Nothing Special   »   [go: up one dir, main page]

JP2019214070A - Strip steel wire coil manufacturing method - Google Patents

Strip steel wire coil manufacturing method Download PDF

Info

Publication number
JP2019214070A
JP2019214070A JP2018113381A JP2018113381A JP2019214070A JP 2019214070 A JP2019214070 A JP 2019214070A JP 2018113381 A JP2018113381 A JP 2018113381A JP 2018113381 A JP2018113381 A JP 2018113381A JP 2019214070 A JP2019214070 A JP 2019214070A
Authority
JP
Japan
Prior art keywords
steel wire
strip steel
water
cooling
surface temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018113381A
Other languages
Japanese (ja)
Other versions
JP7141861B2 (en
Inventor
智巳 山本
Tomomi Yamamoto
智巳 山本
敏 宮下
Satoshi Miyashita
敏 宮下
良太 清水
Ryota Shimizu
良太 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP2018113381A priority Critical patent/JP7141861B2/en
Publication of JP2019214070A publication Critical patent/JP2019214070A/en
Application granted granted Critical
Publication of JP7141861B2 publication Critical patent/JP7141861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Winding, Rewinding, Material Storage Devices (AREA)

Abstract

To manufacture a closely wound strip steel wire coil which can suppress cross-sectional deformation of a strip steel wire after winding.SOLUTION: A strip steel wire coil 2 is manufactured in such a manner that a strip steel wire 1, which is obtained by continuous rolling on a rolling line 10, is cooled by a cooling line 20, and thereafter, is wound by a winder 30. The cooling line 20 comprises plural water-cooled parts which are located at intervals, intervals between respective water-cooled parts are provided as plural inter-water-cooled part recuperation sections, and the interval between the water-cooled part, which is positioned on the most downstream side, and the winder 30 is provided as a final stage recuperation section. At the first water-cooled part from an upstream side, a surface temperature of the strip steel wire 1 is so made as to be lower than A1 transformation point by 100°C or more, and at the first inter-water-cooled recuperation section from the upstream side, the surface temperature of the strip steel wire 1 is so made as to be A1 transformation point or more. The surface temperature of the strip steel wire 1 during winding is so made as to be A1 transformation point or less. The winder 30 has a spool 31 and an alignment mechanism 32 in front of the spool 31, and closely winding the strip steel wire 1, which is aligned by the alignment mechanism 32, on the spool 31, thereby obtaining the strip steel wire coil 2.SELECTED DRAWING: Figure 1

Description

本発明は、圧延により得られた条鋼線材を冷却した後、巻き取ってコイルにする方法に関する。   The present invention relates to a method for cooling a strip steel wire obtained by rolling and then winding it into a coil.

加熱されたビレットやブルーム等の鋼材を連続圧延して条鋼線材を得、この条鋼線材を冷却した後、巻き取ってコイルにする方法は周知である。このような条鋼線材コイルの製造に供されるシステムは、圧延ラインと冷却ラインと巻取り機とが圧延方向に沿って順に配置されている。冷却ラインは互いに離間した複数の冷却装置からなる。   It is well known that a steel material such as a heated billet or bloom is continuously rolled to obtain a strip steel wire, and after cooling the strip steel wire, it is wound into a coil. In a system provided for manufacturing such a strip steel wire coil, a rolling line, a cooling line, and a winding machine are sequentially arranged along a rolling direction. The cooling line is composed of a plurality of cooling devices spaced from each other.

特許文献1に開示されている圧延方法では、圧延ラインの最終仕上げ圧延機から送られてくる約1000℃の条鋼線材を、4段の冷却装置で水を掛けることにより段階的に冷却し、最終的に800℃を超える温度で巻取り機により巻き取るようになっている。   In the rolling method disclosed in Patent Literature 1, a steel bar at about 1000 ° C. sent from a final finishing rolling mill of a rolling line is cooled stepwise by applying water with a four-stage cooling device. Typically, the film is wound by a winder at a temperature exceeding 800 ° C.

特許文献1は巻き取り装置の具体的な構成および条鋼線材の巻取り方法を開示していない。一般的には、圧延された条鋼線材を疎巻きにする。例えば、特許文献2等に示すように圧延された条鋼線材を支持台上に螺旋を描いて落とし込む。   Patent Document 1 does not disclose a specific configuration of a winding device and a method of winding a strip steel wire. Generally, the rolled strip steel wire is wound loosely. For example, as shown in Patent Literature 2 or the like, a rolled strip steel wire is spirally dropped on a support base.

特開2009−241133号公報JP 2009-241133 A 特開2005−246401号公報JP 2005-246401 A

上記のような疎巻きの条鋼線材コイルは、嵩張るとともに安定して保管することができず、保管や運搬の効率が悪かった。
本発明者は、保管や運搬の効率を高めるために、圧延された条鋼線材を密巻きコイルにして巻取ることを検討している。すなわち、巻取り機はスプールとスプールの手前の整列機構を備え、整列機構により条鋼線材を整列させながらスプールを回転させることにより、条鋼線材に張力を加えながら、条鋼線材をスプールに幾重にも密に巻き取る。
The loosely wound strip steel wire coil as described above was bulky and could not be stably stored, resulting in poor storage and transportation efficiency.
The present inventors are studying winding a rolled strip steel wire into a close-wound coil in order to increase the efficiency of storage and transportation. In other words, the winding machine has a spool and an alignment mechanism in front of the spool.By rotating the spool while aligning the strip steel wire by the alignment mechanism, tension is applied to the strip steel wire, and the strip steel wire is tightly packed on the spool. To take up.

しかし、特許文献1のように800℃を超える熱間変形抵抗が小さい高温域で条鋼線材に張力を加えて条鋼線材を密巻きにすると、巻取り時の条鋼線材自身による締め付け力により断面変形が生じる。また、条鋼線材は巻取り後の温度低下に伴い[オーステナイト]から[フェライト+パーライト]へと体積膨張を伴う変態が生じるため、密巻きの条鋼線材の断面変形が助長されてしまう。また、冷却ラインの設備長さを抑えつつ、巻取り時の断面変形が生じないような温度にまで強冷すると、条鋼線材の組織がベイナイトやマルテンサイトに変態してしまう。   However, when the strip steel wire is tightly wound by applying tension to the strip steel wire in a high-temperature region where the hot deformation resistance exceeding 800 ° C. is small as in Patent Literature 1, the cross-sectional deformation is caused by the tightening force of the strip steel wire itself during winding. Occurs. In addition, since a transformation accompanied by a volume expansion from [austenite] to [ferrite + pearlite] occurs as the temperature decreases after winding, the cross-sectional deformation of the tightly wound strip steel wire is promoted. Further, if the cooling line is cooled down to a temperature that does not cause cross-sectional deformation at the time of winding while suppressing the equipment length of the cooling line, the structure of the strip steel wire is transformed into bainite or martensite.

本発明は上記課題を解決するためになされたもので、圧延ラインで連続圧延することにより得られた条鋼線材を、上記圧延ラインの最終仕上げ圧延機の下流側に配置された冷却ラインにより冷却した後、上記冷却ラインの下流側に配置された巻取り機で巻き取ることにより、条鋼線材コイルを製造し、上記冷却ラインは、間隔をおいて配置された複数の水冷部を備え、上記複数の水冷部間の区間が複数の水冷部間復熱部として提供され、上記複数の水冷部のうち最も下流側に位置する水冷部と巻取り機との間の区間が、最終段復熱部として提供され、上記条鋼線材の表面温度を、上記冷却部を通過する度に低下させ、上記復熱部を通過する度に上記条鋼線材の内部熱により上昇させる条鋼線材コイルの製造方法において、
上記複数の水冷部における上流から1番目の水冷部で、上記条鋼線材の表面温度をA1変態点より100℃以上低くし、上記複数の水冷部間復熱部における上流から1番目の水冷部間復熱部で、上記条鋼線材の表面温度をA1変態点以上に上昇させ、上記巻き取り時の上記条鋼線材の表面温度をA1変態点以下にし、上記巻取り機はスプールとその手前の整列機構を有し、上記整列機構により整列された上記条鋼線材を上記スプールに密巻きして上記条鋼線材コイルを得ることを特徴とする。
The present invention has been made in order to solve the above-described problems, and a strip steel wire obtained by continuous rolling in a rolling line was cooled by a cooling line arranged downstream of a final finishing rolling mill in the rolling line. Thereafter, by winding with a winding machine arranged downstream of the cooling line, to produce a strip steel wire coil, the cooling line comprises a plurality of water cooling units arranged at intervals, the plurality of The section between the water cooling sections is provided as a plurality of water cooling section recuperation sections, and the section between the water cooling section and the winder located at the most downstream side of the plurality of water cooling sections is a final stage recuperation section. Provided, in the method of manufacturing a coil of a bar steel wire, the surface temperature of the bar steel wire is reduced every time the steel sheet passes through the cooling section, and is increased by the internal heat of the steel bar wire each time the steel sheet passes through the recuperator.
In the first water cooling section from the upstream in the plurality of water cooling sections, the surface temperature of the strip steel wire is lowered by 100 ° C. or more from the A1 transformation point, and between the first water cooling sections in the plurality of water cooling sections from the upstream in the recuperation section. In the recuperation section, the surface temperature of the strip steel wire is raised to the A1 transformation point or higher, and the surface temperature of the strip steel wire at the time of winding is reduced to the A1 transformation point or lower. Wherein the strip steel wires aligned by the alignment mechanism are closely wound around the spool to obtain the strip steel wire coil.

上記方法によれば、巻き取り時に条鋼線材の表面温度がA1変態点以下になっているので、条鋼線材を密巻きにしても条鋼線材の断面変形を抑制することができる。
1番目の水冷部で条鋼線材の表面温度がA1変態点より100℃以上低い温度になるように強冷した後、1番目の復熱部で条鋼線材の表面温度をA1変態点以上に復熱させるので、急冷に伴うベイナイトやマルテンサイトへの変態を回避することができる。
According to the above method, since the surface temperature of the strip steel wire at the time of winding is equal to or lower than the A1 transformation point, the cross-sectional deformation of the strip steel wire can be suppressed even if the strip steel wire is densely wound.
In the first water-cooled part, the surface temperature of the bar steel wire is strongly cooled so as to be lower than the A1 transformation point by 100 ° C. or more, and then, in the first recuperator, the surface temperature of the bar steel wire is re-heated to the A1 transformation point or higher. Therefore, transformation to bainite or martensite due to rapid cooling can be avoided.

好ましくは、上記巻き取り時の上記条鋼線材の表面温度を700℃以下にする。
上記方法によれば、より一層確実に巻取り後の条鋼線材の断面変形を抑制することができる。
Preferably, the surface temperature of the strip steel wire at the time of the winding is set to 700 ° C. or less.
According to the above method, it is possible to more reliably suppress the cross-sectional deformation of the strip steel wire after winding.

好ましくは、上記巻き取り時の上記条鋼線材の表面温度を620℃以上とする。
上記方法によれば、条鋼線材を必要以上に冷却することによる冷却ラインの長大化を回避することができる。
Preferably, the surface temperature of the strip steel wire at the time of the winding is 620 ° C or higher.
According to the above method, it is possible to avoid an increase in the length of the cooling line due to excessive cooling of the strip steel wire.

好ましくは、上記複数の水冷部における2番目の水冷部で、上記条鋼線材の表面温度をA1変態点より150℃以上低くし、上記複数の水冷部間復熱部における2番目の水冷部間復熱部で、上記条鋼線材の表面温度をA1変態点以上に上昇させる。
上記方法によれば、ベイナイトやマルテンサイトへの変態を回避しつつ、冷却ラインの短縮化に寄与することができる。
Preferably, in a second water cooling section of the plurality of water cooling sections, the surface temperature of the strip steel wire is lowered by 150 ° C. or more from the A1 transformation point, and a second water cooling section of the plurality of water cooling section recuperation sections is provided. In the hot part, the surface temperature of the strip steel wire is raised to the A1 transformation point or higher.
According to the above method, it is possible to contribute to shortening of the cooling line while avoiding transformation to bainite or martensite.

好ましくは、上記複数の水冷部における3番目の水冷部で、上記条鋼線材の表面温度をA1変態点より200℃以上低くする。
上記方法によれば、より一層冷却ラインの短縮化ができる。
Preferably, in a third water cooling part of the plurality of water cooling parts, the surface temperature of the strip steel wire is lowered by 200 ° C. or more from the A1 transformation point.
According to the above method, the cooling line can be further shortened.

好ましくは、上記複数の水冷部における上流側の水冷部で、上記条鋼線材の表面温度を上記冷却ラインにおける最低温度にする。
上記方法によれば、より一層冷却ラインの短縮化ができる。
Preferably, the surface temperature of the strip steel wire is set to the lowest temperature in the cooling line in the upstream water cooling section of the plurality of water cooling sections.
According to the above method, the cooling line can be further shortened.

好ましくは、上記複数の水冷部の各々において、上記条鋼線材の表面温度をA1変態点より100℃以上低くする。
上記方法によれば、より確実に巻取り後の条鋼線材の断面変形を抑制しつつ、かつ冷却ラインの短縮化ができる。
Preferably, in each of the plurality of water cooling sections, the surface temperature of the strip steel wire is set to be lower than the A1 transformation point by 100 ° C. or more.
According to the above method, it is possible to more reliably suppress the cross-sectional deformation of the strip steel wire after winding, and to shorten the cooling line.

上記複数の水冷部の各々の条鋼線材の通過時間に比べて、各水冷部の後に続く水冷部間復熱部での上記条鋼線材の通過時間が長く、上記最終段復熱部での上記条鋼線材の通過時間が、上記水冷部間復熱部での上記条鋼線材の通過時間より長い。
上記方法によれば、条鋼線材の表面の復熱が確実にでき、ベイナイトやマルテンサイトへの変態を確実に回避することができる。
Compared with the passage time of each bar steel wire of the plurality of water cooling sections, the passage time of the bar steel wire in the water-cooling section recuperation section following each water cooling section is long, and the bar steel wire in the final stage recuperation section The passage time of the wire is longer than the passage time of the bar steel wire in the water-cooled recuperator.
According to the above method, reheating of the surface of the strip steel wire can be reliably performed, and transformation to bainite or martensite can be reliably prevented.

好ましくは、上記複数の水冷部において、上流側水冷部での上記条鋼線材の通過時間が、下流側水冷部での条鋼線材の通過時間より長く、上記複数の水冷部間復熱部において、上流側の水冷部間復熱部での上記条鋼線材の通過時間が、下流側の水冷部間復熱部での条鋼線材の通過時間より短い。
上記方法によれば、上流側では条鋼線材の内部温度が高く表面温度の復熱が速いことに着目して水冷部間復熱部を短くしたので、冷却ラインの短縮化に寄与することができる。
Preferably, in the plurality of water cooling sections, the passage time of the strip steel wire in the upstream water cooling section is longer than the passage time of the strip steel wire in the downstream water cooling section, and in the plurality of water cooling section recuperation sections, The passage time of the above-mentioned bar steel wire in the water-cooling part recuperation part on the side is shorter than the passage time of the strip steel wire in the water-cooling part recuperation part on the downstream side.
According to the above method, since the internal temperature of the strip steel wire is high on the upstream side and the recuperation of the surface temperature is fast and the recuperation section between the water cooling sections is shortened, it is possible to contribute to shortening of the cooling line. .

上記条鋼線材の直径が9.53〜15.9mmであり、上記冷却ラインにおける上記条鋼線材の速度が11〜35m/secである。   The diameter of the strip steel wire is 9.53 to 15.9 mm, and the speed of the strip steel wire in the cooling line is 11 to 35 m / sec.

本発明によれば、巻取り後の条鋼線材の断面変形を抑制できる密巻きの条鋼線材コイルを製造することができ、しかも、ベイナイトやマルテンサイトへの変態を回避し、冷却ラインの長大化を回避することができる。   ADVANTAGE OF THE INVENTION According to this invention, the tightly wound strip steel wire coil which can suppress the cross-sectional deformation of a strip steel wire after winding can be manufactured, moreover, transformation to bainite or martensite is avoided, and the length of the cooling line can be increased. Can be avoided.

本発明の一実施形態に係る条鋼線材コイルの製造システムを示す概略図である。It is a schematic diagram showing the manufacturing system of the bar steel wire coil concerning one embodiment of the present invention. 上記製造システムの巻取り機を示す概略図である。It is the schematic which shows the winding machine of the said manufacturing system. 上記巻取り機のスプールに密巻きされた条鋼線材コイルを模式的に示す断面図である。It is sectional drawing which shows typically the bar steel wire rod coil closely wound on the spool of the said winding machine. 上記製造システムの冷却ラインにおいて、圧延された呼び名D10(公称直径9.53mm)の条鋼線材の段階的冷却の過程を示すグラフであり、条鋼線材の表面温度を符号A、中心温度を符号B、平均温度を符号Cで示す。In the cooling line of the manufacturing system, it is a graph showing a stepwise cooling process of a rolled bar steel wire having a name of D10 (nominal diameter of 9.53 mm), where the surface temperature of the bar is denoted by A, the center temperature is denoted by B, The average temperature is indicated by symbol C. 上記製造システムの冷却ラインにおいて、圧延された呼び名D13(公称直径12.7mm)の条鋼線材の段階的冷却の過程を示すグラフであり、条鋼線材の表面温度を符号A、中心温度を符号B、平均温度を符号Cで示す。In the cooling line of the above-mentioned manufacturing system, it is a graph which shows the process of the gradual cooling of the rolled strip steel wire of nominal name D13 (nominal diameter 12.7mm). The average temperature is indicated by symbol C. 上記製造システムの冷却ラインにおいて、圧延された呼び名D16(公称直径15.9mm)の条鋼線材の段階的冷却の過程を示すグラフであり、条鋼線材の表面温度を符号A、中心温度を符号B、平均温度を符号Cで示す。In the cooling line of the above-mentioned manufacturing system, it is a graph which shows the process of stepwise cooling of the rolled strip steel wire of nominal name D16 (nominal diameter 15.9 mm), the surface temperature of the strip steel wire is code A, the center temperature is code B, The average temperature is indicated by symbol C.

以下、本発明の一実施形態を、図面を参照しながら説明する。図1に示すように、条鋼線材コイルを製造する製造システムは、圧延方向に沿って直線状に配置された圧延ライン10と、冷却ライン20と、巻取り機30とを備えている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, a manufacturing system for manufacturing a strip steel wire coil includes a rolling line 10, a cooling line 20, and a winder 30 that are linearly arranged along a rolling direction.

圧延ライン10は上流側から下流側に向かって順に配置された加熱炉11、粗列圧延機12、中間列圧延機13、仕上げ圧延機14、最終仕上げ圧延機15を有している。加熱炉11で加熱されたビレットまたはブルームは、粗列圧延機12、中間列圧延機13、仕上げ圧延機14、最終仕上げ圧延機15で連続圧延されて、段階的にその断面が減面され、最終仕上げ圧延機15から所望寸法の条鋼線材1となって出てくる。   The rolling line 10 includes a heating furnace 11, a rough rolling mill 12, an intermediate rolling mill 13, a finishing rolling mill 14, and a final finishing rolling mill 15 arranged in order from the upstream side to the downstream side. The billet or bloom heated in the heating furnace 11 is continuously rolled in a rough rolling mill 12, an intermediate rolling mill 13, a finishing rolling mill 14, and a final finishing rolling mill 15, and its cross section is reduced step by step. From the final finish rolling mill 15, it comes out as a strip steel wire 1 having a desired size.

圧延ライン10において最終仕上げ圧延機15の入側(上流側)には入側冷却装置16が配置されている。この入側冷却装置16は、仕上げ圧延機14と入側冷却装置16との間、または入側冷却装置16と最終仕上げ圧延機15との間に配置された温度計の計測値の推移に基づいて入側冷却装置16への供給水量を制御することにより、最終仕上げ圧延機15の出口での条鋼線材1の温度が設定温度範囲に入るように調整し、条鋼線材1毎の温度のばらつきを抑制する。   On the rolling line 10, an inlet cooling device 16 is arranged on the inlet side (upstream side) of the final finishing mill 15. The inlet-side cooling device 16 is based on a transition of a measurement value of a thermometer disposed between the finishing mill 14 and the inlet-side cooling device 16 or between the inlet-side cooling device 16 and the final finishing mill 15. By controlling the amount of water supplied to the inlet-side cooling device 16, the temperature of the strip steel wire 1 at the exit of the final finishing mill 15 is adjusted to fall within a set temperature range, and the temperature variation of each strip steel wire 1 is reduced. Suppress.

冷却ライン20は、最終仕上げ圧延機15の出側(下流側)に配置された冷却装置群により構成されている。冷却装置群は、冷却ライン20に沿って間隔をおいて配置された7つ(複数)の冷却装置21〜27を有している。以下、これら冷却装置21〜27を、上流側から下流側に沿って順に1番目〜7番目の冷却装置と言う。これら冷却装置21〜27により最終仕上げ圧延機15から出てきた条鋼線材1は段階的に冷却され、巻取り機30に送られる。   The cooling line 20 is configured by a group of cooling devices arranged on the exit side (downstream side) of the final finishing mill 15. The cooling device group has seven (plural) cooling devices 21 to 27 arranged at intervals along the cooling line 20. Hereinafter, these cooling devices 21 to 27 will be referred to as first to seventh cooling devices in order from the upstream side to the downstream side. The strip steel wire 1 coming out of the final finishing mill 15 is cooled stepwise by these cooling devices 21 to 27 and sent to the winding machine 30.

図2に示すように巻取り機30は、スプール31と、このスプール31の直前に配置された整列機構32とを備えている。整列機構32の手前には、ピンチローラ35が配置されている。条鋼線材1がピンチローラ35に挟まれた状態でスプール31が図示しない駆動モータにより回転され、条鋼線材1にはピンチローラ35とスプール31との間で張力が作用するようにスプール31の回転が制御される。整列機構32はスプール31の回転に伴い、スプール31の軸方向に往復移動し、条鋼線材1を整列させる。これにより、条鋼線材1は図3に示すように層をなして密に巻かれ、条鋼線材コイル2が得られる。   As shown in FIG. 2, the winding machine 30 includes a spool 31 and an alignment mechanism 32 disposed immediately before the spool 31. A pinch roller 35 is arranged in front of the alignment mechanism 32. The spool 31 is rotated by a drive motor (not shown) in a state where the strip steel wire 1 is sandwiched between the pinch rollers 35, and the rotation of the spool 31 is applied to the strip steel wire 1 so that tension acts between the pinch roller 35 and the spool 31. Controlled. The alignment mechanism 32 reciprocates in the axial direction of the spool 31 with the rotation of the spool 31, and aligns the strip steel wire 1. As a result, the strip steel wire 1 is wound tightly in layers as shown in FIG. 3, and the strip steel wire coil 2 is obtained.

スプール31に巻かれた条鋼線材コイル2は、製造ラインから外される。   The strip steel wire coil 2 wound on the spool 31 is removed from the production line.

次に、冷却ライン20について詳細に説明する。図1では冷却装置21〜27の配置を概略的に示したが、実際には、下記のように配置されている。隣り合う冷却装置21〜27のそれぞれの間隔は、最も上流側の1番目の冷却装置21と2番目の冷却装置22との間隔D1が最も狭い。2番目の冷却装置22と3番目の冷却装置23との間隔D2は、間隔D1の2倍程度に広い。3番目の冷却装置23から7番目の冷却装置27までの隣接する各冷却装置の間隔は間隔D2の2倍程度に広くなっている。最も下流側の7番目の冷却装置27と巻取り機30のスプール31までの距離はさらにその2倍以上となっている。   Next, the cooling line 20 will be described in detail. Although the arrangement of the cooling devices 21 to 27 is schematically shown in FIG. 1, actually, the arrangement is as follows. Regarding the intervals between the adjacent cooling devices 21 to 27, the interval D1 between the first cooling device 21 and the second cooling device 22 on the most upstream side is the smallest. An interval D2 between the second cooling device 22 and the third cooling device 23 is about twice as large as the interval D1. The interval between adjacent cooling devices from the third cooling device 23 to the seventh cooling device 27 is about twice as large as the interval D2. The distance between the seventh most downstream cooling device 27 and the spool 31 of the winder 30 is more than twice as long.

本実施形態の冷却装置21〜27は、水が噴射される長さを調節できるようになっている。
以下の説明では、冷却装置21〜27において実際に水が噴射されて条鋼線材1を冷却する部位を、上流側から順に1番目〜7番目の水冷部(No.1水冷〜No.7水冷)という。
隣り合う水冷部のそれぞれの間隔は、最も上流側の1番目の水冷部(No.1水冷)と2番目の水冷部(No.2水冷)との間d1が最も狭い。2番目の水冷部(No.2水冷)と3番目の水冷部(No.3水冷)との間d2は、d1の2倍程度に広い。3番目の水冷部(No.3水冷)から7番目の水冷部(No.7水冷)までの隣接する各水冷部の間はd2の2倍程度に広くなっている。最も下流側の7番目の水冷部(No.7水冷)と巻取り機30のスプール31までの距離はさらにその2倍以上となっている。
冷却装置21〜27の各水冷部の間の区間では、後述するように条鋼線材1の表面温度が内部の熱により上昇するが、この区間を上流側から順に1番目〜6番目の復熱部(水冷部間復熱部、No.1復熱〜No.6復熱)と言う。
最も下流側の冷却装置27の水冷部(7番目の水冷部、No.7水冷)と巻取り機30のスプール31(巻き取り部)までの区間を7番目の復熱部(最終段復熱部、No.7復熱)と言う。
The cooling devices 21 to 27 of the present embodiment can adjust the length at which water is injected.
In the following description, the portions where water is actually injected in the cooling devices 21 to 27 to cool the strip steel wire 1 are sequentially arranged from the upstream to the first to seventh water cooling portions (No. 1 water cooling to No. 7 water cooling). That.
In the interval between the adjacent water cooling units, the distance d1 between the first upstream water cooling unit (No. 1 water cooling) and the second upstream water cooling unit (No. 2 water cooling) is the narrowest. The distance d2 between the second water cooling section (No. 2 water cooling) and the third water cooling section (No. 3 water cooling) is about twice as large as d1. The distance between adjacent water cooling sections from the third water cooling section (No. 3 water cooling) to the seventh water cooling section (No. 7 water cooling) is about twice as large as d2. The distance between the seventh downstream water-cooling section (No. 7 water-cooling) and the spool 31 of the winder 30 is more than twice as long.
In a section between the water cooling sections of the cooling devices 21 to 27, as described later, the surface temperature of the strip steel wire 1 increases due to internal heat, but this section is first to sixth recuperation sections in order from the upstream side. (Reheat section between water cooling sections, No. 1 reheat to No. 6 reheat).
A section from the water-cooling section (seventh water-cooling section, No. 7 water-cooling section) of the cooling device 27 on the most downstream side to the spool 31 (winding section) of the winding machine 30 is a seventh recuperation section (final-stage recuperation). Part, No. 7 reheating).

冷却ライン20での条鋼線材1の冷却工程を概略的に説明する。図4〜6に示すように、条鋼線材1は冷却装置21〜27の各水冷部を通過する度に水を浴びて段階的に冷却される。条鋼線材1の表面温度(図中符号Aで示す)は、水に直接接するので低下が激しい。条鋼線材1の表面温度は、上記復熱部を通過する過程では、中心部からの伝熱により急激に温度が上昇する(回復する)。このように、条鋼線材1の表面温度は冷却ライン20において激しく変動しながら低下していく。
条鋼線材1の中心部の温度(図中符号Bで示す)の低下は緩やかである。条鋼線材1の平均温度(図中符号Cで示す断面内の平均温度)は、表面温度の影響を受けて段階的に低下する。
The cooling process of the strip steel wire 1 in the cooling line 20 will be schematically described. As shown in FIGS. 4 to 6, each time the strip steel wire 1 passes through each of the water cooling sections of the cooling devices 21 to 27, it is bathed in water and cooled stepwise. The surface temperature (indicated by the symbol A in the figure) of the strip steel wire 1 drops sharply because it is in direct contact with water. In the process of passing through the heat recovery section, the surface temperature of the strip steel wire 1 rapidly rises (recovers) due to heat transfer from the center. As described above, the surface temperature of the strip steel wire 1 decreases while fluctuating sharply in the cooling line 20.
The temperature of the central portion of the strip steel wire 1 (indicated by the symbol B in the drawing) gradually decreases. The average temperature of the strip steel wire 1 (the average temperature in the cross section indicated by the symbol C in the figure) gradually decreases under the influence of the surface temperature.

最も下流側の7番目の復熱部では、7番目の水冷部の出口近傍で条鋼線材1の表面温度が急激に上昇した後、緩やかに上昇を続け、中心温度と平均温度は緩やかに低下する。その結果、条鋼線材1がスプール31で巻き取られる際に、中心温度と表面温度は略等しいか、その差が10℃程度以下となっている。   In the seventh recuperation section on the most downstream side, after the surface temperature of the strip steel wire 1 rises sharply near the outlet of the seventh water cooling part, it continues to rise gradually, and the center temperature and the average temperature decrease gradually. . As a result, when the strip steel wire 1 is wound by the spool 31, the center temperature and the surface temperature are substantially equal or the difference is about 10 ° C. or less.

本発明では、巻取り機30のスプール31で巻き取られる際の条鋼線材1の表面温度を、A1変態点(727℃)以下にしている。これにより、巻取り時には少なくとも表面では[オーステナイト]から [フェライト+パーライト]への組織の変態が終了しており、
条鋼線材1に張力を作用させてスプール31に密巻きにしても条鋼線材1の断面変形を抑制することができる。
In the present invention, the surface temperature of the strip steel wire 1 when it is wound up by the spool 31 of the winding machine 30 is set to the A1 transformation point (727 ° C.) or lower. As a result, at the time of winding, at least on the surface, the transformation of the structure from [austenite] to [ferrite + pearlite] has been completed,
Even if tight tension is applied to the spool 31 by applying tension to the strip steel wire 1, cross-sectional deformation of the strip steel wire 1 can be suppressed.

好ましくは、スプール31で巻き取られる際の条鋼線材1の表面温度を、700℃以下にしている。このように表面温度をA1変態点より十分に低くすることにより、条鋼線材1は巻取り時には略全領域で [フェライト+パーライト]への組織の変態が終了しており
、また条鋼線材1の変形抵抗も大きくなっており、条鋼線材1に張力を作用させてスプール31に密巻きにしても条鋼線材1の断面変形を確実に防ぐことができる。
Preferably, the surface temperature of the strip steel wire 1 when wound by the spool 31 is set to 700 ° C. or less. By thus sufficiently lowering the surface temperature from the A1 transformation point, the transformation of the structure into [ferrite + pearlite] is completed in almost all regions at the time of winding, and the deformation of the strip steel wire 1 The resistance is also large, and even if the tension is applied to the strip steel wire 1 and the spool 31 is tightly wound around the spool 31, the cross-sectional deformation of the strip steel wire 1 can be reliably prevented.

好ましくは、スプール31で巻き取られる際の条鋼線材1の表面温度を、620℃以上にする。620℃では既に上記組織の変態は完全に終了しており、必要以上の冷却は、冷却ライン20の長大化を招くからである。
さらに好ましくは、巻取り時の条鋼線材1の表面温度を640〜680℃にする。
Preferably, the surface temperature of the strip steel wire 1 when wound by the spool 31 is set to 620 ° C. or higher. At 620 ° C., the transformation of the structure has already been completely completed, and excessive cooling causes the cooling line 20 to become longer.
More preferably, the surface temperature of the strip steel wire 1 during winding is 640 to 680 ° C.

上述したように巻取り時の条鋼線材1の表面温度が従来(800℃以上)より著しく低いため、圧延された条鋼線材1を緩冷却すると冷却ライン20の著しい長大化を招く。冷却ラインの長大化を回避するためには、条鋼線材1を強冷することが求められるが、徒に強冷すると、条鋼線材1内にマルテンサイトやベイナイトの組織が現れてしまい、JIS規格外になってしまう。   As described above, since the surface temperature of the strip steel wire 1 at the time of winding is significantly lower than the conventional one (800 ° C. or higher), slow cooling of the rolled strip steel wire 1 causes a significant increase in the length of the cooling line 20. In order to avoid the lengthening of the cooling line, it is required to strongly cool the strip steel wire 1. However, if the cooling is performed excessively, the structure of martensite or bainite appears in the strip steel wire 1 and is not JIS standard. Become.

本発明では、冷却ライン20において上流側の水冷部で強冷するとともに充分に復熱させて、下流側の水冷部で緩冷却することにより、ベイナイトやマルテンサイトに変態させることなく、冷却ライン20の長大化を回避している。   In the present invention, the cooling line 20 is strongly cooled in the upstream water cooling section and sufficiently recuperated in the cooling line 20 and is slowly cooled in the downstream water cooling section, without being transformed into bainite or martensite. Avoids the lengthening of.

具体的には、1番目の水冷部で、条鋼線材1の表面温度をA1変態点より100℃以上低くし、1番目の復熱部で、条鋼線材1の表面温度をA1変態点以上に上昇させている。1番目の水冷部入口では条鋼線材1の表面温度が最も高いので、1番目の水冷部で強冷することにより、最も高い冷却効果が得られる。1番目の復熱部で、条鋼線材1の表面温度を直ぐにA1変態点以上に上昇させるので、ベイナイトやマルテンサイトへの変態は生じない。   Specifically, in the first water-cooled portion, the surface temperature of the bar steel wire 1 is lowered by 100 ° C. or more from the A1 transformation point, and in the first recuperation portion, the surface temperature of the bar steel wire 1 is raised to the A1 transformation point or more. Let me. Since the surface temperature of the strip steel wire 1 is the highest at the first water cooling section entrance, the highest cooling effect can be obtained by performing strong cooling in the first water cooling section. In the first recuperator, the surface temperature of the strip steel wire 1 is immediately increased to the A1 transformation point or higher, so that transformation to bainite or martensite does not occur.

好ましくは、2番目の水冷部でも条鋼線材1の表面温度をA1変態点より100℃以上、より好ましくは150℃以上低くし、2番目の復熱部で再びA1変態点以上に上昇させる。これにより、ベイナイトやマルテンサイトへの変態を避けつつ冷却ラインの短縮化に寄与することができる。   Preferably, the surface temperature of the strip steel wire 1 is lowered by 100 ° C. or more, more preferably by 150 ° C. or more from the A1 transformation point in the second water-cooled section, and is raised again to the A1 transformation point or more in the second recuperation section. This can contribute to shortening of the cooling line while avoiding transformation to bainite or martensite.

さらに好ましくは、3番目の水冷部でも、条鋼線材1の表面温度をA1変態点より100℃以上、より好ましくは200℃以上低くする。これにより、一層冷却ラインの短縮化ができる。   More preferably, even in the third water-cooled portion, the surface temperature of the strip steel wire 1 is made lower than the A1 transformation point by 100 ° C. or more, more preferably 200 ° C. or more. Thereby, the cooling line can be further shortened.

上記のような上流側での強冷により、冷却装置21〜27の複数の冷却部における上流側の水冷部で条鋼線材1の表面温度は冷却ライン20における最低温度になる。具体的には3番目の水冷部の出口で最低温度となる。これにより一層冷却ラインの短縮化ができる。最低温度は450℃〜540℃が好ましい。なお、最低温度は、1番目または2番目の水冷部で実現させてもよい。   Due to the strong cooling on the upstream side as described above, the surface temperature of the strip steel wire 1 becomes the lowest temperature in the cooling line 20 in the upstream water cooling unit in the plurality of cooling units of the cooling devices 21 to 27. Specifically, the temperature becomes the lowest at the outlet of the third water cooling unit. Thereby, the cooling line can be further shortened. The minimum temperature is preferably from 450C to 540C. Note that the lowest temperature may be realized by the first or second water cooling unit.

好ましくは、全ての水冷部において、条鋼線材1の表面温度をA1変態点より100℃以上低くする。これにより、より確実に巻取り後の条鋼線材1の断面変形を抑制しつつ、かつ冷却ラインの短縮化ができる。   Preferably, in all the water-cooled parts, the surface temperature of the strip steel wire 1 is set to be lower than the A1 transformation point by 100 ° C. or more. Thereby, it is possible to more reliably suppress the cross-sectional deformation of the strip steel wire 1 after winding and to shorten the cooling line.

上流側における強冷のために、本実施形態では、水冷部の長さを調整している。水冷部は長いほど水冷部の通過時間が長くなり冷却能力が増大する。具体的には、冷却ライン20の上流側の水冷部(具体的には1番目〜2番目の水冷部または1番目〜3番目の水冷部)を下流側の水冷部(3番目〜7番目の水冷部または4番目〜7番目の水冷部)より長くしている。   In the present embodiment, the length of the water-cooled portion is adjusted for strong cooling on the upstream side. The longer the water-cooled portion, the longer the passage time of the water-cooled portion and the greater the cooling capacity. Specifically, the upstream water cooling section (specifically, the first to second water cooling section or the first to third water cooling section) of the cooling line 20 is replaced with the downstream water cooling section (third to seventh water cooling section). Water cooling section or the fourth to seventh water cooling sections).

復熱部も長いほど復熱部の通過時間が長くなり復熱能力が増大する。復熱部は、十分な復熱効果が得られるように、直前の水冷部より長くしている。なお、1番目の復熱部が最も短く、2番目の復熱部は1番目の復熱部の約2倍であり、3番目〜6番目の復熱部は2番目の復熱部の約2倍である。条鋼線材1の内部温度は上流側の方が高いので、復熱部が短くても十分な復熱効果が得られるからである。   The longer the recuperator, the longer the passage time of the recuperator and the greater the recuperative capacity. The recuperation section is longer than the immediately preceding water cooling section so that a sufficient recuperation effect can be obtained. The first recuperation section is the shortest, the second recuperation section is about twice as large as the first recuperation section, and the third to sixth recuperation sections are about twice as large as the second recuperation section. It is twice. Because the internal temperature of the strip steel wire 1 is higher on the upstream side, a sufficient recuperation effect can be obtained even if the recuperator is short.

7番目の復熱部は、最も長く3番目〜6番目の復熱部の2倍以上である。7番目の復熱部で、長時間にわたり復熱されるので、表面温度と中心温度が略等しくなる。   The seventh recuperation section is the longest and is at least twice as long as the third to sixth recuperation sections. Since the heat is recovered for a long time in the seventh heat recovery section, the surface temperature and the center temperature become substantially equal.

[実施例]
条鋼線材1の材料としては、例えばJIS規格のSD295やSD345が用いられる。ちなみに、SD295の成分の例として、下記の成分を含有している。
C: 0.18〜0.27%
Si: 0.10〜0.55%
Mn: 0.45〜1.50%
SD345の成分の例として、下記の成分を含有している。
C: 0.20〜0.27%
Si: 0.10〜0.55%
Mn: 0.65〜1.50%
[Example]
As a material of the strip steel wire 1, for example, JIS standard SD295 or SD345 is used. Incidentally, the following components are contained as examples of the components of SD295.
C: 0.18 to 0.27%
Si: 0.10 to 0.55%
Mn: 0.45 to 1.50%
The following components are included as examples of the components of SD345.
C: 0.20 to 0.27%
Si: 0.10 to 0.55%
Mn: 0.65 to 1.50%

条鋼線材1の径(公称直径)に特に制限はないが、10〜16mm(JIS G3112:2010 呼び名D10〜D16、公称直径9.53〜15.9mm)に適用する。
最終仕上げ圧延機15の出口の条鋼線材1の速度は、11〜35m/secである。
加熱炉で1000℃前後(例えば1030℃)に加熱されたビレットまたはブルームが圧延ライン10で連続圧延され、最終仕上げ圧延機15の出口での条鋼線材1の表面温度は、950〜1000℃となる。この表面温度は、前述したように入側冷却装置16でばらつきを抑えられる。
The diameter (nominal diameter) of the strip steel wire 1 is not particularly limited, but is applied to 10 to 16 mm (JIS G3112: 2010, designation D10 to D16, nominal diameter 9.53 to 15.9 mm).
The speed of the strip steel wire 1 at the exit of the final finish rolling mill 15 is 11 to 35 m / sec.
A billet or bloom heated to about 1000 ° C. (for example, 1030 ° C.) in a heating furnace is continuously rolled in the rolling line 10, and the surface temperature of the strip steel wire 1 at the exit of the final finishing mill 15 becomes 950 to 1000 ° C. . As described above, the surface temperature can be controlled by the inlet-side cooling device 16.

以下、呼び名D10(公称直径9.53mm)、呼び名D13(公称直径12.7mm)、呼び名D16(公称直径15.9mm)の各サイズの条鋼線材1の冷却工程について説明する。
表1は、各サイズでの水冷部(No.1水冷〜No.7水冷)と復熱部(No.1復熱〜No.7復熱)の長さを示す。

Figure 2019214070
Hereinafter, the cooling process of the bar steel wire 1 of each size of the nominal name D10 (nominal diameter of 9.53 mm), the nominal name D13 (nominal diameter of 12.7 mm), and the nominal name D16 (nominal diameter of 15.9 mm) will be described.
Table 1 shows the length of the water-cooled portion (No. 1 water-cooled to No. 7 water-cooled) and the recuperator (No. 1 re-heated to No. 7 re-heated) in each size.
Figure 2019214070

実施例1(D10 公称直径9.53mm)
D10の条鋼線材1を冷却する場合、表1に示すように、最終仕上げ圧延機15の出口から5.0m離れた1番目の水冷部(No.1水冷)の長さが2.6m、2番目の水冷部(No.2水冷)が2.0m、3番目の水冷部(No.3水冷)が3.3mであり、4番目〜7番目の水冷部(No.4水冷〜No.7水冷)が0.6mである。また、1番目の復熱部(No.1復熱)が4.6mで最も短く、2番目の復熱部(No.2復熱)が10.0m、3番目〜6番目の復熱部(No.3復熱〜No.6復熱)が19.4〜22.2m、7番目の復熱部(No.7復熱)が50.0mである。
Example 1 (D10 nominal diameter 9.53 mm)
As shown in Table 1, the length of the first water-cooled portion (No. 1 water-cooled) 5.0 m away from the outlet of the final finishing mill 15 is 2.6 m, when cooling the D10 strip steel wire 1. The third water cooling section (No. 3 water cooling) is 3.3 m, and the fourth to seventh water cooling sections (No. 4 water cooling to No. 7). (Water cooling) is 0.6 m. The first recuperation section (No. 1 recuperation) is the shortest at 4.6 m, the second recuperation section (No. 2 recuperation) is 10.0 m, and the third to sixth recuperation sections. (No. 3 recuperation to No. 6 recuperation) is 19.4 to 22.2 m, and the seventh recuperation section (No. 7 recuperation) is 50.0 m.

最終仕上げ圧延機15の出口での条鋼線材1の速度を30.0m/secとし、1番目の水冷部(No.1水冷)に入る直前の表面温度を944℃とした場合、D10の条鋼線材1の温度変化をシミュレーションすると図4に示す結果が得られた。   When the speed of the strip steel wire 1 at the exit of the final finishing rolling mill 15 is 30.0 m / sec and the surface temperature immediately before entering the first water cooling section (No. 1 water cooling) is 944 ° C., the D10 strip steel wire is used. When the temperature change of No. 1 was simulated, the result shown in FIG. 4 was obtained.

条鋼線材1の表面温度は、1番目の水冷部(No.1水冷)で急激に低下し、その出口で、A1変態点より120℃以上(100℃以上)低い約600℃となる。表面温度が高く、1番目の水冷部(No.1水冷)が長いため、1番目の水冷部(No.1水冷)での温度低下は最大となる。1番目の復熱部(No.1復熱)は短いが中心温度、平均温度が高いので、内部熱により表面温度は急激に上昇し、A1変態点を超える約780℃まで復帰する。
表面温度は2番目の水冷部(No.2水冷)でも急激に低下し、A1変態点より150℃以上(100℃以上)低い約570℃まで低下し、2番目の復熱部(No.2復熱)でA1変態点を超える約750℃まで上昇する。
3番目の水冷部(No.3水冷)で表面温度は再び急激に低下し、A1変態点より230℃以上(200℃以上)低い489℃となる。この温度が冷却工程における条鋼線材1の表面温度の最低値となる。3番目の長い復熱部(No.3復熱)で、条鋼線材1の表面温度は最低温度から約700℃まで復帰する。
The surface temperature of the strip steel wire 1 sharply drops in the first water-cooled portion (No. 1 water-cooled), and reaches about 600 ° C. at the outlet thereof, which is 120 ° C. or more (100 ° C. or more) lower than the A1 transformation point. Since the surface temperature is high and the first water-cooled part (No. 1 water-cooled) is long, the temperature drop in the first water-cooled part (No. 1 water-cooled) is maximum. The first recuperator (No. 1 recuperator) is short but has a high center temperature and high average temperature, so the surface temperature rises rapidly due to internal heat and returns to about 780 ° C., which exceeds the A1 transformation point.
The surface temperature drops rapidly even in the second water-cooled part (No. 2 water-cooled), drops to about 570 ° C. which is 150 ° C. or more (100 ° C. or more) lower than the A1 transformation point, and the second recuperated part (No. 2). The temperature rises to about 750 ° C., which exceeds the A1 transformation point.
In the third water-cooled portion (No. 3 water-cooled), the surface temperature rapidly drops again, and reaches 489 ° C., which is 230 ° C. or more (200 ° C. or more) lower than the A1 transformation point. This temperature is the lowest value of the surface temperature of the strip steel wire 1 in the cooling step. At the third long recuperation section (No. 3 recuperation), the surface temperature of the strip steel wire 1 returns from the minimum temperature to about 700 ° C.

条鋼線材1の表面温度は、4番目〜7番目の冷却部(No.4水冷〜No.7水冷)でもA1変態点より100℃以上低い温度まで低下し、4番目〜7番目の復熱部(No.4復熱〜No.7復熱)では温度上昇するもののその復帰温度は徐々に低下していく。最終的に、巻取り時の表面温度は649℃であり、表面温度と中心温度は略等しい。   The surface temperature of the strip steel wire 1 is lowered to a temperature lower than the A1 transformation point by 100 ° C. or more even in the fourth to seventh cooling parts (No. 4 water cooling to No. 7 water cooling), and the fourth to seventh recuperation parts are formed. In (No. 4 recuperation to No. 7 recuperation), the temperature rises but the return temperature gradually decreases. Finally, the surface temperature during winding is 649 ° C., and the surface temperature and the center temperature are substantially equal.

実施例2(D13 公称直径12.7mm)
D13の条鋼線材1を冷却する場合、表1に示すように、最終仕上げ圧延機15の出口から3.8m離れた1番目の水冷部(No.1水冷)の長さが3.9m、2番目の水冷部(No.2水冷)が2.1m、3番目の水冷部(No.3水冷)が1.9m、4番目の水冷部(No.4水冷)が1.2mであり、5〜7番目の水冷部(No.5水冷〜No.7水冷)が0.5〜0.7mである。また、1番目の復熱部(No.1復熱)が4.5mで最も短く、2番目の復熱部(No.2復熱)が11.2m、3番目〜6番目の復熱部(No.3復熱〜No.6復熱)が19.6〜21.7m、7番目の復熱部(No.7復熱)が50.0mである。
Example 2 (D13 nominal diameter 12.7 mm)
As shown in Table 1, the length of the first water-cooled section (No. 1 water-cooled) 3.8 m away from the exit of the final finishing rolling mill 15 is 3.9 m, as shown in Table 1, when cooling the strip steel wire 1 of D13. The third water cooling section (No. 2 water cooling) is 2.1 m, the third water cooling section (No. 3 water cooling) is 1.9 m, and the fourth water cooling section (No. 4 water cooling) is 1.2 m. The seventh to seventh water cooling parts (No. 5 water cooling to No. 7 water cooling) are 0.5 to 0.7 m. The first recuperator (No. 1 recuperator) is the shortest at 4.5 m, the second recuperator (No. 2 recuperator) is 11.2 m, and the third to sixth recuperators. (No. 3 recuperation to No. 6 recuperation) is 19.6 to 21.7 m, and the seventh recuperation section (No. 7 recuperation) is 50.0 m.

最終仕上げ圧延機15の出口での条鋼線材1の速度を23.2m/secとし、1番目の水冷部(No.1水冷)に入る直前の表面温度を944℃とした場合、D13の条鋼線材1の温度変化をシミュレーションすると図5に示す結果が得られた。   When the speed of the strip steel wire 1 at the exit of the final finishing mill 15 is 23.2 m / sec, and the surface temperature immediately before entering the first water cooling section (No. 1 water cooling) is 944 ° C., the D13 strip steel wire is used. When the temperature change of No. 1 was simulated, the result shown in FIG. 5 was obtained.

条鋼線材1の表面温度は、1番目の水冷部(No.1水冷)で急激に低下し、その出口で、A1変態点より190℃以上(100℃以上)低い約530℃となる。表面温度が高く、1番目の水冷部(No.1水冷)が長いため、1番目の水冷部(No.1水冷)での温度低下は最大となる。1番目の復熱部(No.1復熱)は短いが中心温度、平均温度が高いので、内部熱により表面温度は急激に上昇し、A1変態点を超える約740℃まで復帰する。
表面温度は2番目の水冷部(No.2水冷)でも急激に低下し、A1変態点より200℃以上(150℃以上)低い約520℃まで低下し、2番目の復熱部(No.2復熱)でA1変態点を超える約740℃まで上昇する。
3番目の水冷部(No.3水冷)は最も長いので、表面温度はここで再び急激に低下し、A1変態点より220℃(200℃)以上低い497℃となる。この温度が冷却工程における条鋼線材1の表面温度の最低値となる。3番目の復熱部(No.3復熱)は長いので、上記最低温度から約720℃まで復帰する。
The surface temperature of the strip steel wire 1 rapidly decreases in the first water-cooled portion (No. 1 water-cooled), and reaches about 530 ° C., which is 190 ° C. or more (100 ° C. or more) lower than the A1 transformation point at the outlet. Since the surface temperature is high and the first water-cooled part (No. 1 water-cooled) is long, the temperature drop in the first water-cooled part (No. 1 water-cooled) is maximum. The first recuperator (No. 1 recuperator) is short but has a high center temperature and high average temperature. Therefore, the surface temperature rises rapidly due to internal heat and returns to about 740 ° C. which exceeds the A1 transformation point.
The surface temperature also drops sharply in the second water-cooled part (No. 2 water-cooled), drops to about 520 ° C., which is 200 ° C. or more (150 ° C. or more) lower than the A1 transformation point, and the second recuperated part (No. 2). The temperature rises to about 740 ° C., which exceeds the A1 transformation point.
Since the third water-cooled portion (No. 3 water-cooled) is the longest, the surface temperature drops sharply again here to 497 ° C., which is 220 ° C. (200 ° C.) or more lower than the A1 transformation point. This temperature is the lowest value of the surface temperature of the strip steel wire 1 in the cooling step. Since the third recuperator (No. 3 recuperator) is long, it returns from the above minimum temperature to about 720 ° C.

条鋼線材1の表面温度は、4番目〜7番目の冷却部(No.4水冷〜No.7水冷)でもA1変態点より100℃以上低い温度まで低下し、4番目〜7番目の復熱部(No.4復熱〜No.7復熱)では温度上昇するもののその復帰温度は徐々に低下していく。最終的に、巻取り時の表面温度は657℃であり、表面温度と中心温度の差は約3℃である。   The surface temperature of the strip steel wire 1 is lowered to a temperature lower than the A1 transformation point by 100 ° C. or more even in the fourth to seventh cooling parts (No. 4 water cooling to No. 7 water cooling), and the fourth to seventh recuperation parts are formed. In (No. 4 recuperation to No. 7 recuperation), the temperature rises but the return temperature gradually decreases. Finally, the surface temperature during winding is 657 ° C., and the difference between the surface temperature and the center temperature is about 3 ° C.

実施例3(D16 公称直径15.9mm)
D16の条鋼線材1を冷却する場合、表1に示すように、最終仕上げ圧延機15の出口から5.1m離れた1番目の水冷部(No.1水冷)の長さが2.7m、2番目の水冷部(No.2水冷)が1.4m、3番目の水冷部(No.3水冷)が1.2mであり、4番目の水冷部(No.4水冷)が1.2m、5番目の水冷部(No.5水冷)が0.7m、6番目の水冷部(No.6水冷)が1.3m、7番目の水冷部(No.7水冷)が0.7mである。また、1番目の復熱部(No.1復熱)が5.2mで最も短く、2番目の復熱部(No.2復熱)が11.8m、3番目〜6番目の復熱部(No.3復熱〜No.6復熱)が19.5〜21.6m、7番目の復熱部(No.7復熱)が50.2mである。
Example 3 (D16 nominal diameter 15.9 mm)
As shown in Table 1, the length of the first water-cooled portion (No. 1 water-cooled) 5.1 m away from the outlet of the final finishing mill 15 is 2.7 m, when the strip steel wire 1 of D16 is cooled, as shown in Table 1. The third water cooling section (No. 2 water cooling) is 1.4 m, the third water cooling section (No. 3 water cooling) is 1.2 m, and the fourth water cooling section (No. 4 water cooling) is 1.2 m. The seventh water-cooled part (No. 5 water-cooled) is 0.7 m, the sixth water-cooled part (No. 6 water-cooled) is 1.3 m, and the seventh water-cooled part (No. 7 water-cooled) is 0.7 m. The first recuperator (No. 1 recuperator) is the shortest at 5.2 m, the second recuperator (No. 2 recuperator) is 11.8 m, and the third to sixth recuperators. (No. 3 recuperation to No. 6 recuperation) is 19.5 to 21.6 m, and the seventh recuperation section (No. 7 recuperation) is 50.2 m.

最終仕上げ圧延機15の出口での条鋼線材1の速度を14.8m/secとし、1番目の水冷部に入る直前の表面温度を935℃とした場合、D16の条鋼線材1の温度変化をシミュレーションすると図6に示す結果が得られた。   When the speed of the strip steel wire 1 at the exit of the final finishing rolling mill 15 is 14.8 m / sec, and the surface temperature immediately before entering the first water cooling section is 935 ° C., the temperature change of the D16 strip steel wire 1 is simulated. Then, the result shown in FIG. 6 was obtained.

条鋼線材1の表面温度は、1番目の水冷部(No.1水冷)で急激に低下し、その出口で、A1変態点より190℃以上(100℃以上)低い約530℃となる。表面温度が高く、1番目の水冷部(No.1水冷)が長いため、1番目の水冷部(No.1水冷)での温度低下は最大となる。1番目の復熱部(No.1復熱)は短いが中心温度、平均温度が高いので、内部熱により表面温度は急激に上昇し、A1変態点を超える約760℃まで復帰する。
表面温度は2番目の水冷部(No.2水冷)でも急激に低下し、A1変態点より200℃以上(150℃以上)低い約525℃まで低下し、2番目の復熱部(No.2復熱)でA1変態点を超える約750℃まで上昇する。
3番目の水冷部(No.3水冷)は最も長いので、表面温度はここで再び急激に低下し、A1変態点より200℃以上低い508℃となる。この温度が冷却工程における条鋼線材1の表面温度の最低値となる。3番目の復熱部(No.3復熱)は長いので、上記最低温度から約740℃まで復帰する。
The surface temperature of the strip steel wire 1 rapidly decreases in the first water-cooled portion (No. 1 water-cooled), and reaches about 530 ° C., which is 190 ° C. or more (100 ° C. or more) lower than the A1 transformation point at the outlet. Since the surface temperature is high and the first water-cooled part (No. 1 water-cooled) is long, the temperature drop in the first water-cooled part (No. 1 water-cooled) is maximum. The first recuperator (No. 1 recuperator) is short but has a high center temperature and high average temperature. Therefore, the surface temperature rises rapidly due to internal heat and returns to about 760 ° C., which exceeds the A1 transformation point.
The surface temperature also drops sharply in the second water-cooled part (No. 2 water-cooled), drops to about 525 ° C., which is 200 ° C. or more (150 ° C. or more) lower than the A1 transformation point, and the second recuperated part (No. 2). The temperature rises to about 750 ° C., which exceeds the A1 transformation point.
Since the third water-cooled portion (No. 3 water-cooled) is the longest, the surface temperature drops sharply again here to 508 ° C., which is 200 ° C. or more lower than the A1 transformation point. This temperature is the lowest value of the surface temperature of the strip steel wire 1 in the cooling step. Since the third recuperator (No. 3 recuperator) is long, it returns from the above minimum temperature to about 740 ° C.

条鋼線材1の表面温度は、4番目〜7番目の冷却部(No.4水冷〜No.7水冷)でもA1変態点より100℃以上低い温度まで低下し、4番目〜7番目の復熱部(No.4復熱〜No.7復熱)では温度上昇するもののその復帰温度は徐々に低下していく。最終的に、巻取り時の表面温度は669℃であり、表面温度と中心温度の差は約10℃である。   The surface temperature of the strip steel wire 1 is lowered to a temperature lower than the A1 transformation point by 100 ° C. or more even in the fourth to seventh cooling parts (No. 4 water cooling to No. 7 water cooling), and the fourth to seventh recuperation parts are formed. In (No. 4 recuperation to No. 7 recuperation), the temperature rises but the return temperature gradually decreases. Finally, the surface temperature during winding is 669 ° C., and the difference between the surface temperature and the center temperature is about 10 ° C.

表1から明らかなように、最終仕上げ圧延機15の出口から巻取装置30のスプール31までの冷却ライン20の長さを約165mに抑えることができた。   As is clear from Table 1, the length of the cooling line 20 from the outlet of the final finishing mill 15 to the spool 31 of the winding device 30 could be suppressed to about 165 m.

本発明は上記実施形態に制約されず、種々の形態を採用可能である。   The present invention is not limited to the above embodiment, and various modes can be adopted.

本発明は、熱間圧延された条鋼線材を密巻きする方法に適用することができる。   INDUSTRIAL APPLICABILITY The present invention can be applied to a method of densely winding a hot-rolled strip steel wire.

1 条鋼線材
2 条鋼線材コイル
10 圧延ライン
15 最終仕上げ圧延機
16 入側冷却装置
20 冷却ライン
21〜27 冷却装置
30 巻取り機
31 スプール
32 整列機構
1 strip steel wire 2 strip steel coil 10 Rolling line 15 Final finishing mill 16 Inlet cooling device 20 Cooling line 21-27 Cooling device 30 Winding machine 31 Spool 32 Alignment mechanism

Claims (10)

圧延ラインで連続圧延することにより得られた条鋼線材を、上記圧延ラインの最終仕上げ圧延機の下流側に配置された冷却ラインにより冷却した後、上記冷却ラインの下流側に配置された巻取り機で巻き取ることにより、条鋼線材コイルを製造し、
上記冷却ラインは、間隔をおいて配置された複数の水冷部を備え、上記複数の水冷部間の区間が複数の水冷部間復熱部として提供され、上記複数の水冷部のうち最も下流側に位置する水冷部と巻取り機との間の区間が、最終段復熱部として提供され、上記条鋼線材の表面温度を、上記冷却部を通過する度に低下させ、上記復熱部を通過する度に上記条鋼線材の内部熱により上昇させる条鋼線材コイルの製造方法において、
上記複数の水冷部における上流から1番目の水冷部で、上記条鋼線材の表面温度をA1変態点より100℃以上低くし、上記複数の水冷部間復熱部における上流から1番目の水冷部間復熱部で、上記条鋼線材の表面温度をA1変態点以上に上昇させ、
上記巻き取り時の上記条鋼線材の表面温度をA1変態点以下にし、
上記巻取り機はスプールとその手前の整列機構を有し、上記整列機構により整列された上記条鋼線材を上記スプールに密巻きして上記条鋼線材コイルを得ることを特徴とする条鋼線材コイルの製造方法。
After the strip steel wire obtained by continuous rolling in the rolling line is cooled by a cooling line arranged downstream of the final finishing rolling mill of the rolling line, a winding machine arranged downstream of the cooling line By winding in, to produce a strip steel wire coil,
The cooling line includes a plurality of water cooling units disposed at intervals, a section between the plurality of water cooling units is provided as a plurality of water cooling unit recuperators, the most downstream of the plurality of water cooling units The section between the water-cooling section and the winder located in the section is provided as a final-stage recuperator, reduces the surface temperature of the strip steel wire each time it passes through the cooling section, and passes through the recuperator. In the method of manufacturing a coil of a bar steel wire which is raised by the internal heat of the bar steel wire each time,
In the first water cooling section from the upstream in the plurality of water cooling sections, the surface temperature of the strip steel wire is lowered by 100 ° C. or more from the A1 transformation point. In the recuperation section, raise the surface temperature of the above-mentioned bar steel wire above the A1 transformation point,
The surface temperature of the strip steel wire at the time of the winding is set to the A1 transformation point or lower,
The winding machine has a spool and an alignment mechanism in front of the spool, and tightly winds the strip steel wires aligned by the alignment mechanism around the spool to obtain the strip steel wire coil. Method.
上記巻き取り時の上記条鋼線材の表面温度を700℃以下にすることを特徴とする請求項1に記載の条鋼線材コイルの製造方法。   The method according to claim 1, wherein a surface temperature of the strip steel wire during the winding is set to 700 ° C. or less. 上記巻き取り時の上記条鋼線材の表面温度を620℃以上とすることを特徴とする請求項2に記載の条鋼線材コイルの製造方法。   The method according to claim 2, wherein a surface temperature of the strip steel wire at the time of the winding is set to 620 ° C or higher. 上記複数の水冷部における2番目の水冷部で、上記条鋼線材の表面温度をA1変態点より150℃以上低くし、上記複数の水冷部間復熱部における2番目の水冷部間復熱部で、上記条鋼線材の表面温度をA1変態点以上に上昇させることを特徴とする請求項1〜3のいずれかに記載の条鋼線材コイルの製造方法。   In the second water-cooling section of the plurality of water-cooling sections, the surface temperature of the strip steel wire is lowered by 150 ° C. or more from the A1 transformation point, and in the second water-cooling section of the plurality of water-cooling section recuperation sections. The method for producing a coil of a bar-shaped wire according to any one of claims 1 to 3, wherein the surface temperature of the bar-shaped wire is raised to the A1 transformation point or higher. 上記複数の水冷部における3番目の水冷部で、上記条鋼線材の表面温度をA1変態点より200℃以上低くすることを特徴とする請求項4に記載の条鋼線材コイルの製造方法。   The method according to claim 4, wherein a surface temperature of the strip steel wire is lowered by 200 ° C. or more from an A1 transformation point in a third water cooling section of the plurality of water cooling sections. 上記複数の水冷部における上流側の水冷部で、上記条鋼線材の表面温度を上記冷却ラインにおける最低温度にすることを特徴とする請求項1〜5のいずれかに記載の条鋼線材コイルの製造方法。   The method according to claim 1, wherein a surface temperature of the strip steel wire is set to a minimum temperature in the cooling line in an upstream water cooling section of the plurality of water cooling sections. . 上記複数の水冷部の各々において、上記条鋼線材の表面温度をA1変態点より100℃以上低くすることを特徴とする請求項1〜6のいずれかに記載の条鋼線材コイルの製造方法。   The method according to any one of claims 1 to 6, wherein, in each of the plurality of water-cooled portions, the surface temperature of the strip steel wire is lower than the A1 transformation point by 100 ° C or more. 上記複数の水冷部の各々の条鋼線材の通過時間に比べて、各水冷部の後に続く水冷部間復熱部での上記条鋼線材の通過時間が長く、上記最終段復熱部での上記条鋼線材の通関時間が、上記水冷部間復熱部での上記条鋼線材の通過時間より長いことを特徴とする請求項1〜7のいずれかに記載の条鋼線材コイルの製造方法。   Compared with the passage time of each bar steel wire of the plurality of water cooling sections, the passage time of the bar steel wire in the water-cooling section recuperation section following each water cooling section is long, and the bar steel wire in the final stage recuperation section The method for producing a coil of a bar steel wire according to any one of claims 1 to 7, wherein a customs clearance time of the wire is longer than a passage time of the bar steel wire in the recuperator between the water cooling sections. 上記複数の水冷部において、上流側水冷部での上記条鋼線材の通過時間が、下流側水冷部での条鋼線材の通過時間より長く、
上記複数の水冷部間復熱部において、上流側の水冷部間復熱部での上記条鋼線材の通過時間が、下流側の水冷部間復熱部での条鋼線材の通過時間より短いことを特徴とすることを特徴とする請求項8に記載の条鋼線材コイルの製造方法。
In the plurality of water cooling sections, the passage time of the strip steel wire in the upstream water cooling section is longer than the passage time of the strip steel wire in the downstream water cooling section,
In the plurality of water-cooling section recuperators, the passage time of the strip steel wire in the upstream water-cooling section recuperator is shorter than the passage time of the strip steel wire in the downstream water-cooling section recuperator. The method for producing a strip steel wire coil according to claim 8, characterized in that:
上記条鋼線材の直径が9.53〜15.9mmであり、上記冷却ラインにおける上記条鋼線材の速度が11〜35m/secであることを特徴とする請求項1〜9のいずれかに記載の条鋼線材コイルの製造方法。   The steel bar according to any one of claims 1 to 9, wherein a diameter of the steel bar is 9.53 to 15.9 mm, and a speed of the steel bar in the cooling line is 11 to 35 m / sec. Manufacturing method of wire coil.
JP2018113381A 2018-06-14 2018-06-14 Method for manufacturing bar steel wire rod coil Active JP7141861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018113381A JP7141861B2 (en) 2018-06-14 2018-06-14 Method for manufacturing bar steel wire rod coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018113381A JP7141861B2 (en) 2018-06-14 2018-06-14 Method for manufacturing bar steel wire rod coil

Publications (2)

Publication Number Publication Date
JP2019214070A true JP2019214070A (en) 2019-12-19
JP7141861B2 JP7141861B2 (en) 2022-09-26

Family

ID=68918232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018113381A Active JP7141861B2 (en) 2018-06-14 2018-06-14 Method for manufacturing bar steel wire rod coil

Country Status (1)

Country Link
JP (1) JP7141861B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050893A (en) * 2007-08-27 2009-03-12 Kobe Steel Ltd Control method for cooling bar steel and wire rod
JP2009241133A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Method of manufacturing bar steel and wire rod
JP2011156575A (en) * 2010-02-02 2011-08-18 Nippon Steel Corp Method and device for cooling steel bar and wire, and nozzle member
JP2012024821A (en) * 2010-07-26 2012-02-09 Sumitomo Metal Ind Ltd Cooling system of rolled stock for bar steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050893A (en) * 2007-08-27 2009-03-12 Kobe Steel Ltd Control method for cooling bar steel and wire rod
JP2009241133A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Method of manufacturing bar steel and wire rod
JP2011156575A (en) * 2010-02-02 2011-08-18 Nippon Steel Corp Method and device for cooling steel bar and wire, and nozzle member
JP2012024821A (en) * 2010-07-26 2012-02-09 Sumitomo Metal Ind Ltd Cooling system of rolled stock for bar steel

Also Published As

Publication number Publication date
JP7141861B2 (en) 2022-09-26

Similar Documents

Publication Publication Date Title
JP5655852B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP2009540113A (en) Method and apparatus for producing hot strip rolled material made of silicon steel based on thin slabs
JPH09122713A (en) Method for stretch-reducing steel tube and equipment therefor
JP2019214070A (en) Strip steel wire coil manufacturing method
JP2003320402A (en) Method and apparatus for manufacturing hot rolled steel strip
JP2006055884A (en) Hot rolled steel sheet manufacturing method and rolling control device
JP2018196903A (en) Manufacturing method for steel wire coil
KR20060057538A (en) Method and apparatus for manufacturing hot rolled band having a dual-phase structure
JP6948565B2 (en) Manufacturing method of martensitic stainless steel strip
JP2006239777A (en) Method for manufacturing hot-rolled steel sheet
KR101490600B1 (en) Method for manufacturing wire rod
JP4079098B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP2005169454A (en) Steel strip manufacturing equipment and method
JP7526608B2 (en) Manufacturing method of steel bar wire coil
JP2017124411A (en) Heating method and heating facility of continuously cast slab after cut
JP2004332107A5 (en)
CN114054502B (en) Season-based flat roll control method for thin medium-high carbon steel seeds
JP2005296973A (en) Manufacturing method and apparatus for hot-rolled steel sheet
JP6056549B2 (en) Manufacturing apparatus and manufacturing method of differential steel plate
JP6682736B2 (en) Manufacturing method of pickled steel sheet
JP6051944B2 (en) Manufacturing apparatus and manufacturing method of differential steel plate
JP6614224B2 (en) Steel material heat treatment method and apparatus, steel material production method
JP2006124817A (en) Cooling device with gas jet into steel sheet continuous annealing facility and its cooling control method
JP2005232495A (en) Facility and method for heat-treating metal strip
JPS63220901A (en) Warm rolling equipment for strip coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R150 Certificate of patent or registration of utility model

Ref document number: 7141861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150