Nothing Special   »   [go: up one dir, main page]

JP2019196028A - Engine combusting hydrogen and oxygen - Google Patents

Engine combusting hydrogen and oxygen Download PDF

Info

Publication number
JP2019196028A
JP2019196028A JP2018089244A JP2018089244A JP2019196028A JP 2019196028 A JP2019196028 A JP 2019196028A JP 2018089244 A JP2018089244 A JP 2018089244A JP 2018089244 A JP2018089244 A JP 2018089244A JP 2019196028 A JP2019196028 A JP 2019196028A
Authority
JP
Japan
Prior art keywords
hydrogen
engine
steam
combustion
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018089244A
Other languages
Japanese (ja)
Inventor
寛治 泉
Kanji Izumi
寛治 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018089244A priority Critical patent/JP2019196028A/en
Publication of JP2019196028A publication Critical patent/JP2019196028A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

To provide an engine for emission reduction policy of COand NOdealing with global warming and a configuration which is superior to a movable body of electric drive.SOLUTION: In an engine combustion apparatus for combusting hydrogen and oxygen, hydrogen (or carbon monoxide or carbon dioxide) is extracted by hydrogen generation means ZU by introducing heat and steam generated at a combustion apparatus in the hydrogen generation means provided in the engine combustion apparatus, and then introducing either electricity or hydrocarbon compound or oxygen or heat of steam. The hydrogen is used as fuel, and the carbon dioxide (or carbon monoxide) is recycled by carbon dioxide recycling means which carries out as resource at outside of the engine. Furthermore, electricity and hydrogen are generated at rotation force take-out means 3 and electricity/hydrogen generation means 4 on a downstream side, the hydrogen is used as fuel of the engine, the electricity is used as power of an engine installation apparatus, and surplus electricity is sold at an electricity transfer system EaST or is used as private power source, so as to further work the engine of scale correspondent to amount of the generated hydrogen.SELECTED DRAWING: Figure 1

Description

水素と酸素を燃焼させるエンジンの技術分野である。   This is the technical field of engines that burn hydrogen and oxygen.

富化酸素と水素を燃焼出来るエンジンの燃焼工程の燃焼室部の構成についてPCT/JP2016/079312にて提案いたしており上記エンジンの燃焼室部には富化酸素と水素の燃焼による直射熱を受ける耐熱構造部を設けて燃焼室部内外壁間に水の通水路を設け該燃焼室部内壁に上記耐熱構造部と燃焼室部内に水を噴射する噴射ノズルを設けて該ノズルから水を噴射して該燃焼室内の冷却手段とするとともに水蒸気生成手段として該水蒸気生成手段の水蒸気と燃焼による水蒸気の排気ガスとを回転力取り出し工程を貫流させて回転力として取り出し、取り出した該回転力を動力若しくは電気としており、該取り出し工程を貫流したガスを燃料に生成する燃料生成工程に導入しており該燃料生成工程に合成ガス改質器と気体分離膜による分離器と気体改質分離器を設けて燃料の水素を生成して燃料を自給し、かつCO、NOを排出しないエンジンシステムの技術がある。 PCT / JP2016 / 077931 proposes the configuration of the combustion chamber in the combustion process of an engine capable of burning enriched oxygen and hydrogen, and the engine combustion chamber receives direct heat from the combustion of enriched oxygen and hydrogen. A heat-resistant structure is provided, a water passage is provided between the inner and outer walls of the combustion chamber, an injection nozzle for injecting water into the heat-resistant structure and the combustion chamber is provided on the inner wall of the combustion chamber, and water is injected from the nozzle. As the cooling means in the combustion chamber, the steam generated by the steam generating means and the exhaust gas of the steam generated by the combustion flow through the rotational force extracting step and are extracted as rotational force, and the extracted rotational force is used as power or electricity. The gas that has flowed through the extraction step is introduced into a fuel generation step that generates fuel, and the fuel generation step is separated by a synthesis gas reformer and a gas separation membrane. Provided vessels and gas reformer separator to produce hydrogen fuel self-sufficient fuel, and there is a CO 2, NO X engine system technology which does not emit.

特許第5967682 富化酸素空気と燃料の燃焼で燃料を生成するエンジン。 炭素か、水素を含む、炭化水素系燃料を富化酸素空気で燃焼させるエンジンの構成で該エンジンの燃焼室部(燃焼装置2)を酸素と水素の燃焼熱に耐えられる手段を設け該手段の耐熱構造部に水を噴射する噴射ノズルを設けて耐熱構造部に水を噴射して水を水蒸気にしており、水蒸気生成時の吸熱により酸素と水素の燃焼を可能にしており、該燃焼室部からの排気ガス流路中に水蒸気改質か、水生ガスシフトか、ドライリフォーミングかの改質路を設けて該改質路にて生成した水素を水素燃料電池に供給して電気を生成しており、更に燃焼ガスと生成ガスとの両方でタービン翼を回転してその回転力を運搬機器の駆動力とするか発電機の発電動力とするかにしておる技術。 *本願は上記エンジンの燃焼室構成の通水路を上記耐熱構造部内に設け該通水路を水が通過する過程で該耐熱構造部の熱を吸熱し水蒸気を生成しており、上記耐熱構造部の外側に水蒸気改質装置Kaか水蒸気電気分解装置F1か部分酸化反応装置BOかの何れかを設け上記耐熱構造部で生成した水蒸気を水蒸気改質装置Kaか水蒸気電気分解装置F1か部分酸化反応装置BOかの何れかに導入し水素を生成し生成した水素を該エンジンの燃料としておる点が異なる技術。Patent No. 5967682 An engine that produces fuel by combustion of enriched oxygen air and fuel. In the configuration of an engine in which hydrocarbon fuel containing carbon or hydrogen is burned with enriched oxygen air, the combustion chamber portion (combustion device 2) of the engine is provided with a means capable of withstanding the combustion heat of oxygen and hydrogen. An injection nozzle for injecting water is provided in the heat-resistant structure portion, and water is injected into the heat-resistant structure portion to turn the water into steam, and the combustion chamber portion enables combustion of oxygen and hydrogen by heat absorption during steam generation. In order to generate electricity by supplying a hydrogen fuel cell with hydrogen generated in the reforming path by providing steam reforming, aquatic gas shift, or dry reforming reforming path in the exhaust gas flow path from In addition, the technology of rotating the turbine blades with both combustion gas and product gas and using the rotational force as the driving force of the transport equipment or the power generation power of the generator. * In this application, a water passage having a combustion chamber configuration of the engine is provided in the heat resistant structure, and water is absorbed to generate water vapor in the process of passing water through the water passage. Either the steam reformer Ka, the steam electrolyzer F1 or the partial oxidation reactor BO is provided on the outside, and the steam generated in the heat-resistant structure part is converted into the steam reformer Ka, the steam electrolyzer F1 or the partial oxidation reactor. A technology that differs in that it is introduced into any of the BOs to generate hydrogen and the generated hydrogen is used as fuel for the engine.

特開2012−52162水素および酸素の製造・使用方法。製鉄所(製鉄プロセス)で副次的に発生する低品位の水蒸気を用いて、クリーンな水素および酸素を安価に製造して使用することができる水素および酸素の製造・使用方法であって、上記低品位の水蒸気を加熱して高温の水蒸気とする水蒸気加熱装置Aと、前記水蒸気加熱装置で得られた高温の水蒸気を電気分解により水素と酸素に分解する水蒸気電気分解装置Bと、前記水蒸気電気分解装置で得られた水素および酸素から顕熱を回収する顕熱回収装置C1と、前記水蒸気電気分解装置で得られた水素および酸素と前記顕熱回収装置で回収した顕熱を製鉄プロセスで利用する利用装置E1とを備えていることを特徴とする水素および酸素の製造・利用方法。*該文献技術の製鉄プロセスで副次的に発生する低品位の水蒸気を加熱して高温の水蒸気とする水蒸気加熱装置Aを設けておるのに対して本願はエンジン燃焼装置2〜2cでの水素と酸素の燃焼による直接燃焼熱及び間接熱により高温水蒸気を生成しておる点が大きな相違点であるが、該文献の水蒸気電気分解装置及び熱電エネルギー変換装置の技術部分は本願に採用しておる。JP 2012-52162 A method for producing and using hydrogen and oxygen. A method for producing and using hydrogen and oxygen, which can produce and use clean hydrogen and oxygen at low cost by using low-grade water vapor that is generated secondarily at a steel mill (steel making process), Steam heater A that heats low-grade steam to produce high-temperature steam, steam electrolysis apparatus B that decomposes high-temperature steam obtained by the steam heater into hydrogen and oxygen by electrolysis, and steam electricity The sensible heat recovery device C1 that recovers sensible heat from hydrogen and oxygen obtained by the cracking device, and the hydrogen and oxygen obtained by the steam electrolysis device and the sensible heat recovered by the sensible heat recovery device are used in the iron making process. And a method for producing and using hydrogen and oxygen, characterized by comprising a utilization device E1. * In contrast to the provision of a steam heating device A that heats low-grade steam generated by the iron-making process of the document technology to produce high-temperature steam, this application describes hydrogen in the engine combustion devices 2 to 2c. The high temperature steam is generated by direct combustion heat and indirect heat by combustion of oxygen and oxygen, but the technical part of the steam electrolysis apparatus and thermoelectric energy conversion apparatus of this document is adopted in this application. .

特願2008−155195 水素発生法、水素発生装置及び触媒。 金属酸化物(例えばCr2O3)と金属水酸化物(例えばKOH)を金属酸化物の融点以上、沸点以下の温度に加熱して固化せしめた触媒を触媒収納室21内に設置し、この収納室21に蒸発室内で蒸発した750℃前後の水蒸気を供給して、中間活性物質を伴う3つの反応を行い水から水素を採集する。 該発明によれば、水の分子を直接取出すのではなく、金属水酸化物の水酸基の水素を取出すようにしたので、700℃前後の水蒸気で反応をさせることができ、水の電気分解に比較して少ないエネルギーで水素を取出すことが出来る。 また、3つの反応が組み合わされて触媒自体は減少することなく、見掛け上は水を水素と酸素に分解するようにしているので、触媒自体の減少はない。 また、更に該発明の実施に必要な触媒の材料は、金属酸化物として酸化クロム、酸化チタン等、金属水酸化物として水酸化カリウム、水酸化カルシウム等、化学材料としては手に入れ易く、しかも安価である、とした技術である。*本願の燃焼装置2〜2C(燃焼装置2,2a,2ar,2b,2c,2d)の排気流5又は回転力取り出し装置3を貫流後の排気流5aの何れかの水蒸気を該発明の金属酸化物と金属水酸化物の触媒と水蒸気で水素を採集する装置SYの水蒸気とし本願に採用できる技術である。Japanese Patent Application No. 2008-155195 Hydrogen generation method, hydrogen generation apparatus and catalyst. A catalyst obtained by solidifying a metal oxide (for example, Cr 2 O 3) and a metal hydroxide (for example, KOH) by heating to a temperature not lower than the melting point and not higher than the boiling point of the metal oxide is installed in the catalyst storage chamber 21. The water vapor of about 750 ° C. evaporated in the evaporation chamber is supplied to perform three reactions involving the intermediate active substance to collect hydrogen from the water. According to the present invention, since the hydrogen of the hydroxyl group of the metal hydroxide is taken out instead of taking out the water molecule directly, the reaction can be performed with steam at around 700 ° C., which is compared with the electrolysis of water. And hydrogen can be taken out with less energy. In addition, since the three reactions are combined and the catalyst itself does not decrease and apparently water is decomposed into hydrogen and oxygen, the catalyst itself does not decrease. Furthermore, the catalyst materials necessary for carrying out the invention include chromium oxide, titanium oxide, etc. as metal oxides, potassium hydroxide, calcium hydroxide, etc. as metal hydroxides, and easy to obtain as chemical materials. This is a technology that is inexpensive. * The water vapor in the exhaust stream 5a of the combustion apparatus 2-2C (combustion apparatus 2, 2a, 2ar, 2b, 2c, 2d) of the present application or the exhaust stream 5a after flowing through the rotational force extracting device 3 is used as the metal of the present invention. This is a technique that can be used in the present application as water vapor in an apparatus SY that collects hydrogen using a catalyst of oxide and metal hydroxide and water vapor.

特開2015−189721天然ガス処理物の製造方法及び処理天然ガス処理プラント。天然ガスから天然ガス処理物を製造する天然ガス処理物の製造方法であって、水を電気分解して酸素及び水素を生成し、生成した酸素を前記天然ガスと反応させて一酸化炭素及び水素を含有する合成ガスを生成し、生成した前記合成ガスを反応させて天然ガス処理物を得る技術。更に二酸化炭素に水素を反応させメタノールを製造する技術、 反応式 CO2+3H2→CH3OH+H2O更に二酸化炭素に水素を反応させメタンを製造する技術。 反応式 CO2+4H2→CH4+2H2O更に千代田化工建設(企業名)では二酸化炭素CO2とメタンCH4を貴金属系触媒を使用した改質で2CO+2H2の合成ガスを生成しておる技術。更に一酸化炭素COと水素を反応させてジメチルエーテルを製造する技術。 2CO+4H2→CH3OCH3+H2O*本願の二酸化炭素資源化手段CHの一つとして採用出来る技術。JP-A-2015-189721 natural gas processed product manufacturing method and processed natural gas processing plant. A process for producing a natural gas processed product from natural gas, wherein the water is electrolyzed to produce oxygen and hydrogen, and the produced oxygen is reacted with the natural gas to produce carbon monoxide and hydrogen. Is a technology for producing a natural gas processed product by producing a synthesis gas containing a gas and reacting the produced synthesis gas. Furthermore, technology to produce methanol by reacting hydrogen with carbon dioxide, reaction formula CO2 + 3H2 → CH3OH + H2O Technology to produce methane by reacting hydrogen with carbon dioxide. Reaction formula CO2 + 4H2 → CH4 + 2H2O In addition, Chiyoda Corporation (company name) is a technology that generates 2CO + 2H2 synthesis gas by reforming carbon dioxide CO2 and methane CH4 using a noble metal catalyst. Furthermore, a technology for producing dimethyl ether by reacting carbon monoxide CO with hydrogen. 2CO + 4H2 → CH3OCH3 + H2O * A technology that can be adopted as one of the carbon dioxide resource generation means CH of the present application.

英科学誌Nature Communication(ネイチャーコミュニケーションズ)平成25.8.29掲載。「ありふれた物質の表面で二酸化炭素を室温で分解」。東京工業大学細野秀雄教授、戸田喜丈特任教授らのグループは、石灰(CaO)とアルミナAl2O3から構成される化合物12CaO 7Aⅼ2O3(以下C12A7)の構造の中に、電子を取り込んだC12A7エレクトライドが二酸化炭素の分子を室温で選択的に吸着し、分解する事を見出しました。この特性は電子を外部に極めて与えやすい性質を持ちながらしかも化学的に安定と言う、一般的には相容れない性質を合わせ持つC12A7エレクトライドのユニークな物性に起因するものである。*該技術は本願の二酸化炭素資源化手段CHの1技術とする事が出来る。Published in English science journal Nature Communication in Heisei 25.8.29. "Decompose carbon dioxide at room temperature on the surface of a common substance." The group of Professors Hideo Hosono and Specially Appointed Professor Yoshitake Toda of Tokyo Institute of Technology incorporated electrons into the structure of the compound 12CaO 7A ⅼ 2O3 (hereinafter C12A7) composed of lime (CaO) and alumina Al2O3. We found that C12A7 electride selectively adsorbs carbon dioxide molecules at room temperature and decomposes them. This characteristic is attributed to the unique physical properties of C12A7 electride, which has the property that it is extremely easy to give electrons to the outside and is chemically stable, and generally has an incompatible property. * This technique can be used as one technique of the carbon dioxide resource utilization means CH of the present application.

1、上記背景技術に記載の特許文献PCT/JP2016/079312に記載の燃焼装置2に設けた耐熱伝導体SCを熱の伝熱体として活用し上記エンジン燃焼装置内で水蒸気改質や電気分解が出来る(一体型)構造を発明すること。(燃料の水素を自給自足、若しくは燃料費用に相当する対価が得られる構成のエンジン燃焼装置又は電気・水素生成手段を)発明。
2、上記1に記載しておる技術の水素を製造する燃料生成工程4での水蒸気改質を繰り返すと二酸化炭素が増えるがこの二酸化炭素を処理するシステムを構築すること。
3、上記エンジンの稼働に於ける生成物で燃料費を賄う手段を見つける、更には上記エンジンを移動形態に搭載したケースでは当該エンジンの償却費を賄う手段を見つけ電気駆動の移動体に勝る構成にする。
4.上記生成する二酸化炭素COを外部設備 (定置形態設備に設置した場合は該設備内であっても良い)にて資源として活用する二酸化炭素資源化する方法を見つける。
5、エンジン燃焼装置Zで水素を生成し該水素でエンジン燃焼装置2,2a、2arで生成した熱、水蒸気、排気流力をエネルギー源として、廃プラスチックを資源化する構成を見つける。
1. Using the heat-resistant conductor SC provided in the combustion apparatus 2 described in Patent Document PCT / JP2016 / 077931 described in the background art as a heat transfer body, steam reforming and electrolysis are performed in the engine combustion apparatus. Invent a possible (integrated) structure. (Invention of engine combustion apparatus or electric / hydrogen generating means configured to be self-sufficient for fuel hydrogen, or to obtain a price corresponding to fuel cost).
2. When the steam reforming in the fuel generation step 4 for producing hydrogen of the technique described in 1 above is repeated, carbon dioxide increases, but a system for treating this carbon dioxide should be constructed.
3. Finding means to cover fuel costs with products in operation of the engine, and in the case where the engine is mounted in a moving form, finds means to cover the depreciation of the engine and is superior to an electrically driven moving body To.
4). The carbon dioxide CO 2 to be generated is found as a carbon dioxide resource that can be used as a resource in external equipment (in the case of installation in stationary equipment, it may be in the equipment).
5. A configuration for generating waste plastic as a resource by generating hydrogen with the engine combustion device Z and using heat, water vapor, and exhaust flow force generated by the engine combustion devices 2, 2a, and 2ar with the hydrogen as energy sources is found.

第一の発明は
酸素(分離装置1により分離された)と水素を燃焼させた熱で水を水蒸気にしており、該水蒸気を反応(例えば電気分解・水蒸気改質・部分酸化反応等)させて水素を生成する構成を設けたエンジン燃焼装置Zであって、(図1、2、3,10)、該燃焼装置Zの(蓄ガスタンクT1及び蓄ガスタンクT2から)燃焼ノズル2Nに酸素及び水素を供給し点火栓2Pにより点火し燃焼室NE内で燃焼しており、該燃焼室に設けておる燃焼による直射熱を受ける耐熱構造部SCと(耐熱構造部SCは直射熱を受け易い形状(例えば略円筒状)にしており)、
該耐熱構造部に設けておる(水タンクより水を供給し供給された)水を耐熱構造部SCを通過する間に上記燃焼による直射熱を受けて水を水蒸気にする通水路MHa,と、
該通水路MHa内で水蒸気Aを生成する水蒸気A生成手段と,
上記耐熱構造部の外殻体(外側)に設けておる水素生成手段ZUと、(例えばZUが電気分解装置であれはF1,F2,図1、であり、水蒸気改質であればKa、図2、であり、部分酸化反応OSであれば図10)
該水素生成手段ZUに上記水蒸気Aを供給する供給ノズルZjと
該供給ノズルZjから該水素生成手段ZUに供給しており該水素生成手段ZUにて水蒸気を反応(例えば電気分解・水蒸気改質・部分酸化反応等)させる副材料SBを供給する副材料(例えば熱・電気・酸素・炭化水素化合物等)SB供給手段と、
該水素生成手段ZUに供給された水蒸気Aと上記供給された副材料(熱・電気・酸素・炭化水素化合物等)SBの何れか一以上を使用して水素若しくは水素を含む混合ガスを生成する水素若しくは水素を含む混合ガス生成手段と、
該混合ガスから水素を分離する分離装置と、
該分離装置に水素若しくは水素を含む混合ガスを導入して水素を取り出しており、得られた水素を上記エンジン燃焼装置Zの燃料の水素としており、
上記通水路MHaで生成した水蒸気Aを燃焼室NEに供給する供給ノズルZjと該供給ノズルZjから供給された水蒸気Aは燃焼室NE内の熱を吸熱してさらに高熱に成った水蒸気Aaと
該水蒸気Aaは上記燃焼で生成される水蒸気Bと水素生成手段ZUで分解(改質)されなかった未分解水蒸気(STn及び未分解水蒸気STm)とともに下流に排気として排出される排気流5と、
を備えておる水素を燃焼し水素を生成するエンジン燃焼装置Zを特徴とする水素と酸素を燃焼するエンジンを提供する。
*上記エンジンの燃焼室NE内に設けておる燃料の燃焼火炎2Fの直射熱を受ける吸熱構造手段SCを耐熱吸熱構造材(例えば熱伝導率及び耐熱温度が高いアルミナAl系合金が好ましい)にして設け、上記吸熱構造手段SC内に水を水蒸気にする通水路MHaを設け水が該通水路を通過する間に水を水蒸気Aとし該水蒸気Aを上記水素生成手段ZUと該エンジン燃焼室NEに噴射してエンジン燃焼室の冷却手段と水蒸気生成手段(装置)に水蒸気を供給する手段としたことが酸素と水素を燃焼を可能にし、更に該燃焼装置Z内で水素を生成出来るエンジンを考案出来た新規技術である。
*(富化)酸素と水素の燃焼では燃焼炎の中心温度は2800℃程度で空気(中の酸素)と水素の燃焼では燃焼炎の中心温度は1900℃程度で(富化)酸素の使用により47%程度燃焼炎の中心温度が上がる、(富化)酸素を使用したエンジンと、空気(の酸素)を使用したエンジンとでは上記水蒸気改質器に使用するか水の電気分解に使用するか部分酸化反応BOに使用するかの何れかの水蒸気の製造を計算上47%多く出来る(酸素密度の差であり、本願ではこれを酸素エネルギーと呼ぶ)。
*エンジン燃焼装置Zの水素生成手段ZUが水蒸気改質及び部分酸化反応の場合水蒸気改質CH+HO→CO+3Hと(部分酸化反応CH+O→CO+2H)シフト反応部を設けておるCO+HO→CO+H構成であるが、上記シフト反応部を設けない構成にして二酸化炭素に替えて一酸化炭素を生成する構成でもよい。
第二の発明は
上記エンジン燃焼装置Zの下流に設けておる回転力取り出し装置3に該燃焼装置Zからの排気流5を貫流させ該回転力取り出し装置3を貫流した排気流5aを上記耐熱構造部SC内に設けておる通水路MHaに(全部または半分以上)戻し入れる手段(例えば戻し入れ管路)を設けて上記通水路MHaに排気流5aを戻し入れておる事を特徴とする水素と酸素を燃焼するエンジンを提供する。
*エンジン燃焼装置Zの水素生成手段ZUが水蒸気改質の場合供給する水蒸気の供給量は炭素析出対応により理論値の2〜5倍供給(HO/CH(モル比)2〜5程度の水蒸気過剰化で供給)しており、余剰に供給した水蒸気は未改質水蒸気STmとなり排気に合流して排気流5から回転力取り出し装置3を貫流して排気流5aとなり下流に排出されており、該排気流5aを上記耐熱構造部の通水路MHaに戻し入れる手段(例えば戻し入れ管路、図面なし)を設け該排気流5aを水素生成手段の水蒸気Aに再生する再生手段である。
*エンジン燃焼装置Zの水素生成手段ZUが電気分解装置F1、F2の場合水蒸気の電気分解率は例えば水蒸気を固体電解質セルを通過させ分解する装置での分解率を50〜60%とした場合排出される未分解水蒸気を戻し入れ再加熱し再度電気分解装置F1、F2に投入する事で分解率を上げる構成とする(電気分解能力UP=セル設置数を増やす)ことが出来る。
第三の発明は
上記回転力取り出し装置3の回転翼体3aであって、(図8)
排気流5の略直線的な排気流力を回転力に変換する回転翼体と
該回転翼体3aの回転力を取り出す一方の回転軸3cと、
該回転軸3cの他方の回転軸3c1と、
上記回転力取り出し装置3の外殻体3dと、
上記他方の回転軸3c1端部から回転軸3c1内と回転翼体3a内を通り回転翼体3a外に通じる通水路3MHとを備えており、
上記通水路3MHに水を導入し該通水路を通過する過程で該水が回転翼体3aの熱を吸熱し水蒸気Cとなり回転力取り出し装置3貫流後の排気流5a(と合流)として下流に排出される構造で、回転翼体3aの冷却手段を有する回転力取り出し装置3とした事を特徴とする水素と酸素を燃焼するエンジンを提供する。
第四の発明は
エンジン燃焼装置2、2a、2ar、Z、の何れかを搭載するエンジンの回転力取り出し装置3を貫流した排気流5a、を導入して電気&水素を生成する電気&水素生成手段4であって、
該手段に導入されておる排気流5aの持つ熱(例えば上記エンジンの設定次第ではあるが概略1000℃程度)と水蒸気(水蒸気A,水蒸気Aa,水蒸気B,水蒸気C,未分解水蒸気STn若しくは未改質水蒸気STmの内何れか1以上)及び回転力取り出し装置3で取り出した電気Ea及び海水(例えば船舶での水蒸気化に使用の水)の内の1以上を材料として、
(例えば、)水蒸気電気分解装置F1か水蒸気電気分解装置FS1か金属酸化物と金属水酸化物の触媒と水蒸気で水素を採取する装置SYか水蒸気改質装置Ka1か水熱化学分解F2か熱電エネルギー変換装置DEか、熱交換器Gか燃料電池発電機FD1か海水真水化(淡水化)装置Waかの技術のいずれか1種以上の装置を用いるか組み合わせて、電気か水素の一方か両方を生成(製造)し、上記生成した水素の量により上記エンジン燃焼装置2,2a,2arを有するエンジンを複数台稼働させて稼働した複数台のエンジンから電気を更に生成する事を特徴とする水素と酸素を燃焼するエンジンを提供する。
*上記電気&水素生成手段4に記載のいずれかの装置の単独稼動かあるいは組み合わせ稼働かについては複数の形態が想到でき該装置と機器との構成に矛盾がない(理論上成立する構成は)自在に出来る(例えば燃料電池発電機FD1で発電し該電気を水蒸気電気分解装置F1の電気とする構成での組み合わせ)。
第五の発明は
上記水素生成手段ZUを有すエンジンを稼働させ該水素生成手段ZUで生成した水素を当該エンジンと水素生成手段ZUを有さないエンジン燃焼装置2及び2a及び2arかの何れかの燃焼装置を複数台稼働させ水素生成手段ZUを有すエンジン1台と水素生成手段ZUを有さないエンジン複数台で電気又は動力の何れか一方か両方かを生成しておる事を特徴とする水素と酸素を燃焼するエンジンを提供する。
*上記エンジン燃焼装置Zで生成する(水蒸気改質Kaの場合)水素3H+H-α(αは該水蒸気改質Kaでの未改質分の水素であって下流の電気・水素生成手段4から該αに相当する水素を補填したもの)で上記エンジン燃焼装置2b1台と水蒸気改質Kaを持たない(上記2bと同じ量の水素を消費する規模の燃焼装置)エンジン燃焼装置2又はエンジン燃焼装置2a又はエンジン燃焼装置2arの3種の内の何れか一種以上で構成した複数台(例えば3台)を稼働させ合計(例えば4台)分の(上記エンジン燃焼装置Zは(水蒸気改質の場合)水蒸気改質Kaに用いた水蒸気分程の排気流5の流力は少ないが上記水蒸気改質Kaを持たないエンジン燃焼装置2又はエンジン燃焼装置2a又はエンジン燃焼装置2arは該装置からの排気流5の流力は概100%であり3台+1台(水蒸気改質Kaに用いた水蒸気分程マイナスにした))の排気流5力を排出する構成にして下流の回転力取り出し手段3で上記エンジンの動力及び電気を製造し、該回転力取り出し手段3を貫流し排出される排気流5aを導入して電気及び水素を生成する電気・水素生成手段4で更に電気・水素を製造しておることを特徴とする水素と酸素を燃焼するエンジン。
*上記燃焼装置2は(図4,5,6)参照、上記エンジン燃焼装置2b,2cから電気分解装置F1、及び水蒸気改質部Kaをそれぞれ除いた構成でかつ耐熱構造部SC(通水路MHaは設けていない)を設けたものが上記燃焼装置2で上記耐熱構造部SCを設けないで該耐熱構造部SCに替えて水を直接燃焼室内壁2Uに噴射する噴射ノズルMjを設けた構成が上記燃焼装置2aであり該燃焼室NEに上記エンジンの電気・水素生成手段4(燃料生成部4)で未改質となった水蒸気を上記燃焼室NEに戻し上記未改質水蒸気を再加熱する水蒸気再加熱手段WRを設けた構成が上記エンジン燃焼装置2arである。
第六の発明は
上記エンジンで生成した電気を蓄電器40に蓄電し移動体の移動電力として使用し、余剰となった蓄電しておる電気か移動体非移動時の該エンジン稼働により生成する電気かのいずれかの電気の受け渡し形態を電気授受システムEaSTとしておる事を特徴とする水素と酸素を燃焼するエンジンを提供する。*電気授受システムEaSTは、
1、 該移動体で生成し移動体内で蓄電器に蓄電した電気を、
1a,,電気授受ステーションに引き取らせる手段を設けて該電気を引き取らせる(売電する)。
1b, 電気授受ステーション及び移動体の駐機場に於ける蓄電器交換システム(複数の蓄電器を1単位としてセットされているのを1単位のセットごと交換して電気の補充時間を短縮)を導入して移動体内で生成し充電した蓄電器と充電量が下限設定値(近く)に成っておる蓄電器と交換するシステム。
2、 移動体の駐機場に於いて該移動体駐機中にエンジンを稼働させ、該移動体で生成した電気を直接ケーブル等で接続し売電する手段。(太陽光発電で発電した電気を電力会社に売電するのと同じ形態)
以上を電気授受システムEaSTの代表事例としたものである。
*上記エンジン燃焼装置2,2a,2ar,Z(2b,2c、2d)を備えたエンジンを移動体に搭載した該エンジン搭載機器(航空機・船舶・鉄道・自動車等々)の駐機場(駐車場・桟橋・マリーナ等の係船場・飛行場・軍隊の基地等々)に一酸化炭素CO又は二酸炭素COをガスステーション又は移動式ガスステーションを設けて該ステーションに引き取らせ水と炭化水素化合物(例えばメタンCH)の供給を受ける形態にするか該エンジンにより生成される電気を引き取らせる設備(電気授受ステーション)を設けて電気を引き取らせるものである。
すなわち上記移動体移動時は該移動体を稼働して燃料の水素(及び酸素)を生成し移動体のエネルギーとして消費し、かつ、余剰となった一酸化炭素CO又は二酸化炭素COをガスステーション又は移動式ガスステーションに買い取らせ水と炭化水素化合物(例えばメタンCH)の供給を受ける形態にするか、該エンジンにより生成される電気を移動体の動力として消費しかつ、消費量を超えて生成し余剰となった電気を電気授受システムEaSTにて引き取らせる(外部社会電力エネルギー供給インフラへの電力供給)かのいずれか一方か両方かにすることで該エンジンで余剰となつた一酸化炭素CO又は二酸化炭素CO及び電気を有価物とする手段とした。
*上記移動体例えば公道を走行する自動車の多くは燃料を燃焼しその回転力で電気を生成する機器を備えており、該移動体を非走行時稼働させ電力を生成し生成した電気を売電することでインプットされる炭化水素費用とアウトプットされる電気料金との差し引き計算で受け取る費用―投入費用がプラスであれば上記非稼働時の稼働による収益を得ることが出来る本願のエンジンではその構成が出来る (非走行時稼動させ利益を得ることが出来る)エンジンである。
*上記エンジンで生成した水素量が該エンジンで消費(移動体の移動動力として消費量)しさらに余剰の電気を生成出来る量であれば該余剰の電気を一時的に蓄電器40に蓄電するか或いは直接電気輸送手段にて売電する。
*上記移動体非稼働時を活用する手段によりエンジン内の停止・稼働の繰り返しによる該エンジンの構成材の疲労による亀裂破壊等を防止出来該エンジンの寿命延長に繋げるとともに該エンジン生成物の販売もしくは使用(例えば自工場で使用)により該エンジンの原価償却を早く出来る。
第七の発明は
上記エンジン燃焼装置Zを備えるエンジンを稼働させ水素を生成し、該エンジンで生成された水素を燃料として使用するエンジン燃焼装置2,2a,2ar、のいずれか1以上に供給し、酸素分離装置1で分離した酸素と上記水素を燃焼させ、燃焼により得られた水蒸気と熱と電気の何れか1以上を廃プラスチック資源化手段のエネルギー及び水蒸気とし該廃プラスチック資源化手段へ供給し、廃プラスチック資源化コストの低減を図っておることを特徴とする水素と酸素を燃焼するエンジン。
*上記資源化手段の実施形態の廃プラスチックの処理及び資源化に係る技術使用装置の一例は下記しており、上記水蒸気と熱と電気の使用量が大きい装置程、廃プラスチック資源化コストの低減に寄与する。
In the first invention, water is converted into steam by heat generated by burning oxygen (separated by the separation device 1) and hydrogen, and the steam is reacted (for example, electrolysis, steam reforming, partial oxidation reaction, etc.). An engine combustion apparatus Z provided with a configuration for generating hydrogen (FIGS. 1, 2, 3, and 10), in which oxygen and hydrogen are supplied to the combustion nozzle 2N (from the gas storage tank T1 and the gas storage tank T2) of the combustion apparatus Z. A heat-resistant structure SC that is supplied and ignited by a spark plug 2P and combusts in the combustion chamber NE and receives direct heat from the combustion provided in the combustion chamber (the heat-resistant structure SC has a shape that easily receives direct heat (for example, (Substantially cylindrical))),
A water passage MHa that receives direct heat from the combustion while the water (provided by supplying water from a water tank and supplied) is provided in the heat-resistant structure part and receives water directly from the combustion to make the water vapor;
Water vapor A generating means for generating water vapor A in the water passage MHa;
Hydrogen generating means ZU provided on the outer shell (outside) of the heat-resistant structure part (for example, F1, F2, FIG. 1 if ZU is an electrolyzer, and Ka for steam reforming, FIG. 2 and FIG. 10 if the partial oxidation reaction OS.
A supply nozzle Zj for supplying the steam A to the hydrogen generating means ZU and a supply nozzle Zj for supplying the steam to the hydrogen generating means ZU and reacting the steam with the hydrogen generating means ZU (for example, electrolysis, steam reforming, An auxiliary material (for example, heat, electricity, oxygen, hydrocarbon compound, etc.), an SB supply means for supplying an auxiliary material SB to be subjected to a partial oxidation reaction,
Hydrogen or a mixed gas containing hydrogen is generated by using any one or more of the water vapor A supplied to the hydrogen generating means ZU and the supplied secondary material (heat, electricity, oxygen, hydrocarbon compound, etc.) SB. Hydrogen or a mixed gas generating means containing hydrogen;
A separation device for separating hydrogen from the mixed gas;
Hydrogen or a mixed gas containing hydrogen is introduced into the separator to extract hydrogen, and the obtained hydrogen is used as hydrogen for the fuel of the engine combustion device Z.
The supply nozzle Zj for supplying the steam A generated in the water passage MHa to the combustion chamber NE, and the steam A supplied from the supply nozzle Zj absorbs the heat in the combustion chamber NE and further increases the steam Aa and the steam Aa. The steam Aa is an exhaust stream 5 that is discharged downstream as exhaust together with the steam B generated by the combustion and the undecomposed steam (STn and undecomposed steam STm) that has not been decomposed (reformed) by the hydrogen generating means ZU;
An engine for combusting hydrogen and oxygen, characterized by an engine combustion apparatus Z that combusts hydrogen and generates hydrogen.
* The heat absorbing structure means SC that receives the direct heat of the fuel combustion flame 2F provided in the combustion chamber NE of the engine is preferably a heat resistant heat absorbing structural material (for example, an alumina Al 2 O 3 based alloy having a high heat conductivity and high heat resistance temperature). The heat absorption structure means SC is provided with a water passage MHa for converting water into water vapor, and water is used as water vapor A while the water passes through the water passage, and the water vapor A is used as the hydrogen generation means ZU and the engine combustion. The engine that can inject oxygen and hydrogen into the combustion chamber Z and can generate hydrogen in the combustion device Z by means of supplying the steam to the engine combustion chamber cooling means and the steam generation means (device) by injecting into the chamber NE Is a new technology that was able to devise.
* (Enriched) In the combustion of oxygen and hydrogen, the center temperature of the combustion flame is about 2800 ° C. In the combustion of air (inside oxygen) and hydrogen, the center temperature of the combustion flame is about 1900 ° C (enriched). Whether the engine using (enriched) oxygen and the engine using air (of which oxygen) increases the center temperature of the combustion flame by about 47%, is it used for the steam reformer or for electrolysis of water? The production of any water vapor used in the partial oxidation reaction BO can be increased by 47% in calculation (difference in oxygen density, which is referred to as oxygen energy in the present application).
* When the hydrogen generation means ZU of the engine combustion apparatus Z is steam reforming and partial oxidation reaction, steam reforming CH 4 + H 2 O → CO + 3H 2 and (partial oxidation reaction CH 4 + O → CO + 2H 2 ) shift Although it is a CO + H 2 O → CO 2 + H 2 configuration in which a reaction section is provided, a configuration in which the shift reaction section is not provided and carbon monoxide is generated instead of carbon dioxide may be used.
In a second aspect of the invention, the exhaust flow 5a from the combustion device Z is caused to flow through the rotational force extraction device 3 provided downstream of the engine combustion device Z, and the exhaust flow 5a flowing through the rotational force extraction device 3 is converted into the heat resistant structure. A means for returning (for example, a return conduit) to the water passage MHa provided in the section SC and returning the exhaust flow 5a back to the water passage MHa; An engine for burning oxygen is provided.
* When the hydrogen generating means ZU of the engine combustion apparatus Z is steam reforming, the amount of steam to be supplied is 2 to 5 times the theoretical value due to carbon deposition (H 2 O / CH 4 (molar ratio) 2-5) The surplus steam supplied becomes unreformed steam STm, merges with the exhaust gas, flows through the rotational force extractor 3 from the exhaust stream 5 and becomes the exhaust stream 5a, and is discharged downstream. And a means for returning the exhaust stream 5a to the water passage MHa of the heat-resistant structure (for example, a return pipe, not shown) is a regeneration means for regenerating the exhaust stream 5a into the water vapor A of the hydrogen generating means.
* When the hydrogen generating means ZU of the engine combustion apparatus Z is the electrolysis apparatus F1 or F2, the electrolysis rate of water vapor is discharged when, for example, the decomposition rate in the device for decomposing water vapor through the solid electrolyte cell is 50-60% It is possible to increase the decomposition rate by returning the undecomposed water vapor to be reheated and charging it again into the electrolyzers F1 and F2 (electrolysis capacity UP = increase the number of cells installed).
3rd invention is the rotary blade 3a of the said rotational force taking-out apparatus 3, Comprising: (FIG. 8)
A rotating blade body for converting the substantially straight exhaust flow force of the exhaust flow 5 into a rotating force, and one rotating shaft 3c for extracting the rotating force of the rotating blade body 3a;
The other rotary shaft 3c1 of the rotary shaft 3c;
An outer shell 3d of the rotational force extracting device 3;
A water passage 3MH communicating from the end of the other rotating shaft 3c1 to the outside of the rotating blade body 3a through the rotating shaft 3c1 and the rotating blade body 3a;
In the process of introducing water into the water passage 3MH and passing through the water passage, the water absorbs the heat of the rotary blade body 3a and becomes water vapor C, which is downstream as the exhaust flow 5a (and the combined flow) after flowing through the rotational force extraction device 3. Provided is an engine for burning hydrogen and oxygen, characterized in that the structure is a rotary power take-out device 3 having a structure for discharging and having a cooling means for a rotor blade 3a.
The fourth aspect of the invention relates to electricity and hydrogen generation by introducing an exhaust flow 5a that has flowed through the rotational force extracting device 3 of the engine equipped with any of the engine combustion devices 2, 2a, 2ar, and Z. Means 4,
Heat (for example, approximately 1000 ° C. depending on the setting of the engine) and steam (steam A, steam Aa, steam B, steam C, undecomposed steam STn or unmodified) One or more of the quality steam STm) and one or more of the electric Ea and seawater (for example, water used for steaming in a ship) taken out by the rotational force take-out device 3,
(For example) steam electrolysis apparatus F1 or steam electrolysis apparatus FS1 or metal oxide and metal hydroxide catalyst SY or steam reforming apparatus Ka1 or hydrothermal chemical decomposition F2 or thermoelectric energy One or both of electricity and hydrogen are used in combination with one or more of the conversion device DE, the heat exchanger G, the fuel cell generator FD1, and the seawater desalination (desalination) device Wa. Hydrogen that is generated (manufactured) and further generates electricity from a plurality of engines operated by operating a plurality of engines having the engine combustion devices 2, 2a, 2ar according to the amount of the generated hydrogen; An engine for burning oxygen is provided.
* A plurality of modes can be conceived as to whether any one of the devices described in the above-mentioned electricity & hydrogen generating means 4 is operated alone or in combination, and there is no contradiction between the configuration of the device and the apparatus (the configuration that is theoretically valid) It can be made freely (for example, a combination in a configuration in which electricity is generated by the fuel cell generator FD1 and the electricity is converted into electricity of the steam electrolyzer F1).
According to a fifth aspect of the invention, any one of the engine combustion apparatuses 2 and 2a and 2ar that operate the engine having the hydrogen generation means ZU and generate hydrogen generated by the hydrogen generation means ZU without the engine and the hydrogen generation means ZU. It is characterized in that either one or both of electricity and power is generated by one engine having hydrogen generating means ZU and a plurality of engines not having hydrogen generating means ZU. Provide an engine that burns hydrogen and oxygen.
* Hydrogen 3H 2 + H 2 -α produced by the above engine combustion device Z (in the case of steam reforming Ka) (α is the unreformed hydrogen in the steam reforming Ka and downstream electricity / hydrogen production The engine combustion device 2 or the above-mentioned engine combustion device 2b1 and the steam reforming Ka (combustion device of the scale that consumes the same amount of hydrogen as the above 2b) The engine combustion device 2a or the engine combustion device 2ar is operated by operating a plurality of units (for example, three units) composed of at least one of the three types (for example, four units) (for example, the engine combustion unit Z is a steam reformer). In the case of the quality), the engine combustion device 2 or the engine combustion device 2a or the engine combustion device 2ar that does not have the steam reforming Ka is less from the flow force of the exhaust stream 5 of the steam amount used for the steam reforming Ka. Excretion The flow force of the stream 5 is approximately 100%, and the downstream rotational force extracting means 3 is configured so as to discharge 5 exhaust gas forces of 3 units + 1 unit (the steam amount used in the steam reforming Ka is minus). Then, the power and electricity of the engine are produced, and the electricity / hydrogen producing means 4 for producing electricity and hydrogen by introducing the exhaust flow 5a flowing through the exhausting means 3 and exhausting it further produces electricity / hydrogen. An engine that burns hydrogen and oxygen.
* The combustion device 2 has a configuration in which the electrolysis device F1 and the steam reforming portion Ka are removed from the engine combustion devices 2b and 2c, respectively, and the heat-resistant structure portion SC (water channel MHa). Is provided with an injection nozzle Mj for directly injecting water into the combustion chamber wall 2U instead of providing the heat-resistant structure SC without using the heat-resistant structure SC in the combustion apparatus 2. In the combustion device 2a, the unreformed steam is returned to the combustion chamber NE to the combustion chamber NE, and the unreformed steam is reheated to the combustion chamber NE. The structure provided with the steam reheating means WR is the engine combustion apparatus 2ar.
According to a sixth aspect of the present invention, the electricity generated by the engine is stored in the battery 40 and used as the moving power of the moving body. The surplus electricity is stored or is the electricity generated by operating the engine when the moving body is not moving? An engine for burning hydrogen and oxygen is provided, characterized in that any one of the electricity delivery forms is an electricity delivery system EaST. * Electric power transfer system EaST
1. Electricity generated in the mobile body and stored in the battery in the mobile body,
1a, a means for allowing the electricity transfer station to collect the electricity is provided (electric power is sold).
1b, introducing an electricity storage station and a battery exchange system in a mobile parking lot (shortening the electricity replenishment time by replacing a set of multiple batteries as a unit) A system that replaces a battery that is generated and charged in a mobile body with a battery that has a charge level that is close to the lower limit value.
2. Means for operating the engine during the parking of the mobile body and connecting the electricity generated by the mobile body directly with a cable or the like at the mobile parking area. (Same form of selling electricity generated by solar power generation to power companies)
The above is a representative example of the electricity transfer system EaST.
* Parking lots (parking lots, parking lots, etc.) of the engine-equipped equipment (aircraft, ships, railways, automobiles, etc.) equipped with an engine equipped with the engine combustion devices 2, 2a, 2ar, Z (2b, 2c, 2d) on a moving body A gas station or a mobile gas station is provided for carbon monoxide CO or carbon dioxide CO 2 at mooring yard / airfield / military bases such as piers / marinas, etc.) and water and hydrocarbon compounds (for example, methane) The apparatus is configured to receive the supply of CH 4 ) or to provide the facility (electricity transfer station) for receiving the electricity generated by the engine so as to take the electricity.
That is, when the moving body is moved, the moving body is operated to generate hydrogen (and oxygen) of fuel to be consumed as energy of the moving body, and the excess carbon monoxide CO or carbon dioxide CO 2 is used as a gas station. Alternatively, the mobile gas station can be purchased and supplied with water and a hydrocarbon compound (for example, methane CH 4 ), or the electricity generated by the engine is consumed as the power of the mobile body and exceeds the consumption amount. The surplus electricity generated and taken over by the electricity transfer system EaST (power supply to the external social power energy supply infrastructure), either or both, and the carbon monoxide surplus in the engine CO or carbon dioxide CO 2 and electricity were used as valuable resources.
* Many of the above vehicles, such as automobiles that run on public roads, are equipped with equipment that burns fuel and generates electricity using its rotational force, and generates electricity by operating the vehicle when it is not running. The cost received by subtracting the hydrocarbon cost input and the electricity bill output-if the input cost is positive, the structure of the engine of the present application that can obtain revenue from operation when not operating It is an engine that can be operated when it is not running (and profitable).
* If the amount of hydrogen generated by the engine is an amount that can be consumed by the engine (consumed as the moving power of the mobile body) and can generate surplus electricity, the surplus electricity can be temporarily stored in the battery 40 or Sell electricity directly by electric transportation.
* By utilizing the time when the moving body is not in operation, cracking and the like due to fatigue of the engine components due to repeated stop and operation in the engine can be prevented, leading to an extension of the engine life and sales of the engine product or The engine can be quickly depreciated by use (for example, at its own factory).
In a seventh aspect of the invention, an engine including the engine combustion device Z is operated to generate hydrogen, and the hydrogen generated by the engine is supplied to one or more of the engine combustion devices 2, 2a, 2ar that use the fuel as fuel. The oxygen separated by the oxygen separator 1 and the hydrogen are combusted, and one or more of water vapor, heat and electricity obtained by the combustion is supplied to the waste plastic recycling means as energy and steam of the waste plastic recycling means. An engine that burns hydrogen and oxygen, characterized by reducing waste plastic resource costs.
* An example of the technology using equipment related to waste plastic processing and resource recycling in the embodiment of the above resource recycling means is as follows, and the equipment that uses a larger amount of steam, heat and electricity reduces the cost of recycling waste plastic. Contribute to.

<<上記問題を解決する手段の補足説明>>
<酸素分離装置1>(図7)
空気大気から窒素Nを分離除去する酸素(富化)手段であるが、
気体の膜による分離{例えば、プリズムセパレーター(モンサント社)、プリズムアルファガス(モンサント社)(企業名)PV(透過気化)、等}は、現技術に於いては深冷分離方や吸着分離方と並んで常識と成っておる技術であり、分離膜システムはモンサント、ダウ、セパレック、WRグレース、我が国では、宇部興産(何れも会社名)等がそれぞれ独自の分離膜システムを商品化しておる。
*ガスを分離する膜分離の原理構成は、分離する気体の相対的透過速度により分離する物で、
早いガスは膜の壁を通って簡単に透過し、サイドポートに出て行き、遅いガスは膜の壁の透過が困難なために、中空糸の内部を移動し、排出口から排出される構成であり、
早いガスには、HO,H,HS,CO,Oがあり、遅いガスにはAr,CO,N,CH等がある。
運転圧力8〜150Kg/CmG (8Kg/cm未満の圧力で可能な物もある)
(富化)酸素ガス純度は70%〜100%未満(NOxを排出しない範囲)
被分離ガスに圧力が有ることが条件であり、該分離膜システムの駆動力は圧力差の利用である。
コンプレッサーとしては、軸流式、往復式、スクリュー式、ロータリ式、スクロール式等のいずれをも用いることが出来る。
<< Supplementary explanation of means for solving the above problems >>
<Oxygen separator 1> (FIG. 7)
It is an oxygen (enrichment) means for separating and removing nitrogen N 2 from the air atmosphere.
Separation by gas membrane {for example, prism separator (Monsanto), prism alpha gas (Monsanto) (company name) PV (pervaporation), etc.} is a cryogenic separation method or adsorption separation method in the present technology. The separation membrane system is Monsanto, Dow, Separec, WR Grace, and in Japan, Ube Industries (all company names) have commercialized their own separation membrane systems.
* The principle configuration of membrane separation that separates gases is a material that is separated by the relative permeation rate of the gas to be separated.
Fast gas easily permeates through the membrane wall, exits to the side port, and slow gas is difficult to permeate through the membrane wall, so it moves inside the hollow fiber and is discharged from the outlet And
The early gas includes H 2 O, H 2 , H 2 S, CO 2 , and O 2 , and the slow gas includes Ar, CO 3 , N 2 , and CH 4 .
Operating pressure 8 to 150 Kg / Cm 2 G (some are possible with a pressure of less than 8 Kg / cm 2 )
(Enriched) Oxygen gas purity is 70% to less than 100% (a range that does not emit NOx)
The condition is that the gas to be separated has a pressure, and the driving force of the separation membrane system is the use of a pressure difference.
As the compressor, any of an axial flow type, a reciprocating type, a screw type, a rotary type, a scroll type and the like can be used.

<水蒸気改質装置Ka>
触媒を対峙した水蒸気改質装置Kaで炭化水素化合物(例えばメタンCH)とスチーム(水蒸気)を反応させ合成ガスを製造する方法で大きな吸熱反応でH2とCOのモル比が3と水素が多く製造される下記反応式で表される。
例えば被改質物質としてメタンCHを用いた改質反応式
CH+HO⇔3H+CO (1)
CO+HO⇔H+CO (2) シフト反応・・該反応は(1)の反応時に副次的に起こる。
*上記水蒸気改質用触媒としては、例えば、ニッケル系触媒などの公知の触媒を用いることができる、 ・改質温度650〜1000℃程度。
<Steam reformer Ka>
A method of producing a synthesis gas by reacting a hydrocarbon compound (for example, methane CH 4 ) and steam (steam) with a steam reformer Ka opposite to the catalyst, and a large endothermic reaction with a molar ratio of H 2 and CO of 3 and hydrogen It is represented by the following reaction formula that is often produced.
For example, a reforming reaction formula using methane CH 4 as a material to be reformed CH 4 + H 2 O 3 H 2 + CO (1)
CO + H 2 O⇔H 2 + CO 2 (2) Shift reaction. This reaction occurs as a secondary reaction during the reaction of (1).
* As the steam reforming catalyst, for example, a known catalyst such as a nickel catalyst can be used.-Reforming temperature of about 650 to 1000 ° C.

<炭化水素化合物の部分酸化反応装置BO>
上記水素生成手段ZUで触媒を必要としない手段の部分酸化反応であって、
炭化水素化合物(例えばメタンCH)と上記酸素分離装置1で分離し高密度となった酸素(1/2O)とを水素生成手段Zに導入し該混合気体の部分酸化反応装置BOに上記水蒸気Aの熱を(耐熱伝導体SCの伝熱で)供給し燃焼を促進して該部分酸化反応装置BOで、水素と一酸化炭素の合成ガスを得、該合成ガスに上記水蒸気Aを供給しシフト反応で水素と二酸化炭素を生成し生成ガスから水素を選択的に透過して取り出す選択透過膜型反応器を使用する構成に出来る。
上記水蒸気改質Ka、電気分解F1,F2に替えて部分酸化反応BOを使用する構成。
上記水素生成手段の他の方法には、メタン直接改質等があり、本願の改質技術として使用する事ができる。
<Partial oxidation reactor BO of hydrocarbon compounds>
A partial oxidation reaction of a means that does not require a catalyst in the hydrogen generation means ZU,
A hydrocarbon compound (for example, methane CH 4 ) and oxygen (1 / 2O 2 ) which has been separated by the oxygen separator 1 and become high density are introduced into the hydrogen generating means Z, and the mixed gas partial oxidation reactor BO is supplied with the above-mentioned mixture. Heat of steam A is supplied (by heat transfer of heat-resistant conductor SC) to promote combustion to obtain a synthesis gas of hydrogen and carbon monoxide in the partial oxidation reactor BO, and supply the steam A to the synthesis gas Then, a selective permeable membrane reactor can be used in which hydrogen and carbon dioxide are produced by a shift reaction and hydrogen is selectively permeated and taken out from the produced gas.
A configuration in which a partial oxidation reaction BO is used instead of the steam reforming Ka and electrolysis F1 and F2.
Other methods for producing the hydrogen include direct reforming of methane and can be used as the reforming technique of the present application.

・改質器設置例
本願エンジンでの改質装置及び電気分解装置で反応時間が必要な場合、改質ガスの量を多くする場合等を同時進行で行いたい場合等に複数の水素生成装置を設ける構成にも出来るし、上記改質で吸熱された後の(500℃程度の)排気ガスを使用した改質器を別に設け、更に定置形態のエンジン(例えば発電所の発電に係るエンジン)では改質・分解・分離等が時間(例えば数時間)を要する技術を採用する事も出来、移動形態での設置では上記改質・分解・分離等のサイクルの短い技術を採用するのが好ましい。
例えば図4に記載のエンジン燃焼装置2bの水蒸気改質部Kaを4分割し(90°*4)順次水蒸気を噴射(導入)する構成。
・ Examples of installation of reformers When reaction time is required for the reformer and electrolysis unit of the engine of this application, or when it is desired to increase the amount of reformed gas at the same time, multiple hydrogen generators are used. It can be configured to be provided, or a reformer that uses exhaust gas (about 500 ° C.) that has been absorbed by the reforming is provided separately, and in a stationary engine (for example, an engine related to power generation at a power plant) A technique that requires time (for example, several hours) for reforming / decomposing / separating can also be adopted, and it is preferable to adopt a technique having a short cycle such as reforming / decomposing / separating for installation in a moving form.
For example, the steam reforming section Ka of the engine combustion apparatus 2b shown in FIG. 4 is divided into four (90 ° * 4), and steam is sequentially injected (introduced).

<耐熱構造部SC>エンジン燃焼装置2、2b,2c,2d(図1,2,4,5,610参照)
(富化)酸素と水素の燃焼では燃焼炎の中心温度は2800℃程度で空気(中の酸素)と水素の燃焼では燃焼炎の中心温度は1900℃程度で(富化)酸素の使用により47%程度燃焼炎の中心温度が上がる、
上記酸素と水素を燃焼する燃焼熱に耐えれる燃焼室内壁材としては例えばタングステンWかハフニュウムHfかセラミックスかアルミナAlかチタンTiかニッケルNiか炭化ケイ素SiC(炭化ケイ素セラミックス)あるいはそれらをコーティング(蒸着)した物やボイラー等の定置設備では水冷壁の耐火煉瓦が考えられるが移動形態の燃焼室内壁材としては上記タングステンやハフニュウムは加工性、価格の面で問題がある。
上記エンジンの燃焼室NE内に設けておる燃料の燃焼火炎2Fの直射熱を受ける吸熱構造手段SCを例えば熱伝導率及び耐熱温度が高いアルミナAl系合金にして設け、該エンジン燃焼室NE内の吸熱構造手段と水素生成手段ZU壁に水蒸気Aを噴射する噴射手段をエンジン燃焼室の冷却手段と水蒸気生成手段の水蒸気Aとしたことが酸素と水素を連続燃焼出来る新技術とすることが出来た。
<Heat-resistant structure SC> Engine combustion devices 2, 2b, 2c, 2d (see FIGS. 1, 2, 4, 5, 610)
(Enriched) In the combustion of oxygen and hydrogen, the center temperature of the combustion flame is about 2800 ° C., and in the combustion of air (inside oxygen) and hydrogen, the center temperature of the combustion flame is about 1900 ° C. (enriched) due to the use of oxygen. The center temperature of the combustion flame rises by about
For example, tungsten W, hafnium Hf, ceramics, alumina Al 2 O 3, titanium Ti, nickel Ni, silicon carbide SiC (silicon carbide ceramics) or the like can be used as the combustion chamber wall material that can withstand the combustion heat of burning oxygen and hydrogen. For stationary equipment such as coated (vapor-deposited) and boilers, refractory bricks with water-cooled walls are conceivable. However, the above-mentioned tungsten and hafnium have problems in terms of workability and price as the moving interior combustion chamber wall materials.
The endothermic structure means SC that receives the direct heat of the combustion flame 2F of the fuel provided in the combustion chamber NE of the engine is provided, for example, as an alumina Al 2 O 3 based alloy having a high thermal conductivity and high heat resistance temperature, and the engine combustion chamber The endothermic structure means in the NE and the hydrogen generation means ZU wall injection means for injecting water vapor A into the engine combustion chamber cooling means and water vapor generation means water vapor A is a new technology capable of continuous combustion of oxygen and hydrogen Was made.

<水蒸気電気分解FS1>
1a,水蒸気電気分解装置・
サンシャイン計画(産業技術総合研究所)で個体電解質として安定化ジルコニア(Zro−10%Y2O3(酸化イットリュウム))薄膜を用いて800℃〜1000℃で水蒸気を電解する方法が開発されておる、作動温度は900℃〜1000℃、電流密度40A/dm
槽電圧1.3&#8483;、電力変換効率90%の性能である。
*特開2017-45601(記載)
実施例において、64本から成る固体酸化物形燃料電池スタック10では40〜64Vの高電圧が得られたとしておる。
固体酸化物形燃料電池スタック及び固体酸化物形燃料電池モジュールは、
可搬型固体電解質形燃料電池小型発電機、電気分解反応による水素発生装置の技術分野において好適に利用することができる。
<Steam electrolysis FS1>
1a, steam electrolyzer
The Sunshine Project (National Institute of Advanced Industrial Science and Technology) has developed a method of electrolyzing water vapor at 800 ° C to 1000 ° C using a stabilized zirconia (Zro-10% Y2O3 (yttrium oxide)) thin film as a solid electrolyte. Temperature is 900-1000 ° C, current density 40A / dm 2
The cell voltage is 1.3 &#8483; and the power conversion efficiency is 90%.
* JP 2017-45601 (described)
In the example, it is assumed that a high voltage of 40 to 64 V was obtained in the solid oxide fuel cell stack 10 composed of 64 cells.
The solid oxide fuel cell stack and the solid oxide fuel cell module are:
It can be suitably used in the technical fields of portable solid oxide fuel cell small generators and hydrogen generators based on electrolysis.

*1b、<電気分解装置F1及びF2>
特許文献4特開2012-52162の水蒸気電気分解技術を上記エンジンの燃料の水素と酸素に分解する技術とすることも出来る技術であり、上記エンジン燃焼装置から排出される排気ガスを上記回転力取り出し装置3を貫流させ貫流後の熱を持つ高温の水蒸気を水蒸気電気分解装置F1,F2にて電気分解(水蒸気電解)し、水素および酸素を発生させる。水蒸気電解温度は高温ほど、熱源の直接利用に有利となる。600℃で作動する中温水蒸気電解装置を用いても良く、1000℃で作動する電気分解装置を用いればさらによい。なお、中温水蒸気電解装置は、電解質としてプロトン伝導体:SrZr0.5Ce0.40.13−aを用い、電極として、水を分解するアノードには、高活性であるSm0.5Sr0.5CoOという組成の酸化物電極、また、水素発生極であるカソードにはニッケル電極と電解質の間にセレート系のプロトン伝導体の薄い層を挿入する構造を採用することにより、600℃、0.2A/cmの条件で0.3Vという低過電圧で作動する上記特許文献4に記載の技術。本願のエンジン燃焼装置2cに内蔵しておる電気分解装置F1及びF2として採用出来る技術及び電気・水素生成手段4に採用できる電気分解装置F1の技術である。
* 1b, <Electrolysis devices F1 and F2>
Patent Document 4 Japanese Patent Laid-Open No. 2012-52162 is a technique in which the steam electrolysis technique can be used as a technique for decomposing the engine fuel into hydrogen and oxygen, and the exhaust gas discharged from the engine combustion device is extracted from the rotational force. The apparatus 3 is allowed to flow through, and high-temperature steam having heat after flowing through is electrolyzed (steam electrolysis) in the steam electrolyzers F1 and F2 to generate hydrogen and oxygen. The higher the steam electrolysis temperature, the more advantageous the direct use of the heat source. A medium temperature steam electrolyzer that operates at 600 ° C. may be used, and an electrolyzer that operates at 1000 ° C. is more preferable. The intermediate temperature steam electrolyzer uses a proton conductor: SrZr 0.5 Ce 0.4 Y 0.1 O 3-a as an electrolyte, and Sm 0 that is highly active in an anode that decomposes water as an electrode. oxide electrode composition of .5 Sr 0.5 CoO 3, also, the cathode is a hydrogen generating electrode by adopting the structure for inserting a thin layer of a proton conductor of the Serrate system between the nickel electrode and the electrolyte The technique of the said patent document 4 which operate | moves by the low overvoltage of 0.3V on the conditions of 600 degreeC and 0.2 A / cm < 2 >. This is a technique that can be adopted as the electrolyzers F1 and F2 incorporated in the engine combustion apparatus 2c of the present application and a technique of the electrolyzer F1 that can be adopted for the electricity / hydrogen generating means 4.

*1c、<電気分解装置F1及びF2>
水蒸気電気分解装置の技術に属する技術であり、
高温水蒸気ガスが固体電解質セル内を通過する間に電気分解する構成の技術が開示されておる特開2006−307290や特開平9−228085や特開2017−33816等に記載されており該開示技術記載では約900℃前後の高温条件下において、水蒸気を吹き込みながら外部電源によって燃料極及び空気極に通電することにより、水分子が分解される。具体的には、燃料極において水分子由来の水素ガスが取り出され、空気極において水分子由来の酸素ガスが取り出される。この高温水蒸気電解は、低温の水分解に比べて理論分解電圧が低い(例えば1000℃では0.9V)としておる技術。*1d, 固体酸化物形水蒸気電解装置(特開2008-243744記載技術)
400℃〜600℃の作動温度においても、原子の透過性を向上させることができる金属薄膜を用いた水蒸気電解装置で該金属薄膜を金属組成物と、前記金属組成物の結晶粒界に分散させた酸化物とを含有する。前記金属組成物を構成する金属ターゲットと、前記酸化物を構成する酸化物ターゲットとを同時にスパッタリングして形成した技術であり、上記高温水蒸気電解にて未分解となった水蒸気を更に分解する技術(電気分解装置F2)に出来る。
* 1c, <Electrolysis devices F1 and F2>
It belongs to the technology of steam electrolysis equipment,
Japanese Patent Application Laid-Open No. 2006-307290, Japanese Patent Application Laid-Open No. 9-228085, Japanese Patent Application Laid-Open No. 2017-33816, and the like that disclose a technique in which high-temperature steam gas is electrolyzed while passing through a solid electrolyte cell. In the description, water molecules are decomposed by energizing the fuel electrode and the air electrode with an external power source while blowing steam under a high temperature condition of about 900 ° C. Specifically, hydrogen gas derived from water molecules is extracted from the fuel electrode, and oxygen gas derived from water molecules is extracted from the air electrode. This high-temperature steam electrolysis is a technology in which the theoretical decomposition voltage is lower than that of low-temperature water decomposition (for example, 0.9 V at 1000 ° C.). * 1d, solid oxide steam electrolyzer (Technology described in JP2008-243744)
Even at an operating temperature of 400 ° C. to 600 ° C., the metal thin film is dispersed in the metal composition and crystal grain boundaries of the metal composition in a steam electrolysis apparatus using the metal thin film capable of improving the atomic permeability. Oxide. It is a technique formed by simultaneously sputtering a metal target constituting the metal composition and an oxide target constituting the oxide, and a technique for further decomposing water vapor that has not been decomposed by the high-temperature steam electrolysis ( Electrolytic device F2).

*1E,<金属酸化物と金属水酸化物の触媒と水蒸気で水素採取装置SY,>
特願2008−155195水素発生法、水素発生装置及び触媒。
金属酸化物(例えばCr)と金属水酸化物(例えばKOH)を金属酸化物の融点以上、沸点以下の温度に加熱して固化せしめた触媒を触媒収納室21内に設置し、この収納室21に蒸発室内で蒸発した750℃前後の水蒸気を供給して、中間活性物質を伴う3つの反応を行い水から水素を採集する技術。
* 1E, <Metal Oxide and Metal Hydroxide Catalyst and Water Vapor Extractor SY,>
Japanese Patent Application No. 2008-155195 Hydrogen generation method, hydrogen generator and catalyst.
A catalyst obtained by solidifying a metal oxide (for example, Cr 2 O 3 ) and a metal hydroxide (for example, KOH) by heating to a temperature not lower than the melting point and not higher than the boiling point of the metal oxide is installed in the catalyst storage chamber 21. A technique of collecting hydrogen from water by supplying water vapor of about 750 ° C. evaporated in the evaporation chamber to the storage chamber 21 and performing three reactions involving intermediate active substances.

<固体電解質膜型反応器> 部分酸化反応利用
特開2006−298664の記載では、
多孔質支持体1と、この上に形成された酸素イオン・電子混合伝導性固体電解質からなる緻密層2と、前記緻密層2の上に形成された触媒層3とからなる3層構造の反応構造体を用いた膜型反応器であって、前記触媒層3表面に炭化水素を主成分とした被処理ガス4を、前記多孔質支持体1側表面に高純度酸素ガス5を、それぞれ供給し、改質ガス(合成ガス等)を得ることを特徴とする技術の高純度酸素ガスを供給する膜型反応器。
<Solid Electrolyte Membrane Type Reactor> In the description of Japanese Unexamined Patent Application Publication No. 2006-298664 using a partial oxidation reaction,
Reaction of a three-layer structure comprising a porous support 1, a dense layer 2 formed on the oxygen ion / electron mixed conductive solid electrolyte, and a catalyst layer 3 formed on the dense layer 2. A membrane reactor using a structure, in which a gas to be treated 4 containing hydrocarbon as a main component is supplied to the surface of the catalyst layer 3, and a high-purity oxygen gas 5 is supplied to the surface of the porous support 1 side. And a membrane reactor for supplying high-purity oxygen gas of a technique characterized by obtaining a reformed gas (such as synthesis gas).

<海水淡水(真水)化装置Wa>
上記エンジン燃焼装置2,2a,2ar,2b,2c,2dを搭載したエンジンに於いて海面走行の船舶等の淡水取得手段であって、海水淡水(真水)化に係る技術は数多く公開され実用化されておりそのいずれかの技術を使用する事でも良い。
例えば特開2018−30133では海水をろ過する海水ろ過器とろ過器でろ過した水を逆浸透膜で淡水に分離する逆浸透膜分離装置と取水する水取水部への貝類の付着を制御する制御剤とを備えた海水淡水化装置がある。
<Seawater fresh water (fresh water) generator Wa>
In the engine equipped with the engine combustion apparatus 2, 2a, 2ar, 2b, 2c, 2d, it is a fresh water acquisition means such as a marine vessel, etc., and many technologies related to seawater fresh water (fresh water) are disclosed and put into practical use. It is possible to use any of these techniques.
For example, in Japanese Patent Application Laid-Open No. 2018-30133, a seawater filter that filters seawater, a reverse osmosis membrane separation device that separates water filtered by the filter into fresh water using a reverse osmosis membrane, and a control that controls adhesion of shellfish to a water intake section that takes water. There is a seawater desalination device with a chemical.

<熱交換器G,G3>
上記熱交換装置であるがすでに常識となっておる熱を移動させる系の製品で例えばエャーコンディショナーのエャーを熱媒との熱交換で圧縮した熱媒の熱を水もしくは空気と交換する等の技術である。
<Heat exchanger G, G3>
It is a heat transfer device that is a heat transfer device that has already become common sense, but the heat of the heat conditioner compressed by heat exchange with the heat transfer medium is exchanged with water or air. Technology.

<熱電エネルギー変換装置、>
特開2012−52162水素および酸素の製造・使用方法。特許文献2に記載の技術であって、
熱を電気に直接変換する熱電変換装置となる技術に係る熱で熱電変換モジュールが試作され、発電試験が実施されており、発電試験の結果(300℃に加熱し無負荷=電流ゼロ)起電力0.39Vを取り出すのに成功した事例が公開されておる、上記施策された発電モジュールは、p型材料にFe2V0.9Ti0.1Al2,n型材料にFe2val0.9si0.1を用いて18個の熱電素子からなるのである、
電極には銅が使用され、p,n各材料と拡散接合で接合しており、該モジュールの片方は20℃で一定とし、他方面を300℃に加熱し上下面の温度差により発電する技術である。
<Thermoelectric energy conversion device>
JP 2012-52162 A method for producing and using hydrogen and oxygen. The technique described in Patent Document 2,
A thermoelectric conversion module was prototyped with heat related to the technology that becomes a thermoelectric conversion device that directly converts heat into electricity, and a power generation test has been carried out. As a result of the power generation test (heating to 300 ° C, no load = zero current) electromotive force Examples of successful generation of 0.39V have been disclosed. The above-mentioned power generation module has 18 thermoelectrics using Fe2V0.9Ti0.1Al2 for p-type material and Fe2val0.9si0.1 for n-type material. It consists of elements.
Copper is used for the electrode, and it is bonded to each material of p and n by diffusion bonding. One of the modules is fixed at 20 ° C, and the other surface is heated to 300 ° C to generate electricity by the temperature difference between the upper and lower surfaces. It is.

<燃料電池発電機FD1>
上記特許文献1に記載しておるエンジン燃焼装置2で生成した水素を燃料スタックに送り該燃料スタックで電気を生成し該電気を走行動力とする構成(燃料電池発電機と言える構成)。
上記水素と酸素で電気を生成して自動車の動力とする構成はすでにハイブリッド車として商品化されておる技術であるが本願生成の水素と酸素と燃料スタックで電気を生成する構成も電気生成手段4の1手段としている。
<Fuel cell generator FD1>
A configuration in which hydrogen generated by the engine combustion device 2 described in Patent Document 1 is sent to a fuel stack to generate electricity in the fuel stack, and the electricity is used as traveling power (a configuration that can be said to be a fuel cell generator).
The structure for generating electricity with hydrogen and oxygen to power the automobile is a technology that has already been commercialized as a hybrid vehicle. However, the structure for generating electricity with the hydrogen, oxygen, and fuel stack generated in the present application is also the electricity generating means 4. This is one method.

<気体分離膜による分離器(分離手段)>
・高分子膜分離器
水素の膜分離で工業的に実績のある物にポリイミド、ポリアミド、ポリスルホン、等が有り
・金属分離膜(パラジュウムPd金属薄膜)
金属パラジュウム膜は、水素分子のみ透過する。すなわち、水素分子が膜表面で原子化してプロトン(H)とエレクトロン(e)となり、これが膜中を拡散して膜の表面で再結合し、分子化して分離する物であり、パラジュウム合金の細管を300℃〜500℃に加熱する事で水素を分離出来る、この膜は高純度の水素製造に適している。
・高温水素ガス分離膜(セラミックス)700℃程度の高温水素ガス分離膜システムがあり例えば600℃〜1000℃で改質をする水蒸気改質で改質された水素と一酸化炭素の合成ガスから水素を分離して取り出す高温ガス分離に適している。
・膜型反応器(反応器と分離器一体型)特開2008−302334の記載では
含酸素炭化水素を主原料ガスとし、水(水蒸気)、二酸化炭素、酸素等を副原料ガスとして用いて改質反応、部分酸化反応、分解反応等の化学反応を利用して、水素を含む混合ガスを生成した後に、水素を選択的に透過させることの出来る選択透過膜(例えばパラジウム合金膜)によって混合ガスから水素を分離して取り出す膜型反応器であり上記の化学反応と選択分離とを同時に行うことの可能な選択透過膜型反応器(メンブレンリアクタともいう)である
*上記水素及び一酸化炭素及び酸素及び水蒸気の高温帯で分離する分離膜での高温ガス分離が使用困難な場合熱交換装置にて吸熱後の低温(例えば100〜200℃程度)ガスから公知の分離方法(例えばPAS吸着法やメンブレン分離膜等で)で分離する構成にも出来る。
<Separator with gas separation membrane (separation means)>
・ Polymer membrane separators: Polyimide, polyamide, polysulfone, etc. are industrially proven in hydrogen membrane separation. ・ Metal separation membrane (palladium Pd metal thin film).
The metal palladium film only transmits hydrogen molecules. That is, hydrogen molecules are atomized on the film surface to become protons (H + ) and electrons (e), which diffuse through the film, recombine on the film surface, and are molecularized and separated. This membrane can be separated by heating the thin tube to 300 ° C. to 500 ° C. This membrane is suitable for producing high-purity hydrogen.
・ High-temperature hydrogen gas separation membrane (ceramics) There is a high-temperature hydrogen gas separation membrane system of about 700 ° C. For example, hydrogen from hydrogen reformed by steam reforming reformed at 600 ° C. to 1000 ° C. and synthesis gas of carbon monoxide Suitable for high temperature gas separation.
・ Membrane reactor (reactor and separator integrated type) In Japanese Patent Application Laid-Open No. 2008-302334, oxygen-containing hydrocarbon is used as a main raw material gas, and water (steam), carbon dioxide, oxygen, etc. are used as auxiliary raw material gases. A gas mixture is produced by a selective permeable membrane (for example, a palladium alloy membrane) capable of selectively permeating hydrogen after generating a gas mixture containing hydrogen using a chemical reaction such as a quality reaction, partial oxidation reaction, or decomposition reaction. This is a membrane reactor that separates and extracts hydrogen from the reactor and is a permselective membrane reactor (also referred to as a membrane reactor) capable of performing the above chemical reaction and selective separation at the same time. * The above hydrogen and carbon monoxide and When it is difficult to use high-temperature gas separation in a separation membrane that separates oxygen and water vapor in a high-temperature zone, a known separation method (for example, about 100 to 200 ° C.) from a low-temperature (for example, about 100 to 200 ° C.) gas after heat absorption by a heat exchanger. PAS adsorption method and a membrane separation membrane, etc.) can also configured to separate.

排気流力5を回転力として取り出す回転力取り出し装置3であるが、
流体(水、水蒸気、燃焼ガス)の略直線方向の流力を回転力にして取り出す構造にはダムからの落水力や潮流の干満潮の流力、農業用水路の水流力等の水の流れる力を回転力に替える技術及び蒸気機関(水蒸気の圧力を利用してピストンの往復運動を回転力にする原動機)やタービン〔水蒸気を吹き付けて羽根車を回転運動させる原動機の翼体やガスタービンの圧縮空気に燃料をまぜて燃焼させた高温・高圧のガスを使ってタービンを回す原動機の翼体(動翼)等〕があり、本願では常識化(公知の技術)されておる翼体(羽根車)であれば良く上記回転力取出し構造部3を貫流する排気ガス及び水蒸気は少なくとも600℃の高温なので必要に応じて耐熱構造手段(例えばニッケル合金にセラミックコーティング等の加工をする)を設けるかあるいは上記通水路MHの水を上記回転力取出し構造部3の回転翼体の軸部から水を導入する手段(例えば水を散水するスプリンクラーの回転する回転体に水を供給する構造)にて回転翼体に水を供給し該回転翼体の熱を吸熱した水もしくは水蒸気を回転翼体外に放出し該回転翼体を貫流しておる排気流5と合流し下流に流す構造として翼体(羽根車)の冷却手段とする構成でも良い。
Although it is the rotational force taking-out apparatus 3 which takes out exhaust flow force 5 as rotational force,
The structure for extracting fluid (water, water vapor, combustion gas) by using the flow force in a substantially linear direction as the rotational force is the water flow force such as the water flow from the dam, the tidal current of the tidal current, the water flow of the agricultural channel, etc. Compressing the steam turbine and the gas turbine (the prime mover that rotates the impeller by spraying steam and the steam engine) Wing bodies (moving blades, etc.) of a motor that turns a turbine using high-temperature and high-pressure gas that is burned by mixing fuel in air, and the wing bodies (impellers) that have become common sense (known technology) in this application ) Since the exhaust gas and water vapor flowing through the rotational force extraction structure 3 are at a high temperature of at least 600 ° C., heat-resistant structure means (for example, processing a ceramic coating or the like on a nickel alloy) is provided if necessary. Alternatively, the water in the water passage MH is rotated by means for introducing water from the shaft portion of the rotating blade body of the rotational force extraction structure 3 (for example, a structure for supplying water to the rotating body of the sprinkler that sprinkles water). As a structure for supplying water to the wing body and discharging water or water vapor that has absorbed the heat of the rotor body to the outside of the rotor body and joining with the exhaust stream 5 flowing through the rotor body, the blade body (blade A configuration may be used as a cooling means for a car).

移動式ガスステーションとは,例えば二酸化炭素又は一酸化炭素の何れか一種以上の空のタンクを備えた大型トラックや大型トレーラーをガスステーション(給油ステーション等)に配備し該大型トラックや大型トレーラーのタンクの二酸化炭素(又は一酸化炭素)の積載量が規定値に達すると空の二酸化炭素ガス(又は一酸化炭素ガス)タンク車と入れ替え基地に運搬し、更に炭化水素化合物(例えばメタンCH)を積載しておる大型トラックや大型トレーラーをガスステーション(給油ステーション等)に配備し該大型トラックや大型トレーラーの積載量が空になるとガス基地に帰り積載する形態である。
上記移動式ガスステーションの別の形態では現在流通しておる酸素ガスボンベ・二酸化炭素ガスボンベ・炭化水素化合物(例えばメタン)ボンベ等の高圧ガスボンベ若しくは液化ガスボンベを複数本積載できるラックに搭載し運搬する形態にすれば、上記ガス授受システム(のインフラ整備として)とすることが出来る。
A mobile gas station is, for example, a large truck or large trailer equipped with an empty tank of at least one of carbon dioxide and carbon monoxide, and a tank for the large truck or large trailer. When the load of carbon dioxide (or carbon monoxide) reaches the specified value, it is replaced with an empty carbon dioxide gas (or carbon monoxide gas) tanker truck and transported to a base, and further a hydrocarbon compound (for example, methane CH 4 ) A large truck or a large trailer that has been loaded is installed in a gas station (such as a refueling station), and when the loaded amount of the large truck or large trailer becomes empty, it is loaded back to the gas base.
In another form of the above mobile gas station, a high-pressure gas cylinder or a liquefied gas cylinder such as an oxygen gas cylinder, a carbon dioxide gas cylinder, a hydrocarbon compound (e.g., methane) cylinder or a plurality of liquefied gas cylinders currently in circulation is mounted and transported. If so, the above-described gas exchange system (as infrastructure development) can be obtained.

<二酸化炭素CO資源化手段CH>
上記水蒸気改質Ka、及び電気・水素生成手段で生成した二酸化炭素CO資源化手段CHであって、上記二酸化炭素COを改質分解技術で炭素と酸素を含む資源(例えば一酸化炭素・メタンCH・メタノールCHOH・ジメチルエーテルCHOH等)を得る技術。
*上記資源化手段CH1は、特許文献4に記載の技術にて資源化手段とする。
*−1、水素を製造しておる設備を有する外部施設に引き渡し該外部施設で炭化水素化合物(例えばメタンCH・メタノールCHOH・ジメチルエーテルCHOH)に加工する。
*−2、太陽光・風力・波力発電等の発電設備を有する外部施設の電力で水を電気分解して水素H2を得その水素と二酸化炭素COで炭化水素化合物(例えばメタンCH・メタノールCHOH・ジメチルエーテルCHOH)に加工する。
*−2、水素Hを余剰として排出しておる石油精製所等に引き渡し該石油精製所にて炭化水素化合物(例えばメタンCH・メタノールCHOH・ジメチルエーテルCHOH)に加工する。
*二酸化炭素CO資源化手段CH2は、
水蒸気改質を有する外部施設にて炭化水素化合物に加工する。
例えば千代田化工建設(企業名)では二酸化炭素COとメタンCHを貴金属系触媒を使用した改質で2CO+2Hの合成ガスを生成しており(スチーム/COリフォーミング)その技術を活用。
<Carbon dioxide CO 2 resource production means CH>
Are the above steam reforming Ka, and carbon dioxide CO 2 recycling means CH generated by electric and hydrogen generating means, resources containing carbon and oxygen the carbon dioxide CO 2 reforming decomposition techniques (e.g. carbon monoxide, Methane CH 4 , methanol CH 3 OH 3 , dimethyl ether CH 3 OH 3, etc.).
* The resource-recycling means CH1 is a resource-recycling means according to the technique described in Patent Document 4.
* -1, delivered to an external facility having equipment for producing hydrogen, and processed into a hydrocarbon compound (for example, methane CH 4 , methanol CH 3 OH 3 , dimethyl ether CH 3 OH 3 ) at the external facility.
* -2, water is electrolyzed with electric power from an external facility having power generation facilities such as solar power, wind power, wave power generation, etc. to obtain hydrogen H 2 , and a hydrocarbon compound (for example, methane CH 4 ) with the hydrogen and carbon dioxide CO 2 · processed into methanol CH 3 OH 3-dimethyl CH 3 OH 3).
* -2, delivered to a petroleum refinery that discharges hydrogen H 2 as surplus, and processed into a hydrocarbon compound (for example, methane CH 4 , methanol CH 3 OH 3 , dimethyl ether CH 3 OH 3 ). .
* The carbon dioxide CO 2 resource means CH2
Processed into hydrocarbon compounds at an external facility with steam reforming.
For example, Chiyoda Corporation (company name) generates carbon dioxide CO 2 and methane CH 4 by using a noble metal catalyst to produce 2CO + 2H 2 synthesis gas (steam / CO 2 reforming). Utilization.

*二酸化炭素CO資源化手段CH3は
東京工業大学細野英雄教授らのグループが発明されておる。C12A7エレクトライドが二酸化炭素の分子を室温で選択的に吸着し、分解する技術(後述)にて二酸化炭素を一酸化炭素に分解する技術使用。
*−1、石灰(CaO)とアルミナAl2O3から構成される化合物12CaO 7A&#8572;(以下C12A7)の構造の中に、電子を取り込んだC12A7エレクトライドが二酸化炭素の分子を室温で選択的に吸着し、一酸化炭素と酸素に分解する分解技術。
*二酸化炭素CO資源化手段CH4は
・グローバル二酸化炭素リサイクル
東北大学金属研究所らのグループでは、海水を電気分解により水素を生成し生成した水素と二酸化炭素から、常圧300℃でメタンの生成と、該生成に使用する触媒の発明を含む技術を発明されておられ、該電気は中東地区等の砂漠での太陽光発電で発電しており、該二酸化炭素は二酸化炭素排出国からの輸送で調達するものである。
*二酸化炭素CO資源化手段CH5は
二酸化炭素のカソード還元(特開2018−24895)触媒及び電極触媒、並びに電極触媒の製造方法、
水の電気分解による水素の生成、または二酸化炭素をカソード還元して炭素含有物質に変換する触媒=銅酸化物の被膜を有する触媒。
CO+8H+8e+→CH+2H
二酸化炭素と水素でメタンを生成する構成。
*二酸化炭素CO資源化手段CH6は
二酸化炭素は最近工業プロセスで超臨界流体COを溶媒として使用する方法が見出されており、該方法での活用も出来る。
* Carbon dioxide CO 2 resource generation means CH3 was invented by a group of Professor Hideo Hosono of Tokyo Institute of Technology. Use of technology in which C12A7 electride selectively adsorbs and decomposes carbon dioxide molecules at room temperature to decompose carbon dioxide into carbon monoxide (described later).
* -1, lime (CaO) and alumina Al compound composed of 2 O 3 12CaO 7A &#8572 ; into the structure of the 2 O 3 (hereinafter C12A7), C12A7 electride incorporating electrons molecules of carbon dioxide Decomposition technology that selectively adsorbs at room temperature and decomposes into carbon monoxide and oxygen.
* Carbon dioxide CO 2 resource generation means CH4 ・ Global carbon dioxide recycling The group of Tohoku University Institute of Metals, etc., produces hydrogen at a normal pressure of 300 ° C from hydrogen and carbon dioxide produced by electrolysis of seawater. And the invention including the invention of the catalyst used for the production, the electricity is generated by solar power generation in a desert such as the Middle East, and the carbon dioxide is transported from a carbon dioxide emitting country. Is to be procured.
* Carbon dioxide CO 2 resource generation means CH5 is a cathode reduction of carbon dioxide (Japanese Patent Laid-Open No. 2018-24895) catalyst and electrode catalyst, and a method for producing an electrode catalyst,
Production of hydrogen by electrolysis of water, or catalyst which converts carbon dioxide into a carbon-containing substance by cathodic reduction = a catalyst having a copper oxide coating.
CO 2 + 8H 2 + 8e + → CH 4 + 2H 2 O
A configuration that generates methane from carbon dioxide and hydrogen.
* Carbon dioxide CO 2 resource-recycling means CH6 has recently found a method of using supercritical fluid CO 2 as a solvent in an industrial process for carbon dioxide, and can also be used in this method.

<廃プラスチックの処理及び資源化に係る技術>
*2002年日本国プラスチック生産量=1385万トン
・ポリエチレンPE―23.4%
・ポリプロピレンPP―19.4%
ポリ塩化ビニールPVC―18.4%
ポリスチレンPSt ―8・8%
ポリエチレンテレフタレート−5.1%
上記処理埋め立て276万トン・廃棄物発電205万トン・再利用するマテリアルサイクル152万トン・油化・ガス化・高炉原料等のケミカルリサイクルが25万トン固形燃料化32万トン・焼却(熱利用)127万トン・単純焼却173万トンのリサイクルが問題である。
更に上記処理過程で排出するCOの排出削減及び処理過程のエネルギーの効率UPによる処理費用削減が急がれる問題である。
500mlのペットボトル製造コスト7.4円/本
再使用コスト輸送-26円、洗浄再成型1.4円=27.4円/7.4=3.5倍かかる。
ポリエチレンテレフタレートCOOCH2CHOH+2HO
エチレングリコール=沸点は低い。
廃棄された高分子の組成、
低密度ポリエチレンLDPE・高密度ポリエチレンHDPE・エチレン/酢酸ビニル共重合体EVA31%,
ポリプロピレンPP20%,使用年数2年以下の容器包装材としての使用。
ポリスチレンPStアクリロニトリル/ブタジエン/スチレン共重合体ABS,アクリロニトリル/スチレン共重合体AS17%,ポリ塩化ビニル12%(15年を超えるような耐久性を要する土木建築電線等に使用、
上記の4大樹脂で80%を占めておる。
残りポリエチレンテレフタレートPET樹脂5%,ポリウレタン樹脂4%、ポリカーボネート樹脂3%,ポリアミド2%,
PE・使用年数2年以下の容器包装材としての使用。
上記の現状に対して数多くの廃プラスチックの処理及び資源化に係る技術が公開されており、稼働しておる該技術使用の装置も多々あるが上記処理過程で排出するCOの排出削減及び処理過程のエネルギーの効率UPによる処理費用削減が問題であり、本願の水素と酸素を燃焼させる「エンジン燃焼装置(2b,2c,2d,2,2a,2ar)を搭載しておるエンジン」基本的には「水の水素と酸素(空気からの富化)のエネルギーで動くエンジン」を現在稼働しておる廃プラスチックの処理及び資源化に係る技術使用装置の動力&#13225;・電力Ea・熱E・水蒸気・酸素のいずれか1以上を廃プラスチックの処理及び資源化に係る技術使用装置の動力&#13225;・電力Ea・熱E・水蒸気・酸素として使用する事で、該二酸化炭素排出ゼロ、上記動力&#13225;・電力Ea・熱E・水蒸気・酸素を製造するコストゼロ(炭化水素化合物費用は売電収入で相殺される。)となり、イニシャルコスト(設備費用)の原価償却分が廃プラスチックの処理及び資源化費用となるものである。
<Technology related to processing and recycling of waste plastic>
* 2002 Japan plastic production = 138.5 million tons ・ Polyethylene PE-23.4%
・ Polypropylene PP-19.4%
Polyvinyl chloride PVC-18.4%
Polystyrene PSt -8.8%
Polyethylene terephthalate-5.1%
The above landfill 2.76 million tons, waste power generation 2.05 million tons, recycling material cycle 1.52 million tons, oil recycling, gasification, blast furnace raw materials and other chemical recycling 250,000 tons solid fuel 320,000 tons, incineration (heat utilization ) Recycling 1.27 million tons and 1.73 million tons is a problem.
Further, there is an urgent need to reduce the processing cost by reducing the CO 2 emission discharged in the above process and increasing the energy efficiency of the process.
500ml PET bottle production cost 7.4 yen / book Reuse cost transportation-26 yen, cleaning re-molding 1.4 yen = 27.4 yen / 7.4 = 3.5 times.
Polyethylene terephthalate COOCH 2 CH 2 OH + 2H 2 O
Ethylene glycol = low boiling point.
Discarded polymer composition,
Low density polyethylene LDPE, high density polyethylene HDPE, ethylene / vinyl acetate copolymer EVA 31%,
Use as a container and packaging material with 20% polypropylene PP and a service life of 2 years or less.
Polystyrene PSt Acrylonitrile / Butadiene / Styrene Copolymer ABS, Acrylonitrile / Styrene Copolymer AS 17%, Polyvinyl Chloride 12% (used for civil engineering and construction electric wires that require durability exceeding 15 years,
The above four major resins account for 80%.
Remaining polyethylene terephthalate PET resin 5%, polyurethane resin 4%, polycarbonate resin 3%, polyamide 2%,
Use as a container and packaging material for PE and years of use less than 2 years.
Is art published relating to the processing and recycling of many waste plastics to the above situation, operation and there are also many devices the technique used Nikki Although emission reduction and treatment of CO 2 to be discharged by the process Reduction of processing costs due to increased process energy efficiency is a problem. Basically, “engines equipped with engine combustion devices (2b, 2c, 2d, 2, 2a, 2ar) that burn hydrogen and oxygen” Is an engine powered by hydrogen and oxygen (enrichment from the air) energy that is currently in operation.・ Power of technology using equipment related to processing and recycling of waste plastics using at least one of water vapor and oxygen &#13225; ・ Emission of carbon dioxide by using electricity Ea, heat E, water vapor, and oxygen, Power &#13225; ・ Electricity Ea ・ Heat E ・ Water vapor ・ Oxygen production costs are zero (hydrocarbon compound costs are offset by electricity sales), and initial cost (equipment costs) is amortized This is a plastic processing and resource recycling cost.

*上記廃プラスチックの処理及び資源化に係る技術及び使用装置として
・超臨界水を用いた使用済み高分子の熱分解、三菱重工(企業名)や
・ダイセル化学と新日本製鉄(いずれも企業名)のガス化溶融炉システムや
・川崎製鉄(企業名)ガス化溶融炉システムや
・バッテレ記念研究所(アメリカ)は混合廃プラスチックからのエチレンモノマー回収技術を開発したと発表し、USP5,116,117(August4,1992)で権利化しておる。
等々の技術が公開されておる。
* As technologies and equipment used for the treatment and recycling of the above waste plastics ・ Pyrolysis of used polymers using supercritical water, Mitsubishi Heavy Industries (company name), and Daicel Chemical & Nippon Steel (both company names) ) Gasification melting furnace system ・ Kawasaki Steel (company name) Gasification melting furnace system ・ Battere Memorial Institute (USA) announced that it has developed a technology for recovering ethylene monomer from mixed waste plastics, USP 5,116, 117 (August 4, 1992).
And so on.

1、最大の課題は地球温暖化に対処する「CO」の排出削減であり、(富化)酸素を使用する事で、窒素酸化物「NO」を排出しないエンジンとするとともに課題である二酸化炭素をも排出しない構成にしておるので、温室効果ガス削減施策課題の1つを構成する温室効果ガス排出削減策のエンジンとする事が出来た。
2、改質で生成した水素と一酸化炭素CO又は二酸化炭素COを移動式ガスステーション(又はガスステーションに引き渡す形態としたことでメタンと水の供給費用より多くの対価を得ることが出来た。
3、エンジンで生成した電気を電気授受システムEaSTで売電する形態とした事で多くの対価を得ることが出来た。
4、上記エンジンを廃プラスチックの資源化手段のエンジンとすることが出来る。
1. The biggest challenge is the reduction of CO 2 emissions to cope with global warming, and the use of (enriched) oxygen makes it an engine that does not emit nitrogen oxides “NO X ”. Since it is configured so as not to emit carbon dioxide, it could be used as an engine for greenhouse gas emission reduction measures, which constitutes one of the challenges for reducing greenhouse gas emissions.
2. The hydrogen generated by reforming and carbon monoxide CO or carbon dioxide CO 2 was transferred to the mobile gas station (or the gas station). .
3. The electricity generated by the engine was sold by the electricity transfer system EaST.
4. The engine can be used as a waste plastic resource recycling means.

図面に於けるそれぞれの寸法関係は、重要部分は拡大し、詳細が解り難いところは誇張している、また広範囲部分、又は本願発明で重要度の低い部分を、記載する時は縮小している、従って図面間及び図面内の寸法は比例していないし、実寸、縮尺寸法ではない。
又線間の間隔が狭い場合スキャンの段階で黒く太く1本の線に成り易いので、線間の間隔を広げるか、一本の線で記載している、更に本願発明の根幹(主要)機構以外部に付いては、図面間で省略している部分もある。
Each dimensional relationship in the drawings is enlarged for important portions, exaggerated where details are difficult to understand, and reduced when describing wide portions or portions that are less important in the present invention. Thus, the dimensions between and within the drawings are not proportional, and are not actual or scaled.
If the distance between the lines is narrow, it is likely to become a single line that is thick and black at the scanning stage. Therefore, the distance between the lines is widened or described with a single line. Other parts are omitted between the drawings.

(分離装置1により分離された)酸素と水素を燃焼させるエンジン燃焼装置Zであって(図1)、該燃焼装置内に水素生成手段ZUを内蔵しており、該燃焼装置は蓄ガスタンクT1及び蓄ガスタンクT2から燃焼ノズル2Nに酸素及び水素を供給し点火栓2Pにより点火し燃焼室NE内で燃焼しており、該燃焼室には燃焼による直射熱を受ける耐熱構造部SCを設けており該耐熱構造部には水タンクより水を供給し供給された水を耐熱構造部SCを通過する間に上記燃焼による直射熱を受けて水を水蒸気にする通水路MHaを設けて該通水路MHa内で水蒸気Aを生成しており生成した水蒸気Aを上記耐熱構造部の外殻体(外側)に設けておる水素生成手段ZU内に噴射する水蒸気噴射ノズルZjを設け該噴射ノズルから噴射しており、該水素生成手段ZUにて水蒸気を反応(例えば電気分解・水蒸気改質・部分酸化反応等)させる副材料SBを供給する副材料(例えば熱・電気・酸素・炭化水素化合物等)SB供給手段と、
該水素生成手段ZUに供給された水蒸気Aと上記供給された副材料(熱・電気・酸素・炭化水素化合物等)SBの何れか一以上を使用して水素若しくは水素を含む混合ガスを生成する水素若しくは水素を含む混合ガス生成手段と、
該水素若しくは水素を含む混合ガスから水素を分離する分離装置と、
該分離装置に水素若しくは水素を含む混合ガスを導入して水素を取り出しており、得られた水素を上記エンジン燃焼装置Zの燃料の水素としており、
上記通水路MHaで生成した水蒸気Aを燃焼室NEに供給する供給ノズルZjと該供給ノズルZjから供給された水蒸気Aは燃焼室NE内の熱を吸熱してさらに高熱に成った水蒸気Aaと
該水蒸気Aaは上記燃焼で生成される水蒸気Bと水素生成手段ZUで分解(改質)されなかった未分解水蒸気STn(及び未分解水蒸気STm)とともに下流に排気として排出される排気流5と、
を備えておる水素を燃焼し水素を生成するエンジン燃焼装置Z。
An engine combustion apparatus Z for combusting oxygen and hydrogen (separated by the separation apparatus 1) (FIG. 1), incorporating hydrogen generation means ZU in the combustion apparatus, the combustion apparatus comprising a storage gas tank T1 and Oxygen and hydrogen are supplied from the gas storage tank T2 to the combustion nozzle 2N, ignited by the spark plug 2P, and burned in the combustion chamber NE. The combustion chamber is provided with a heat-resistant structure SC that receives direct heat from combustion, The heat-resistant structure part is provided with a water passage MHa that receives water from the water tank and receives the direct heat generated by the combustion while the supplied water passes through the heat-resistant structure part SC to convert the water into water vapor. The steam A is generated by the steam generator nozzle Zj that injects the generated steam A into the hydrogen generating means ZU provided in the outer shell (outside) of the heat-resistant structure portion, and is sprayed from the spray nozzle. The water And secondary materials (e.g., heat, electricity, oxygen and hydrocarbon compounds) SB supply means for supplying a sub-material SB reacting steam (e.g. electrolysis, steam reforming, partial oxidation reaction or the like) at generation means ZU,
Hydrogen or a mixed gas containing hydrogen is generated by using any one or more of the water vapor A supplied to the hydrogen generating means ZU and the supplied secondary material (heat, electricity, oxygen, hydrocarbon compound, etc.) SB. Hydrogen or a mixed gas generating means containing hydrogen;
A separator for separating hydrogen from the hydrogen or a mixed gas containing hydrogen;
Hydrogen or a mixed gas containing hydrogen is introduced into the separator to extract hydrogen, and the obtained hydrogen is used as hydrogen for the fuel of the engine combustion device Z.
The supply nozzle Zj for supplying the steam A generated in the water passage MHa to the combustion chamber NE, and the steam A supplied from the supply nozzle Zj absorbs the heat in the combustion chamber NE and further increases the steam Aa and the steam Aa. The steam Aa is an exhaust stream 5 that is discharged downstream as exhaust together with the steam B generated by the combustion and the undecomposed steam STn (and undecomposed steam STm) that has not been decomposed (reformed) by the hydrogen generating means ZU;
An engine combustion apparatus Z that generates hydrogen by burning hydrogen.

燃焼装置Zの下流に回転力取り出し装置3を設けており、上記排気流5を該回転力取り出し装置3に導入し回転力取り出し装置3(内の例えば回転翼体)を貫流させ略直線方向の流力を回転力に変換して取り出し取り出した電気(か動力のいずれか一方か両方)は蓄電器40に蓄電されるか、動力として消費されるか電気として使用されるか、電気・水素生成手段4で使用するかあるいは電気授受システムEaSTに引き渡す(例えば電力会社に売電する)かいずれか1以上の形態としており、 A rotational force take-out device 3 is provided downstream of the combustion device Z, and the exhaust flow 5 is introduced into the rotational force take-out device 3 to flow through the rotational force take-out device 3 (for example, a rotary blade body) in a substantially linear direction. Electricity (or one or both of the motive power) taken out by converting the flow force into rotational force is stored in the battery 40, consumed as motive power, or used as electricity, or electricity / hydrogen generating means 4 or use the power transfer system EaST (for example, sell power to an electric power company).

上記回転力取り出し装置3を貫流し排出された排気流5aを受けて該排気流5aの熱と水蒸気を導入して電気Ea・水素を生成する電気Ea・水素生成手段4を設けており、該電気Ea・水素生成手段4(下記電気Ea・水素生成手段については上記しており、詳細説明は省略する)は例えば水蒸気電気分解装置F1・水蒸気電気分解装置FS1・水蒸気改質Ka1・熱電エネルギー変換装置DE・海水真水化装置Wa・燃料電池発電機FD1・熱交換器G等の組み合わせ可能な(電気Ea・水素生成が理論上出来る構成)上記排気流5aの熱及び水蒸気を電気・水素のいずれか一方か両方かを生成する装置(公知の技術使用)であり、更に該エンジンを中大型船(例えば500トン以上)や定置形態設置では,改質・分解に時間を要する水熱化学分解F2等を用いた電気Ea・水素生成手段4とすることが出来る。
上記生成手段内で生成する中間生成物(例えば一酸化炭素CO・水素・酸素・電気等)を上記排気流5aの熱と水蒸気にプラスして使用することも含む.
上記電気Ea・水素生成手段4で未分解(又は生成された)となった水蒸気は水蒸気再加熱(手段)装置WR(水循環ループ)で上記電気分解装置F1の下流(燃焼室NE)に戻入れるか水タンクT4に戻し入れる。
An electric Ea / hydrogen generating means 4 for receiving the exhaust flow 5a flowing through the rotational force extracting device 3 and introducing the heat and water vapor of the exhaust flow 5a to generate electric Ea / hydrogen is provided, The electric Ea / hydrogen generation means 4 (the following electric Ea / hydrogen generation means has been described above and will not be described in detail), for example, steam electrolysis apparatus F1, steam electrolysis apparatus FS1, steam reforming Ka1, thermoelectric energy conversion Device DE, seawater desalination device Wa, fuel cell generator FD1, heat exchanger G, etc. can be combined (electrical Ea, configuration capable of producing hydrogen theoretically) Heat and steam of exhaust stream 5a can be either electric or hydrogen Hydrothermal chemistry that generates either one or both (using known technology), and that requires more time for reforming and disassembly when the engine is installed in a medium-sized or large-sized ship (for example, 500 tons or more) or in a stationary configuration. Can be an electrical Ea · hydrogen generation unit 4 using a solution F2 like.
It also includes using intermediate products (e.g., carbon monoxide CO, hydrogen, oxygen, electricity, etc.) generated in the generating means in addition to the heat and water vapor of the exhaust stream 5a.
The water vapor that has not been decomposed (or generated) by the electric Ea / hydrogen generation means 4 is returned to the downstream (combustion chamber NE) of the electrolysis apparatus F1 by a water vapor reheating (means) apparatus WR (water circulation loop). Return to water tank T4.

上記エンジン燃焼装置Zと同じ構成部は同じ符号を用いて説明を省略しており異なる部分のみを解説する。
上記水素生成手段ZUのの水素生成手段を電気分解装置F1としたエンジン燃焼装置2cであって(図2)、であって、
上記水蒸気Aを上記耐熱構造部の外殻体に設けておる電気分解装置F1と燃焼室NE内に噴射する水噴射ノズルTjを設け該噴射ノズルから噴射しており、電気分解装置F1に蓄電器40から(定置形態(例えば発電所)エンジンでは外部からの電力であっても良い)電気Eaを供給しており、電気分解装置F1に噴射された水蒸気Aと上記供給された電気とを電気分解装置F1で水素と酸素に分解して取り出しており、得られた水素と酸素から顕熱を回収する熱交換器G3に導入し(直接燃焼ノズル2Nに供給することも可能)該熱交換器G3で回収した熱Eは該エンジン燃焼装置2C以降で水素及び酸素及び一酸化炭素及び電気及び動力のいずれか1以上を得るエネルギーとして使用する形態にしておる水素と酸素を燃焼させる燃焼装置。
The same components as those of the engine combustion apparatus Z are denoted by the same reference numerals, and the description thereof is omitted. Only different portions will be described.
An engine combustion device 2c in which the hydrogen generation means of the hydrogen generation means ZU is an electrolyzer F1 (FIG. 2),
An electrolyzer F1 provided in the outer shell of the heat-resistant structure and the water injection nozzle Tj for injecting the water vapor A into the combustion chamber NE are provided and injected from the injection nozzle. (Electric power from the outside may be used in a stationary form (for example, a power plant) engine), and the water vapor A injected into the electrolyzer F1 and the supplied electricity are electrolyzed. F1 is decomposed and taken out into hydrogen and oxygen, and introduced into a heat exchanger G3 that recovers sensible heat from the obtained hydrogen and oxygen (it can also be directly supplied to the combustion nozzle 2N). The recovered heat E is a combustion apparatus that combusts hydrogen and oxygen in a form that is used as energy for obtaining any one or more of hydrogen, oxygen, carbon monoxide, electricity and power in the engine combustion apparatus 2C and thereafter.

上記エンジン燃焼装置Zと同じ構成部は同じ符号を用いて説明を省略しており異なる部分のみを解説する。
上記水素生成手段ZUのの水素生成手段を水蒸気改質部Kaとしたエンジン燃焼装置2b(図3)、であって、
上記水素生成手段ZUに水蒸気改質部Kaを設け該水蒸気改質部Kaの外殻部(外側)にメタンCH(炭化水素化合物、以降メタンで解説する)通気路MCを設けてメタンCH4をメタンCH噴射ノズルCjから水蒸気改質路Kaに導入しており、
上記水蒸気Aを上記耐熱構造部の外側(外殻部)に設けておる水蒸気改質部Kaと燃焼室NE内に水噴射ノズルTjから噴射しており、
噴射されたメタンCHと水蒸気Aは水蒸気改質部Ka内で水素と二酸化炭素の合成ガスに改質され(該水蒸気改質部は例えば触媒をアルミナ担体に担持したハニカム構造)改質された水素ガスは分離手段(例えば高温水素ガス分離膜(セラミックス))で水素と二酸化炭素+未改質水蒸気ST&#8575;に分離され水素を取り出し、更に二酸化炭素+未改質水蒸気ST&#8575;を分離し二酸化炭素を取り出し未分解水蒸気ST&#8575;は排気流5に合流して下流に排出される。上記取り出された水素は(水素タンクT2経由)燃料として燃焼ノズル2Nに導入されるサイクルを構成し、二酸化炭素は二酸化炭素タンクT7に蓄ガスし二酸化炭素資源化手段CHにて資源として活用される。
The same components as those of the engine combustion apparatus Z are denoted by the same reference numerals, and the description thereof is omitted. Only different portions will be described.
An engine combustion device 2b (FIG. 3) in which the hydrogen generating means of the hydrogen generating means ZU is a steam reforming section Ka,
The hydrogen generating means ZU is provided with a steam reforming section Ka, and a methane CH 4 (hydrocarbon compound, hereinafter described with methane) vent MC is provided on the outer shell (outside) of the steam reforming section Ka to provide methane CH4. It is introduced into the steam reforming path Ka from the methane CH 4 injection nozzle Cj,
The water vapor A is injected from the water injection nozzle Tj into the steam reforming portion Ka and the combustion chamber NE provided on the outside (outer shell portion) of the heat resistant structure portion,
The injected methane CH 4 and steam A were reformed into a synthesis gas of hydrogen and carbon dioxide in the steam reforming section Ka (the steam reforming section was reformed, for example, in a honeycomb structure in which a catalyst is supported on an alumina carrier). Hydrogen gas is separated into hydrogen and carbon dioxide + unreformed water vapor ST &#8575; by a separating means (for example, high-temperature hydrogen gas separation membrane (ceramics)). The carbon dioxide is separated and undecomposed steam ST &#8575; joins the exhaust stream 5 and is discharged downstream. The extracted hydrogen constitutes a cycle that is introduced into the combustion nozzle 2N as a fuel (via a hydrogen tank T2), and carbon dioxide is stored in the carbon dioxide tank T7 and used as a resource in the carbon dioxide resource generating means CH. .

上記二酸化炭素は一酸化炭素の状態で取り出す(シフト反応はしない)事も出来る。
ガスの運搬時の安全性は二酸化炭素が勝が一酸化炭素であっても良い。
該水蒸気改質部KaではHO/CH(モル比)2〜5程度の水蒸気過剰化でおこなわれる、
The carbon dioxide can be taken out in the state of carbon monoxide (no shift reaction is performed).
Carbon monoxide may be used as the safety when transporting gas, but carbon dioxide may be used.
In the steam reforming section Ka, the steam reforming is performed by excess steam of H 2 O / CH 4 (molar ratio) of about 2 to 5,

上記エンジン燃焼装置2bで生成した水素で該燃焼装置の水蒸気改質部Kaを除いたエンジン燃焼装置2又はエンジン燃焼装置2a又はエンジン燃焼装置2arの燃料の水素とし更に自らのエンジン燃焼装置2bの燃料の水素を自給する構成、
CH+HO=CO+3H
これをシフト反応(発熱反応)で CO+HO=H+CO
が生成することになり、上記燃焼熱で4分子弱の水蒸気を生成出来、メタンから2分子のH水蒸気から2分子の水素と1分子のCOが生成することになり、
上記4分子弱の水素が生成するとすれば、燃焼には1分子の水素があればよく水蒸気改質を持つ燃焼室2bは一つあれば水蒸気改質をもたないエンジン燃焼装置2又はエンジン燃焼装置2a又はエンジン燃焼装置2arの何れか3個弱を燃焼させる水素が確保される計算になる.
上記1に満たない水素の不足分(未改質分)は電気+水素生成手段4から補給出来るので図4の記載例の様に水蒸気改質Kaを持つエンジン燃焼装置2b一台で水蒸気改質Kaを持たないエンジン燃焼装置2か2aか2arを3台稼働させるエンジンCPT(コンプリート)に出来〔又上記シフト改質をしない構成では水蒸気改質Kaを持つエンジン燃焼装置2b一台で水蒸気改質Kaを持たないエンジン燃焼装置2か2aか2arかの何れかを2台稼働させるエンジンCPT(コンプリート)に出来〕ることを表した図5。
The hydrogen produced by the engine combustion device 2b is the hydrogen of the fuel of the engine combustion device 2 or the engine combustion device 2a or the engine combustion device 2ar excluding the steam reforming portion Ka of the combustion device, and the fuel of the engine combustion device 2b itself. Of self-sufficiency of hydrogen,
CH 4 + H 2 O = CO + 3H 2
This is a shift reaction (exothermic reaction), CO + H 2 O = H 2 + CO 2
It is possible to generate water vapor of less than 4 molecules with the above-mentioned combustion heat, and to generate 2 molecules of hydrogen and 1 molecule of CO 2 from 2 molecules of H 2 water vapor from methane,
If less than four molecules of hydrogen are produced, it is sufficient to have one molecule of hydrogen for combustion, and if there is one combustion chamber 2b having steam reforming, the engine combustion device 2 or engine combustion having no steam reforming is required. This is a calculation that secures hydrogen for burning any three of the apparatus 2a and the engine combustion apparatus 2ar.
The shortage of hydrogen less than 1 (unreformed) can be replenished from the electricity + hydrogen generating means 4, so that steam reforming is performed with one engine combustion device 2b having steam reforming Ka as shown in FIG. Engine CPT (complete) that operates three engine combustion devices 2 or 2a or 2ar that do not have Ka can be produced. [In the configuration in which the shift reforming is not performed, steam reforming can be performed by one engine combustion device 2b having steam reforming Ka. FIG. 5 shows that an engine CPT (complete) in which two engine combustion apparatuses 2 or 2a or 2ar without Ka can be operated.

上記エンジン燃焼室2は水素(H)を(富化)酸素(O)で連続(間欠にも出来る)燃焼させるエンジンの燃焼工程の概略構成フロー図6であって、エンジン燃焼工程2に空気から窒素を分離除去する酸素分離器を設けており、該酸素分離器には空気圧縮装置と空気を(富化)酸素と窒素とに分離する分離装置{例えばメンブレン分離膜(図7)と分離した(富化)酸素を畜ガスする畜ガスタンクT1を備えており、該畜ガスタンクから(富化)酸素導入管3にて燃料噴射ノズル2Nに供給されており、燃料の水素を畜ガスしておる水素畜ガスタンクT2より水素導入管2にて燃料噴射ノズルに供給されており、該燃焼ノズルから燃焼室部NEに噴射された燃料の水素と富化酸素に点火栓2Pにて点火され連続燃焼し、該燃焼による排気ガス(大半は水蒸気)は排気流5となって排出される。
上記エンジン燃焼工程(外郭体)の内外壁間(2G,2U間)に通水路MHを設けて該通水路MHに水タンクから水導入管4にて水を該通水路MHに導入しており、燃焼室部内壁2Uには通水路の水を燃焼室部内に噴射する噴射ノズルTJを複数設けており、上記(富化)酸素と水素の連続燃焼による燃焼火炎の直射熱を受ける吸熱構造手段SCを上記燃焼室部内壁の内側中心方向に間隔を開けて設けて水素と(富化)酸素の燃焼による燃焼室内壁面の(燃焼温度に対する)保護手段としており、該水を噴射ノズルTJから吸熱構造手段の大径方向面及びエンジンの燃焼室部内に噴射しており該エンジンの燃焼室部内の吸熱構造手段に噴射した水は吸熱構造手段SCの熱を吸熱して該水を水蒸気にしており、燃焼室部内NEに噴射した水も該燃焼室部内の燃焼熱(排気ガスの熱)を吸熱して該水を水蒸気にしおり、該燃焼室部内の冷却手段及び水蒸気生成手段としており、噴射された水は水蒸気と成り上記(富化)酸素と水素の燃焼で生成された排気ガスとともに排気ガス流路5に排出される構成の水素と(富化)酸素空気を連続燃焼するエンジンの燃焼工程2。
The engine combustion chamber 2 is a schematic flow diagram 6 of an engine combustion process in which hydrogen (H 2 ) is burned continuously (enriched) with oxygen (O 2 ) (can also be intermittent). An oxygen separator that separates and removes nitrogen from air is provided. The oxygen separator includes an air compressor and a separator that separates air into (enriched) oxygen and nitrogen {for example, a membrane separation membrane (FIG. 7) and A livestock gas tank T1 for stocking separated (enriched) oxygen is provided, which is supplied from the livestock gas tank to the fuel injection nozzle 2N through the (enriched) oxygen introduction pipe 3 to feed the fuel hydrogen into livestock gas. The hydrogen hydrogen gas is supplied from the hydrogen livestock gas tank T2 to the fuel injection nozzle 2 through the hydrogen introduction pipe 2, and the hydrogen and enriched oxygen of the fuel injected from the combustion nozzle into the combustion chamber NE are ignited by the spark plug 2P and continuously. Combusted and exhausted by the combustion Gas (mostly water vapor) is discharged as an exhaust stream 5.
A water passage MH is provided between the inner and outer walls (between 2G and 2U) of the engine combustion process (outer body), and water is introduced into the water passage MH from the water tank through the water introduction pipe 4 to the water passage MH. The combustion chamber inner wall 2U is provided with a plurality of injection nozzles TJ for injecting water in the water passage into the combustion chamber, and receives the direct heat of the combustion flame by the (enriched) continuous combustion of oxygen and hydrogen. SC is provided at intervals toward the inner center of the inner wall of the combustion chamber to protect the combustion chamber wall surface (combustion temperature) by combustion of hydrogen and (enriched) oxygen, and the water absorbs heat from the injection nozzle TJ. The water injected into the large-diameter direction surface of the structural means and the combustion chamber portion of the engine and injected into the heat absorbing structure means in the combustion chamber portion of the engine absorbs the heat of the heat absorbing structure means SC and turns the water into water vapor. The water injected into the NE in the combustion chamber is also The combustion heat (heat of exhaust gas) in the firing chamber is absorbed and the water is converted into steam, and the cooling water and steam generation means in the combustion chamber are used, and the injected water becomes steam and the above (enrichment) A combustion process 2 of an engine that continuously burns hydrogen and (enriched) oxygen air in a configuration that is discharged into the exhaust gas passage 5 together with exhaust gas generated by combustion of oxygen and hydrogen.

上記エンジンの燃焼工程2a(図6)は水素(H)を(富化)酸素(O)で燃焼させるエンジン燃焼装置であって、該エンジン燃焼装置2aに酸素を分離供給する酸素分離装置1と
分離した酸素(酸素路3にて供給)と水素(水素タンクから水素路2にて供給)を燃焼ノズル2Nに送り点火栓2Pにて点火され燃焼させるエンジン燃焼装置2と
上記エンジン燃焼装置2の内外壁間(2G,2U間)に設けておる通水路MHと
該通水路MHに水タンクT4から水路4にて水を該通水路MHに導入しており、燃焼室部内壁2Uに設けておる通水路の水を燃焼室内壁面に直接噴射する複数の噴射ノズルMJと
該噴射ノズルMJから噴射した水を水蒸気aとする水蒸気生成手段とを備え
上記(化)酸素と水素の燃焼で生成された排気ガスの水蒸気Bともに排気流5となって排出しておる事を特徴とする水素と酸素を燃焼するエンジン燃焼装置2a。
The engine combustion process 2a (FIG. 6) is an engine combustion apparatus that burns hydrogen (H 2 ) with (enriched) oxygen (O 2 ), and separates and supplies oxygen to the engine combustion apparatus 2a. 1. An engine combustion device 2 that sends oxygen (supplied through an oxygen passage 3) and hydrogen (supplied from a hydrogen tank through a hydrogen passage 2) separated from 1 to a combustion nozzle 2N and ignites and burns at a spark plug 2P, and the engine combustion device. 2 between the inner and outer walls of 2 (between 2G and 2U), and water is introduced into the water passage MH from the water tank T4 to the water passage MH from the water tank T4 to the water passage MH. combustion of the plurality of injection nozzles MJ and the injection the injected water from the nozzle MJ and a steam generating means for steam a above (enrichment) oxygen and hydrogen that directly injects Nikki water passage of water into the combustion chamber wall surface is provided Of the exhaust gas produced in Engine combustion apparatus 2a which can combust hydrogen and oxygen, characterized in that Nikki discharged to become the exhaust stream 5.

上記エンジンのエンジン燃焼装置2又はエンジン燃焼装置2a又はエンジン燃焼装置2ar又はエンジン燃焼装置2b又はエンジン燃焼装置2cのいずれか1以上のからの熱及び水蒸気及び回転力取り出し手段3で生成された電気Eaの一部を使用した電気・水素生成手段4にて改質・分解等々で未分解(未改質)となった水蒸気を燃焼装置2aの燃焼室NE内に戻し入れ排気流5に合流させ該排気流5の熱を吸熱し再加熱水蒸気とする水蒸気再加熱装置WRを備え水循環ループを構成した燃焼装置(図1,2,3、6,7,11)。 Electric Ea generated by the heat, steam, and rotational force extraction means 3 from any one or more of the engine combustion device 2 or engine combustion device 2a or engine combustion device 2ar or engine combustion device 2b or engine combustion device 2c of the engine. The steam that has been undecomposed (unreformed) by reforming / decomposition, etc. in the electricity / hydrogen generating means 4 using a part of the gas is returned to the combustion chamber NE of the combustion device 2a and merged into the exhaust stream 5 A combustion apparatus (FIGS. 1, 2, 3, 6, 7, and 11) that includes a water vapor reheating device WR that absorbs the heat of the exhaust stream 5 and reheats the steam to form reheated steam.

上記実施例3に記載の構成の下流に上記4台分の燃焼室の排気流5を一台の回転力取り出し装置3に連結した概略構成図5(B)であって、メタンを改質するエンジン燃焼装置2b1台で4台分の燃焼室の排気流5を回転力に変換する構造にした一例であり上記形態(CPT)で商品化出来るもの。 FIG. 5B is a schematic configuration diagram in which the exhaust flow 5 of the four combustion chambers is connected to one rotational force take-out device 3 downstream of the configuration described in the third embodiment, and reforms methane. The engine combustion apparatus 2b is an example of a structure that converts the exhaust flow 5 of four combustion chambers into rotational force, and can be commercialized in the above form (CPT).

上記エンジン燃焼装置2,2a,2ar,2b,2c,2dを有するエンジンの好ましい移動体での実施形態は上記燃焼装置及び電気・水素生成手段4を一定の設定条件で稼働し移動体の移動に係る制御は電気とする。 The preferred embodiment of the engine having the engine combustion devices 2, 2a, 2ar, 2b, 2c, and 2d in the preferred moving body operates the combustion device and the electricity / hydrogen generating means 4 under certain set conditions to move the moving body. Such control is electricity.

上記エンジン上記実施例2〜5のエンジンを移動体に搭載した該エンジン搭載機器(航空機・船舶・鉄道・自動車等々)の駐機場(駐車場・桟橋・マリーナ等の係船場・飛行場・軍隊の基地等)に一酸化炭素CO又は二酸化炭素COをガスステーション又は移動式ガスステーションを設けて該ステーションに引き取らせ水と炭化水素化合物(例えばメタンCH)の供給を受ける形態にするか該エンジンにより生成される電気を引き取らせる設備(電気授受システムEaST)を設けて電気を引き取らせるものである。
すなわち上記移動体移動時は上記エンジンを稼働して燃料の水素(及び酸素)を生成し移動体のエネルギーとし移動と言う仕事を終えた後は上記移動体エンジンを稼働させ生成した一酸化炭素CO又は二酸化炭素COをガスステーション又は移動式ガスステーションに買い取らせ水と炭化水素化合物(例えばメタンCH4)の供給を受ける形態にするか該エンジンにより生成される電気を引き取り設備(外部社会電力エネルギー供給インフラへの電力供給)にて引き取らせるかするかのいずれかにすることで該移動体非稼働時を活用する手段とする。
該手段によりエンジン内の停止・稼働の繰り返しによる該エンジンの構成材の疲労による亀裂破壊等を防止出来該エンジンの寿命延長に繋げるとともに該エンジン生成物の販売もしくは使用(例えば自工場で使用)により該エンジンの原価償却を早く出来る。
A parking lot (a parking lot, a dock, a marina, etc. mooring field, an airfield, an army base) of the engine-equipped equipment (aircraft, ships, railways, automobiles, etc.) in which the engine of the above embodiments 2 to 5 is mounted on a moving body Carbon monoxide CO or carbon dioxide CO 2 is provided in a gas station or a mobile gas station to be taken into the station and supplied with water and a hydrocarbon compound (for example, methane CH 4 ) or by the engine. A facility (electricity transfer system EaST) for taking generated electricity is provided to take electricity.
That is, when the moving body moves, the engine is operated to generate hydrogen (and oxygen) of fuel, and after the work of moving is completed as energy of the moving body, the moving body engine is operated to generate carbon monoxide CO. Alternatively, the carbon dioxide CO 2 is purchased by a gas station or a mobile gas station and supplied with water and a hydrocarbon compound (for example, methane CH 4) or electricity generated by the engine is taken over (external social power energy supply) It is a means for utilizing the non-operating time of the mobile body by either taking it in (power supply to infrastructure) or not.
By this means, it is possible to prevent crack breakage due to fatigue of the engine components due to repeated stop and operation in the engine, leading to the extension of the engine life and sales or use of the engine product (for example, use at own factory) The engine can be depreciated quickly.

上記水素生成手段ZUを部分酸化反応装置OS(エンジン燃焼装置2d)とした一例であって(図10)、水素生成手段部にメタンCH4と酸素を供給し該水素生成手段ZU部を流れておる水蒸気Aの熱を耐熱伝熱構造部SCを介して上記メタンCH4と酸素の混合ガスに供給し部分酸化反応を促進し該反応で生成した合成ガスをシフト反応部に送りさらに水蒸気Aを導入し水素と二酸化炭素を生成し、生成したガスから選択透過膜にて水素を分離して取り出しておる構造。
*上記耐熱構造部SCの外殻(外側)に該耐熱構造部の熱と該エンジン外から供給される炭化水素化合物と上記酸素分離器1から供給される酸素を改質する部分酸化反応装置OSで、水素を含む混合ガスを生成した後に、該混合ガスに水蒸気Aを供給し水素と二酸化炭素を生成し生成した該ガスから水素を分離して取り出し取り出した水素を該燃料エンジンの燃料の水素としておる事を特徴とする水素と酸素を燃焼するエンジンるである。
*上記炭化水素を主原料ガスとし、水(水蒸気)、二酸化炭素、酸素等を副原料ガスとして用いて部分酸化反応、分解反応等の化学反応を利用して、水素を含む混合ガスを生成した(更にシフト反応後に)、水素を選択的に透過させることの出来る選択透過膜(例えば高温水素ガス分離膜(セラミックス))によって混合ガスから水素を分離して取り出す技術を本願の水素生成手段ZUの一手段としておる。
FIG. 10 shows an example in which the hydrogen generation means ZU is a partial oxidation reaction device OS (engine combustion apparatus 2d) (FIG. 10), and methane CH4 and oxygen are supplied to the hydrogen generation means section and flow through the hydrogen generation means ZU section. The heat of the steam A is supplied to the mixed gas of methane CH4 and oxygen through the heat-resistant heat transfer structure SC to promote the partial oxidation reaction, and the synthesis gas generated by the reaction is sent to the shift reaction section to further introduce the steam A. A structure that generates hydrogen and carbon dioxide, and separates and extracts hydrogen from the generated gas using a permselective membrane.
* Partial oxidation reactor OS for reforming the heat of the heat-resistant structural part, the hydrocarbon compound supplied from outside the engine, and the oxygen supplied from the oxygen separator 1 on the outer shell (outside) of the heat-resistant structural part SC Then, after generating the mixed gas containing hydrogen, the steam A is supplied to the mixed gas to generate hydrogen and carbon dioxide, and the hydrogen separated and extracted from the generated gas is taken out as hydrogen of the fuel of the fuel engine. This is an engine that burns hydrogen and oxygen.
* Using the above hydrocarbons as the main raw material gas and water (steam), carbon dioxide, oxygen, etc. as the auxiliary raw material gases, a mixed gas containing hydrogen was generated using chemical reactions such as partial oxidation reaction and decomposition reaction. A technique for separating and extracting hydrogen from a mixed gas by a permselective membrane (for example, a high-temperature hydrogen gas separation membrane (ceramics)) that can selectively permeate hydrogen (after a shift reaction) As a means.

図11に記載例は本願エンジン燃焼装置2bで生成した水素を燃料として稼働する上記2bを含む複数台稼働させ、燃焼装置(2,2a,2ar)の何れかを使用し該燃焼装置の1台を低温ガス化炉に接続し、該低温ガス化炉に粉砕した廃プラスチックを投入しガス化する低温(600〜800℃)ガス化炉を設け該ガス化炉内温度を600〜800℃に保てる該燃焼装置で生成した水蒸気の排気流5から熱交換器G2にて熱交換量のコントロール(水蒸気の温度コントロールは上記通水路MH内の水の流量を調節する流量調節手段でも可能である)して該低温ガス化炉にスチームと、酸素分離器から酸素とを供給し炉内で部分酸化が行われ使用済みの高分子はガス成分とチャー(熱分解残渣)に分解され、この段階で金属などの不燃性混入物は路外へ排出される。
上記燃焼装置の他の1台を高温ガス化炉に接続し、
上記低温ガス化炉でガス化された高分子は高温ガス化炉を設けて該高温ガス化炉へ移送され該ガス化炉内温度を1300〜1500℃に保てる該燃焼装置(2,2a,2ar)で生成した水蒸気の排気流5から熱交換器G4にて熱交換量のコントロール(水蒸気の温度コントロールは上記通水路MH内の水の流量を調節する流量調節手段でも可能である)して該高温ガス化炉にスチームと、酸素分離器から酸素とを供給してさらにガス化が促進され高温ガス炉を出たガスは急冷室に送られアンモニアを含む水(水タンク4からの水にアンモニアを供給)で一気に200℃以下まで急冷されます、次いで、洗浄棟を通る過程でスラグが除去され、塩化水素の塩化アンモニウムへの固定化がなされ、水素と一酸化炭素を主成分とするいわゆる合成ガスが製造されます、この方式で生成した塩化アンモニウムは化学肥料の原料となる、廃プラスチックの資源化手段の一例であり、上記事例を廃タイヤ・一般ごみの資源化手段と(本願エンジンと組み合わせる構成)する事は容易に出来る。
The example shown in FIG. 11 operates a plurality of units including the above-described 2b that operates using hydrogen generated by the engine combustion device 2b of the present application as a fuel, and uses one of the combustion devices (2, 2a, 2ar). Is connected to a low-temperature gasification furnace, and a low-temperature (600 to 800 ° C.) gasification furnace for introducing and gasifying the crushed waste plastic into the low-temperature gasification furnace is provided to keep the temperature in the gasification furnace at 600 to 800 ° C. The amount of heat exchange is controlled by the heat exchanger G2 from the steam exhaust stream 5 generated by the combustion device (the temperature control of the steam is also possible by a flow rate adjusting means for adjusting the flow rate of water in the water passage MH). Steam and oxygen from the oxygen separator are supplied to the low-temperature gasifier and partial oxidation is performed in the furnace. The used polymer is decomposed into gas components and char (thermal decomposition residue). Incombustible contamination It is discharged to the off-road.
Connect the other one of the above combustion devices to a high-temperature gasifier,
The combustion apparatus (2, 2a, 2ar) in which the polymer gasified in the low-temperature gasification furnace is provided with a high-temperature gasification furnace and is transferred to the high-temperature gasification furnace to keep the temperature in the gasification furnace at 1300 to 1500 ° C. The heat exchange amount is controlled by the heat exchanger G4 from the exhaust gas flow 5 of the water vapor generated in (1) (the temperature of the water vapor can be controlled by a flow rate adjusting means for adjusting the flow rate of the water in the water passage MH). Steam and oxygen from the oxygen separator are supplied to the high-temperature gasifier and further gasification is promoted. The gas exiting the high-temperature gas furnace is sent to the quenching chamber and contains water containing ammonia (ammonia into the water from the water tank 4). In the process of passing through the cleaning building, slag is removed, hydrogen chloride is fixed to ammonium chloride, and so-called synthesis consisting mainly of hydrogen and carbon monoxide. Ammonium chloride produced by this method is an example of a means for recycling waste plastic, which is used as a raw material for chemical fertilizers. The above example is combined with a means for recycling waste tires and general waste (combined with the engine of this application). It is easy to configure.

本願の特許請求の範囲に記載の権利範囲事項から容易に想到出来る構造を使用したもの全て本願の権利範囲である。 Any structure using a structure that can be easily conceived from the scope of the claims described in the claims of the present application is within the scope of the right of the present application.

本願は空気中の酸素を分離した(富化)酸素と水素を燃焼させるエンジンであり、水を原料とした水素燃料として幅広く産業に利用できるエンジンである。 The present application is an engine that burns (enriched) oxygen and hydrogen separated from oxygen in the air, and is an engine that can be widely used in industry as hydrogen fuel using water as a raw material.

酸素と水素を燃焼させるエンジンの燃焼装置Zの1例図(軸線方向断面図)。FIG. 2 is an example diagram of an engine combustion apparatus Z for burning oxygen and hydrogen (axial sectional view). 酸素と水素を燃焼させるエンジンの燃焼装置2cで水蒸気電気分解装置F1内蔵(一体)型の1例図(軸線方向断面図)。FIG. 3 is an example diagram (axial sectional view) of an engine combustion apparatus 2c that combusts oxygen and hydrogen with a built-in (integrated) steam electrolysis apparatus F1. 上記水蒸気電気分解装置F1に替えて水蒸気改質部Kaを設けたエンジンの燃焼装置2bの1例図(軸線方向断面図)。An example view (axial direction sectional view) of engine combustion device 2b which provided steam reforming part Ka instead of the above-mentioned steam electrolysis device F1. 上記水蒸気改質部Kaを設けたエンジン燃焼装置2bで生成した水素4Hで4台のエンジン燃焼装置の燃料とした概略構成図。Fuel and the schematic configuration diagram of a hydrogen 4H 2 generated by the engine combustion apparatus 2b provided with the steam reforming section Ka 4 sets of engine combustion apparatus. (A)エンジン燃焼装置2bの軸線方向の中心部を径方向の断面から燃料噴射ノズル方向を見た断面図。 (B)上記径方向の断面から排気排出口方向を見た断面図。(A) Sectional drawing which looked at the fuel injection nozzle direction from the cross section of radial direction about the axial center part of the engine combustion apparatus 2b. (B) Sectional drawing which looked at the exhaust outlet direction from the cross section of the said radial direction. (A,B,E)エンジン燃焼装置2、2a、2arの長手方向断面図,(C)(D)燃焼室内壁面に噴射する噴射ノズル設置要領図。(A, B, E) Longitudinal cross-sectional views of the engine combustion devices 2, 2a, 2ar, (C) (D) Injection nozzle installation guidelines for injecting into the combustion chamber wall surface. 上記エンジン燃焼装置2、2a、2arから回転力取り出し装置3(を経由して)から電気・水素生成装置4(を経由して)から水蒸気再加熱手段WRにて上記エンジン燃焼装置2、2a、2ar内に戻し入れる循環ループの概略図。From the engine combustion devices 2, 2 a, 2 ar from the rotational force extraction device 3 (via) to the electricity / hydrogen generator 4 (via) the steam reheating means WR, the engine combustion devices 2, 2 a, Schematic of the circulation loop returning into 2ar. 酸素分離装置1の概略構成図。1 is a schematic configuration diagram of an oxygen separator 1. FIG. 上記回転力取り出し装置3の回転翼体の冷却手段を表した回転翼体断面図。FIG. 3 is a cross-sectional view of a rotating blade body showing a cooling means for the rotating blade body of the rotational force extracting device 3. 上記水素生成手段ZU部に部分酸化反応を設けた概略構成図。The schematic block diagram which provided the partial oxidation reaction in the said hydrogen production | generation means ZU part. 上記燃焼装置2b、(2cでも良い)を有するエンジンで生成した水素を燃料とする上記燃焼装置2、2a、2arの燃料とした、廃プラスチックガス化溶融炉システムの概略構成図。The schematic block diagram of the waste plastic gasification melting furnace system made into the fuel of the said combustion apparatuses 2, 2a, 2ar which uses the hydrogen produced | generated by the engine which has the said combustion apparatus 2b (it may be 2c) as a fuel.

Claims (7)

酸素と水素を燃焼させた熱で水を水蒸気にしており、該水蒸気を反応させて水素を生成する構成を設けたエンジン燃焼装置Zであって、該燃焼装置Zの燃焼ノズル2Nに酸素及び水素を供給し点火栓2Pにより点火し燃焼室NE内で燃焼しており、該燃焼室に設けておる燃焼による直射熱を受ける耐熱構造部SCと、
該耐熱構造部に設けておる水を耐熱構造部SCを通過する間に上記燃焼による直射熱を受けて水を水蒸気にする通水路MHaと、
該通水路MHa内で水蒸気Aを生成する水蒸気A生成手段と,
上記耐熱構造部の外殻体に設けておる水素生成手段ZUと、
該水素生成手段ZUに上記水蒸気Aを供給する供給ノズルZjと
該供給ノズルZjから該水素生成手段ZUに供給しており該水素生成手段ZUにて水蒸気を反応させる副材料SBを供給する副材料SB供給手段と、
該水素生成手段ZUに供給された水蒸気Aと上記供給された副材料SBの内の何れか一以上を使用して水素若しくは水素を含む混合ガスを生成する水素若しくは水素を含む混合ガス生成手段と、
該混合ガスから水素を分離する分離装置と、
該分離装置に水素若しくは水素を含む混合ガスを導入して水素を取り出しており、得られた水素を上記エンジン燃焼装置Zの燃料の水素としており、
上記通水路MHaで生成した水蒸気Aを燃焼室NEに供給する供給ノズルZjと該供給ノズルZjから供給された水蒸気Aは燃焼室NE内の熱を吸熱してさらに高熱に成った水蒸気Aaと
該水蒸気Aaは上記燃焼で生成される水蒸気Bと水素生成手段ZUで分解(改質)されなかった未分解水蒸気とともに下流に排気として排出される排気流5と、
を備えておる水素を燃焼し水素を生成するエンジン燃焼装置Zを特徴とする水素と酸素を燃焼するエンジン。
An engine combustion apparatus Z having a structure in which water is converted into steam by heat generated by burning oxygen and hydrogen, and hydrogen is generated by reacting the steam, and oxygen and hydrogen are supplied to a combustion nozzle 2N of the combustion apparatus Z. , Is ignited by the spark plug 2P, burns in the combustion chamber NE, and receives heat directly from the combustion provided in the combustion chamber.
A water passage MHa that receives the direct heat generated by the combustion while the water provided in the heat-resistant structure part passes through the heat-resistant structure part SC, and turns the water into water vapor;
Water vapor A generating means for generating water vapor A in the water passage MHa;
Hydrogen generating means ZU provided in the outer shell of the heat-resistant structure,
A supply nozzle Zj for supplying the water vapor A to the hydrogen generation means ZU, and a secondary material for supplying the secondary material SB to be supplied from the supply nozzle Zj to the hydrogen generation means ZU and to react with water vapor in the hydrogen generation means ZU. SB supply means;
Hydrogen or a mixed gas containing hydrogen that generates hydrogen or a mixed gas containing hydrogen using any one or more of the steam A supplied to the hydrogen generating means ZU and the supplied secondary material SB; ,
A separation device for separating hydrogen from the mixed gas;
Hydrogen or a mixed gas containing hydrogen is introduced into the separator to extract hydrogen, and the obtained hydrogen is used as hydrogen for the fuel of the engine combustion device Z.
The supply nozzle Zj for supplying the steam A generated in the water passage MHa to the combustion chamber NE, and the steam A supplied from the supply nozzle Zj absorbs the heat in the combustion chamber NE and further increases the steam Aa and the steam Aa. The steam Aa is an exhaust stream 5 that is discharged downstream as exhaust together with the steam B generated by the combustion and the undecomposed steam that has not been decomposed (reformed) by the hydrogen generating means ZU;
An engine that burns hydrogen and oxygen, characterized by an engine combustion apparatus Z that burns hydrogen to produce hydrogen.
上記エンジン燃焼装置Zの下流に設けておる回転力取り出し装置3に該燃焼装置Zからの排気流5を貫流させ該回転力取り出し装置3を貫流した排気流5aを上記耐熱構造部SC内に設けておる通水路MHaに戻し入れる手段を設けて上記通水路MHaに排気流5aを戻し入れておる事を特徴とする水素と酸素を燃焼するエンジン。 The exhaust flow 5a from the combustion device Z is allowed to flow through the rotational force extraction device 3 provided downstream of the engine combustion device Z, and the exhaust flow 5a flowing through the rotational force extraction device 3 is provided in the heat resistant structure SC. An engine for burning hydrogen and oxygen, characterized in that means for returning to the water passage MHa is provided and the exhaust stream 5a is returned to the water passage MHa. 上記回転力取り出し装置3の回転翼体3aであって、
排気流5の略直線的な排気流力を回転力に変換する回転翼体と
該回転翼体3aの回転力を取り出す一方の回転軸3cと、
該回転軸3cの他方の回転軸3c1と、
上記回転力取り出し装置3の外殻体3dと、
上記他方の回転軸3c1端部から回転軸3c1内と回転翼体3a内を通り回転翼体3a外に通じる通水路3MHとを備えており、
上記通水路3MHに水を導入し該通水路を通過する過程で該水が回転翼体3aの熱を吸熱し水蒸気Cとなり回転力取り出し装置3貫流後の排気流5aとして下流に排出される構造で、回転翼体3aの冷却手段を有する回転力取り出し装置3とした事を特徴とする水素と酸素を燃焼するエンジン。
A rotary wing body 3a of the rotational force extracting device 3;
A rotating blade body for converting the substantially straight exhaust flow force of the exhaust flow 5 into a rotating force, and one rotating shaft 3c for extracting the rotating force of the rotating blade body 3a;
The other rotary shaft 3c1 of the rotary shaft 3c;
An outer shell 3d of the rotational force extracting device 3;
A water passage 3MH communicating from the end of the other rotating shaft 3c1 to the outside of the rotating blade body 3a through the rotating shaft 3c1 and the rotating blade body 3a;
In the process of introducing water into the water passage 3MH and passing through the water passage, the water absorbs the heat of the rotary blade body 3a and becomes steam C, and is discharged downstream as an exhaust flow 5a after flowing through the rotational force extracting device 3. Thus, an engine for burning hydrogen and oxygen, characterized in that it is a rotational force extracting device 3 having cooling means for the rotor 3a.
エンジン燃焼装置2、2a、2ar、Z、の何れかを搭載するエンジンの回転力取り出し装置3を貫流した排気流5a、を導入して電気&水素を生成する電気&水素生成手段4であって、
該手段に導入されておる排気流5aの持つ熱と水蒸気及び回転力取り出し装置3で取り出した電気Ea及び海水の内の1以上を材料として、
水蒸気電気分解装置F1か水蒸気電気分解装置FS1か金属酸化物と金属水酸化物の触媒と水蒸気で水素を採取する装置SYか水蒸気改質装置Ka1か水熱化学分解F2か熱電エネルギー変換装置DEか、熱交換器Gか燃料電池発電機FD1か海水真水化装置Waかの技術のいずれか1種以上の装置を用いるか組み合わせて、電気か水素の一方か両方を生成し、上記生成した水素の量により上記エンジン燃焼装置2,2a,2arを有するエンジンを複数台稼働させて稼働した複数台のエンジンから電気を更に生成する事を特徴とする水素と酸素を燃焼するエンジン。
An electricity & hydrogen generating means 4 for generating electricity & hydrogen by introducing an exhaust flow 5a that has flowed through a rotational force extracting device 3 of an engine equipped with any of the engine combustion devices 2, 2a, 2ar, Z. ,
One or more of the heat, water vapor, and electric force Ea taken out by the rotational force take-out device 3 and the seawater of the exhaust flow 5a introduced into the means,
Steam electrolysis apparatus F1, steam electrolysis apparatus FS1, metal oxide and metal hydroxide catalyst, apparatus SY for collecting hydrogen with steam, steam reformer Ka1, hydrothermal chemical decomposition F2 or thermoelectric energy conversion apparatus DE , One or both of the technologies of heat exchanger G, fuel cell generator FD1 and seawater desalination device Wa are used or combined to generate either electricity or hydrogen, and the generated hydrogen An engine for burning hydrogen and oxygen, wherein electricity is further generated from a plurality of engines operated by operating a plurality of engines having the engine combustion devices 2, 2a, 2ar according to quantity.
上記水素生成手段ZUを有すエンジンを稼働させ該水素生成手段ZUで生成した水素を当該エンジンと水素生成手段ZUを有さないエンジン燃焼装置2及び2a及び2arかの何れかの燃焼装置を複数台稼働させる水素とし、水素生成手段ZUを有すエンジン1台と水素生成手段ZUを有さないエンジン複数台稼働させ稼働させたエンジン全部で電気又は動力の何れか一方か両方かを生成しておる事を特徴とする水素と酸素を燃焼するエンジン。   The engine having the hydrogen generating means ZU is operated, and the hydrogen generated by the hydrogen generating means ZU is used as a plurality of combustion apparatuses of any one of the engine combustion apparatuses 2 and 2a and 2ar not having the engine and the hydrogen generating means ZU. The hydrogen to be operated in a stand-alone manner, and one engine having hydrogen generating means ZU and a plurality of engines having no hydrogen generating means ZU in operation are operated to generate either electricity or power. An engine that burns hydrogen and oxygen. 上記エンジンで生成した電気を蓄電器40に蓄電し移動体の移動電力として使用し、余剰となった電気か移動体非移動時の該エンジン稼働により生成する電気かのいずれかの電気の受け渡し形態を電気授受システムEaSTとしておる事を特徴とする水素と酸素を燃焼するエンジン。 The electricity generated by the engine is stored in the battery 40 and used as the moving power of the moving body, and either the surplus electricity or the electricity generated by the operation of the engine when the moving body is not moving is used. An engine that burns hydrogen and oxygen, characterized by the fact that it is used as an electricity transfer system EaST. 上記エンジン燃焼装置Zを備えるエンジンを稼働させ水素を生成し、該エンジンで生成された水素を燃料として使用するエンジン燃焼装置2,2a,2ar、のいずれか1以上に供給し、酸素分離装置1で分離した酸素と上記水素を燃焼させ、燃焼により得られた水蒸気と熱と電気の何れか1以上を廃プラスチック資源化手段のエネルギー及び水蒸気とし該廃プラスチック資源化手段へ供給し、廃プラスチック資源化コストの低減を図っておることを特徴とする水素と酸素を燃焼するエンジン。
An engine including the engine combustion device Z is operated to generate hydrogen, and the hydrogen generated by the engine is supplied to any one or more of the engine combustion devices 2, 2a, 2ar that use the fuel as an oxygen separation device 1 The oxygen separated in step 1 and the hydrogen are combusted, and one or more of water vapor, heat and electricity obtained by the combustion is supplied to the waste plastic resource recycling means as energy and steam of the waste plastic resource recycling means, and waste plastic resources An engine that burns hydrogen and oxygen, which is characterized by a reduction in production costs.
JP2018089244A 2018-05-07 2018-05-07 Engine combusting hydrogen and oxygen Pending JP2019196028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018089244A JP2019196028A (en) 2018-05-07 2018-05-07 Engine combusting hydrogen and oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018089244A JP2019196028A (en) 2018-05-07 2018-05-07 Engine combusting hydrogen and oxygen

Publications (1)

Publication Number Publication Date
JP2019196028A true JP2019196028A (en) 2019-11-14

Family

ID=68538610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018089244A Pending JP2019196028A (en) 2018-05-07 2018-05-07 Engine combusting hydrogen and oxygen

Country Status (1)

Country Link
JP (1) JP2019196028A (en)

Similar Documents

Publication Publication Date Title
JP6680431B2 (en) An engine that burns hydrogen and oxygen.
CN106133973A (en) For hydrogen manufacturing reformer electrolysis bath depurator (REP) assembly, comprise its system and the method for hydrogen manufacturing
CN109707992B (en) Multifunctional charging hydrogenation station
JP5967682B1 (en) An engine that produces fuel by the combustion of enriched oxygen air and fuel.
WO2000028610A1 (en) Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions
US20220109175A1 (en) Carbon-neutral process for generating electricity
Prigent On board hydrogen generation for fuel cell powered electric cars. A review of various available techniques
US20060127718A1 (en) Fuel cell, operating method thereof, sintering furnace, and power generator
US20220115682A1 (en) Carbon-neutral process for generating electricity
JP6748802B2 (en) An engine system that continuously burns hydrogen and enriched oxygen air.
US20220081295A1 (en) System and method for adjusting pressure in a reservoir and system for producing at least one energy carrier
CA2528691C (en) Fuel cell, operating method thereof, sintering furnace, and power generator
EP3906356B1 (en) System and method for adjusting pressure in a reservoir
KR102153760B1 (en) Ship
CN112786934A (en) Phosphoric acid fuel cell power system taking methanol as raw material and power generation method thereof
JP2019196028A (en) Engine combusting hydrogen and oxygen
KR102190948B1 (en) Ship
KR102175736B1 (en) Ship
JP2021092224A (en) Engine burning hydrogen and oxygen and also producing hydrogen and oxygen
KR102190938B1 (en) Ship
KR102153758B1 (en) Ship
CN215220773U (en) Alcohol-hydrogen fuel power system and power generation device
KR102190949B1 (en) Ship
JP2003109638A (en) Sofc fuel recycle system
KR102190937B1 (en) Ship

Legal Events

Date Code Title Description
A764 Written withdrawal of priority claim

Free format text: JAPANESE INTERMEDIATE CODE: A764

Effective date: 20181218