Nothing Special   »   [go: up one dir, main page]

JP2020050944A - Process for producing heat resistant member made of nickel-based alloy or iron-based alloy - Google Patents

Process for producing heat resistant member made of nickel-based alloy or iron-based alloy Download PDF

Info

Publication number
JP2020050944A
JP2020050944A JP2019028469A JP2019028469A JP2020050944A JP 2020050944 A JP2020050944 A JP 2020050944A JP 2019028469 A JP2019028469 A JP 2019028469A JP 2019028469 A JP2019028469 A JP 2019028469A JP 2020050944 A JP2020050944 A JP 2020050944A
Authority
JP
Japan
Prior art keywords
based alloy
resistant member
heat
nickel
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019028469A
Other languages
Japanese (ja)
Inventor
小高 得央
Narihisa Odaka
得央 小高
恵一 香川
Keiichi Kagawa
恵一 香川
良高 福島
Yoshitaka Fukushima
良高 福島
武正 石川
Takemasa Ishikawa
武正 石川
康大 西田
Yasuhiro Nishida
康大 西田
晃仁 安井
Akihito Yasui
晃仁 安井
田中 祐介
Yusuke Tanaka
祐介 田中
宗貴 橋本
Munetaka Hashimoto
宗貴 橋本
国雄 林田
Kunio Hayashida
国雄 林田
桧垣 忠宏
Tadahiro Higaki
忠宏 桧垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atect Corp
Original Assignee
Atect Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atect Corp filed Critical Atect Corp
Priority to JP2019028469A priority Critical patent/JP2020050944A/en
Publication of JP2020050944A publication Critical patent/JP2020050944A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide a process for producing a heat-resistant member made of nickel-based alloy or iron-based alloy that has a significantly improved thermal fatigue resistance compared to conventional ones.SOLUTION: The process for producing a heat-resistant member made of a nickel-based alloy or iron-based alloy of the present invention includes: a mechanical property improving agent addition step 1 in which a metal powder for improving mechanical properties of the final product heat-resistant member is mixed into a powder made of nickel-based alloy or iron-based alloy; a molding step 2 in which an alloy powder mixed with a metal powder in the mechanical property improving agent addition step 1 is molded; and a sintering step 3 in which a compact molded in the molding step 2 is sintered to yield a heat-resistant member.SELECTED DRAWING: Figure 1

Description

本発明は、ターボチャージャなどのように高温の使用域で優れた機械的特性を有するニッケル基または鉄基合金製の耐熱部材を製造する製造技術に関するものである。   The present invention relates to a manufacturing technique for manufacturing a heat-resistant member made of a nickel-based or iron-based alloy having excellent mechanical properties in a high-temperature use region such as a turbocharger.

昨今、欧州、日本、米国などでの排気ガス規制の動きに伴い、従来から用いられてきたウェイストゲートバルブを有するターボチャージャに代わり、VG(Variable Geometry)ターボチャージャが用いられている。VGターボチャージャは、例えば、クリーンディーゼルエンジンの高出力化にはなくてはならない機構とされている。
例えば、特許文献1には、内燃機関の排ガスを導入することにより回転するタービンホイールと、該タービンホイールの周囲に形成されたガス通路と、該ガス通路から上記タービンホイールに流入する排ガスの流速を調整するために回動軸を中心に回動可能に設けられた複数のノズルベーンと、該複数のノズルベーンを同期して回動させるための回動支持部材とを有し、該回動支持部材によって上記ノズルベーンを回動させることにより、該各ノズルベーン間のクリアランスを変化させて上記ガス通路から上記タービンホイールに流入する排ガスの流速を調整可能な可変ノズルターボチャージャにおいて、上記ノズルベーンは、少なくとも、その先端部が上記タービンホイールに近づく方向に回動して上記各ノズルベーン間のクリアランスを大きくした際には、初期状態と比べて上記先端部がその回動方向と反対側の方向に反り返って変形するように構成されていることを特徴とする可変ノズルターボチャージャが開示されている。
Recently, VG (Variable Geometry) turbochargers have been used in place of turbochargers having a waste gate valve, which have been conventionally used, in accordance with the movement of exhaust gas regulations in Europe, Japan, and the United States. The VG turbocharger is a mechanism that is indispensable for increasing the output of a clean diesel engine, for example.
For example, Patent Document 1 discloses a turbine wheel that rotates by introducing exhaust gas from an internal combustion engine, a gas passage formed around the turbine wheel, and a flow rate of exhaust gas flowing from the gas passage into the turbine wheel. A plurality of nozzle vanes provided rotatably about a rotation axis for adjustment, and a rotation support member for synchronously rotating the plurality of nozzle vanes, and the rotation support member By rotating the nozzle vanes, in a variable nozzle turbocharger capable of adjusting the flow rate of exhaust gas flowing into the turbine wheel from the gas passage by changing the clearance between the nozzle vanes, the nozzle vanes have at least a tip end thereof. Part rotates in the direction approaching the turbine wheel to increase the clearance between the nozzle vanes. Upon listening, it said tip portion as compared with the initial state variable nozzle turbocharger is disclosed which is characterized in that it is configured to deform warped in a direction opposite to the rotation direction.

そして、特許文献1には、上述したターボチャージャの材料としてニッケル基合金を選択可能である点も記載されている。   Patent Literature 1 also describes that a nickel-based alloy can be selected as a material of the above-described turbocharger.

特開2010−151008号公報JP 2010-151008 A

ところで、上述したVGターボチャージャのノズルベーンには、高温の使用域で高い排気圧を燃焼ガスを受けても破損が起きないような機械的特性が求められる。そのため、一般的なノズルベーンには耐熱疲労性に優れるニッケル基合金の焼結体などが用いられる。
ただ、耐熱疲労性に優れるニッケル基合金の焼結体をノズルベーンに用いたとしても、一般的な製造方法で得られる焼結体は十分なクリープ特性を有していないことが多く、ノズルベーンなどとして満足に用いることができない場合も多かった。
By the way, the above-mentioned nozzle vane of the VG turbocharger is required to have mechanical properties such that it does not break even when it receives a combustion gas at a high exhaust pressure in a high temperature use region. For this reason, a sintered body of a nickel-based alloy having excellent thermal fatigue resistance is used for a general nozzle vane.
However, even if a sintered body of a nickel-based alloy with excellent thermal fatigue resistance is used for the nozzle vane, the sintered body obtained by a general manufacturing method often does not have sufficient creep characteristics, and as a nozzle vane, etc. In many cases, they could not be used satisfactorily.

本発明は、上述の問題に鑑みてなされたものであり、耐熱疲労性が従来のものより格段に向上したニッケル基合金製または鉄基合金製の耐熱部材を製造することができる、ニッケル基合金製または鉄基合金製の耐熱部材の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and a nickel-based alloy capable of manufacturing a heat-resistant member made of a nickel-based alloy or an iron-based alloy with significantly improved thermal fatigue resistance compared to conventional ones. It is an object of the present invention to provide a method for manufacturing a heat-resistant member made of a steel or an iron-based alloy.

上記課題を解決するため、本発明のニッケル基合金製または鉄基合金製の耐熱部材の製造方法は以下の技術的手段を講じている。
即ち、本発明のニッケル基合金製または鉄基合金製の耐熱部材の製造方法は、ニッケル基合金の粉末もしくは鉄基合金の粉末に、最終製品である耐熱部材の機械特性を向上させるための金属の粉末を混合する機械特性向上剤添加工程と、前記機械特性向上剤添加工程にて金属の粉末が混合された合金の粉末を、成形する成形工程と、前記成形工程で成形された成形体を焼結し、前記耐熱部材とする焼結工程と、を備えることを特徴とする。
In order to solve the above-mentioned problems, the following technical measures are taken for the method for manufacturing a heat-resistant member made of a nickel-based alloy or an iron-based alloy of the present invention.
That is, the method for producing a heat-resistant member made of a nickel-based alloy or an iron-based alloy according to the present invention is a method for improving the mechanical properties of a heat-resistant member as a final product by adding a powder of a nickel-based alloy or a powder of an iron-based alloy. A mechanical property improver adding step of mixing the powder of the above, the alloy powder mixed with the metal powder in the mechanical property improver adding step, a forming step of forming, and a molded body formed in the forming step A sintering step of sintering to form the heat-resistant member.

なお、好ましくは、最終製品である耐熱部材の機械特性を向上させるための金属が含有されたニッケル基合金の粉末もしくは最終製品である耐熱部材の機械特性を向上させるための金属が含有された鉄基合金の粉末を用意する合金準備工程と、前記合金準備工程にて用意された粉末を成形する成形工程と、前記成形工程で成形された成形体を焼結し、前記耐熱部材とする焼結工程と、を備えるとよい。   Preferably, a nickel-based alloy powder containing a metal for improving the mechanical properties of the heat-resistant member as the final product or an iron containing a metal for improving the mechanical properties of the heat-resistant member as the final product is used. An alloy preparation step of preparing a base alloy powder, a molding step of molding the powder prepared in the alloy preparation step, and sintering the compact formed in the molding step to form the heat-resistant member And a step.

本発明の技術によれば、耐熱疲労性が従来のものより格段に向上したニッケル基合金製または鉄基合金製の耐熱部材を製造することができる。   According to the technique of the present invention, a heat-resistant member made of a nickel-based alloy or an iron-based alloy having significantly improved thermal fatigue resistance can be manufactured.

本実施形態に係る耐熱部材の製造方法の手順を示したブロック図である。It is a block diagram showing a procedure of a manufacturing method of a heat resistant member concerning this embodiment.

以下、本発明に係る耐熱部材の製造方法の実施形態を、図面に基づき詳しく説明する。
図1は、本発明の製造方法で製造される耐熱部材は、ロケットや宇宙船などの宇宙産業部品、ジェットエンジンやアフターバーナーなどの航空機産業部品(軍事産業部品)、産業用タービン、自動車のエンジンやマフラーなどで用いられる部材となっている。このような部材の中でも、本発明の耐熱部材は、特に自動車用エンジンのターボチャージャーに用いられるタービンブレードやノズルベーンなどの部材に好適に用いられる。以降に示す実施形態は、ターボチャージャーのノズルベーンに本発明の製造方法で製造した耐熱部材を用いた例を挙げる。
Hereinafter, an embodiment of a method for manufacturing a heat-resistant member according to the present invention will be described in detail with reference to the drawings.
FIG. 1 shows that heat-resistant members manufactured by the manufacturing method of the present invention include space industrial parts such as rockets and spacecraft, aircraft industrial parts (military industrial parts) such as jet engines and afterburners, industrial turbines, automobile engines, and the like. It is a member used in mufflers and the like. Among such members, the heat-resistant member of the present invention is suitably used particularly for members such as turbine blades and nozzle vanes used in turbochargers of automobile engines. In the following embodiments, examples in which a heat-resistant member manufactured by the manufacturing method of the present invention is used for a nozzle vane of a turbocharger will be described.

上述した耐熱部材は、ニッケル基合金または鉄基合金製の焼結体で形成されており、耐熱性や耐酸化性などの優れた高温特性を備えている。特に、本発明の耐熱部材は、高温特性の中でも、耐クリープ性、すなわち高温環境下一定荷重を加えた状態での変形(ひずみ)の進行程度の評価が良好なものとなっている。本発明の耐熱部材はこのような耐クリープ性を満足するものとなっている。   The heat-resistant member described above is formed of a sintered body made of a nickel-based alloy or an iron-based alloy, and has excellent high-temperature characteristics such as heat resistance and oxidation resistance. In particular, the heat-resistant member of the present invention has a good evaluation of creep resistance, that is, the degree of progress of deformation (strain) under a constant load in a high-temperature environment, among the high-temperature characteristics. The heat-resistant member of the present invention satisfies such creep resistance.

具体的には、本実施形態の耐熱部材の製造方法は、以降の図1に示すような手順で製造される。
図1に示すように、本実施形態の耐熱部材の製造方法は、
(i) 鉄もしくはニッケル以外の合金成分(例えば、クロムやモリブデンなど)を含むニッケルもしくは鉄を主成分とする合金の粉末(主金属の粉末)に、最終製品である焼結体の機械特性を向上させるための金属の粉末(副金属の粉末)を混合する機械特性向上剤添加工程1と、
(ii)機械特性向上剤添加工程1にて副金属の粉末が混合された合金の粉末を成形する成形工程2と、
(iii) 成形工程2で成形された成形体を焼結する焼結工程3と、
を行って上述した耐熱部材を製造するものとなっている。
Specifically, the method for manufacturing a heat-resistant member according to the present embodiment is manufactured according to the procedure shown in FIG.
As shown in FIG. 1, the method for manufacturing a heat-resistant member of the present embodiment includes:
(i) The mechanical properties of the sintered product as the final product are added to the powder of the nickel or iron-based alloy (main metal powder) containing alloy components other than iron or nickel (for example, chromium and molybdenum). Mechanical property improver adding step 1 for mixing metal powder (secondary metal powder) for improvement,
(ii) a forming step 2 of forming an alloy powder in which the secondary metal powder is mixed in the mechanical property improver adding step 1;
(iii) a sintering step 3 for sintering the formed body formed in the forming step 2,
To produce the above-described heat-resistant member.

なお、機械特性向上剤添加工程1の前乃至は後に、焼結のためのバインダーを混合するバインダ混合工程を有していてもよい。
また、上記した(i)、(ii)に代えて、(i)'、(ii)'を有していてもよい。
(i)' 最終製品である耐熱部材の機械特性を向上させるための金属が含有されたニッケル基合金の粉末もしくは最終製品である耐熱部材の機械特性を向上させるための金属が含有された鉄基合金の粉末を用意する合金準備工程。
Before or after the mechanical property improver adding step 1, a binder mixing step of mixing a binder for sintering may be provided.
Further, (i) ′ and (ii) ′ may be provided in place of (i) and (ii) described above.
(i) 'Powder of nickel-based alloy containing metal for improving the mechanical properties of heat-resistant member as final product or iron-based alloy containing metal for improving mechanical properties of heat-resistant member as final product An alloy preparation step of preparing an alloy powder.

(ii)' 合金準備工程にて用意された粉末を成形する成形工程。
また、機械特性向上剤の添加は合金の溶製材を調整する工程で添加してもよく、最終的な機械特性向上剤の元素含有濃度が0.01〜5 wt%の範囲にあればよい。
以降、本実施形態の耐熱部材の製造方法を構成する機械特性向上剤添加工程1、成形工程2、焼結工程3について説明する。
(ii) ′ A forming step of forming the powder prepared in the alloy preparing step.
Further, the mechanical property improver may be added in the step of adjusting the smelting material of the alloy, as long as the final elemental concentration of the mechanical property improver is in the range of 0.01 to 5 wt%.
Hereinafter, the mechanical property improving agent adding step 1, the forming step 2, and the sintering step 3 constituting the method for manufacturing a heat-resistant member of the present embodiment will be described.

機械特性向上剤添加工程1は、成形工程2の前、鉄もしくはニッケル以外の合金成分(例えば、クロムやモリブデンなど)を含むニッケルもしくは鉄合金の粉末に、最終製品である焼結体の機械特性を向上させるための金属の粉末(副金属の粉末)を添加するものとなっている。
機械特性向上剤添加工程1で添加される金属は、ニッケル、鉄、及びクロムよりも炭化物を形成しやすい金属元素、言い換えれば炭素と化合しやすい元素を含んでいる。このような金属元素には、Ta、V、Nb、Ti、Zr、またはHfから選ばれる少なくとも1つ以上の添加元素が用いられる。これらの添加元素は、1種類でも良いし複数種でも良い。
Before the forming step 2, the mechanical property improver adding step 1 includes adding a nickel or iron alloy powder containing an alloy component other than iron or nickel (for example, chromium or molybdenum) to a mechanical property of a sintered body as a final product. Metal powder (secondary metal powder) for improving the resistance.
The metal added in the mechanical property improver addition step 1 contains a metal element that easily forms carbides than nickel, iron, and chromium, in other words, an element that easily combines with carbon. As such a metal element, at least one or more additional elements selected from Ta, V, Nb, Ti, Zr, and Hf are used. One or more of these additional elements may be used.

例えば、上述した機械特性向上剤としてTaが含まれたものを用いた場合には、ニッケル基合金の粉末及びバインダに混合された添加元素が焼結中に拡散し、ニッケル基合金中の炭素の元素と化合し炭化物を形成する。そのため、例えば、焼結中に形成されるニッケル基合金の粒界を粗大化し、クリープ強度のような高温での機械化特性(耐熱疲労性)を高めることができる。   For example, when a material containing Ta is used as the above-described mechanical property improver, the additive element mixed with the powder of the nickel-based alloy and the binder is diffused during sintering, and the carbon content of the nickel-based alloy is reduced. Combines with elements to form carbides. Therefore, for example, the grain boundaries of the nickel-based alloy formed during sintering can be coarsened, and the mechanical properties at high temperatures (thermal fatigue resistance) such as creep strength can be improved.

これ以外にも、クロムの偏析や炭化は固溶体の安定性が関わっているため、クロムと安定な固溶体を生成するTiやCuを添加してもよい。
機械特性向上剤添加工程1にて、主金属の粉末に副金属の粉末が混合された粉末体が形成される。この粉末体は、成形工程2にて、所望とする形状へと形成される。
成形工程2は、機械特性向上剤が混合されたニッケル基または鉄基合金の粉末を、成形機を用いて成形して、成形体を成形する工程である。より正確には、合金の粉末と、機械特性向上剤とを連続混練機のような混合設備に投入し、混合設備で両材料を十分に混合する。このように混合設備で十分に混合された原料は、次に成形金型に供給される。
In addition, since the segregation and carbonization of chromium are related to the stability of the solid solution, Ti or Cu which forms a stable solid solution with chromium may be added.
In the mechanical property improving agent addition step 1, a powder body in which the powder of the submetal is mixed with the powder of the main metal is formed. This powder body is formed into a desired shape in the molding step 2.
The molding step 2 is a step of molding a nickel-based or iron-based alloy powder mixed with a mechanical property improver using a molding machine to form a molded body. More precisely, the powder of the alloy and the mechanical property improver are charged into a mixing facility such as a continuous kneader, and both materials are sufficiently mixed in the mixing facility. The raw materials sufficiently mixed in the mixing equipment in this way are then supplied to a molding die.

上述した成形金型は耐熱部材の外形を象った形状を有しており、金型に供給された原料は耐熱部材の外形形状に合わせて成形される。以上が、金属粉末成形工程2である。金属粉末成形工程2としては、一軸方向に圧縮する一軸圧縮成形法、ゴム型に金属粉末を充填し、溶媒もしくは加圧気体中で三軸方向から圧縮成形する冷間等方圧加工法(CIP)、射出成形機を用いて射出成形金型に原料の金属粉末を射出して成形する金属粉末射出成形法(MIM)から選ばれる方法を採用可能である。   The above-mentioned molding die has a shape imitating the outer shape of the heat-resistant member, and the raw material supplied to the die is molded according to the outer shape of the heat-resistant member. The above is the metal powder molding step 2. The metal powder molding step 2 includes a uniaxial compression molding method of compressing in a uniaxial direction, and a cold isostatic pressing method (CIP) of filling metal powder in a rubber mold and compression-molding from a triaxial direction in a solvent or a compressed gas. ), A method selected from metal powder injection molding (MIM), in which a raw metal powder is injected into an injection mold using an injection molding machine and molded.

焼結工程3は、成形工程2で成形された成形体を、加熱炉などを用いて加熱することで、成形工程2において製造された成形体中の合金の粒子同士を、拡散接合により結着する(焼結する)ものとなっている。
具体的には、焼結工程3は、加熱炉の中で、成形された成形体を高温で真空もしくは不活性ガス雰囲気中で、所定時間以上に亘って加熱することで、ニッケル基または鉄基合金の粒子の拡散接合が可能となる。焼結工程3で用いる不活性ガスとしては、窒素、ヘリウム、ネオン、アルゴンから選ばれる少なくとも1つ以上を用いることができる。上述した焼結工程3を実施することで、耐熱部材(焼結体)が製造される。
In the sintering step 3, by heating the molded body formed in the molding step 2 using a heating furnace or the like, particles of the alloy in the molded body produced in the molding step 2 are bonded by diffusion bonding. (Sintering).
Specifically, in the sintering step 3, the nickel-based or iron-based material is heated in a heating furnace at a high temperature in a vacuum or an inert gas atmosphere for a predetermined time or more. Diffusion bonding of alloy particles becomes possible. As the inert gas used in the sintering step 3, at least one selected from nitrogen, helium, neon, and argon can be used. By performing the above-described sintering step 3, a heat-resistant member (sintered body) is manufactured.

ところで、上述したターボチャージャーのタービンブレードやノズルベーンなどの部材に用いるに際しては、耐熱部材には、高温の使用環境で連続して使用しても部材の破損が生じないように、高温特性、言い換えれば高温環境下での機械特性が要求される。
上述した高温特性の中でも、特に「耐クリープ性」に関しては、過酷な条件が科されており、耐熱部材にはこの「耐クリープ性」を満足させることが必要となる。
By the way, when used for members such as the turbine blades and nozzle vanes of the above-described turbocharger, the heat-resistant member has high-temperature characteristics, in other words, so that the member is not damaged even when continuously used in a high-temperature use environment. Mechanical properties under high temperature environment are required.
Among the above-mentioned high-temperature characteristics, particularly severe conditions are imposed on "creep resistance", and it is necessary for heat-resistant members to satisfy this "creep resistance".

上述したバインダを配合しただけの合金の粉末を成形・焼結するだけでは、要求された「耐クリープ性」を満足することができない場合があった。
しかしながら、本発明の製造方法では、成形工程2の前に、機械特性向上剤添加工程1を設け、最終製品である焼結体の機械特性を向上させるための金属の粉末を、ニッケル基もしくは鉄基合金の粉末に混合することで、最終製品の機械特性(例えば、クリープ強度)の向上を図るようにしている。
In some cases, the required "creep resistance" may not be satisfied only by molding and sintering an alloy powder containing only the above-mentioned binder.
However, in the production method of the present invention, a mechanical property improving agent addition step 1 is provided before the molding step 2, and a metal powder for improving the mechanical properties of the sintered product as a final product is made of nickel-based or iron-based powder. By mixing with the base alloy powder, the mechanical properties (eg, creep strength) of the final product are improved.

なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。   It should be understood that the embodiments disclosed this time are illustrative in all aspects and not restrictive. In particular, in the embodiments disclosed herein, matters not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions of components, weight, volume, and the like, deviate from the range usually performed by those skilled in the art. Instead, a value that can be easily assumed by a person skilled in the art is adopted.

なお、上述した実施形態では、金属粉末成形工程2として金属粉末射出成形法(MIM)を例示したが、金属粉末成形工程2としては一軸圧縮成形法や冷間等方圧加工法(CIP)を採用しても良い。   In the above-described embodiment, the metal powder molding process 2 is exemplified by the metal powder injection molding method (MIM). However, the metal powder molding process 2 includes a uniaxial compression molding method and a cold isostatic pressing (CIP) method. You may adopt it.

1 機械特性向上剤添加工程
2 成形工程
3 焼結工程
1 Mechanical property improver addition process 2 Molding process 3 Sintering process

Claims (2)

ニッケル基合金の粉末もしくは鉄基合金の粉末に、最終製品である耐熱部材の機械特性を向上させるための金属の粉末を混合する機械特性向上剤添加工程と、
前記機械特性向上剤添加工程にて金属の粉末が混合された合金の粉末を、成形する成形工程と、
前記成形工程で成形された成形体を焼結し、前記耐熱部材とする焼結工程と、
を備えることを特徴とするニッケル基合金製または鉄基合金製の耐熱部材の製造方法。
A mechanical property improving agent adding step of mixing a metal powder for improving mechanical properties of a heat-resistant member as a final product with a nickel-based alloy powder or an iron-based alloy powder,
A molding step of molding an alloy powder in which the metal powder is mixed in the mechanical property improver addition step,
Sintering the molded body molded in the molding step, and a sintering step as the heat-resistant member,
A method for producing a heat-resistant member made of a nickel-based alloy or an iron-based alloy, comprising:
最終製品である耐熱部材の機械特性を向上させるための金属が含有されたニッケル基合金の粉末もしくは最終製品である耐熱部材の機械特性を向上させるための金属が含有された鉄基合金の粉末を用意する合金準備工程と、
前記合金準備工程にて用意された粉末を成形する成形工程と、
前記成形工程で成形された成形体を焼結し、前記耐熱部材とする焼結工程と、
を備えることを特徴とするニッケル基合金製または鉄基合金製の耐熱部材の製造方法。
A nickel-based alloy powder containing a metal for improving the mechanical properties of the heat-resistant member as the final product or an iron-based alloy powder containing a metal for improving the mechanical properties of the heat-resistant member as the final product is used. Alloy preparation process to prepare,
A molding step of molding the powder prepared in the alloy preparation step,
Sintering the molded body molded in the molding step, and a sintering step as the heat-resistant member,
A method for producing a heat-resistant member made of a nickel-based alloy or an iron-based alloy, comprising:
JP2019028469A 2019-02-20 2019-02-20 Process for producing heat resistant member made of nickel-based alloy or iron-based alloy Pending JP2020050944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019028469A JP2020050944A (en) 2019-02-20 2019-02-20 Process for producing heat resistant member made of nickel-based alloy or iron-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019028469A JP2020050944A (en) 2019-02-20 2019-02-20 Process for producing heat resistant member made of nickel-based alloy or iron-based alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018182131 Division 2018-09-27 2018-09-27

Publications (1)

Publication Number Publication Date
JP2020050944A true JP2020050944A (en) 2020-04-02

Family

ID=69996003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019028469A Pending JP2020050944A (en) 2019-02-20 2019-02-20 Process for producing heat resistant member made of nickel-based alloy or iron-based alloy

Country Status (1)

Country Link
JP (1) JP2020050944A (en)

Similar Documents

Publication Publication Date Title
JP6713071B2 (en) Method for manufacturing cobalt-based alloy laminated body
US6958084B2 (en) Sintered cobalt-based alloys
US10328490B2 (en) Turbine shroud segment with inter-segment overlap
US20160273368A1 (en) Blade of a turbomachine made of different materials and method for the production thereof
WO2020121367A1 (en) Cobalt-based alloy laminate molded body, cobalt-based alloy product, and manufacturing method of these
US8784044B2 (en) Turbine shroud segment
CA2637291A1 (en) Guide blade segment of a gas turbine and method for its production
US20090269235A1 (en) Production method for sintered machine components
US20180312946A1 (en) Metal alloy for additive manufacturing of machine components
US20120073303A1 (en) Metal injection molding process and components formed therewith
CN102149910A (en) Turbocharger and subassembly for bypass control in the turbine casing therefor
US11311935B2 (en) Thermal treatment method for metal injection molding parts, a metal injection molding part and an aircraft engine
JPH11753A (en) Metallic porous body, light alloy composite member, and their manufacture
US20160138423A1 (en) Titanium-aluminide components
JP2020050944A (en) Process for producing heat resistant member made of nickel-based alloy or iron-based alloy
EP3837387B1 (en) High-performance metal alloy for additive manufacturing of machine components
US2751668A (en) Method of producing titanium carbide and article thereof
JP2020056106A (en) Method for manufacturing heat resistant member made of nickel-based alloy or iron-based alloy
JP2020158876A (en) Method for producing heat-resistant member made of heat-resistant alloy using hydrogen and/or hydride
EP4059636B1 (en) Nickel alloy composition with boron and nitrogen
US20180200799A1 (en) Method of manufacturing a component
US11400515B2 (en) Method of manufacturing a component using a sinter joining process
German et al. Bi-material components using powder injection molding: densification, shape complexity, and performance attributes
JP2016186109A (en) Heat-resistant sintered material excellent in oxidation resistance, high temperature wear resistance and salt damage resistance
JP2021533258A (en) Nickel-based superalloys for manufacturing powder molded parts