Level), 40 degrees (that is, medium temperature M level), or even 50 degrees (that is, high temperature H level). It is desirable that the adjustment ratio Ps after the time of entering the saturating state (time of Tst or time of Tn) is designed to be changeable.
In the present invention, it is possible to employ, for example, a three-stage adjustment system as described above, but the present invention is not limited to the three-stage adjustment system, and any five-stage or ten-stage adjustment system is possible. It can be configured to change.
When the adjustment ratio Ps is set after the saturating state is entered, it goes without saying that the starting time T0 in the PTC linear or strip heating element 5 is changed to the saturating state. The time-series change state of the adjustment ratio Ps of (Tst or Tn) can be changed according to the adjustment ratio Ps after entering the saturating state, but after entering the saturating state, It is also possible to set a constant value regardless of the adjustment ratio Ps.

つまり、当該電力供給制御手段174に於ける当該供給電力量の調整比率Pは、当該トンネル式の地表面或いは床面暖房装置1に要求される使用者の好みの発熱温度設定条件(例えば高温H,標準温度M及び低温L)に応答して変化させる様に構成されている事が好ましい具体例である。
尚、本発明に於ける上記した供給電力量の調整比率Pの具体的な設定方法は、特に限定されるものではなく、公知の方法を採用する事が可能であるが、好ましくは、供給される電力に係る電力周波数の時分割方式を使用する事が望ましい具体例である。
以下に、本発明に係る当該トンネル式の地表面或いは床面暖房装置の駆動制御システム100を実際に駆動制御する為の具体的な構成例を図11を参照しながら詳細に説明する。
That is, the adjustment ratio P of the supplied power amount in the power supply control means 174 is set to the heat generation temperature setting condition (for example, high temperature H) desired by the user required for the tunnel-type ground surface or floor heating device 1. , A standard temperature M and a low temperature L) is a preferred specific example.
The specific setting method of the adjustment ratio P of the supplied electric power in the present invention is not particularly limited, and a known method can be adopted, but it is preferably supplied. It is a specific example in which it is desirable to use the time division method of the power frequency related to the electric power.
Hereinafter, a specific configuration example for actually driving and controlling the drive control system 100 of the tunnel-type ground surface or floor heating apparatus according to the present invention will be described in detail with reference to FIG. 11.

即ち、図11は、図1に示す本発明に係る当該トンネル式の地表面或いは床面暖房装置の駆動制御システム100の基本回路構成を示すブロック図をより詳細に説明したブロック図であって、適宜の電源部71を含む適宜の電源手段170が適宜の本発明に係る当該トンネル式の地表面或いは床面暖房装置1に接続されて設けられており、且つ当該電源手段170には、当該電源部71と当該発熱線部5の電極線51、52とを連結する電力供給線の一部に配置されたスイッチング手段177とが設けられており、更には、当該電源手段170には、当該スイッチング手段177を直接的に制御する適宜の制御プログラムを内蔵した記憶手段201及び計時手段202を含んだ制御回路(CPU)200含むが電力供給制御手段174とが設けられている。 That is, FIG. 11 is a block diagram illustrating in more detail the block diagram showing the basic circuit configuration of the drive control system 100 of the tunnel type ground surface or floor heating apparatus according to the present invention shown in FIG. An appropriate power supply unit 170 including an appropriate power supply unit 71 is provided so as to be connected to the tunnel-type ground surface or floor heating apparatus 1 according to the present invention, and the power supply unit 170 is provided with the power supply. A switching means 177 arranged in a part of an electric power supply line connecting the portion 71 and the electrode wires 51 and 52 of the heating wire portion 5 is provided, and further, the power supply means 170 is provided with the switching means. A power supply control means 174 is provided, which includes a control circuit (CPU) 200 including a storage means 201 having a suitable control program for directly controlling the means 177 and a timing means 202.

本具体例で使用される当該トンネル式の地表面或いは床面暖房装置1は、図2乃至図6に示されている様な構造を有する面状の暖房装置であり、これに電極線51、52を含む複数本の発熱線5が、当該トンネル式の地表面或いは床面暖房装置1の長尺状の空猟奇部10内に着脱自在に挿入されている構造を有するものであり、同時に当該それぞれの発熱線5の個別の電極線51、52が適宜の接続手段を介して当該電源部71に接続されている。
尚、図11の具体例に於いては、2個の当該トンネル式の地表面或いは床面暖房装置1、1’が個別に制御される例が示されているが、本発明に於いては、その個数に限定されるものではなく、1個乃至複数個の当該トンネル式の地表面或いは床面暖房装置1が並列的に使用されるものであっても良い事は言うまでもない。
The tunnel-type ground surface or floor heating device 1 used in this example is a planar heating device having a structure as shown in FIGS. 2 to 6, and electrode wires 51, A plurality of heating wires 5 including 52 have a structure in which they are removably inserted into the elongated air hunting odd portion 10 of the tunnel-type ground surface or floor heating device 1, and at the same time, The individual electrode wires 51 and 52 of each heating wire 5 are connected to the power source section 71 through appropriate connecting means.
Note that, in the specific example of FIG. 11, an example in which the two tunnel-type ground surface or floor heating devices 1, 1 ′ are individually controlled is shown, but in the present invention, However, the number is not limited, and it goes without saying that one or a plurality of the tunnel-type ground surface or floor heating devices 1 may be used in parallel.

当該記憶手段201には、例えば、当該トンネル式の地表面或いは床面暖房装置1が起動された時点T0から当該トンネル式の地表面或いは床面暖房装置1の電気抵抗値的が略サチュレートする迄の時間Tstの間及び/又は当該電気抵抗値が時刻略Tstでサチュレートした後当該電気抵抗値が完全にサチュレートする迄の時間Tnの間、当該調整比率Pをどの様に変化させて行くかを予め設定した、複数種類のプログラムが内蔵されており、当該トンネル式の地表面或いは床面暖房装置1のユーザーの好みに応じて、当該内蔵された複数種のプログラムから適宜選択された一つのプログラムが読みだされる様に構成されている事が好ましい具体例である。 In the storage means 201, for example, from the time T0 when the tunnel-type ground surface or floor heating apparatus 1 is activated until the electric resistance value of the tunnel-type ground surface or floor heating apparatus 1 is substantially saturated. During the time Tst and/or during the time Tn until the electric resistance value is fully saturated after the electric resistance value is saturated at the time Tst, how to change the adjustment ratio P. A preset program of a plurality of types is built in, and one program appropriately selected from the plurality of built-in programs according to the preference of the user of the tunnel-type ground surface or floor heating device 1. Is a specific example that is preferably configured to be read.

例えば、当該トンネル式の地表面或いはトンネル式の床面暖房装置1のユーザーが、当該トンネル式の地表面或いはトンネル式の床面暖房装置1の通常使用時に於ける温度を高温度に設定しようとする場合、希望する設定温度を特定温度に設定する様な温度設定手段を設けるか、或いは上記した当該トンネル式の地表面或いは床面暖房装置1の通常設定温度を高温(H)、標準温度(M)及び低温(L)の3段階の何れかに設定できる所定の制御プログラムの内から適切な制御プログラムを選定出来る様に設計しておき適宜に設けられたプログラム選択手段、例えばモード選択手段204等、から当該ユーザーが所望する温度条件を選択すると、当該トンネル式の地表面或いは床面暖房装置1への電力の供給量をそれに応じて、当該トンネル式の地表面或いは床面暖房装置1の起動時点から当該サチュレートする迄の時間(Tst又はTn)の間、選択された制御プログラムに沿って、時間経過に応答して、当該調整比率Pを所定の値に変更させながら当該トンネル式の地表面或いは床面暖房装置1を駆動させ、当該サチュレート時点以降(Tst又はTn)では、ユーザーの選択した一定の温度設定条件により通電処理が実行されるものである。 For example, the user of the tunnel-type ground surface or the tunnel-type floor heating apparatus 1 tries to set the temperature at the time of normal use of the tunnel-type ground surface or the tunnel-type floor heating apparatus 1 to a high temperature. In this case, temperature setting means for setting a desired set temperature to a specific temperature is provided, or the normal set temperature of the tunnel type ground surface or floor heating device 1 is set to a high temperature (H) or a standard temperature ( M) and low temperature (L), which is designed so that an appropriate control program can be selected from among predetermined control programs that can be set in any of three stages, and a program selection means, such as a mode selection means 204, is provided as appropriate. When the temperature condition desired by the user is selected from, etc., the amount of power supplied to the tunnel-type ground surface or floor heating device 1 is correspondingly changed to that of the tunnel-type ground surface or floor heating device 1. During the time (Tst or Tn) from the start-up time to the saturating, in response to the passage of time, the adjustment ratio P is changed to a predetermined value according to the selected control program, and the tunnel type ground is changed. The surface or floor heating device 1 is driven, and after the saturating time (Tst or Tn), the energization process is executed under the constant temperature setting condition selected by the user.

その為、本発明に於いては、当該電力供給制御手段174には、室温を測定するセンサー手段若しくは当該トンネル式の地表面或いは床面暖房装置1の温度を測定する測定センサー手段等205や当該トンネル式の地表面或いは床面暖房装置1の通常設定温度を、ユーザーが希望する、当該トンネル式の地表面或いは床面暖房装置1の希望設定温度を設定する為の、外部選択操作キー手段206とが更に設けられている事も望ましい事も好ましい具体例の一つである。 Therefore, in the present invention, the power supply control means 174 includes a sensor means for measuring room temperature, a measurement sensor means 205 for measuring the temperature of the tunnel-type ground surface or the floor heating device 1, or the like. External selection operation key means 206 for setting a desired preset temperature of the tunnel type ground surface or floor heating apparatus 1 desired by the user to a normal preset temperature of the tunnel type ground surface or floor heating apparatus 1 It is one of the preferable specific examples that and are further provided.

更に、本発明に於いては、当該制御回路(CPU)200には、当該制御状態或いは制御経過状態が表示されるLCD表示手段等からなる表示手段203や上記した当該トンネル式の地表面或いは床面暖房装置1のユーザーが希望する当該トンネル式の地表面或いは床面暖房装置1の設定モードの選択設定手段204或いは当該トンネル式の地表面或いは床面暖房装置1に係る制御システムを当該トンネル式の地表面或いは床面暖房装置1のユーザーによるタイマー駆動させるためのタイマー駆動設定手段175等が設けられる事も望ましい事も好ましい具体例である。
尚、上記した通り、本発明に於いては、当該電力供給制御手段174に於ける当該供給電力量の調整比率Pは、当該トンネル式の地表面或いは床面暖房装置1に、そのユーザーによって要求される発熱量に応答して変化させる様に構成されている事も好ましい具体例の一つである。
Further, in the present invention, the control circuit (CPU) 200 has a display means 203 including an LCD display means for displaying the control state or control progress state, the tunnel-type ground surface or floor as described above. The user of the surface heating device 1 desires to select and set means 204 for the setting mode of the tunnel surface or floor heating device 1 or the control system for the tunnel surface or floor heating device 1. It is also a preferable specific example that it is desirable to provide a timer drive setting means 175 or the like for the timer drive by the user of the ground surface or floor heating device 1.
As described above, in the present invention, the adjustment ratio P of the supplied power amount in the power supply control means 174 is requested to the tunnel-type ground surface or floor heating device 1 by the user. It is also one of the preferable specific examples that it is configured to change in response to the generated heat value.

次に、本発明に於ける当該電力供給制御手段174に於ける当該供給電力量の調整比率Pの変更操作は、特に限定されるものではないが、当該供給電力量の調整比率Pは、位相制御に基づき制御する様に構成されている事が好ましい具体例である。
つまり、本発明に於いて使用される電力は、一般的には、高周波のAC電源を使用するものであり、当該高周波のAC電源を位相制御することによって、当該供給電力量を時分割することにより当該供給される電力量の調整比率Pを任意に変更使用する事が可能であるので、本発明として望ましい具体例である。
更に、本発明に於いては、当該電力供給制御手段174に於ける当該時分割による位相制御を実行する為に、トライアック装置178を利用する事がより好ましい具体例である。
Next, the changing operation of the adjustment ratio P of the supplied power amount in the power supply control means 174 in the present invention is not particularly limited, but the adjustment ratio P of the supplied power amount is the phase. It is a preferred specific example that the control is performed based on the control.
That is, the power used in the present invention is generally a high frequency AC power supply, and the supplied power is time-divided by phase-controlling the high frequency AC power supply. Since it is possible to arbitrarily change and use the adjustment ratio P of the amount of electric power supplied, this is a preferable specific example of the present invention.
Further, in the present invention, it is a more preferable specific example to use the triac device 178 in order to execute the phase control by the time division in the power supply control means 174.

当該トライアック装置178は、所定のゲート部に所望の制御信号を印加する毎に、当該高周波電力の供給状態のON・OFFが交互に繰り返されると共に、当該周波数が正方向に変動する場合でも、又当該周波数が負方向に変動する場合でも、同じ条件で制御駆動するという特徴を有している点で優れた制御機能を発揮する事が可能である。
更に、本発明に於いては、当該電力供給制御手段174に於ける当該位相制御を実行する為に、ゼロクロス制御を採用する事がより好ましい具体例である。
The triac device 178 alternately turns ON/OFF the supply state of the high-frequency power every time a desired control signal is applied to a predetermined gate unit, and even when the frequency fluctuates in the positive direction, Even when the frequency fluctuates in the negative direction, it is possible to exert an excellent control function in that it has the feature of being controlled and driven under the same conditions.
Further, in the present invention, it is a more preferable specific example to employ the zero-cross control in order to execute the phase control in the power supply control means 174.

以下に、本発明に於ける当該供給電力量調整比率Pのゼロクロス制御方式を採用した時分割方式による調整方法の基本原理のその実施例を、図11及び図12を参照しながら詳細に説明する。
即ち、図12には、本発明に於いて使用されるトライアック手段178を使用した電力供給制御手段174に於ける高周波供給電力波形の時分割による位相制御が実行される様子を示した制御信号と位相波形の変化を示すグラフが示されている。
即ち、図12中、波形(A)は、当該トライアック手段178の制御端子に入力される適宜の制御信号の波形を示し、波形(B)は、当該制御信号に応答して当該トライアック手段178のゲート部がON状態とOFF状態を交互に繰り返す事を示す波形を示している。
An embodiment of the basic principle of the time division method of adjusting the supplied power amount adjustment ratio P according to the present invention will be described in detail with reference to FIGS. 11 and 12. ..
That is, FIG. 12 is a control signal showing how the phase control by time division of the high frequency power supply waveform is executed in the power supply control means 174 using the triac means 178 used in the present invention. A graph showing changes in the phase waveform is shown.
That is, in FIG. 12, the waveform (A) shows the waveform of an appropriate control signal input to the control terminal of the triac means 178, and the waveform (B) is in response to the control signal, the triac means 178. The waveform shows that the gate section alternately repeats the ON state and the OFF state.

つまり、時間t1で当該トライアック手段178の制御端子に制御信号S1が入力されると当該トライアック手段178のゲート部がON状態になり、当該高周波電流を通過させる状態となり、次の制御信号が入力されるまで、当該状態が維持され、又、所定時間経過後の時間t2で当該トライアック手段178の制御端子に別の制御信号S2が入力されると当該トライアック手段178のゲート部がOFF状態になり、当該高周波電流を通過させない状態となり、次の制御信号S3が入力されるまで、当該状態が維持される事になり、以後、この状態が適宜の時間間隔で交互に繰り返される事になる。 That is, when the control signal S1 is input to the control terminal of the triac unit 178 at time t1, the gate of the triac unit 178 is turned on, the high-frequency current is passed, and the next control signal is input. Until that state is maintained, or when another control signal S2 is input to the control terminal of the triac means 178 at time t2 after the lapse of a predetermined time, the gate portion of the triac means 178 is turned off, The high-frequency current is not passed, and the state is maintained until the next control signal S3 is input, and thereafter, this state is alternately repeated at appropriate time intervals.

一方、図12中の波形(C)は、当該電力供給制御手段174に供給される所望の周波数を有する高周波電力波(AC)であり、一般的には100Vで50乃至60Hzのものが使用されるが、当該トライアック手段178を制御することにより、当該トンネル式の地表面或いは床面暖房装置1の当該PTC線状或いは帯状の発熱体5への電力量の供給を、所定の単位時間当たりに於ける当該トライアック手段178のON状態の総時間を調整制御することにより当該調整比率Pの値を適宜の値Psに調整(連続的に漸増させるか間歇的に増加させる操作を行い)することにより、結果的に当該トンネル式の地表面或いは床面暖房装置1の当該PTC線状或いは帯状の発熱体5に供給される電力量を、当該トンネル式の地表面或いは床面暖房装置1の起動時には、極めて少ない状態にしておき、それから徐徐に当該PTC線状或いは帯状の発熱体5に供給される電力量を増加する様にコントロールする事が可能となり、当該トンネル式の地表面或いは床面暖房装置1の初期起動時に於ける過剰電流の流入は防止できるので、上記した従来技術での問題点を完全に解決する事が可能となる。 On the other hand, a waveform (C) in FIG. 12 is a high frequency power wave (AC) having a desired frequency to be supplied to the power supply control means 174, and generally 100 V and 50 to 60 Hz is used. However, by controlling the triac means 178, the electric power is supplied to the PTC linear or strip heating element 5 of the tunnel-type ground surface or floor heating device 1 per predetermined unit time. By adjusting and controlling the total time of the ON state of the triac means 178 in the adjustment ratio P to an appropriate value Ps (continuously increasing or intermittently increasing) As a result, the amount of electric power supplied to the PTC linear or strip heating element 5 of the tunnel-type ground surface or floor heating apparatus 1 is set at the time of starting the tunnel-type ground surface or floor heating apparatus 1. It is possible to control the amount of electric power supplied to the PTC linear or strip heating element 5 so as to gradually increase after leaving it in an extremely small amount, and to use the tunnel-type ground surface or floor heating device. Since the inflow of excess current at the time of initial startup of 1 can be prevented, it is possible to completely solve the above-mentioned problems in the conventional technology.

係る当該調整比率Pの値の変化は、時系列的に連続的に変化させてもよく、適宜の間隔でステップ状に変化させてもよい。
又、当該トンネル式の地表面或いは床面暖房装置1の定常運転時には、上記と同様の方法によって当該トンネル式の地表面或いは床面暖房装置1の定常時に於ける発熱量を所望の値に制御する事が可能となる。
The change in the value of the adjustment ratio P may be continuously changed in time series or may be changed stepwise at appropriate intervals.
Further, during steady operation of the tunnel type ground surface or floor heating apparatus 1, the amount of heat generated during steady state of the tunnel type ground surface or floor heating apparatus 1 is controlled to a desired value by the same method as above. It becomes possible to do.

更に、本発明に於いては、当該時分割制御操作を、ゼロクロス方式による位相制御を採用することにより、より正確で且つより効率的でノイズ発生を伴わない時分割による位相制御を実現させる事が可能となる。
係る方法は、図12の波形(C)及び波形(D)から理解される様に、適宜の制御信号が当該トライアック手段177に入力された際、当該制御信号が入力された後の、図12(C)に示す電力波形が、最初に0点と交差するタイミング時に当該AC電力波形をON若しくはOFFさせる様に構成するものである。
つまり、図12(A)於いて所定の制御信号S1が入力された場合に、その時刻t1後、最初に図12(C)に示す当該電力波形が0点を負側から正側に交差通過する(この逆の通過形態もある)タイミングt1’の時点で当該AC電力波形の入力を許可する様に構成し、所定の期間当該状態を継続させ、時刻t2に於いて、第2の制御信号S2が入力された場合、当該時刻t2後、図12(C)に示す当該電力波形が最初に0点を負側から正側に0点を交差通過する(この逆の通過形態もある)タイミングt2’の時点で当該AC電力波形の入力を停止させ、以後、所定の期間当該状態を継続させる様に構成するものである。
Further, in the present invention, by adopting the phase control by the zero-cross method as the time division control operation, it is possible to realize more accurate and more efficient phase control by time division without noise generation. It will be possible.
As will be understood from the waveform (C) and the waveform (D) of FIG. 12, this method is shown in FIG. 12 after the control signal is input when an appropriate control signal is input to the triac unit 177. The power waveform shown in (C) is configured such that the AC power waveform is turned on or off at the timing when the zero point is first crossed.
That is, when a predetermined control signal S1 is input in FIG. 12A, after the time t1, the power waveform shown in FIG. 12C first crosses the zero point from the negative side to the positive side. The AC power waveform is allowed to be input at the timing t1′ (there is also the reverse mode), and the state is continued for a predetermined period. At time t2, the second control signal is generated. When S2 is input, after the time t2, the timing at which the power waveform shown in FIG. 12C first passes through the zero point from the negative side to the positive side through the zero point (there is also the reverse passing form). The input of the AC power waveform is stopped at time t2′, and thereafter, the state is continued for a predetermined period.

更に、時刻t3に於いて、第3の制御信号S3が入力された場合、当該時刻t3後、図12(C)に示す当該電力波形が最初に0点を負側から正側に交差通過する(この逆の通過形態もある)タイミングt3’の時点で当該AC電力波形の入力を再開させ、以後、所定の期間当該状態を継続させる様に構成するものである。
つまり、本発明に於いては、上記の方法によって、高周波電源電圧の周波数を時分割することにより、総電力量を調整する事が可能となる。
Furthermore, when the third control signal S3 is input at time t3, after the time t3, the power waveform shown in FIG. 12C first crosses the zero point from the negative side to the positive side. The input of the AC power waveform is restarted at the timing t3' (there is also the reverse mode), and thereafter the state is continued for a predetermined period.
That is, in the present invention, the total electric energy can be adjusted by time-sharing the frequency of the high frequency power supply voltage by the above method.

本発明に於いて、上記操作を実行する為の構成として、例えば、図11に示す様に、当該制御回路(CPU)200と当該当該トライアック手段178を含む当該電力供給制御手段174との間に適宜のゼロクロス・コントローラー180を配置しておく事が望ましい具体例の一つである。
係る構成を採用する事によって、複数個の当該面状暖房装置1、1’を個別に任意的に制御する事が可能となる。
In the present invention, as a configuration for performing the above operation, for example, as shown in FIG. 11, between the control circuit (CPU) 200 and the electric power supply control means 174 including the triac means 178. It is one of the specific examples in which it is desirable to arrange an appropriate zero-cross controller 180.
By adopting such a configuration, it becomes possible to arbitrarily and individually control the plurality of planar heating devices 1, 1′.

図10は本発明に於いて使用される一般的な当該PTC発熱体5の発熱特性と電気抵抗値との時間軸でみた変化を示すグラフである。
図10から理解される通り、当該PTC発熱体5は、通電開始直後は抵抗値が低い事から大量の電流が当該PTC発熱体5内を流れる結果、発熱量は最大値を示すが、通電開始直後から当該発熱量は急速に低下し、通電開始直後から約7分を経過する頃には、当該発熱量がサチュレートする傾向を示しており、更に当該通電開始直後から約20分経過後には、ほぼ完全なサチュレート状態を示している。
FIG. 10 is a graph showing changes in heat generation characteristics and electric resistance values of the general PTC heating element 5 used in the present invention as seen on the time axis.
As can be seen from FIG. 10, since the PTC heating element 5 has a low resistance value immediately after the start of energization, a large amount of current flows in the PTC heating element 5, so that the calorific value shows the maximum value, but the energization starts. Immediately after that, the calorific value rapidly decreases, and about 7 minutes after the start of energization, there is a tendency that the calorific value saturates, and about 20 minutes after the start of energization, further, It shows an almost completely saturated state.

尚、図10に於ける当該PTC発熱体5の発熱量の変化は、当該PTC発熱体5に通常の高周波AC電力がそのままの状態、つまり調整率P=100%の状態で供給された場合の発熱特性を示している。
上記した当該PTC発熱体5が、ほぼ完全なサチュレート状態になった状態での当該PTC発熱体5の発熱温度は、約52℃乃至54℃となっている。
It should be noted that the change in the amount of heat generated by the PTC heating element 5 in FIG. 10 is caused when the normal high-frequency AC power is supplied to the PTC heating element 5 as it is, that is, when the adjustment rate P=100%. Shows heat generation characteristics.
The heat generation temperature of the PTC heat generating element 5 in a state where the PTC heat generating element 5 is in a substantially completely saturated state is about 52° C. to 54° C.

一方、当該PTC発熱体5の抵抗値の変化特性は、図10に示されている通り、通電開始直後は抵抗値が0に近い低い状態にあり、通電開始時点(T0)直後からは、発熱量の変化と反対に、当該抵抗値は急速に上昇し、通電開始直後から約7分を経過する頃(Tst)には、当該抵抗値がサチュレートする傾向を示している。
従って、基本的には、本発明に係る当該床暖房装置1に通電を開始した時刻(T0)から、上記したPTC発熱体5の抵抗値がサチュレート迄の間に於いて、当該PTC発熱体5に供給される電力量を少なく成る様に調整し、当該PTC発熱体5の抵抗値がサチュレートする時刻(Tst或いはTn)以降は、通常の電力供給量に復帰させる様にする事が、その制御方法として望ましい具体例である。
On the other hand, the change characteristic of the resistance value of the PTC heating element 5 is, as shown in FIG. 10, that the resistance value is in a low state close to 0 immediately after the start of energization, and the heat generation starts immediately after the start of energization (T0). Contrary to the change in the amount, the resistance value rapidly rises, and the resistance value tends to saturate about 7 minutes after the start of energization (Tst).
Therefore, basically, from the time (T0) when the energization of the floor heating device 1 according to the present invention is started until the resistance value of the PTC heating element 5 reaches the saturation, the PTC heating element 5 is The amount of power supplied to the PTC heating element 5 is adjusted to be small, and after the time (Tst or Tn) when the resistance value of the PTC heating element 5 saturates, the normal amount of power supply is restored. This is a preferable example as a method.

係る技術思想の下にあって、最も簡単な当該床暖房装置1の駆動制御方法としては、当該床暖房装置1に所望の電力を供給開始した時点(T0)に於いては、前記した供給電力に対しする調整比率Pを、例えば30%に設定し、そのままの状態を時刻(Tst)迄維持継続させ、当該PTC発熱体5の抵抗値がサチュレートする時刻(Tst)に於いて、当該調整比率Pを例えば100%に戻すという二段階の制御方法或いは当該PTC発熱体5の抵抗値が略サチュレートする時刻(Tst)に於いて、当該調整比率Pを例えば90%に戻し、更に当該PTC発熱体5の抵抗値が完全にサチュレートする時刻(Tn)に於いて当該調整比率Pを例えば100%に戻すという三段階の制御方法であっても良い。
つまり、換言するならば、係る具体例においては、当該調整比率Pを、当該床暖房装置1に所望の電力を供給開始した時点(T0)に於いては、低く設定し、その後、当該調整比率Pを増大させるシステムの一例である。
Under such a technical idea, the simplest drive control method for the floor heating device 1 is to supply the above-described power at the time point (T0) when the desired power is started to be supplied to the floor heating device 1. The adjustment ratio P is set to, for example, 30%, and the state is maintained as it is until time (Tst), and at the time (Tst) at which the resistance value of the PTC heating element 5 saturates, the adjustment ratio is adjusted. At the time (Tst) when the resistance value of the PTC heating element 5 is substantially saturated, a two-step control method in which P is returned to 100%, for example, the adjustment ratio P is returned to 90%, and the PTC heating element is further changed. A three-step control method in which the adjustment ratio P is returned to, for example, 100% at the time (Tn) when the resistance value of 5 completely saturates may be used.
In other words, in other words, in the specific example, the adjustment ratio P is set low at the time point (T0) when the desired power supply to the floor heating device 1 is started, and then the adjustment ratio is set. It is an example of a system for increasing P.

勿論、本発明に於ける当該床暖房装置1の駆動制御システムは、係る具体例にのみに限定されるではなく、例えば、当該床暖房装置1に所望の電力を供給開始した時点(T0)から当該PTC発熱体5の抵抗値がサチュレートする時刻(Tst)間での時間帯を複数の均一或いは不均一の時間帯に区切り、此処の時間帯に於いて、個別に階段状に設定された当該調整比率Pを使用するものであっても良い。
この場合、好ましくは、当該床暖房装置1に所望の電力を供給開始した時点(T0)から当該PTC発熱体5の抵抗値がサチュレートする時刻(Tst)に向けて時系列的に設定されたそれぞれの時間帯に設定される当該調整比率Pの値は、当該時系列の順に沿って、小さい値から順に大きな値となる様に設定される事も好ましい具体例である。
Of course, the drive control system of the floor heating device 1 according to the present invention is not limited to the specific example, and for example, from the time point (T0) when the desired power supply to the floor heating device 1 is started. The time zone between the times (Tst) when the resistance value of the PTC heating element 5 saturates is divided into a plurality of uniform or non-uniform time zones, and in this time zone, the steps are individually set in a staircase pattern. The adjustment ratio P may be used.
In this case, it is preferable that the resistance value of the PTC heating element 5 is set in time series from the time (T0) when the desired power is started to be supplied to the floor heating apparatus 1 to the time (Tst) when the resistance value of the PTC heating element 5 is saturated. It is also a preferable specific example that the value of the adjustment ratio P set in the time zone is set such that the value increases from the smallest value in the order of the time series.

例えば、当該床暖房装置1に所望の電力を供給開始した時点(T0)から当該PTC発熱体5の抵抗値が略サチュレートする時刻(Tst)までの約420秒を、当該電力供給を開始した時点(T0)から40秒後までの区間(第1の時間帯)、その時点から60秒後までの区間(第2の時間帯)、その時点から80秒後までの区間(第3の時間帯)、その時点から100秒後までの区間(第4の時間帯)及びその時点から140秒後までの区間(第5の時間帯)に区分し、当該第1の時間帯から当該第5の時間帯のそれぞれに、当該調整比率Pとして個別に、30%、35%、40%、45%及び50%の値を設定するものである。
或いは、当該抵抗値が略サチュレートする時刻(Tst)から当該抵抗値が完全にサチュレートする時刻(Tn)間で更に一段或いは複数段の調整を行うものであっても良い。
上記具体例では、当該調整比率Pを変更する時間帯を5段階に設定したが、これを3段階或いは6段階等に任意に変更する事も可能である事は言うまでもない。
For example, about 420 seconds from the time (T0) when the desired power is started to be supplied to the floor heating device 1 to the time (Tst) when the resistance value of the PTC heating element 5 is substantially saturated, the time when the power is started to be supplied. Section from (T0) to 40 seconds later (first time zone), section from that point to 60 seconds later (second time zone), section from that point to 80 seconds later (third time zone) ), from that time to 100 seconds later (fourth time zone) and from that time to 140 seconds later (fifth time zone), divided from the first time zone to the fifth time zone. Values of 30%, 35%, 40%, 45% and 50% are individually set as the adjustment ratio P in each of the time zones.
Alternatively, one or more adjustments may be performed between the time (Tst) at which the resistance value is substantially saturated and the time (Tn) at which the resistance value is completely saturated.
In the above-described specific example, the time period for changing the adjustment ratio P is set to five stages, but it goes without saying that it can be arbitrarily changed to three stages, six stages, or the like.

更に、本発明に於いては、当該床暖房装置1の駆動制御時間が当該PTC発熱体5の抵抗値が略サチュレートする時刻(Tst)に到達した場合には、上記した様な所定の設定された調整比率Pを使用して所定の間、当該PTC発熱体5に所望の電力を供給継続させた後、例えば、図10で示す様に、当該PTC発熱体5の抵抗値が更に安定状態に移行した時点Tn後、(この時点Tnは、大凡当該PTC発熱体5に所望の電力の供給が開始されてから略20分程度経過した時間となる)当該PTC発熱体5に供給される電力は、当該調整比率Pを100%若しくはそれに近い状態に設定される事が望ましい。 Further, in the present invention, when the drive control time of the floor heating device 1 reaches the time (Tst) at which the resistance value of the PTC heating element 5 substantially saturates, the predetermined setting as described above is performed. After the desired electric power is continuously supplied to the PTC heating element 5 for a predetermined period by using the adjustment ratio P, the resistance value of the PTC heating element 5 becomes more stable as shown in FIG. 10, for example. After the time point Tn when the transition is made, the power supplied to the PTC heating element 5 is approximately 20 minutes after the start of supplying the desired power to the PTC heating element 5. It is desirable to set the adjustment ratio P to 100% or a state close to 100%.

これによって、本発明に係る当該床暖房装置1は、略54度乃至56度近傍に発熱する当該PTC発熱体5によって、略均一な暖房効果を発揮する事が出来る。
本発明に於ける当該床暖房装置1の暖房効果は、上記した通りは、当該PTC発熱体5の発熱量により決定される事から、当該PTC発熱体5に供給される電力量を当該PTC発熱体5の抵抗値がサチュレートする時刻(Tst)によって変化する事になる。
As a result, the floor heating device 1 according to the present invention can exhibit a substantially uniform heating effect by the PTC heating element 5 that generates heat in the vicinity of 54 degrees to 56 degrees.
As described above, the heating effect of the floor heating device 1 according to the present invention is determined by the heat generation amount of the PTC heating element 5, so that the amount of power supplied to the PTC heating element 5 is changed to the PTC heat generation amount. The resistance value of the body 5 will change depending on the time (Tst) when it saturates.

その為、例えば、当該PTC発熱体5に供給される電力量を、当該PTC発熱体5の抵抗値が安定状態に移行した時点Tn以降は、当該調整比率Pを略100%に設定して当該所望の電力を供給継続させた場合には、当該床暖房装置1の暖房効果は最も高い温度効果を発揮する事になる。
つまり、当該床暖房装置1の暖房効果を高温レベル、換言すればハイレベル(H)に設定する事が可能となる。
Therefore, for example, after the time Tn when the resistance value of the PTC heating element 5 shifts to a stable state, the adjustment ratio P is set to about 100% for the amount of power supplied to the PTC heating element 5. When the desired electric power is continuously supplied, the heating effect of the floor heating device 1 exhibits the highest temperature effect.
That is, the heating effect of the floor heating device 1 can be set to a high temperature level, in other words, a high level (H).

一方、例えば、当該PTC発熱体5に供給される電力量を、当該PTC発熱体5の抵抗値が安定状態に移行した時点Tn以降に於いて、当該調整比率Pを略80%程度に設定して当該所望の電力を供給継続させた場合には、当該床暖房装置1の暖房効果は当該ハイレベル(H)の状態に比べて、多少低い温度効果を発揮する事になる。
つまり、当該床暖房装置1の暖房効果を中温レベル、換言すればミドルレベル(M)に設定する事が可能となる。
On the other hand, for example, after the time Tn when the resistance value of the PTC heating element 5 shifts to a stable state, the amount of electric power supplied to the PTC heating element 5 is set to about 80%. When the desired electric power is continuously supplied, the heating effect of the floor heating device 1 exhibits a slightly lower temperature effect than in the high level (H) state.
That is, it is possible to set the heating effect of the floor heating device 1 to the medium temperature level, in other words, the middle level (M).

更に、例えば、当該PTC発熱体5に供給される電力量を、当該PTC発熱体5の抵抗値が安定状態に移行した時点Tn以降に於いて、当該調整比率Pを略50乃至60%程度に設定して当該所望の電力を供給継続させた場合には、当該床暖房装置1の暖房効果は当該ミドルレベル(M)の状態に比べて、更に低い温度効果を発揮する事になる。
つまり、当該床暖房装置1の暖房効果を低温レベル、換言すればローレベル(L)に設定する事が可能となる。
Furthermore, for example, after the time Tn when the resistance value of the PTC heating element 5 shifts to a stable state, the amount of electric power supplied to the PTC heating element 5 is adjusted to about 50 to 60%. When it is set and the desired electric power is continuously supplied, the heating effect of the floor heating device 1 exhibits a lower temperature effect as compared with the state of the middle level (M).
That is, the heating effect of the floor heating device 1 can be set to a low temperature level, in other words, a low level (L).

従って、本発明に於いては、当該床暖房装置1のユーザーが、当該床暖房装置1の発熱状態を自身の好みに応じて、例示された当該3種類の温度設定モードの中から任意のモードを選択する事が可能となる。
係るモードの選択を実際に可能にする為の手段としては、上記した通り、例えば、当該床暖房装置1に所望の電力を供給開始した時点(T0)から当該PTC発熱体5の抵抗値がサチュレートした時刻から所定の時間経過した時刻(Tn)間での経過時間の間は、上記した様な調整比率Pを最小値から所望の値まで変化させる一つのプログラムで構成するとともに、当該時刻(Tn)が経過したのちは、上記したように、少なくとも2段階、好ましくは3段階に当該調整比率Pを変化させたプログラムを連続的に連結させた状態の制御プログラムを設定し、当該床暖房装置1のユーザーが、そのうちの一つのプログラムを任意に選択出来る様に構成する事が望ましい。
Therefore, in the present invention, the user of the floor heating device 1 sets the heat generation state of the floor heating device 1 to any one of the three types of temperature setting modes illustrated, according to his/her preference. It is possible to select.
As a means for actually enabling the selection of such a mode, as described above, for example, the resistance value of the PTC heating element 5 is saturated when the desired electric power is started to be supplied to the floor heating device 1 (T0). During the elapsed time between the time (Tn) after a lapse of a predetermined time from the above time, the program is configured by one program that changes the adjustment ratio P as described above from the minimum value to the desired value, and ) Has elapsed, as described above, the control program in a state in which the programs in which the adjustment ratio P is changed in at least two stages, preferably three stages are continuously connected is set, and the floor heating device 1 is set. It is desirable to configure so that the user of can select one of the programs arbitrarily.

即ち、本発明に於いては、例えば、頭初から当該床暖房装置1の発熱温度設定をLレベルとする場合には、図13に於ける調整比率グラフPsに沿って調整する事が可能であり、又、頭初から当該床暖房装置1の発熱温度設定をMレベル或いはHレベルとする場合には、図13に於ける調整比率グラフをそれぞれPs’とPs”に沿って調整する事が可能である。
然しながら、頭初、Lレベルに設定して使用を開始した場合で、場合によっては、最初の設定と異なり、その後、ユーザーが当該床暖房装置1の発熱温度設定レベルをMレベルかHレベルに変更したくなった場合には、例えば、時刻Tnに於いて当該調整比率Pを80%か100%に切り替える事が可能である。
That is, in the present invention, for example, when the heat generation temperature setting of the floor heating device 1 is set to the L level from the beginning, it is possible to adjust along the adjustment ratio graph Ps in FIG. If the heating temperature setting of the floor heating device 1 is set to the M level or the H level from the beginning, the adjustment ratio graph in FIG. 13 may be adjusted along Ps′ and Ps″, respectively. It is possible.
However, at the beginning, when the L-level is set and started to be used, the setting may be different from the initial setting in some cases, and then the user changes the heating temperature setting level of the floor heating device 1 to the M-level or the H-level. If desired, for example, the adjustment ratio P can be switched to 80% or 100% at time Tn.

一方、例えば、頭初から当該床暖房装置1の発熱温度設定をMレベルとする場合には、図13に於ける調整比率グラフPs’に沿って調整する事が可能であるが、その後、ユーザーが当該床暖房装置1の発熱温度設定レベルをLレベルかHレベルに変更したくなった場合には、例えば、時刻Tnに於いて当該調整比率を60%か100%に切り替える事が可能である。 On the other hand, for example, when the heat generation temperature setting of the floor heating device 1 is set to the M level from the beginning, it is possible to adjust along the adjustment ratio graph Ps′ in FIG. When the user wants to change the heat generation temperature setting level of the floor heating device 1 to the L level or the H level, the adjustment ratio can be switched to 60% or 100% at time Tn, for example. ..

更に、例えば、頭初から当該床暖房装置1の発熱温度設定をHレベルとする場合には、図13に於ける調整比率グラフPs”に沿って調整する事が可能であるが、その後、ユーザーが当該床暖房装置1の発熱温度設定レベルをLレベルかMレベルに変更したくなった場合には、例えば、時刻Tnに於いて当該調整比率を60%か80%に切り替える事が可能である。
本発明に於いては、図11に示す様に、当該制御回路200の一部に適宜のモード設定手段204を設け、当該モード設定手段204に配置された所望のモード選択キーを操作することにより調整制御が可能となる。
Further, for example, when the heat generation temperature setting of the floor heating device 1 is set to the H level from the beginning, it is possible to adjust along the adjustment ratio graph Ps″ in FIG. When the user wants to change the heat generation temperature setting level of the floor heating device 1 to the L level or the M level, the adjustment ratio can be switched to 60% or 80% at time Tn, for example. ..
In the present invention, as shown in FIG. 11, by providing an appropriate mode setting means 204 in a part of the control circuit 200 and operating a desired mode selection key arranged in the mode setting means 204. Adjustment control is possible.

又、本発明に於いては、室温を計測する為の室温センサー205や、外部操作キー206、計時手段或いは、当該床暖房装置1をタイマー制御する為のタイマー制御手段が設けられているものであっても良い。
本発明に於ける当該制御プログラムの一具体例の構成の概要をグラフ化したものを図13に示す。
Further, in the present invention, a room temperature sensor 205 for measuring the room temperature, an external operation key 206, a time measuring means, or a timer control means for timer controlling the floor heating device 1 is provided. It may be.
FIG. 13 is a graph showing the outline of the configuration of a specific example of the control program in the present invention.

次に、本発明に於ける別の態様として、本発明に係る当該床暖房装置1に使用されている当該PTC発熱体5の発熱特性に関する劣化の状態を判断し、当該PTC発熱体5の交換作業を実行し、常に本発明に係る当該床暖房装置1が最適な状態で暖房機能を発揮する様にチェックを実行する事が求められるものであるが、その為の具体例を以下に詳細に説明する。
即ち、本発明に於ける当該別の態様に係る構成は、以下の通りである。即ち、当該トンネル式の地表面或いは床面暖房装置の駆動制御システム100に於いて、予め定められた適宜の時間間隔毎に、当該トンネル式の地表面或いは床面暖房装置1に挿入されている当該個々の長尺状発熱体5のそれぞれに供給されている電流値又は電圧値或いはその時点における当該個々の長尺状発熱体5の抵抗値を測定し、当該測定結果Snを、予め設定されている適宜の閾値S0と比較して、当該個々の長尺状発熱体5の特性値劣化の有無を判断する工程を含んでいる事を特徴とするトンネル式の地表面或いは床面暖房装置の駆動制御システム100である。
Next, as another aspect of the present invention, the state of deterioration regarding the heat generation characteristics of the PTC heating element 5 used in the floor heating device 1 according to the present invention is determined, and the PTC heating element 5 is replaced. It is required to perform work and always perform a check so that the floor heating device 1 according to the present invention exerts a heating function in an optimum state. A specific example for that is described below in detail. explain.
That is, the configuration according to the another aspect of the present invention is as follows. That is, in the tunnel-type ground surface or floor heating apparatus drive control system 100, the tunnel-type ground surface or floor heating apparatus 1 is inserted into the tunnel-type ground surface or floor heating apparatus 1 at every predetermined time interval. The current value or the voltage value supplied to each of the individual elongated heating elements 5 or the resistance value of the individual elongated heating elements 5 at that time is measured, and the measurement result Sn is set in advance. Of the tunnel-type ground surface or floor heating device, which includes a step of determining whether or not the characteristic value of each of the long heating elements 5 is deteriorated by comparing with an appropriate threshold value S0. The drive control system 100.

本具体例に於いては、当該通常、当該長尺状発熱体5に流れる電流値若しくは電圧値又は、当該長尺状発熱体5の通常且つ正常状態に於いて示される抵抗値を基準値として閾値に設定しておき、当該閾値を中心として所望の範囲に設定された劣化状態検出レベル領域を超えた測定値が検出された場合に、当該長尺状発熱体5は、所定の機能が発揮出来なくなったものとして認識し、当該使用中の長尺状発熱体5を新品の長尺状発熱体5と交換する必要がある旨の情報を使用者に対して報知出来る様に構成するものである。 In this specific example, the current value or voltage value that normally flows in the elongated heating element 5 or the resistance value of the elongated heating element 5 that is shown in a normal and normal state is used as a reference value. When the measured value is set to a threshold value and exceeds the deterioration state detection level region set in a desired range around the threshold value, the elongated heating element 5 exhibits a predetermined function. It is configured so that the user can be notified of the fact that the long heating element 5 in use must be replaced with a new long heating element 5 by recognizing that it is no longer possible. is there.

係る当該長尺状発熱体5に対する当該特性値の検査頻度は特に限定されるものではないが、例えば、当該長尺状発熱体5が新品の状態から3年間は、6か月間隔で行い、3年以上6年間では、3か月間隔で検査を実行し、7年目以降は、1か月間隔で当該検査を実行するように設定する事が望ましい具体例である The inspection frequency of the characteristic value with respect to the elongated heating element 5 is not particularly limited, but for example, 3 years after the elongated heating element 5 is new, the inspection is performed at 6-month intervals. It is a specific example that it is desirable to set the inspection to be executed at intervals of 3 months for 3 years to 6 years, and to execute the inspection at intervals of 1 month after the 7th year.

上記した本発明に係る具体例を実行する為に、例えば、図1に示す様に、正・負電極線171、172とコネクター部78との間に適宜の特性値検出手段181を固定的に配置するか、適宜の特性値検出手段181が任意に接触可能な適宜の特性値検出手段接触部分181を設けておく事が望ましい。
本発明に於ける当該特性値検出手段181としては、当該部分を流れる電流値、或いは電圧値若しくは抵抗値を測定出来る手段であれば如何なるものであっても良い。
In order to carry out the above-described specific example of the present invention, for example, as shown in FIG. 1, an appropriate characteristic value detecting means 181 is fixedly provided between the positive/negative electrode wires 171, 172 and the connector portion 78. It is desirable to dispose them or to provide an appropriate characteristic value detecting means contact portion 181 with which the appropriate characteristic value detecting means 181 can come into contact arbitrarily.
The characteristic value detecting means 181 in the present invention may be any means as long as it can measure a current value, a voltage value or a resistance value flowing through the portion.

一方、個々の当該長尺状発熱体5に関する検出されたそれぞれの特性値は、当該各長尺状発熱体5の配置位置情報と共に、当該中央演算手段(CPU)200に設けられている適宜の検出特性値記憶手段209に記録保存され、同時に当該検出特性値情報が、当該中央演算手段(CPU)200に設けられている適宜の特性値閾値記憶手段210から読み出された閾値情報を基に、当該特性値劣化状況判定手段211で演算され、当該長尺状発熱体5の特性値が検出時点で劣化しているか否かの判定が実行され、その結果が、当該長尺状発熱体5の配置位置情報と共に、当該適宜の表示手段203に表示されることになる。 On the other hand, the detected respective characteristic values of the individual elongated heating elements 5 are properly arranged in the central processing means (CPU) 200 together with the arrangement position information of the elongated heating elements 5. The detected characteristic value information is recorded and stored in the detected characteristic value storage means 209, and at the same time, the detected characteristic value information is based on the threshold value information read from the appropriate characteristic value threshold value storage means 210 provided in the central processing means (CPU) 200. The characteristic value deterioration status determining unit 211 calculates the characteristic value of the elongated heating element 5 and determines whether the characteristic value of the elongated heating element 5 is deteriorated at the time of detection, and the result is determined. Will be displayed on the appropriate display means 203 together with the arrangement position information.

従って、当該トンネル式の地表面或いは床面暖房装置の駆動制御システム100の使用者は、適宜の時間間隔で、当該表示手段203をモニターしておき、当該表示手段203上に、どこの面状暖房装置1のどの位置に配置されている当該長尺状発熱体5が、既に劣化状態に陥り、早急に新品の当該長尺状発熱体5と交換しなければならないかという情報を迅速かつ正確に把握する事が可能となる。 Therefore, the user of the drive control system 100 for the tunnel type ground surface or floor heating device monitors the display means 203 at an appropriate time interval, and displays the surface state of the display means 203. Promptly and accurately provide information on where in the heating device 1 the long heating element 5 has already deteriorated and must be replaced with a new long heating element immediately. It becomes possible to grasp.

即ち、本発明に係る本態様に於いては、当該個々の長尺状発熱体5の少なくとも何れか一つ当該長尺状発熱体5の特性値に関し劣化の判定が出された場合には、当該事実と共に当該劣化の判定が出された長尺状発熱体5の存在位置情報とを当該表示手段203に報知する様に構成されている事を特徴とするトンネル式の地表面或いは床面暖房装置の駆動制御システム100である事が好ましい具体例の一つである。 That is, in this aspect of the present invention, when it is determined that the characteristic value of at least one of the individual elongated heating elements 5 is deteriorated, A tunnel type ground surface or floor heating, which is configured to notify the display means 203 of the presence position information of the elongated heating element 5 for which the determination of deterioration has been issued together with the fact. The drive control system 100 of the apparatus is one of the preferred embodiments.

更に付言するならば、本発明に於ける別の態様での他の具体例としては、当該トンネル式の地表面或いは床面暖房装置の駆動制御装置100に於いて、当該トンネル式の地表面或いは床面暖房装置1に挿入されている当該個々の長尺状発熱体5のそれぞれの電極線51、52の一部に、固定的に設けられるか若しくは接触/離反自在に設けられている当該個々の長尺状発熱体5を流れる電流値或いは電圧値若しくはその時点における当該個々の長尺状発熱体5の抵抗値を測定可能に構成されたセンサー手段181を配置し、予め定められた適宜の時間間隔毎に、当該トンネル式の地表面或いは床面暖房装置1に挿入されている当該個々の長尺状発熱体5のそれぞれに供給されている電流値又は電圧値或いはその時点における当該個々の長尺状発熱体5の抵抗値を測定し、当該測定結果Sと、予め設定されている適宜の閾値S0と比較して、当該個々の長尺状発熱体5の特性値劣化の有無を判断する手段211が設けられている事を特徴とするトンネル式の地表面或いは床面暖房装置の駆動制御装置100である。 In addition, as another specific example of another aspect of the present invention, in the tunnel-type ground surface or the drive control device 100 for the floor heating device, the tunnel-type ground surface or Each of the individual elongated heating elements 5 inserted into the floor heating device 1 is fixedly provided on a part of each of the electrode wires 51 and 52 of the elongated heating element 5 or is provided so as to be contactable/separable. The sensor means 181 configured to be able to measure the current value or voltage value flowing through the long heating element 5 or the resistance value of the individual long heating element 5 at that time is arranged, and an appropriate predetermined value is arranged. At each time interval, the current value or voltage value supplied to each of the individual elongated heating elements 5 inserted in the tunnel-type ground surface or floor heating device 1 or the individual value at that time. The resistance value of the long heating element 5 is measured, and the presence or absence of characteristic value deterioration of the individual long heating element 5 is determined by comparing the measurement result S with an appropriate preset threshold value S0. A drive control device 100 for a tunnel-type ground surface or floor heating device, which is characterized in that a means 211 is provided.

又、本発明に係る上記具体例に於いては更に、当該個々の長尺状発熱体5の少なくとも何れか一つ当該長尺状発熱体5の特性値に関し劣化の判定が出された場合には、当該事実と共に当該劣化の判定が出された長尺状発熱体5の存在位置情報とを適宜の表示手段に報知する報知手段203が更に設けられている事を特徴とするトンネル式の地表面或いは床面暖房装置の駆動制御装置100である。 Further, in the above specific example according to the present invention, further, in the case where it is determined that at least one of the individual elongated heating elements 5 is deteriorated with respect to the characteristic value of the elongated heating element 5. Is further provided with an informing means 203 for informing an appropriate display means of the fact and the existence position information of the elongated heating element 5 that has been judged to be deteriorated. It is a drive control device 100 for a surface or floor heating device.

一方、本発明の基礎を構成するトンネル式地表面或いは床面暖房装置は、地表面或いは床面を暖房する事はもとより、これを垂直に立設して使用する事も可能であるから、例えば、家屋の内装材としての壁材や家具等の側壁面或いは天板や底板、寝台の底板、更には、椅子等の腰掛け部や背もたれ部等の家具用の一部分に使用される部材の暖房装置にも使用する事が可能である事は言うまでもない。
即ち、本発明に於ける別の態様としては、断熱性を有し、矩形状の平面形状を有する基板部と、当該基板部上に、所望の間隔を介して配置されている、熱伝導性の大なる材料で構成された天井部とで構成され、且つ当該基板部と当該天井部との間には、保温性或いは蓄熱性若しくは断熱性を有する適宜の材料で構成された支持部材が挿入された発熱構造体本体部であって、且つ当該発熱構造体本体部に於ける当該支持部材には、当該基板部の一方の長手方向と平行して、少なくとも一つの長尺状空間領域部が形成されており、然も、当該長尺状空間領域部の内部には、線状或いは帯状の長尺状発熱体が配設されているトンネル式の平面暖房装置であって、且つ、当該トンネル式の平面暖房装置は、所望の長さに設定されている直線状の線状或いは帯状の長尺状発熱体が、当該長尺状発熱体の直線状態を維持したままの状態で、挿入・引き抜き自在に嵌入せしめられる様に構成されている事を特徴とするトンネル式壁材用或いは家具部材用平面暖房装置であり、更に、本発明の異なる態様としては、当該トンネル式壁材用或いは家具部材用平面暖房装置に於いては、当該それぞれの長尺状の空間領域内に配置されている当該線状或いは帯状の長尺状発熱体は、その一方の端部が当該長尺状空間領域部の一方の端部側より空間に突出せしめられ、当該端部が当該トンネル式壁材用或いは家具部材用平面暖房装置に直接或いはそれに近接して設けられている適宜の電力供給手段と着脱自在に接続されているトンネル式壁材用或いは家具部材用平面暖房装置の駆動システムを形成しており、且つ当該システムに於いては、当該直線状の線状或いは帯状の長尺状発熱体全体に供給される電力を、所定の最大電力の供給と、当該所定の最大電力より所定の調整比率だけ低減させた電力を任意に供給する様に設計された電力供給制御手段が設けられている事を特徴とするトンネル式壁材用或いは家具部材用平面暖房装置の駆動システムである。
又、本発明に於ける更に別の態様としては、当該上記したトンネル式壁材用或いは家具部材用平面暖房装置の駆動システムに於いて、当該電力供給制御手段は、当該トンネル式壁材用或いは家具部材用平面暖房装置の駆動制御システムに供給可能な最大電力量の30%乃至100%の間の任意の調整比率に設定された電力量を供給する事が出来る様に構成されている事を特徴とするトンネル式壁材用或いは家具部材用平面暖房装置の駆動システムである。
より具体的には、上記した本発明に係る当該トンネル式壁材用或いは家具部材用平面暖房装置1とその駆動システム100とを壁材或いは家具等の少なくとも一部分に組込み、上記した制御装置170を壁部の一部或いは家具の一部に取り付けて、ユーザーが任意に起動停止或いは温度コントロールを実行出来る様に配置することにより実用化が可能となる。
On the other hand, the tunnel-type ground surface or floor heating device that forms the basis of the present invention can heat the ground surface or floor surface, and can also be used by standing it vertically. , A wall material as an interior material of a house, a side wall surface of furniture, a top plate or a bottom plate, a bottom plate of a bed, and a heating device for a member used for a part of furniture such as a seat or a backrest of a chair It goes without saying that it can also be used for.
That is, as another aspect of the present invention, there is a heat insulating property, a substrate portion having a rectangular planar shape, and a heat conductive material disposed on the substrate portion at a desired interval. And a ceiling member made of a large material, and a support member made of an appropriate material having heat retention property, heat storage property or heat insulation property is inserted between the substrate part and the ceiling part. The heat generating structure main body portion, and the supporting member in the heat generating structure main body portion has at least one elongated space region portion in parallel with one longitudinal direction of the substrate portion. It is a tunnel-type planar heating device in which a linear or strip-shaped elongated heating element is provided inside the elongated space region, and In the flat heating device of the type, a linear linear or band-shaped long heating element set to a desired length is inserted/inserted in a state where the linear heating state of the long heating element is maintained. A flat heating device for a tunnel type wall material or a furniture member, characterized in that the flat type heating device for a tunnel type wall material or a furniture member is characterized in that the tunnel type wall material or the furniture can be inserted. In the planar heating device for members, the linear or strip-shaped elongated heating element arranged in each of the elongated space areas has one end portion of the elongated space area. Is detachable from an appropriate power supply means that is projected into the space from one end side of the part and is directly or near the tunnel type wall material or furniture member plane heating device. Forming a drive system for a flat heating device for a tunnel type wall material or furniture member connected to, and in the system, the linear linear or strip-shaped long heating element is There is provided a power supply control means designed to arbitrarily supply the supplied power with a predetermined maximum power and a power reduced by a predetermined adjustment ratio from the predetermined maximum power. It is a drive system for a flat heating device for a tunnel type wall material or a furniture member which is a feature.
Further, as still another aspect of the present invention, in the drive system for the above-mentioned flat heating device for tunnel type wall material or furniture member, the power supply control means is for the tunnel type wall material or It is configured to be able to supply the electric energy set to an arbitrary adjustment ratio between 30% and 100% of the maximum electric energy that can be supplied to the drive control system of the flat heating device for furniture members. It is a drive system for a flat heating device for a tunnel type wall material or a furniture member which is a feature.
More specifically, the tunnel-type wall material or furniture member planar heating device 1 according to the present invention and the drive system 100 thereof according to the present invention are incorporated into at least a part of a wall material, furniture, or the like, and the control device 170 described above is installed. It can be put to practical use by attaching it to a part of the wall or a part of furniture and arranging it so that the user can arbitrarily start and stop or control the temperature.

1…床暖房装置
2…天井部
3…支持部材
4…長尺状の溝部
5…線状或いは帯状の長尺状発熱体
7…基底具(保護部材)
9…端縁部、長尺辺
10…空間領域
43…結合固定部材
46…床材層、上部被覆層
47…基底面部
51、52…電極線
53…発熱層
54…絶縁性合成樹脂材料層
55、56…コネクタ部材、第1のコネクタ部材
57、58…別のコネクタ部材、第2のコネクタ部材
59、59’…端縁部
71…電源部
72、171…正電極線部
73、172…負電極線部
74、174…制御回路部
75、175…タイマー手段
76、201…記憶手段
77、174…スイッチング部
78…コネクター部
79…分岐部
90…補助接合部材
95…釘部、接合固定部材
100…地表面或いは床面暖房装置の制御システム
103…上表面部、天井部の外表面
104…下表面部
170…電源手段
178…トライアック
180…ゼロクロスコントローラ
181…電流値、電圧値、抵抗値等検出手段
200…中央演算制御手段(CPU)
201…プログラム記憶手段
202…計時手段
203…表示手段、報知手段
204…モード設定手段
205…室温検知手段
206…外部操作手段
207…スイッチ手段
209…検出特性値記憶手段
210…特性値閾値記憶手段
211…特性値劣化状況判定手段
301…根太、保持材部
302…作業用空間領域
304…適宜の被覆材・蓋部材
DESCRIPTION OF SYMBOLS 1... Floor heating device 2... Ceiling part 3... Support member 4... Elongate groove part 5... Linear or strip|belt-shaped elongate heating element 7... Base material (protective member)
9... Edge part, long side 10... Space region 43... Bonding fixing member 46... Floor material layer, upper covering layer 47... Base bottom surface parts 51, 52... Electrode wire 53... Heating layer 54... Insulating synthetic resin material layer 55 , 56... Connector member, first connector member 57, 58... Another connector member, second connector member 59, 59'... End edge portion 71... Power supply portion 72, 171: Positive electrode wire portion 73, 172... Negative Electrode wire portion 74, 174... Control circuit portion 75, 175... Timer means 76, 201... Storage means 77, 174... Switching portion 78... Connector portion 79... Branch portion 90... Auxiliary joining member 95... Nail portion, joining fixing member 100 ... Control system 103 for ground surface or floor heating device ... Upper surface portion, outer surface 104 of ceiling portion ... Lower surface portion 170 ... Power supply means 178 ... Triac 180 ... Zero cross controller 181 ... Detection of current value, voltage value, resistance value, etc. Means 200... Central processing control means (CPU)
201... Program storage means 202... Clocking means 203... Display means, Notification means 204... Mode setting means 205... Room temperature detection means 206... External operation means 207... Switch means 209... Detection characteristic value storage means 210... Characteristic value threshold storage means 211 .. Characteristic value deterioration status determining means 301... joists, holding material portion 302... working space area 304... Appropriate covering material/cover member

Claims (25)

断熱性を有し、矩形状の平面形状を有する基板部と、当該基板部上に、所望の間隔を介して配置されている、熱伝導性の大なる材料で構成された天井部とで構成され、且つ当該基板部と当該天井部との間には、保温性或いは蓄熱性若しくは断熱性を有する適宜の材料で構成された支持部材が挿入された発熱構造体本体部であって、且つ当該発熱構造体本体部に於ける当該支持部材には、当該基板部の一方の長手方向と平行して、少なくとも一つの長尺状空間領域部が形成されており、然も、当該長尺状空間領域部の内部には、線状或いは帯状の長尺状発熱体が配設されているトンネル式の地表面或いは床面暖房装置であって、且つ、当該トンネル式の地表面或いは床面暖房装置は、所望の長さに設定されている直線状の線状或いは帯状の長尺状発熱体が、当該長尺状発熱体の直線状態を維持したままの状態で、挿入・引き抜き自在に嵌入せしめられる様に構成されているトンネル式の地表面或いは床面暖房装置に於いて、当該それぞれの長尺状の空間領域内に配置されている当該線状或いは帯状の長尺状発熱体は、その一方の端部が当該長尺状空間領域部の一方の端部側より空間に突出せしめられ、当該端部が当該トンネル式の地表面或いは床面暖房装置に直接或いはそれに近接して設けられている適宜の電力供給手段と着脱自在に接続されているトンネル式の地表面或いは床面暖房システムに於いて、当該直線状の線状或いは帯状の長尺状発熱体全体に供給される電力を、所定の最大電力の供給と、当該所定の最大電力より所定の調整比率だけ低減させた電力を任意に供給する様に設計された電力供給制御手段が設けられている事を特徴とするトンネル式の地表面或いは床面暖房装置の駆動制御システム。 Consists of a substrate portion having a heat insulating property and a rectangular planar shape, and a ceiling portion which is arranged on the substrate portion with a desired interval and is made of a material having a large thermal conductivity. A heat generating structure body portion in which a supporting member made of an appropriate material having heat insulating property, heat storage property or heat insulating property is inserted between the substrate part and the ceiling part, and At least one elongated space region portion is formed in the support member in the heat generating structure main body portion in parallel with one longitudinal direction of the substrate portion, and the elongated space portion is still formed. A tunnel-type ground surface or floor heating device in which a linear or strip-shaped elongated heating element is disposed inside the area portion, and the tunnel-type ground surface or floor heating device. Is a linear linear or strip-shaped elongated heating element set to a desired length, and can be inserted and pulled out with the elongated heating element maintained in the linear state. In the tunnel-type ground surface or floor heating device configured as described above, the linear or strip-shaped elongated heating elements arranged in the respective elongated space regions are One end is projected into the space from one end side of the elongated space region portion, and the end portion is provided directly or in proximity to the tunnel-type ground surface or floor heating device. In a tunnel-type ground surface or floor heating system that is detachably connected to an appropriate power supply means, the electric power supplied to the entire linear linear or strip long heating element is A tunnel type characterized by being provided with a predetermined maximum power supply and a power supply control means designed to arbitrarily supply the power reduced by a predetermined adjustment ratio from the predetermined maximum power. Drive control system for ground or floor heating. 電力供給制御手段は、当該トンネル式の地表面或いは床面暖房装置の駆動制御システムに供給可能な最大電力量の30%乃至100%の間の任意の調整比率に設定された電力量を供給する事が出来る様に構成されている事を特徴とする請求項1に記載のトンネル式の地表面或いは床面暖房装置の駆動制御システム。 The power supply control means supplies the amount of power set to an arbitrary adjustment ratio between 30% and 100% of the maximum amount of power that can be supplied to the drive control system of the tunnel-type ground surface or floor heating device. The drive control system for a tunnel-type ground surface or floor heating device according to claim 1, wherein the drive control system is configured so as to be able to do so. 当該電力供給制御手段に於ける当該供給電力量の調整比率は、当該トンネル式の地表面或いは床面暖房装置の駆動制御システムの起動時に於いては、低い調整比率に設定される事を特徴とする請求項2に記載のトンネル式の地表面或いは床面暖房装置の駆動制御システム。 The adjustment ratio of the supplied power amount in the power supply control means is set to a low adjustment ratio when the drive control system of the tunnel-type ground surface or floor heating device is started. The drive control system for the tunnel-type ground surface or floor heating device according to claim 2. 当該電力供給制御手段に於ける当該供給電力量の調整比率は、当該トンネル式の地表面或いは床面暖房装置の駆動制御システムの起動時に於いては、低い調整比率に設定され、経時変化に応答して、連続的若しくは間歇的に当該供給電力量の調整比率が増加する様に構成されている事を特徴とする請求項3に記載のトンネル式の地表面或いは床面暖房装置の駆動制御システム。 The adjustment ratio of the supplied power amount in the power supply control means is set to a low adjustment ratio when the drive control system of the tunnel-type ground surface or floor heating device is started, and responds to a change over time. 4. The drive control system for the tunnel-type ground surface or floor heating device according to claim 3, wherein the adjustment ratio of the supplied power amount is continuously or intermittently increased. .. 当該電力供給制御手段に於ける当該供給電力量の調整比率は、当該トンネル式の地表面或いは床面暖房装置に要求される発熱量に応答して変化させる様に構成されている事を特徴とする請求項3に記載のトンネル式の地表面或いは床面暖房装置の駆動制御システム。 The adjustment ratio of the supplied power amount in the power supply control means is configured to be changed in response to the amount of heat generation required for the tunnel-type ground surface or floor heating device. The drive control system for the tunnel-type ground surface or floor heating device according to claim 3. 当該電力供給制御手段に於ける当該供給電力量の調整比率は、位相制御に基づき制御する様に構成されている事を特徴とする請求項2乃至5の何れかに記載のトンネル式の地表面或いは床面暖房装置の駆動制御システム。 The tunnel-type ground surface according to any one of claims 2 to 5, characterized in that the adjustment ratio of the supplied power amount in the power supply control means is configured to be controlled based on phase control. Alternatively, a drive control system for the floor heating system. 当該電力供給制御手段に於ける当該位相制御は、ゼロクロス制御である事を特徴とする請求項6に記載のトンネル式の地表面或いは床面暖房装置の駆動制御システム。 7. The drive control system for a tunnel-type ground surface or floor heating device according to claim 6, wherein the phase control in the power supply control means is zero-cross control. 当該位相制御はトライアック装置を利用するものである事を特徴とする請求項1乃至7の何れかに記載のトンネル式の地表面或いは床面暖房装置の駆動制御システム。 8. The drive control system for a tunnel-type ground surface or floor heating device according to claim 1, wherein the phase control uses a triac device. 当該トンネル式の地表面或いは床面暖房装置の駆動制御システムに於いて、予め定められた適宜の時間間隔毎に、当該トンネル式の地表面或いは床面暖房装置に挿入されている当該個々の長尺状発熱体のそれぞれに供給されている電流値或いはその時点における当該個々の長尺状発熱体の抵抗値を測定し、当該測定結果を、予め設定されている適宜の閾値と比較して、当該個々の長尺状発熱体の特性値劣化の有無を判断する工程を含んでいる事を特徴とする請求項1乃至8の何れかに記載のトンネル式の地表面或いは床面暖房装置の駆動制御システム。 In the drive control system for the tunnel-type ground surface or floor heating device, the individual lengths inserted in the tunnel-type ground surface or floor heating device at predetermined time intervals. The current value supplied to each of the elongated heating elements or the resistance value of the individual elongated heating elements at that time is measured, and the measurement result is compared with an appropriate threshold value set in advance, The tunnel-type ground surface or floor heating device driving method according to any one of claims 1 to 8, further comprising a step of determining whether or not the characteristic values of the individual long heating elements are deteriorated. Control system. 当該個々の長尺状発熱体の少なくとも何れか一つ当該長尺状発熱体の特性値に関し劣化の判定が出された場合には、当該事実と共に当該劣化の判定が出された長尺状発熱体の存在位置情報とを当該表示手段に報知する様に構成されている事を特徴とする請求項9に記載のトンネル式の地表面或いは床面暖房装置の駆動制御システム。 At least one of the individual elongated heating elements is judged to be deteriorated with respect to the characteristic value of the elongated heating element, and the elongated heat generation for which the deterioration is judged together with the fact. The drive control system for a tunnel-type ground surface or floor heating device according to claim 9, wherein the display device is informed of the body position information. 断熱性を有し、矩形状の平面形状を有する基板部と、当該基板部上に、所望の間隔を介して配置されている、熱伝導性の大なる材料で構成された天井部とで構成され、且つ当該基板部と当該天井部との間には、保温性或いは蓄熱性若しくは断熱性を有する適宜の材料で構成された支持部材が挿入された発熱構造体本体部であって、且つ当該発熱構造体本体部に於ける当該支持部材には、当該基板部の一方の長手方向と平行して、少なくとも一つの長尺状空間領域部が形成されており、然も、当該長尺状空間領域部の内部には、線状或いは帯状の長尺状発熱体が配設されているトンネル式の地表面或いは床面暖房装置であって、且つ、当該トンネル式の地表面或いは床面暖房装置は、所望の長さに設定されている直線状の線状或いは帯状の長尺状発熱体が、当該長尺状発熱体の直線状態を維持したままの状態で、挿入・引き抜き自在に嵌入せしめられる様に構成されているトンネル式の地表面或いは床面暖房装置に於いて、当該それぞれの長尺状の空間領域内に配置されている当該線状或いは帯状の長尺状発熱体は、その一方の端部が当該長尺状空間領域部の一方の端部側より空間に突出せしめられ、当該端部が当該トンネル式の地表面或いは床面暖房装置に直接或いはそれに近接して設けられている適宜の電力供給手段と着脱自在に接続されているトンネル式の地表面或いは床面暖房システムに於いて、当該直線状の線状或いは帯状の長尺状発熱体全体に供給される電力を、所定の最大電力の供給と、当該所定の最大電力より所定の調整比率だけ低減させた電力を任意に供給する様に設計された電力供給制御手段が設けられている事を特徴とするトンネル式の地表面或いは床面暖房装置の駆動制御装置。 Consists of a substrate portion having a heat insulating property and a rectangular planar shape, and a ceiling portion which is arranged on the substrate portion with a desired interval and is made of a material having a large thermal conductivity. A heat generating structure body portion in which a supporting member made of an appropriate material having heat insulating property, heat storage property or heat insulating property is inserted between the substrate part and the ceiling part, and At least one elongated space region portion is formed in the support member in the heat generating structure main body portion in parallel with one longitudinal direction of the substrate portion, and the elongated space portion is still formed. A tunnel-type ground surface or floor heating device in which a linear or strip-shaped elongated heating element is disposed inside the area portion, and the tunnel-type ground surface or floor heating device. Is a linear linear or strip-shaped elongated heating element set to a desired length, and can be inserted and pulled out with the elongated heating element maintained in the linear state. In the tunnel-type ground surface or floor heating device configured as described above, the linear or strip-shaped elongated heating elements arranged in the respective elongated space regions are One end is projected into the space from one end side of the elongated space region portion, and the end portion is provided directly or in proximity to the tunnel-type ground surface or floor heating device. In a tunnel-type ground surface or floor heating system that is detachably connected to an appropriate power supply means, the electric power supplied to the entire linear linear or strip long heating element is A tunnel type characterized by being provided with a predetermined maximum power supply and a power supply control means designed to arbitrarily supply the power reduced by a predetermined adjustment ratio from the predetermined maximum power. Drive control device for ground surface or floor heating system. 当該電力供給制御手段に於ける当該供給電力量の調整比率は、位相制御に基づき制御する様に構成されている事を特徴とする請求項11に記載のトンネル式の地表面或いは床面暖房装置の駆動制御装置。 The tunnel-type ground surface or floor heating device according to claim 11, wherein the adjustment ratio of the supplied power amount in the power supply control means is configured to be controlled based on phase control. Drive controller. 当該電力供給制御手段に於ける当該位相制御は、ゼロクロス制御である事を特徴とする請求項12に記載のトンネル式の地表面或いは床面暖房装置の駆動制御装置。 13. The drive control device for a tunnel-type ground surface or floor heating device according to claim 12, wherein the phase control in the power supply control means is zero-cross control. 当該位相制御はトライアック装置を利用するものである事を特徴とする請求項13に記載のトンネル式の地表面或いは床面暖房装置の駆動制御装置。 14. The drive control device for a tunnel-type ground surface or floor heating device according to claim 13, wherein the phase control uses a triac device. 当該トンネル式の地表面或いは床面暖房装置の駆動制御装置に於いて、当該トンネル式の地表面或いは床面暖房装置に挿入されている当該個々の長尺状発熱体のそれぞれの電極線の一部に、固定的に設けられるか若しくは接触/離反自在に設けられている当該個々の長尺状発熱体を流れる電流値或いはその時点における当該個々の長尺状発熱体の抵抗値を測定可能にこ構成されたセンサー手段を配置し、予め定められた適宜の時間間隔毎に、当該トンネル式の地表面或いは床面暖房装置に挿入されている当該個々の長尺状発熱体のそれぞれに供給されている電流値或いはその時点における当該個々の長尺状発熱体の抵抗値を測定し、当該測定結果を、予め設定されている適宜の閾値と比較して、当該個々の長尺状発熱体の特性値劣化の有無を判断する手段が設けられている事を特徴とする請求項11乃至14の何れかに記載のトンネル式の地表面或いは床面暖房装置の駆動制御装置。 In the drive control device for the tunnel-type ground surface or floor heating device, one of the electrode wires of each of the individual elongated heating elements inserted in the tunnel-type ground surface or floor heating device. It is possible to measure the current value flowing through the individual long heating elements that are fixedly provided or are provided so as to be able to contact/separate with each other, or the resistance value of the individual long heating elements at that time. The sensor means configured as described above is arranged and supplied to each of the individual elongated heating elements inserted in the tunnel-type ground surface or floor heating device at predetermined predetermined time intervals. The current value or the resistance value of the individual long heating element at that time is measured, and the measurement result is compared with an appropriate threshold value set in advance, and the resistance of the individual long heating element is changed. 15. The drive control device for a tunnel-type ground surface or floor heating device according to claim 11, further comprising means for determining whether characteristic value deterioration has occurred. 当該個々の長尺状発熱体の少なくとも何れか一つ当該長尺状発熱体の特性値に関し劣化の判定が出された場合には、当該事実と共に当該劣化の判定が出された長尺状発熱体の存在位置情報とを当該表示手段に報知する報知手段が更に設けられている事を特徴とする請求項15に記載のトンネル式の地表面或いは床面暖房装置の駆動制御装置。 At least one of the individual elongated heating elements is judged to be deteriorated with respect to the characteristic value of the elongated heating element, and the elongated heat generation for which the deterioration is judged together with the fact. 16. The drive control device for the tunnel-type ground surface or floor heating device according to claim 15, further comprising an informing unit for informing the display unit of the presence position information of the body. 断熱性を有し、矩形状の平面形状を有する基板部と、当該基板部上に、所望の間隔を介して配置されている、熱伝導性の大なる材料で構成された天井部とで構成され、且つ当該基板部と当該天井部との間には、保温性或いは蓄熱性若しくは断熱性を有する適宜の材料で構成された支持部材が挿入された発熱構造体本体部であって、且つ当該発熱構造体本体部に於ける当該支持部材には、当該基板部の一方の長手方向と平行して、少なくとも一つの長尺状空間領域部が形成されており、然も、当該長尺状空間領域部の内部には、線状或いは帯状の長尺状発熱体が配設されているトンネル式の平面暖房装置であって、且つ、当該トンネル式の平面暖房装置は、所望の長さに設定されている直線状の線状或いは帯状の長尺状発熱体が、当該長尺状発熱体の直線状態を維持したままの状態で、挿入・引き抜き自在に嵌入せしめられる様に構成されている事を特徴とするトンネル式壁材用或いは家具部材用平面暖房装置。 Consists of a substrate portion having a heat insulating property and a rectangular planar shape, and a ceiling portion which is arranged on the substrate portion with a desired interval and is made of a material having a large thermal conductivity. A heat generating structure body portion in which a supporting member made of an appropriate material having heat insulating property, heat storage property or heat insulating property is inserted between the substrate part and the ceiling part, and At least one elongated space region portion is formed in the support member in the heat generating structure main body portion in parallel with one longitudinal direction of the substrate portion, and the elongated space portion is still formed. A tunnel-type planar heating device in which a linear or strip-shaped elongated heating element is disposed inside the area portion, and the tunnel-type planar heating device is set to a desired length. The linear linear or strip-shaped long heating element is configured to be insertable/pullable in a state where the linear heating state of the long heating element is maintained. A flat-type heating device for tunnel-type wall materials or furniture members, characterized by: 請求項17に記載の当該トンネル式壁材用或いは家具部材用平面暖房装置に於いては、当該それぞれの長尺状の空間領域内に配置されている当該線状或いは帯状の長尺状発熱体は、その一方の端部が当該長尺状空間領域部の一方の端部側より空間に突出せしめられ、当該端部が当該トンネル式壁材用或いは家具部材用平面暖房装置に直接或いはそれに近接して設けられている適宜の電力供給手段と着脱自在に接続されているトンネル式壁材用或いは家具部材用平面暖房装置の駆動システムを形成しており、且つ当該システムに於いては、当該直線状の線状或いは帯状の長尺状発熱体全体に供給される電力を、所定の最大電力の供給と、当該所定の最大電力より所定の調整比率だけ低減させた電力とを任意に供給する様に設計された電力供給制御手段が設けられている事を特徴とするトンネル式壁材用或いは家具部材用平面暖房装置の駆動制御システム。 In the flat heating device for a tunnel type wall material or furniture member according to claim 17, the linear or strip-shaped elongated heating element arranged in each of the elongated space regions. Has one end thereof projected into the space from one end side of the elongated space region portion, and the end portion is directly or close to the flat heating device for tunnel type wall material or furniture member. Forming a drive system for a flat heating device for tunnel type wall material or furniture member which is detachably connected to an appropriate power supply means provided in The electric power supplied to the entire linear or strip-shaped elongated heating element is arbitrarily supplied with a predetermined maximum power and a power reduced from the predetermined maximum power by a predetermined adjustment ratio. 2. A drive control system for a flat heating device for a tunnel type wall material or furniture member, characterized in that the power supply control means designed in (1) is provided. 当該電力供給制御手段は、当該トンネル式壁材用或いは家具部材用平面暖房装置の駆動制御システムに供給可能な最大電力量の30%乃至100%の間の任意の調整比率に設定された電力量を供給する事が出来る様に構成されている事を特徴とする請求項18に記載のトンネル式壁材用或いは家具部材用平面暖房装置の駆動制御システム。 The power supply control means is a power amount set to an arbitrary adjustment ratio between 30% and 100% of the maximum power amount that can be supplied to the drive control system of the flat heating device for the tunnel type wall material or furniture member. 19. The drive control system for a flat heating device for tunnel type wall material or furniture member according to claim 18, wherein the drive control system is configured to be able to supply. 当該電力供給制御手段に於ける当該供給電力量の調整比率は、当該トンネル式壁材用或いは家具部材用平面暖房装置の駆動制御システムの起動時に於いては、低い調整比率に設定される事を特徴とする請求項19に記載のトンネル式壁材用或いは家具部材用平面暖房装置の駆動制御システム。 The adjustment ratio of the supplied power amount in the power supply control means is set to a low adjustment ratio when the drive control system of the flat heating device for the tunnel type wall material or furniture member is started. 20. The drive control system of the flat heating device for tunnel type wall material or furniture member according to claim 19. 当該電力供給制御手段に於ける当該供給電力量の調整比率は、当該トンネル式壁材用或いは家具部材用平面暖房装置の駆動制御システムの起動時に於いては、低い調整比率に設定され、経時変化に応答して、連続的若しくは間歇的に当該供給電力量の調整比率が増加する様に構成されている事を特徴とする請求項20に記載のトンネル式壁材用或いは家具部材用平面暖房装置の駆動制御システム。 The adjustment ratio of the supplied power amount in the power supply control means is set to a low adjustment ratio when the drive control system of the flat heating device for the tunnel type wall material or the furniture member is started, and changes with time. 21. The flat heating device for tunnel type wall material or furniture member according to claim 20, wherein the adjustment ratio of the supplied power amount is continuously or intermittently increased in response to the above. Drive control system. 当該電力供給制御手段に於ける当該供給電力量の調整比率は、当該トンネル式壁材用或いは家具部材用平面暖房装置に要求される発熱量に応答して変化させる様に構成されている事を特徴とする請求項21に記載のトンネル式壁材用或いは家具部材用平面暖房装置の駆動制御システム。 The adjustment ratio of the power supply amount in the power supply control means is configured to be changed in response to the heat generation amount required for the flat heating device for the tunnel type wall material or furniture member. 22. The drive control system for a flat heating device for tunnel type wall material or furniture member according to claim 21. 当該電力供給制御手段に於ける当該供給電力量の調整比率は、位相制御に基づき制御する様に構成されている事を特徴とする請求項18乃至22の何れかに記載のトンネル式壁材用或いは家具部材用平面暖房装置の駆動制御システム。 23. The tunnel type wall material according to any one of claims 18 to 22, wherein the adjustment ratio of the supplied power amount in the power supply control means is configured to be controlled based on phase control. Alternatively, a drive control system for a flat heating device for furniture members. 当該電力供給制御手段に於ける当該位相制御は、ゼロクロス制御である事を特徴とする請求項23に記載のトンネル式壁材用或いは家具部材用平面暖房装置の駆動制御システム。 24. The drive control system for a flat heating device for tunnel type wall material or furniture member according to claim 23, wherein the phase control in the power supply control means is zero cross control. 当該位相制御はトライアック装置を利用するものである事を特徴とする請求項24の何れかに記載のトンネル式壁材用或いは家具部材用平面暖房装置の駆動制御システム。

25. The drive control system for a flat heating device for tunnel type wall materials or furniture members according to claim 24, wherein the phase control uses a triac device.

JP2018226103A 2018-11-30 2018-11-30 Drive control system of tunnel type plane heating device, and device thereof Pending JP2020085431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018226103A JP2020085431A (en) 2018-11-30 2018-11-30 Drive control system of tunnel type plane heating device, and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018226103A JP2020085431A (en) 2018-11-30 2018-11-30 Drive control system of tunnel type plane heating device, and device thereof

Publications (1)

Publication Number Publication Date
JP2020085431A true JP2020085431A (en) 2020-06-04

Family

ID=70907476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018226103A Pending JP2020085431A (en) 2018-11-30 2018-11-30 Drive control system of tunnel type plane heating device, and device thereof

Country Status (1)

Country Link
JP (1) JP2020085431A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102336807B1 (en) * 2020-07-31 2021-12-15 (주)디엔에이 Potable electric heat mat and controlling method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102336807B1 (en) * 2020-07-31 2021-12-15 (주)디엔에이 Potable electric heat mat and controlling method for the same

Similar Documents

Publication Publication Date Title
JP2020085431A (en) Drive control system of tunnel type plane heating device, and device thereof
KR101191538B1 (en) Solar hot-water heating system
JP5558803B2 (en) Floor heating controller, floor heating system, floor heating control method
JP2004340199A (en) Fluid control device with heater
GB2493623A (en) Electrical resistance heating system having a plurality of radiating panels
KR101070250B1 (en) Automatic temperature controller for electric mat
KR20100042197A (en) Electric mat having a high degree of efficiency
KR20070110771A (en) Glass system for generating heat and arrangement thereof
JP7535692B2 (en) Heat pump hot water system
JP2008045805A (en) Operation control method of floor heating system
JP4068648B2 (en) Toilet seat device and toilet device including the same
JP2005291637A (en) Floor heater unit
KR101206481B1 (en) multi-channel temperature control circuit
JP2006308205A (en) Electric floor heating system
TW201319475A (en) An electric underfloor heating system and its operation control method
JP3254332B2 (en) Floor heating control method
JP6452457B2 (en) Power indicator
JPS634985Y2 (en)
JP7467822B2 (en) Hot water storage system
JP4526439B2 (en) Electric floor heating system
JPH0693643A (en) Sanitary cleaning device
JP4559906B2 (en) Electric floor heating system
JP2003130377A (en) Floor heating panel
CN201772547U (en) Heating cable heater
JP2003325679A (en) Electrotherapy device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190724