JP2019183191A - Aluminum alloy powder and manufacturing method therefor, aluminum alloy extrusion material and manufacturing method therefor - Google Patents
Aluminum alloy powder and manufacturing method therefor, aluminum alloy extrusion material and manufacturing method therefor Download PDFInfo
- Publication number
- JP2019183191A JP2019183191A JP2018071463A JP2018071463A JP2019183191A JP 2019183191 A JP2019183191 A JP 2019183191A JP 2018071463 A JP2018071463 A JP 2018071463A JP 2018071463 A JP2018071463 A JP 2018071463A JP 2019183191 A JP2019183191 A JP 2019183191A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- aluminum alloy
- intermetallic compound
- extruded material
- alloy powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 178
- 239000000463 material Substances 0.000 title claims abstract description 76
- 238000001125 extrusion Methods 0.000 title claims abstract description 32
- 239000000843 powder Substances 0.000 title claims description 60
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 54
- 229910018084 Al-Fe Inorganic materials 0.000 claims abstract description 29
- 229910018192 Al—Fe Inorganic materials 0.000 claims abstract description 29
- 239000012535 impurity Substances 0.000 claims abstract description 18
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 17
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 8
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 12
- 150000002739 metals Chemical class 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 238000000748 compression moulding Methods 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 abstract description 7
- 230000008520 organization Effects 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 230000003068 static effect Effects 0.000 description 13
- 239000000956 alloy Substances 0.000 description 12
- 238000002485 combustion reaction Methods 0.000 description 11
- 235000012438 extruded product Nutrition 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000009661 fatigue test Methods 0.000 description 6
- 238000005728 strengthening Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000000889 atomisation Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910017818 Cu—Mg Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/047—Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/05—Light metals
- B22F2301/052—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2303/00—Functional details of metal or compound in the powder or product
- B22F2303/15—Intermetallic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/05—Submicron size particles
- B22F2304/056—Particle size above 100 nm up to 300 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/05—Submicron size particles
- B22F2304/058—Particle size above 300 nm up to 1 micrometer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/10—Micron size particles, i.e. above 1 micrometer up to 500 micrometer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Extrusion Of Metal (AREA)
Abstract
Description
本発明は、高温における機械特性に優れたアルミニウム合金粉末及びその製造方法、高温における機械特性に優れたアルミニウム合金押出材(押出品)及びその製造方法に関する。 The present invention relates to an aluminum alloy powder excellent in mechanical properties at high temperatures and a production method thereof, an aluminum alloy extruded material (extruded product) excellent in mechanical properties at high temperatures, and a production method thereof.
自動車の内燃機関としてのターボチャージャーにおけるコンプレッサーホイール等のコンプレッサーインペラーは、150℃程度の高温状況下において10000rpmを超える高速回転が与えられるため、この高温下において高強度および高剛性を備えていることが要求される。加えて、コンプレッサーインペラーは、エネルギー損失の低減を図るために軽量化も要求されるし、高速回転に耐えることができる強度も要求される。 A compressor impeller such as a compressor wheel in a turbocharger as an internal combustion engine of an automobile is provided with high strength and high rigidity at a high temperature exceeding 10,000 rpm under a high temperature condition of about 150 ° C. Required. In addition, the compressor impeller is required to be lightweight in order to reduce energy loss, and to be strong enough to withstand high-speed rotation.
例えば、従来では、コンプレッサーインペラーは、2618合金(Cu:1.9質量%〜2.7質量%、Mg:1.3質量%〜1.8質量%、Ni:0.9質量%〜1.2質量%、Fe:0.9質量%〜1.3質量%、Si:0.1質量%〜0.25質量%、Ti:0.04質量%〜0.1質量%を含有し、残部がAlからなる合金)の鋳造・鍛造品を切削加工して製造していた。 For example, conventionally, a compressor impeller is made of a 2618 alloy (Cu: 1.9 mass% to 2.7 mass%, Mg: 1.3 mass% to 1.8 mass%, Ni: 0.9 mass% to 1. mass%). 2 mass%, Fe: 0.9 mass% to 1.3 mass%, Si: 0.1 mass% to 0.25 mass%, Ti: 0.04 mass% to 0.1 mass%, the balance Was manufactured by cutting a cast / forged product made of Al).
しかし、近年における切削加工の高速化により、アルミニウム合金押出材の切削品化が進んできており、切削性の向上、高温強度の改善がさらに必要となってきている。 However, due to the recent increase in cutting speed, the aluminum alloy extruded material has been made into a cut product, and further improvements in machinability and high temperature strength are required.
例えば、特許文献1には、高温(160℃)での強度が従来よりも向上したAl−Cu−Mg系アルミニウム合金押出材を提供する技術が開示されている。即ち、特許文献1には、Cu:3.4〜5.5%(質量%、以下同じ)、Mg:1.7〜2.3%、Ni:1.0〜2.5%、Fe:0.5〜1.5%、Mn:0.1〜0.4%、Zr:0.05〜0.3%、Si:0.1%未満、Ti:0.1%未満を含み、残部Al及び不可避不純物からなることを特徴とする高温強度及び高温疲労特性に優れた耐熱アルミニウム合金押出材が記載されている。
For example,
ところで、自動車等の内燃機関の技術分野においてコンプレッサーインペラー等は、更なる高速回転化が求められており、従ってコンプレッサーインペラー等の構成材料としてのアルミニウム合金材としては、従来よりさらに高い温度域においても機械特性に優れたものが希求されている。また、これらの部材に要求される特性としては、静的強度の他に、クリープ特性等の動的な強度も優れていることが要請されている。 By the way, in the technical field of internal combustion engines such as automobiles, compressor impellers and the like are required to be further rotated at high speed. Therefore, as an aluminum alloy material as a constituent material of compressor impellers and the like, even in a higher temperature range than before. What has excellent mechanical properties is desired. Moreover, as a characteristic requested | required of these members, it is requested | required that dynamic strengths, such as a creep characteristic other than static strength, are excellent.
本発明は、かかる技術的背景に鑑みてなされたものであって、高温における機械特性に優れたアルミニウム合金粉末及びその製造方法、高温における機械特性に優れたアルミニウム合金押出材及びその製造方法を提供することを目的とする。 The present invention has been made in view of such a technical background, and provides an aluminum alloy powder excellent in mechanical properties at high temperatures and a manufacturing method thereof, an aluminum alloy extruded material excellent in mechanical properties at high temperatures, and a manufacturing method thereof. The purpose is to do.
前記目的を達成するために、本発明は以下の手段を提供する。 In order to achieve the above object, the present invention provides the following means.
[1]Fe:5.0質量%〜9.0質量%、V:0.1質量%〜3.0質量%、Mo:0.1質量%〜3.0質量%、Zr:0.1質量%〜2.0質量%、Ti:0.02質量%〜2.0質量%を含有し、CrおよびMnからなる群より選ばれる1種または2種の金属を、それぞれ0.02質量%〜2.0質量%含有し、残部がAl及び不可避不純物からなるアルミニウム合金粉末であって、
前記アルミニウム合金粉末中にAl−Fe系金属間化合物を含有し、前記アルミニウム合金粉末の断面組織構造において前記Al−Fe系金属間化合物の平均円相当直径が0.1μm〜3.0μmの範囲であることを特徴とするアルミニウム合金粉末。
[1] Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.0% by mass, Zr: 0.1 1% or 2 types of metals selected from the group consisting of Cr and Mn, each containing 0.02% by mass, containing 0.02% by mass to 2.0% by mass, Ti: 0.02% by mass, -2.0 mass% aluminum alloy powder containing the balance and Al and inevitable impurities,
The aluminum alloy powder contains an Al—Fe based intermetallic compound, and the average equivalent circle diameter of the Al—Fe based intermetallic compound is in the range of 0.1 μm to 3.0 μm in the cross-sectional structure of the aluminum alloy powder. An aluminum alloy powder characterized by being.
[2]前記アルミニウム合金は、さらに、Bを0.0001質量%〜0.03質量%含む前項1に記載のアルミニウム合金粉末。
[2] The aluminum alloy powder according to
[3]Fe:5.0質量%〜9.0質量%、V:0.1質量%〜3.0質量%、Mo:0.1質量%〜3.0質量%、Zr:0.1質量%〜2.0質量%、Ti:0.02質量%〜2.0質量%を含有し、CrおよびMnからなる群より選ばれる1種または2種の金属を、それぞれ0.02質量%〜2.0質量%含有し、残部がAl及び不可避不純物からなるアルミニウム合金の溶湯をアトマイズ法によって急冷凝固させて粉末化してアルミニウム合金粉末を得ることを特徴とするアルミニウム合金粉末の製造方法。 [3] Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.0% by mass, Zr: 0.1 1% or 2 types of metals selected from the group consisting of Cr and Mn, each containing 0.02% by mass, containing 0.02% by mass to 2.0% by mass, Ti: 0.02% by mass, A method for producing an aluminum alloy powder, characterized in that an aluminum alloy powder is obtained by quenching and solidifying a molten aluminum alloy containing ~ 2.0% by mass, the balance being Al and inevitable impurities, by an atomizing method.
[4]Fe:5.0質量%〜9.0質量%、V:0.1質量%〜3.0質量%、Mo:0.1質量%〜3.0質量%、Zr:0.1質量%〜2.0質量%、Ti:0.02質量%〜2.0質量%を含有し、CrおよびMnからなる群より選ばれる1種または2種の金属を、それぞれ0.02質量%〜2.0質量%含有し、残部がAl及び不可避不純物からなるアルミニウム合金押出材であって、
前記アルミニウム合金押出材中にAl−Fe系金属間化合物を含有し、前記アルミニウム合金押出材の断面組織構造において前記Al−Fe系金属間化合物の平均円相当直径が0.1μm〜3.0μmの範囲であることを特徴とするアルミニウム合金押出材。
[4] Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.0% by mass, Zr: 0.1 1% or 2 types of metals selected from the group consisting of Cr and Mn, each containing 0.02% by mass, containing 0.02% by mass to 2.0% by mass, Ti: 0.02% by mass, It is an aluminum alloy extruded material containing ~ 2.0% by mass, the balance being Al and inevitable impurities,
The aluminum alloy extrudate contains an Al—Fe intermetallic compound, and the average equivalent circle diameter of the Al—Fe intermetallic compound is 0.1 μm to 3.0 μm in the cross-sectional structure of the aluminum alloy extrudate. An aluminum alloy extruded material characterized by being in a range.
[5]前記アルミニウム合金押出は、さらに、Bを0.0001質量%〜0.03質量%含む前項4に記載のアルミニウム合金押出材。 [5] The aluminum alloy extruded material according to item 4, wherein the aluminum alloy extrusion further contains 0.0001% by mass to 0.03% by mass of B.
[6]前記金属間化合物は、Al、Fe、V及びMoを少なくとも含有してなるAl−Fe−V−Mo系金属間化合物であり、
前記金属間化合物における、Alの含有率が81.60質量%〜92.37質量%、Feの含有率が2.58質量%〜10.05質量%、Vの含有率が1.44質量%〜4.39質量%、Moの含有率が2.45質量%〜3.62質量%である請求項4または5に記載のアルミニウム合金押出材。
[6] The intermetallic compound is an Al—Fe—V—Mo intermetallic compound containing at least Al, Fe, V, and Mo,
In the intermetallic compound, the Al content is 81.60 mass% to 92.37 mass%, the Fe content is 2.58 mass% to 10.05 mass%, and the V content is 1.44 mass%. The aluminum alloy extruded material according to claim 4 or 5, which has ˜4.39 mass% and a Mo content of 2.45 mass% to 3.62 mass%.
[7]前項1または2に記載のアルミニウム合金粉末を圧縮成形して圧粉体を得る圧縮成形工程と、
前記圧粉体を熱間押出しして押出材を得る押出工程と、を含み、
前記押出材は、該押出材中にAl−Fe系金属間化合物を含有し、前記押出材の断面組織構造において前記Al−Fe系金属間化合物の平均円相当直径が0.1μm〜3.0μmの範囲であることを特徴とするアルミニウム合金押出材の製造方法。
[7] A compression molding step for obtaining a green compact by compression molding the aluminum alloy powder according to the
An extrusion step of hot extruding the green compact to obtain an extruded material,
The extrudate contains an Al—Fe intermetallic compound in the extrudate, and an average equivalent circle diameter of the Al—Fe intermetallic compound in the cross-sectional structure of the extrudate is 0.1 μm to 3.0 μm. The manufacturing method of the aluminum alloy extruded material characterized by the above-mentioned.
[1]の発明によれば、高温における機械特性に優れたアルミニウム合金粉末が提供される。従って、このアルミニウム合金粉末を用いることで、高温における機械特性(静的強度、クリープ特性等)に優れたアルミニウム合金押出材(押出品)を製造できる。 According to the invention of [1], an aluminum alloy powder excellent in mechanical properties at a high temperature is provided. Therefore, by using this aluminum alloy powder, an aluminum alloy extruded material (extruded product) excellent in mechanical properties (static strength, creep properties, etc.) at high temperatures can be produced.
[2]の発明によれば、高温における機械特性(値)をより向上させたアルミニウム合金粉末が提供される。 According to the invention of [2], an aluminum alloy powder with improved mechanical properties (value) at high temperatures is provided.
[3]の発明によれば、アルミニウム合金の溶湯をアトマイズ法によって急冷凝固させて粉末化しているので、合金の各元素の凝固時の拡散を抑制し、結晶粒や析出物の粗大化を抑制できて、さらに平衡相や準安定相の出現を抑制できて、遷移元素であるFeの固溶量の拡大をなし得て、高温における機械特性(静的強度、クリープ特性等)に優れたアルミニウム合金粉末を製造することができる。従って、このアルミニウム合金粉末を用いることで、高温における機械特性に優れたアルミニウム合金押出材(押出品)を製造できる。 According to the invention of [3], since the molten aluminum alloy is rapidly solidified by atomization and powdered, the diffusion of each element of the alloy during solidification is suppressed, and the coarsening of crystal grains and precipitates is suppressed. In addition, the appearance of equilibrium and metastable phases can be further suppressed, the solid solution amount of the transition element Fe can be increased, and the aluminum has excellent mechanical properties (static strength, creep properties, etc.) at high temperatures. Alloy powder can be produced. Therefore, by using this aluminum alloy powder, an aluminum alloy extruded material (extruded product) excellent in mechanical properties at high temperatures can be produced.
[4]の発明によれば、高温における機械特性(静的強度、クリープ特性等)に優れたアルミニウム合金押出材(押出品)が提供される。このアルミニウム合金押出材は、例えば、自動車用ターボチャージャーのターボコンプレッサーインペラー等の内燃機関部材として好適である。換言すれば、このアルミニウム合金押出材は、例えば、高温下で高速で回転する内燃機関部材(内燃機関部品)として好適である。 According to the invention of [4], an aluminum alloy extruded material (extruded product) excellent in mechanical properties (static strength, creep properties, etc.) at a high temperature is provided. This aluminum alloy extruded material is suitable as an internal combustion engine member such as a turbo compressor impeller of a turbocharger for automobiles. In other words, this aluminum alloy extruded material is suitable, for example, as an internal combustion engine member (internal combustion engine component) that rotates at high speed under high temperature.
[5]の発明によれば、高温における機械特性(値)をより向上させたアルミニウム合金押出材が提供される。 According to the invention of [5], an aluminum alloy extruded material with improved mechanical properties (value) at high temperature is provided.
[6]の発明によれば、高温における機械特性(値)をより一層向上させたアルミニウム合金押出材が提供される。 According to the invention of [6], an aluminum alloy extruded material further improved in mechanical properties (value) at a high temperature is provided.
[7]の発明によれば、高温における機械特性(静的強度、クリープ特性等)に優れたアルミニウム合金押出材(押出品)を製造することができる。得られたアルミニウム合金押出材は、例えば、自動車用ターボチャージャーのターボコンプレッサーインペラー等の内燃機関部材として好適である。換言すれば、得られたアルミニウム合金押出材は、例えば、高温下で高速で回転する内燃機関部材(内燃機関部品)として好適である。 According to the invention of [7], an aluminum alloy extruded material (extruded product) excellent in mechanical properties (static strength, creep properties, etc.) at high temperatures can be produced. The obtained aluminum alloy extruded material is suitable as an internal combustion engine member such as a turbo compressor impeller of a turbocharger for automobiles. In other words, the obtained aluminum alloy extruded material is suitable, for example, as an internal combustion engine member (internal combustion engine component) that rotates at high speed under high temperature.
本発明に係るアルミニウム合金粉末は、Fe:5.0質量%〜9.0質量%、V:0.1質量%〜3.0質量%、Mo:0.1質量%〜3.0質量%、Zr:0.1質量%〜2.0質量%、Ti:0.02質量%〜2.0質量%を含有し、CrおよびMnからなる群より選ばれる1種または2種の金属を、それぞれ0.02質量%〜2.0質量%含有し、残部がAl及び不可避不純物からなるアルミニウム合金粉末であって、前記アルミニウム合金粉末中にAl−Fe系金属間化合物を含有し、前記アルミニウム合金粉末の断面組織構造において前記Al−Fe系金属間化合物の平均円相当直径が0.1μm〜3.0μmの範囲である構成である。このような構成であることにより、高温における機械特性に優れたアルミニウム合金粉末が提供される。従って、本発明のアルミニウム合金粉末を用いることで、高温における機械特性(静的強度、クリープ特性等)に優れたアルミニウム合金押出材(押出品)を製造できる。 The aluminum alloy powder according to the present invention includes Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.0% by mass. , Zr: 0.1% by mass to 2.0% by mass, Ti: 0.02% by mass to 2.0% by mass, and one or two metals selected from the group consisting of Cr and Mn, Each aluminum alloy powder containing 0.02% by mass to 2.0% by mass with the balance being Al and inevitable impurities, the aluminum alloy powder containing an Al—Fe intermetallic compound, and the aluminum alloy In the cross-sectional structure of the powder, the average equivalent circle diameter of the Al—Fe intermetallic compound is in the range of 0.1 μm to 3.0 μm. With such a configuration, an aluminum alloy powder excellent in mechanical properties at high temperatures is provided. Therefore, by using the aluminum alloy powder of the present invention, an aluminum alloy extruded material (extruded product) excellent in mechanical properties (static strength, creep properties, etc.) at high temperatures can be produced.
前記アルミニウム合金粉末の平均粒子径は、特に限定されるものではないが、30μm〜70μmの範囲であるのが好ましい。30μm以上であることで合金粉末作製の歩留まりを顕著に向上できると共に、70μm以下であることで粗大な酸化物や異物の混入を回避できる。 The average particle diameter of the aluminum alloy powder is not particularly limited, but is preferably in the range of 30 μm to 70 μm. When the thickness is 30 μm or more, the yield of manufacturing the alloy powder can be remarkably improved, and when the thickness is 70 μm or less, mixing of coarse oxides and foreign matters can be avoided.
次に、本発明に係る、アルミニウム合金粉末の製造方法について説明する。本製造方法では、Fe:5.0質量%〜9.0質量%、V:0.1質量%〜3.0質量%、Mo:0.1質量%〜3.0質量%、Zr:0.1質量%〜2.0質量%、Ti:0.02質量%〜2.0質量%を含有し、CrおよびMnからなる群より選ばれる1種または2種の金属を、それぞれ0.02質量%〜2.0質量%含有し、残部がAl及び不可避不純物からなるアルミニウム合金の溶湯をアトマイズ法によって急冷凝固させて粉末化してアルミニウム合金粉末(アルミニウム合金アトマイズ粉末)を得る(粉末化工程)。このような製造方法によって上述した構成を備えたアルミニウム合金粉末を提供できる、即ち、上記製造方法によって、上記特定組成のアルミニウム合金粉末であって、該アルミニウム合金粉末中にAl−Fe系金属間化合物を含有し、前記アルミニウム合金粉末の断面組織構造において前記Al−Fe系金属間化合物の平均円相当直径が0.1μm〜3.0μmの範囲である構成のものを製造することができる。 Next, the manufacturing method of the aluminum alloy powder based on this invention is demonstrated. In this production method, Fe: 5.0 mass% to 9.0 mass%, V: 0.1 mass% to 3.0 mass%, Mo: 0.1 mass% to 3.0 mass%, Zr: 0 0.1% by mass to 2.0% by mass, Ti: 0.02% by mass to 2.0% by mass, and one or two metals selected from the group consisting of Cr and Mn are each 0.02%. Aluminum alloy powder (aluminum alloy atomized powder) is obtained by rapidly solidifying a molten aluminum alloy containing mass% to 2.0 mass%, the balance being Al and unavoidable impurities by an atomizing method (powdering step). . By such a manufacturing method, an aluminum alloy powder having the above-described configuration can be provided, that is, by the above manufacturing method, an aluminum alloy powder having the above specific composition, and an Al—Fe-based intermetallic compound in the aluminum alloy powder. In which the average equivalent circle diameter of the Al—Fe intermetallic compound is in the range of 0.1 μm to 3.0 μm in the cross-sectional structure of the aluminum alloy powder.
前記粉末化工程では、上記特定組成のアルミニウム合金溶湯を通常の溶解法によって調製する。得られたアルミニウム合金溶湯をアトマイズ法によって粉末化する。アトマイズ法は、噴霧ノズルからの窒素ガス等のガス流によりアルミニウム合金溶湯の微小液滴をミスト化して噴霧し、微小液滴を急冷凝固させて微細なアルミニウム合金粉末を得る方法である。冷却速度は、102〜105℃/秒であるのが好ましい。平均粒子径が30μm〜70μmのアルミニウム合金粉末が得られるようにするのがよい。得られたアルミニウム合金粉末は、篩を用いて分級するのが好ましい。 In the powdering step, the molten aluminum alloy having the specific composition is prepared by a normal melting method. The obtained molten aluminum alloy is pulverized by an atomizing method. The atomization method is a method in which fine droplets of molten aluminum alloy are atomized and sprayed by a gas flow such as nitrogen gas from a spray nozzle, and the fine droplets are rapidly solidified to obtain a fine aluminum alloy powder. The cooling rate is preferably 10 2 to 10 5 ° C / second. It is preferable to obtain an aluminum alloy powder having an average particle size of 30 μm to 70 μm. The obtained aluminum alloy powder is preferably classified using a sieve.
なお、本発明に係るアルミニウム合金粉末(前記[1]の発明)は、上記製造方法で得られたアルミニウム合金粉末に限定されるものではなく、他の製造方法で得られたものも包含する。 The aluminum alloy powder according to the present invention (the invention of [1]) is not limited to the aluminum alloy powder obtained by the above production method, but also includes those obtained by other production methods.
次に、本発明に係るアルミニウム合金押出材の製造方法について説明する。前記粉末化工程で得られたアルミニウム合金粉末を圧縮成形して圧粉体を得る(圧縮成形工程)。一例を挙げると、250℃〜300℃に加熱したアルミニウム合金粉末を、230℃〜270℃に加熱された金型内に充填し、所定形状に圧縮成形して圧粉体を得る。前記圧縮成形の圧力は、特に限定されないが、通常は、0.5トン/cm2〜3.0トン/cm2に設定するのが好ましい。また、相対密度が60%〜90%の圧粉体にするのが好ましい。前記圧粉体の形状は、特に限定されないが、次の押出工程を考慮して、円柱形状または円盤状とするのが好ましい。 Next, the manufacturing method of the aluminum alloy extrusion material which concerns on this invention is demonstrated. The aluminum alloy powder obtained in the powdering step is compression molded to obtain a green compact (compression molding step). For example, an aluminum alloy powder heated to 250 ° C. to 300 ° C. is filled in a mold heated to 230 ° C. to 270 ° C., and compression molded into a predetermined shape to obtain a green compact. The pressure for the compression molding is not particularly limited, but usually it is preferably set to 0.5 ton / cm 2 to 3.0 ton / cm 2 . Moreover, it is preferable to use a green compact with a relative density of 60% to 90%. The shape of the green compact is not particularly limited, but it is preferably a cylindrical shape or a disk shape in consideration of the next extrusion process.
次いで、前記圧縮成形工程で得られた圧粉体を熱間押出しして押出材を得る(押出工程)。前記圧粉体には、必要に応じて面削等の機械加工を施してから、脱ガス処理を施し、加熱して押出工程に供する。押出前の圧粉体の加熱温度は、300℃〜450℃にするのが好ましい。押出に際しては、例えば、圧粉体を押出コンテナ内に挿入して押出ラムにより加圧力を加え、押出ダイスから例えば丸棒形状に押出す。この時、前記押出コンテナを予め300℃〜400℃に加熱しておくのが望ましい。このように熱間で押し出すことによって圧粉体の塑性変形が進行し、アルミニウム合金粉末(粒子)同士が結合して一体化した押出体が得られる。前記押出の際に、押出圧力は10MPa〜25MPaに設定するのが好ましい。 Next, the green compact obtained in the compression molding step is hot-extruded to obtain an extruded material (extrusion step). The green compact is subjected to machining such as chamfering as necessary, and then subjected to degassing treatment and heated to be subjected to an extrusion process. The heating temperature of the green compact before extrusion is preferably 300 ° C to 450 ° C. At the time of extrusion, for example, the green compact is inserted into an extrusion container, pressure is applied by an extrusion ram, and the extrusion die is extruded into, for example, a round bar shape. At this time, it is desirable to heat the extrusion container to 300 ° C. to 400 ° C. in advance. By extruding in this way, plastic deformation of the green compact proceeds, and an extruded body in which aluminum alloy powders (particles) are combined and integrated is obtained. During the extrusion, the extrusion pressure is preferably set to 10 MPa to 25 MPa.
前記押出工程で得られた押出材1は、該押出材中にAl−Fe系金属間化合物を含有し、前記押出材の断面組織構造において前記Al−Fe系金属間化合物の平均円相当直径が0.1μm〜5.0μmの範囲にある構成である。こうして本発明のアルミニウム合金押出材を得ることができる。
The extruded
上述した本発明に係る、アルミニウム合金押出材の製造方法によって得られたアルミニウム合金押出材(本発明に係るアルミニウム合金押出材)は、Fe:5.0質量%〜9.0質量%、V:0.1質量%〜3.0質量%、Mo:0.1質量%〜3.0質量%、Zr:0.1質量%〜2.0質量%、Ti:0.02質量%〜2.0質量%を含有し、CrおよびMnからなる群より選ばれる1種または2種の金属を、それぞれ0.02質量%〜2.0質量%含有し、残部がAl及び不可避不純物からなるアルミニウム合金押出材であって、前記アルミニウム合金押出材中にAl−Fe系金属間化合物を含有し、前記アルミニウム合金押出材の断面組織構造において前記Al−Fe系金属間化合物の平均円相当直径が0.1μm〜3.0μmの範囲である構成である。 The aluminum alloy extruded material (aluminum alloy extruded material according to the present invention) obtained by the method for producing an aluminum alloy extruded material according to the present invention described above is Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.0% by mass, Zr: 0.1% by mass to 2.0% by mass, Ti: 0.02% by mass to 2.% by mass. Aluminum alloy containing 0% by mass, one or two metals selected from the group consisting of Cr and Mn, each containing 0.02% by mass to 2.0% by mass, with the balance being Al and inevitable impurities The aluminum alloy extrudate contains an Al—Fe intermetallic compound, and the average equivalent circle diameter of the Al—Fe intermetallic compound is 0. 0 in the cross-sectional structure of the aluminum alloy extrudate. Range of 1 μm to 3.0 μm It is the composition which is.
なお、本発明に係るアルミニウム合金押出材は、上記製造方法で得られたアルミニウム合金押出材に限定されるものではなく、他の製造方法で得られたものも包含する。 In addition, the aluminum alloy extrusion material which concerns on this invention is not limited to the aluminum alloy extrusion material obtained by the said manufacturing method, The thing obtained by the other manufacturing method is also included.
次に、上述した本発明に係るアルミニウム合金粉末及びアルミニウム合金粉末の製造方法、アルミニウム合金押出材及びアルミニウム合金押出材の製造方法における「アルミニウム合金」の組成について以下詳述する。前記アルミニウム合金は、Fe:5.0質量%〜9.0質量%、V:0.1質量%〜3.0質量%、Mo:0.1質量%〜3.0質量%、Zr:0.1質量%〜2.0質量%、Ti:0.02質量%〜2.0質量%を含有し、CrおよびMnからなる群より選ばれる1種または2種の金属を、それぞれ0.02質量%〜2.0質量%含有し、残部がAl及び不可避不純物からなるアルミニウム合金である。 Next, the composition of “aluminum alloy” in the above-described aluminum alloy powder, aluminum alloy powder manufacturing method, aluminum alloy extruded material, and aluminum alloy extruded material manufacturing method according to the present invention will be described in detail below. The aluminum alloy contains Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.0% by mass, Zr: 0. 0.1% by mass to 2.0% by mass, Ti: 0.02% by mass to 2.0% by mass, and one or two metals selected from the group consisting of Cr and Mn are each 0.02%. It is an aluminum alloy containing from mass% to 2.0 mass%, with the balance being Al and inevitable impurities.
前記Fe(成分)は、高い融点を有するAl−Fe系金属間化合物を生成し、例えば200℃〜350℃の高い温度域での機械特性(静的強度、クリープ特性等)を向上できる元素である。前記アルミニウム合金におけるFe含有率は、5.0質量%〜9.0質量%の範囲とする。Fe含有率が5.0質量%未満になると、アルミニウム合金押出材等の製品の強度の低下をもたらし、Fe含有率が9.0質量%を超えると、アルミニウム合金押出材等の製品の延性が低下して、アルミニウム合金押出材等の製品の高温での機械特性(静的強度、クリープ特性等)に優れたものを得ることができない。中でも、前記アルミニウム合金におけるFe含有率は、7.0質量%〜8.0質量%の範囲であるのが好ましい。 The Fe (component) is an element that generates an Al—Fe-based intermetallic compound having a high melting point and can improve mechanical properties (static strength, creep properties, etc.) in a high temperature range of, for example, 200 ° C. to 350 ° C. is there. The Fe content in the aluminum alloy is in the range of 5.0 mass% to 9.0 mass%. When the Fe content is less than 5.0% by mass, the strength of the product such as an aluminum alloy extruded material is reduced. When the Fe content exceeds 9.0% by mass, the ductility of the product such as the aluminum alloy extruded material is reduced. It cannot decrease and cannot obtain a product having excellent mechanical properties (static strength, creep properties, etc.) at a high temperature of a product such as an aluminum alloy extruded material. Especially, it is preferable that the Fe content rate in the said aluminum alloy is the range of 7.0 mass%-8.0 mass%.
前記V(成分)は、Al−Fe−V−Mo系金属間化合物を生成し、例えば200℃〜350℃の高い温度域での機械特性(静的強度、クリープ特性等)を向上できる元素である。前記アルミニウム合金におけるV含有率は、0.1質量%〜3.0質量%の範囲とする。V含有率が0.1質量%未満になると、アルミニウム合金押出材等の製品の強度の低下をもたらし、V含有率が3.0質量%を超えると、アルミニウム合金押出材等の製品の延性が低下して、アルミニウム合金押出材等の製品の高温での機械特性(静的強度、クリープ特性等)に優れたものを得ることができない。中でも、前記アルミニウム合金におけるV含有率は、1.0質量%〜2.0質量%の範囲であるのが好ましい。 Said V (component) is an element which produces | generates an Al-Fe-V-Mo type | system | group intermetallic compound, and can improve the mechanical characteristics (static strength, creep characteristics, etc.) in the high temperature range of 200 to 350 degreeC, for example. is there. V content rate in the said aluminum alloy shall be the range of 0.1 mass%-3.0 mass%. When the V content is less than 0.1% by mass, the strength of the product such as an aluminum alloy extruded material is reduced. When the V content exceeds 3.0% by mass, the ductility of the product such as the aluminum alloy extruded material is reduced. It cannot decrease and cannot obtain a product having excellent mechanical properties (static strength, creep properties, etc.) at a high temperature of a product such as an aluminum alloy extruded material. Especially, it is preferable that the V content rate in the said aluminum alloy is the range of 1.0 mass%-2.0 mass%.
前記Mo(成分)は、Al−Fe−V−Mo系金属間化合物を生成し、例えば200℃〜350℃の高い温度域での機械特性(静的強度、クリープ特性等)を向上できる元素である。前記アルミニウム合金におけるMo含有率は、0.1質量%〜3.0質量%の範囲とする。Mo含有率が0.1質量%未満になると、アルミニウム合金押出材等の製品の強度の低下をもたらし、Mo含有率が3.0質量%を超えると、アルミニウム合金押出材等の製品の延性が低下して、アルミニウム合金押出材等の製品の高温での機械特性(静的強度、クリープ特性等)に優れたものを得ることができない。中でも、前記アルミニウム合金におけるMo含有率は、1.0質量%〜2.0質量%の範囲であるのが好ましい。 The Mo (component) is an element that generates an Al-Fe-V-Mo intermetallic compound and can improve mechanical properties (static strength, creep properties, etc.) in a high temperature range of, for example, 200 ° C to 350 ° C. is there. Mo content rate in the said aluminum alloy shall be the range of 0.1 mass%-3.0 mass%. When the Mo content is less than 0.1% by mass, the strength of the product such as an aluminum alloy extruded material is reduced. When the Mo content exceeds 3.0% by mass, the ductility of the product such as the aluminum alloy extruded material is reduced. It cannot decrease and cannot obtain a product having excellent mechanical properties (static strength, creep properties, etc.) at a high temperature of a product such as an aluminum alloy extruded material. Especially, it is preferable that the Mo content rate in the said aluminum alloy is the range of 1.0 mass%-2.0 mass%.
前記Zr(成分)は、Al−Fe−V−Mo系金属間化合物の粗大化を生じず、金属間化合物の微細晶出を実現できる元素である。また、前記Zrを含有していることで、高温強度を向上させることができるし、Alマトリックス中でのAlのの自己拡散を抑制できてクリープ特性を向上させることができる効果も得られる。前記アルミニウム合金におけるZr含有率は、0.1質量%〜2.0質量%の範囲とする。Zr含有率が0.1質量%未満になると、析出強化及び分散強化の効果を発揮できないという問題を生じる。また、Zr含有率が2.0質量%を超えると、Zrを含む粗大な金属間化合物が発生するので(後述の比較例9参照)、良好な機械的特性を得ることができない。中でも、前記アルミニウム合金におけるZr含有率は、0.5質量%〜1.5質量%の範囲であるのが好ましい。 The Zr (component) is an element that does not cause coarsening of the Al—Fe—V—Mo intermetallic compound and can realize fine crystallization of the intermetallic compound. Further, by containing Zr, the high temperature strength can be improved, and the self-diffusion of Al in the Al matrix can be suppressed and the creep characteristics can be improved. The Zr content in the aluminum alloy is in the range of 0.1% by mass to 2.0% by mass. When the Zr content is less than 0.1% by mass, there arises a problem that the effects of precipitation strengthening and dispersion strengthening cannot be exhibited. On the other hand, when the Zr content exceeds 2.0% by mass, a coarse intermetallic compound containing Zr is generated (see Comparative Example 9 described later), so that good mechanical properties cannot be obtained. Especially, it is preferable that the Zr content rate in the said aluminum alloy is the range of 0.5 mass%-1.5 mass%.
前記Ti(成分)は、前記Zrとの協働により、Alとの間で、L12構造のAl−(Ti,Zr)系金属間化合物を形成する役割を有する。また、前記Tiは、Alマトリックス中での拡散係数が小さいので、クリープ特性を向上させることができる効果も得られる。前記アルミニウム合金におけるTi含有率は、0.02質量%〜2.0質量%の範囲とする。Ti含有率が0.02質量%未満になると、析出強化及び分散強化の効果を発揮できないという問題を生じる。またTi含有率が2.0質量%を超えると、延性が低下し、高温での機械特性(静的強度、クリープ特性等)に優れたアルミニウム合金粉末及びアルミニウム合金押出材を得ることができない。中でも、前記アルミニウム合金におけるTi含有率は、0.5質量%〜1.0質量%の範囲であるのが好ましい。 The Ti (component) has a role of forming an Al— (Ti, Zr) -based intermetallic compound having an L 12 structure with Al in cooperation with the Zr. Moreover, since Ti has a small diffusion coefficient in the Al matrix, the effect of improving the creep characteristics can be obtained. Ti content rate in the said aluminum alloy shall be 0.02 mass%-2.0 mass%. When the Ti content is less than 0.02% by mass, there arises a problem that the effects of precipitation strengthening and dispersion strengthening cannot be exhibited. On the other hand, when the Ti content exceeds 2.0% by mass, ductility is lowered, and an aluminum alloy powder and an aluminum alloy extruded material excellent in mechanical properties (static strength, creep properties, etc.) at high temperatures cannot be obtained. Especially, it is preferable that Ti content rate in the said aluminum alloy is the range of 0.5 mass%-1.0 mass%.
本発明において、前記アルミニウム合金は、さらに、CrおよびMnからなる群より選ばれる1種または2種の金属を含有する。即ち、前記アルミニウム合金は、さらにCr:0.02質量%〜2.0質量%を含有する組成であってもよいし、或いはさらにMn:0.02質量%〜2.0質量%を含有する組成であってもよいし、或いはまたさらにCr:0.02質量%〜2.0質量%およびMn:0.02質量%〜2.0質量%を含有する組成であってもよい。Cr(成分)およびMn(成分)は、Al母相中に固溶して固溶強化として効果を発揮する。ただし、押出加工温度が500℃以上になると、析出が進行して高温での機械的特性を低下させやすいので、押出加工温度は500℃未満に設定するのが望ましい。またCr又は/及びMnの分散粒子は、再結晶後の粒界移動を抑制する効果があるので、例えば鍛造工程中におけるパーティングライン組織のST方向の平均結晶粒径の粗大化を抑制できて、本発明のアルミニウム合金押出材、鍛造材の全体にわたって微細な結晶粒、亜結晶粒を得ることができて、機械的特性をより向上させることができる。 In the present invention, the aluminum alloy further contains one or two metals selected from the group consisting of Cr and Mn. That is, the aluminum alloy may have a composition further containing Cr: 0.02% by mass to 2.0% by mass, or may further contain Mn: 0.02% by mass to 2.0% by mass. The composition may also be a composition containing Cr: 0.02% by mass to 2.0% by mass and Mn: 0.02% by mass to 2.0% by mass. Cr (component) and Mn (component) are dissolved in the Al matrix and exert an effect as solid solution strengthening. However, when the extrusion temperature is 500 ° C. or higher, precipitation proceeds and the mechanical properties at high temperatures are likely to be lowered. Therefore, the extrusion temperature is preferably set to less than 500 ° C. Moreover, since the dispersed particles of Cr or / and Mn have the effect of suppressing the grain boundary movement after recrystallization, for example, the coarsening of the average crystal grain size in the ST direction of the parting line structure during the forging process can be suppressed. Further, fine crystal grains and sub-crystal grains can be obtained over the entire aluminum alloy extruded material and forged material of the present invention, and the mechanical characteristics can be further improved.
また、Zrと、Cr又は/及びMnと、をそれぞれ上記含有率で含有することで、Al母相中に固溶して0.2%耐力を増大させることができる。 Moreover, by containing Zr and Cr or / and Mn at the above-mentioned contents, respectively, it is possible to increase the 0.2% yield strength by solid solution in the Al matrix.
Crを0.02質量%以上含有せしめることで、Al母相中にCrを固溶させることができて機械的特性(特に高温での疲労強度)を向上させることができ、また耐摩耗性を高め、Al母相中にCrが固溶して耐食性を向上させることができると共に、焼戻し軟化抵抗を高めるので、Crを含有せしめることで焼入れ性を向上できて熱処理硬さを向上させることができる。また、Crの含有率を2.0質量%以下とすることで、Al母相中にCrを固溶させることができ、更にCrを含む粗大な金属間化合物を生成し、機械的特性の低下を防止できると共に、熱伝導率の低下を回避できるし、摺動による接触面の昇温を防止できて耐スカッフィング性を向上できる。中でも、Crを含有させる場合、Cr含有率を0.05質量%〜1.5質量%に設定するのがより好ましい。 By containing 0.02% by mass or more of Cr, Cr can be dissolved in the Al matrix and mechanical characteristics (particularly fatigue strength at high temperatures) can be improved, and wear resistance can be improved. The Cr can be dissolved in the Al matrix to improve the corrosion resistance, and the resistance to temper softening can be improved. Therefore, by adding Cr, the hardenability can be improved and the heat treatment hardness can be improved. . In addition, by setting the Cr content to 2.0 mass% or less, Cr can be dissolved in the Al matrix, and a coarse intermetallic compound containing Cr is produced, resulting in a decrease in mechanical properties. Can be prevented, a decrease in thermal conductivity can be avoided, and the temperature rise of the contact surface due to sliding can be prevented, thereby improving the scuffing resistance. Especially, when Cr is contained, it is more preferable to set the Cr content to 0.05 mass% to 1.5 mass%.
また、Mnを0.02質量%以上含有せしめることで、Al母相中にMnを固溶させることができて機械的特性(特に高温での疲労強度)を向上させることができるという効果が得られる。また、Mnの含有率を2.0質量%以下とすることで、Al母相中にMnを固溶させることができ、更にMnを含む粗大な金属間化合物を生成し、機械的特性の低下を防止できる。中でも、Mnを含有させる場合、Mn含有率を0.05質量%〜1.5質量%に設定するのがより好ましい。 Further, by containing 0.02% by mass or more of Mn, the effect that Mn can be dissolved in the Al matrix and the mechanical properties (particularly fatigue strength at high temperature) can be improved is obtained. It is done. In addition, when the Mn content is 2.0% by mass or less, Mn can be dissolved in the Al matrix, and a coarse intermetallic compound containing Mn is generated, resulting in a decrease in mechanical properties. Can be prevented. Especially, when Mn is contained, it is more preferable to set the Mn content to 0.05 mass% to 1.5 mass%.
本発明において、前記アルミニウム合金は、さらに、B(ホウ素)を0.0001質量%〜0.03質量%含む構成(組成)としてもよい。Bを上記特定比率で含有せしめた組成とすることにより、結晶粒を微細化し、機械特性を向上できる。 In this invention, the said aluminum alloy is good also as a structure (composition) which contains 0.0001 mass%-0.03 mass% of B (boron) further. By setting it as the composition which contained B by the said specific ratio, a crystal grain can be refined | miniaturized and a mechanical characteristic can be improved.
本発明では、前記アルミニウム合金粉末中又は前記アルミニウム合金押出材中にAl−Fe系金属間化合物を含有し、前記アルミニウム合金粉末又は前記アルミニウム合金押出材の断面組織構造において前記Al−Fe系金属間化合物の平均円相当直径が0.1μm〜3.0μmの範囲である。前記金属間化合物の平均円相当直径が0.1μm未満になると、分散強化の効果を発揮できない。また、前記金属間化合物の平均円相当直径が3.0μmを超えると、粗大な金属間化合物となり、それを起点として破断するため機械的特性が低下するという問題を生じる。中でも、前記アルミニウム合金粉末又は前記アルミニウム合金押出材の断面組織構造において前記Al−Fe系金属間化合物の平均円相当直径が0.3μm〜2.0μmの範囲であるのが好ましく、さらに0.4μm〜1.5μmの範囲であるのが特に好ましい。 In the present invention, the aluminum alloy powder or the aluminum alloy extrudate contains an Al-Fe intermetallic compound, and the Al-Fe intermetallics in the cross-sectional structure of the aluminum alloy powder or the aluminum alloy extrudate. The average equivalent circle diameter of the compound is in the range of 0.1 μm to 3.0 μm. When the average equivalent circle diameter of the intermetallic compound is less than 0.1 μm, the effect of dispersion strengthening cannot be exhibited. In addition, when the average equivalent circle diameter of the intermetallic compound exceeds 3.0 μm, a coarse intermetallic compound is formed, and since it breaks from the starting point, the mechanical property is deteriorated. Among these, in the cross-sectional structure of the aluminum alloy powder or the aluminum alloy extruded material, the average equivalent circle diameter of the Al—Fe intermetallic compound is preferably in the range of 0.3 μm to 2.0 μm, and more preferably 0.4 μm. A range of ˜1.5 μm is particularly preferred.
前記Al−Fe系金属間化合物としては、特に限定されるものではないが、例えば、Al、Fe、V及びMoを少なくとも含有してなるAl−Fe−V−Mo系金属間化合物などが挙げられる。前記Al−Fe−V−Mo系金属間化合物における、Alの含有率は81.60質量%〜92.37質量%、Feの含有率は2.58質量%〜10.05質量%、Vの含有率は1.44質量%〜4.39質量%、Moの含有率は2.45質量%〜3.62質量%である構成が好ましく、この場合には200℃以上の高温域で良好な機械的特性を得ることができる。 The Al—Fe-based intermetallic compound is not particularly limited, and examples thereof include an Al—Fe—V—Mo-based intermetallic compound containing at least Al, Fe, V, and Mo. . In the Al—Fe—V—Mo intermetallic compound, the Al content is 81.60 mass% to 92.37 mass%, the Fe content is 2.58 mass% to 10.05 mass%, The content ratio is preferably 1.44% by mass to 4.39% by mass, and the Mo content is preferably 2.45% by mass to 3.62% by mass. In this case, the composition is good in a high temperature range of 200 ° C. or higher. Mechanical properties can be obtained.
なお、前記Al−Fe系金属間化合物の円相当直径とは、前記アルミニウム合金粉末又は前記アルミニウム合金押出材の断面のSEM写真(画像)におけるAl−Fe系金属間化合物の面積と同じ面積を有する円の直径として換算した値である。 The equivalent circle diameter of the Al-Fe intermetallic compound has the same area as the area of the Al-Fe intermetallic compound in the SEM photograph (image) of the cross section of the aluminum alloy powder or the extruded aluminum alloy material. It is a value converted as the diameter of a circle.
次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。 Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.
<実施例1>
Fe:8.0質量%、V:2.0質量%、Mo:2.0質量%、Zr:1.0質量%、Ti:1.0質量%、Cr:0.1質量%、Al:85.9質量%を含有し、不可避不純物を含有するアルミニウム合金を加熱して、1000℃のアルミニウム合金溶湯を得た後、該アルミニウム合金溶湯をガスにてアトマイズして急冷凝固させて粉末化して、平均粒子径が50μmのアルミニウム合金粉末(アルミニウム合金アトマイズ粉末)を得た。
<Example 1>
Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Ti: 1.0 mass%, Cr: 0.1 mass%, Al: After heating an aluminum alloy containing 85.9% by mass and containing inevitable impurities to obtain a molten aluminum alloy at 1000 ° C., the molten aluminum alloy is atomized with a gas, rapidly solidified, and powdered. An aluminum alloy powder (aluminum alloy atomized powder) having an average particle diameter of 50 μm was obtained.
次に、得られたアルミニウム合金粉末を280℃の温度に予熱し、この予熱したアルミニウム合金粉末を、同じ280℃に加熱保持した金型内に充填し、1.5トン/cm2の圧力で圧縮成形して、直径210mm、長さ250mmの円柱形状の圧粉体(成形体)を得た。次に、得られた圧粉体を旋盤にて直径203mmまで面削して、圧粉体のビレットを得た。 Next, the obtained aluminum alloy powder is preheated to a temperature of 280 ° C., the preheated aluminum alloy powder is filled in a mold heated and held at the same 280 ° C., and the pressure is 1.5 ton / cm 2 . Compression molding was performed to obtain a cylindrical green compact (molded body) having a diameter of 210 mm and a length of 250 mm. Next, the obtained green compact was chamfered to a diameter of 203 mm with a lathe to obtain a green compact billet.
次に、得られたビレットを400℃に加熱し、この加熱ビレットを、400℃に加熱保持された内径210mmの押出コンテナ中に挿入し、内径83mmのダイスで間接押出法により押出比6.4で押出して押出材1を得た(図1参照)。
Next, the obtained billet is heated to 400 ° C., and the heated billet is inserted into an extrusion container having an inner diameter of 210 mm heated and held at 400 ° C., and an extrusion ratio of 6.4 is obtained by an indirect extrusion method using a die having an inner diameter of 83 mm. Extruded
<実施例2>
アルミニウム合金溶湯を形成するためのアルミニウム合金として、Fe:8.0質量%、V:2.0質量%、Mo:2.0質量%、Zr:1.0質量%、Ti:1.0質量%、Cr:0.5質量%、Al:85.5質量%を含有し、不可避不純物を含有するアルミニウム合金を用いた以外は、実施例1と同様にして、押出材1を得た。
<Example 2>
As an aluminum alloy for forming a molten aluminum alloy, Fe: 8.0 mass%, V: 2.0 mass%, Mo: 2.0 mass%, Zr: 1.0 mass%, Ti: 1.0
<実施例3〜8>
アルミニウム合金溶湯を形成するためのアルミニウム合金として、表1に示す合金組成(不可避不純物を含有する)のアルミニウム合金を用いた以外は、実施例1と同様にして、押出材1を得た。
<Examples 3 to 8>
Extruded
<実施例9〜16>
アルミニウム合金溶湯を形成するためのアルミニウム合金として、表2に示す合金組成(不可避不純物を含有する)のアルミニウム合金を用いた以外は、実施例1と同様にして、押出材1を得た。
<Examples 9 to 16>
Extruded
<実施例17、18、比較例1〜6>
アルミニウム合金溶湯を形成するためのアルミニウム合金として、表3に示す合金組成(不可避不純物を含有する)のアルミニウム合金を用いた以外は、実施例1と同様にして、押出材1を得た。
<Examples 17 and 18, Comparative Examples 1 to 6>
Extruded
<比較例7〜14>
アルミニウム合金溶湯を形成するためのアルミニウム合金として、表4に示す合金組成(不可避不純物を含有する)のアルミニウム合金を用いた以外は、実施例1と同様にして、押出材1を得た。
<Comparative Examples 7-14>
Extruded
上記のようにして得られた各アルミニウム合金押出材(押出品)について下記評価法に基づいて評価を行った。その結果を表1〜4に示す。なお、表1〜4中の各元素欄において「−」の表記は、検出限界(0.005質量%)未満の数値であること(即ち当該元素が検出されなかったこと)を示している。 Each aluminum alloy extruded material (extruded product) obtained as described above was evaluated based on the following evaluation method. The results are shown in Tables 1-4. In addition, in each element column in Tables 1 to 4, the notation “−” indicates that the value is less than the detection limit (0.005 mass%) (that is, the element was not detected).
また、表1〜4中の「金属間化合物の平均円相当直径(μm)」は、各アルミニウム合金押出材のマトリックス中に存在するAl−Fe−V−Mo系金属間化合物(Al、Fe、V及びMoを少なくとも含有してなる金属間化合物)の平均円相当直径(μm)である。この「金属間化合物の平均円相当直径(μm)」は、得られたアルミニウム合金押出材(円柱体)のL方向(長さ方向即ち軸線方向)の中央部(中間二等分位置)から縦10mm×横10mm×厚さ10mmの大きさの組織観察用サンプル片を切り出し、このサンプル片を断面試料作製装置(Cross section polisher)を用いてミクロ研磨し、このミクロ研磨後のサンプル片のSEM写真(走査電子顕微鏡写真)を撮影し、この写真画像から金属間化合物の平均円相当直径(μm)を求めた(評価した)。前記SEM写真における視野1.5815mm2の範囲に存在する10個のAl−Fe−V−Mo系金属間化合物についての平均円相当直径を求めた。 In Tables 1 to 4, “average equivalent circle diameter (μm) of intermetallic compounds” is an Al—Fe—V—Mo intermetallic compound (Al, Fe, It is an average equivalent circular diameter (μm) of an intermetallic compound containing at least V and Mo. This “average circle equivalent diameter (μm) of intermetallic compound” is vertical from the center (intermediate bisection position) in the L direction (length direction, that is, axial direction) of the obtained aluminum alloy extruded material (cylindrical body). A sample piece for tissue observation having a size of 10 mm × width 10 mm × thickness 10 mm was cut out, this sample piece was micro-polished using a cross-section sample preparation device (Cross section polisher), and an SEM photograph of the sample piece after micro-polishing. (Scanning electron micrograph) was taken, and the average equivalent circle diameter (μm) of the intermetallic compound was determined (evaluated) from this photographic image. The average equivalent circle diameter was determined for 10 Al—Fe—V—Mo intermetallic compounds existing in the field of view of 1.5815 mm 2 in the SEM photograph.
<高温での引張強度評価法>
得られたアルミニウム合金押出材(円柱体)を、標点間距離20mm、平行部直径4mmの引張試験片に加工して、該引張試験片の高温引張試験を行うことによって高温引張強度(260℃での引張強度)を測定した。前記高温引張試験は、高温引張試験片を260℃に100時間保持した後に260℃の測定環境下で試験を行った。下記判定基準に基づいて評価した。
(判定基準)
「◎」…260℃での引張強度が356MPa以上
「○」…260℃での引張強度が351MPa以上355MPa以下
「△」…260℃での引張強度が346MPa以上350MPa以下
「×」…260℃での引張強度が345MPa以下である。
<Tensile strength evaluation method at high temperature>
The obtained aluminum alloy extruded material (cylindrical body) is processed into a tensile test piece having a distance between gauge points of 20 mm and a parallel part diameter of 4 mm, and a high temperature tensile test is performed on the tensile test piece (260 ° C.). Tensile strength) was measured. The high temperature tensile test was performed in a measurement environment at 260 ° C. after holding the high temperature tensile test piece at 260 ° C. for 100 hours. Evaluation was made based on the following criteria.
(Criteria)
“◎”: The tensile strength at 260 ° C. is 356 MPa or more “O”: The tensile strength at 260 ° C. is 351 MPa or more and 355 MPa or less “Δ” ... The tensile strength at 260 ° C. is 346 MPa or more and 350 MPa or less “X”: At 260 ° C. Has a tensile strength of 345 MPa or less.
<高温での疲労試験法>
得られたアルミニウム合金押出材(円柱体)を、標点間距離30mm、平行部直径8mmの疲労試験片に加工して、該疲労試験片の高温疲労試験を行うことによって高温疲労強度(260℃での疲労強度)を測定した。前記高温疲労試験は、疲労試験片を260℃に100時間保持した後に260℃の測定環境下で繰返し速度3600rpmの条件で500000回試験を行った。下記判定基準に基づいて評価した。
(判定基準)
「◎」…260℃での疲労強度が226MPa以上
「○」…260℃での疲労強度が221MPa以上225MPa以下
「△」…260℃での疲労強度が216MPa以上220MPa以下
「×」…260℃での疲労強度が215MPa以下である。
<High-temperature fatigue test method>
The obtained aluminum alloy extruded material (cylindrical body) is processed into a fatigue test piece having a distance between the gauge points of 30 mm and a parallel part diameter of 8 mm, and the fatigue test piece is subjected to a high temperature fatigue test (260 ° C.). Fatigue strength) was measured. In the high temperature fatigue test, the fatigue test piece was held at 260 ° C. for 100 hours, and then the test was conducted 500,000 times under a measurement environment of 260 ° C. under a condition of a repetition rate of 3600 rpm. Evaluation was made based on the following criteria.
(Criteria)
“◎”: the fatigue strength at 260 ° C. is 226 MPa or more “O”: the fatigue strength at 260 ° C. is 221 MPa or more and 225 MPa or less “Δ”: the fatigue strength at 260 ° C. is 216 MPa or more and 220 MPa or less “×”: at 260 ° C. Has a fatigue strength of 215 MPa or less.
<高温でのクリープ試験法>
得られたアルミニウム合金押出材(円柱体)を、標点間距離30mm、平行部直径6mmのクリープ試験片に加工して、該クリープ試験片の高温クリープ試験を行うことによって高温クリープ特性(260℃でのクリープ特性)を測定した。前記高温クリープ試験は、クリープ試験片を260℃に100時間保持した後に260℃の測定環境下で試験を行った。温度:260℃、破断時間300時間の条件下でのクリープラプチャー強度を算出し、下記判定基準に基づいて評価した。
(判定基準)
「◎」…260℃でのクリープラプチャー強度が216MPa以上
「○」…260℃でのクリープラプチャー強度が211MPa以上215MPa以下
「△」…260℃でのクリープラプチャー強度が206MPa以上210MPa以下
「×」…260℃でのクリープラプチャー強度が205MPa以下である。
<Creep test method at high temperature>
The obtained aluminum alloy extruded material (cylindrical body) is processed into a creep test piece having a distance between gauge points of 30 mm and a parallel part diameter of 6 mm, and a high temperature creep test is performed on the creep test piece (260 ° C.). Creep characteristics) were measured. The high temperature creep test was conducted in a measurement environment at 260 ° C. after the creep test piece was held at 260 ° C. for 100 hours. The creep rupture strength was calculated under the conditions of temperature: 260 ° C. and rupture time of 300 hours, and evaluated based on the following criteria.
(Criteria)
“◎”: Creep rupture strength at 260 ° C. is 216 MPa or more “O” ... Creep rupture strength at 260 ° C. is 211 MPa or more and 215 MPa or less “Δ” ... Creep rupture strength at 260 ° C. is 206 MPa or more and 210 MPa or less “×” ... The creep rupture strength at 260 ° C. is 205 MPa or less.
表から明らかなように、本発明に係る実施例1〜18のアルミニウム合金押出材は、高温(260℃)において各種の機械特性に優れていた。 As is apparent from the table, the extruded aluminum alloy materials of Examples 1 to 18 according to the present invention were excellent in various mechanical properties at a high temperature (260 ° C.).
これに対し、本発明の規定範囲を逸脱する比較例1〜14のアルミニウム合金押出材は、高温(260℃)での機械特性に劣っていた。 On the other hand, the aluminum alloy extruded materials of Comparative Examples 1 to 14 deviating from the specified range of the present invention were inferior in mechanical properties at a high temperature (260 ° C.).
本発明に係るアルミニウム合金粉末、本発明の製造方法で得られたアルミニウム合金粉末を用いて形成されたアルミニウム合金材は、高温における機械特性に優れている。また、本発明に係るアルミニウム合金押出材、本発明の製造方法で得られたアルミニウム合金押出材は、高温における機械特性に優れているので、自動車等の内燃機関に使用されるターボチャージャーのターボコンプレッサーインペラー等の、高温下で高速で回転する内燃機関部材(内燃機関部品)等として好適に使用される。 The aluminum alloy material formed using the aluminum alloy powder according to the present invention and the aluminum alloy powder obtained by the production method of the present invention is excellent in mechanical properties at high temperatures. Moreover, since the aluminum alloy extruded material according to the present invention and the aluminum alloy extruded material obtained by the production method of the present invention are excellent in mechanical properties at high temperatures, a turbo compressor for a turbocharger used in an internal combustion engine such as an automobile. It is suitably used as an internal combustion engine member (internal combustion engine component) that rotates at high speed under high temperature, such as an impeller.
1…アルミニウム合金押出材(押出品) 1 ... Aluminum alloy extruded material (extruded product)
Claims (7)
前記アルミニウム合金粉末中にAl−Fe系金属間化合物を含有し、前記アルミニウム合金粉末の断面組織構造において前記Al−Fe系金属間化合物の平均円相当直径が0.1μm〜3.0μmの範囲であることを特徴とするアルミニウム合金粉末。 Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.0% by mass, Zr: 0.1% by mass to 2.0% by mass, Ti: 0.02% by mass to 2.0% by mass, and one or two metals selected from the group consisting of Cr and Mn are each 0.02% by mass to 2.% by mass. An aluminum alloy powder containing 0% by mass, the balance being Al and inevitable impurities,
The aluminum alloy powder contains an Al—Fe based intermetallic compound, and the average equivalent circle diameter of the Al—Fe based intermetallic compound is in the range of 0.1 μm to 3.0 μm in the cross-sectional structure of the aluminum alloy powder. An aluminum alloy powder characterized by being.
前記アルミニウム合金押出材中にAl−Fe系金属間化合物を含有し、前記アルミニウム合金押出材の断面組織構造において前記Al−Fe系金属間化合物の平均円相当直径が0.1μm〜3.0μmの範囲であることを特徴とするアルミニウム合金押出材。 Fe: 5.0% by mass to 9.0% by mass, V: 0.1% by mass to 3.0% by mass, Mo: 0.1% by mass to 3.0% by mass, Zr: 0.1% by mass to 2.0% by mass, Ti: 0.02% by mass to 2.0% by mass, and one or two metals selected from the group consisting of Cr and Mn are each 0.02% by mass to 2.% by mass. An aluminum alloy extruded material containing 0% by mass and the balance being Al and inevitable impurities,
The aluminum alloy extrudate contains an Al—Fe intermetallic compound, and the average equivalent circle diameter of the Al—Fe intermetallic compound is 0.1 μm to 3.0 μm in the cross-sectional structure of the aluminum alloy extrudate. An aluminum alloy extruded material characterized by being in a range.
前記金属間化合物における、Alの含有率が81.60質量%〜92.37質量%、Feの含有率が2.58質量%〜10.05質量%、Vの含有率が1.44質量%〜4.39質量%、Moの含有率が2.45質量%〜3.62質量%である請求項4または5に記載のアルミニウム合金押出材。 The intermetallic compound is an Al-Fe-V-Mo intermetallic compound containing at least Al, Fe, V and Mo,
In the intermetallic compound, the Al content is 81.60 mass% to 92.37 mass%, the Fe content is 2.58 mass% to 10.05 mass%, and the V content is 1.44 mass%. The aluminum alloy extruded material according to claim 4 or 5, which has ˜4.39 mass% and a Mo content of 2.45 mass% to 3.62 mass%.
前記圧粉体を熱間押出しして押出材を得る押出工程と、を含み、
前記押出材は、該押出材中にAl−Fe系金属間化合物を含有し、前記押出材の断面組織構造において前記Al−Fe系金属間化合物の平均円相当直径が0.1μm〜3.0μmの範囲であることを特徴とするアルミニウム合金押出材の製造方法。 A compression molding step for obtaining a green compact by compression molding the aluminum alloy powder according to claim 1 or 2,
An extrusion step of hot extruding the green compact to obtain an extruded material,
The extrudate contains an Al—Fe intermetallic compound in the extrudate, and an average equivalent circle diameter of the Al—Fe intermetallic compound in the cross-sectional structure of the extrudate is 0.1 μm to 3.0 μm. The manufacturing method of the aluminum alloy extruded material characterized by the above-mentioned.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018071463A JP7033481B2 (en) | 2018-04-03 | 2018-04-03 | Aluminum alloy powder and its manufacturing method, aluminum alloy extruded material and its manufacturing method |
CN201910255179.8A CN110343910A (en) | 2018-04-03 | 2019-04-01 | Al alloy powder and its manufacturing method, aluminium alloy extruded product and its manufacturing method |
US16/374,044 US20190299296A1 (en) | 2018-04-03 | 2019-04-03 | Aluminum alloy powder and method of producing the same, aluminum alloy extruded material and method of producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018071463A JP7033481B2 (en) | 2018-04-03 | 2018-04-03 | Aluminum alloy powder and its manufacturing method, aluminum alloy extruded material and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019183191A true JP2019183191A (en) | 2019-10-24 |
JP7033481B2 JP7033481B2 (en) | 2022-03-10 |
Family
ID=68057587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018071463A Active JP7033481B2 (en) | 2018-04-03 | 2018-04-03 | Aluminum alloy powder and its manufacturing method, aluminum alloy extruded material and its manufacturing method |
Country Status (3)
Country | Link |
---|---|
US (1) | US20190299296A1 (en) |
JP (1) | JP7033481B2 (en) |
CN (1) | CN110343910A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019183190A (en) * | 2018-04-03 | 2019-10-24 | 株式会社豊田自動織機 | Compression machine component for aluminum alloy-made transporter excellent in mechanical property at high temperature and manufacturing method therefor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7469072B2 (en) * | 2020-02-28 | 2024-04-16 | 株式会社神戸製鋼所 | Aluminum alloy forgings and their manufacturing method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09249930A (en) * | 1996-03-13 | 1997-09-22 | Mitsubishi Heavy Ind Ltd | Aluminum alloy excellent in high temperature strength |
JPH1026002A (en) * | 1996-07-10 | 1998-01-27 | Mitsubishi Heavy Ind Ltd | Impeller made of aluminum alloy and manufacture thereof |
JP2000225412A (en) * | 1999-02-05 | 2000-08-15 | Sumitomo Light Metal Ind Ltd | Method for plastically working aluminum alloy and high- strength/high-ductility aluminum alloy worked by the same |
JP2017155270A (en) * | 2016-02-29 | 2017-09-07 | 昭和電工株式会社 | Aluminum alloy atomized powder for extrusion material, manufacturing method of aluminum alloy atomized powder for extrusion material, manufacturing method of extrusion material, manufacturing method of forging article and forging article |
JP2019183190A (en) * | 2018-04-03 | 2019-10-24 | 株式会社豊田自動織機 | Compression machine component for aluminum alloy-made transporter excellent in mechanical property at high temperature and manufacturing method therefor |
-
2018
- 2018-04-03 JP JP2018071463A patent/JP7033481B2/en active Active
-
2019
- 2019-04-01 CN CN201910255179.8A patent/CN110343910A/en active Pending
- 2019-04-03 US US16/374,044 patent/US20190299296A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09249930A (en) * | 1996-03-13 | 1997-09-22 | Mitsubishi Heavy Ind Ltd | Aluminum alloy excellent in high temperature strength |
JPH1026002A (en) * | 1996-07-10 | 1998-01-27 | Mitsubishi Heavy Ind Ltd | Impeller made of aluminum alloy and manufacture thereof |
JP2000225412A (en) * | 1999-02-05 | 2000-08-15 | Sumitomo Light Metal Ind Ltd | Method for plastically working aluminum alloy and high- strength/high-ductility aluminum alloy worked by the same |
JP2017155270A (en) * | 2016-02-29 | 2017-09-07 | 昭和電工株式会社 | Aluminum alloy atomized powder for extrusion material, manufacturing method of aluminum alloy atomized powder for extrusion material, manufacturing method of extrusion material, manufacturing method of forging article and forging article |
JP2019183190A (en) * | 2018-04-03 | 2019-10-24 | 株式会社豊田自動織機 | Compression machine component for aluminum alloy-made transporter excellent in mechanical property at high temperature and manufacturing method therefor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019183190A (en) * | 2018-04-03 | 2019-10-24 | 株式会社豊田自動織機 | Compression machine component for aluminum alloy-made transporter excellent in mechanical property at high temperature and manufacturing method therefor |
JP7118705B2 (en) | 2018-04-03 | 2022-08-16 | 株式会社豊田自動織機 | Compressor part for transportation machine made of aluminum alloy with excellent mechanical properties at high temperature and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
US20190299296A1 (en) | 2019-10-03 |
CN110343910A (en) | 2019-10-18 |
JP7033481B2 (en) | 2022-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010122960A1 (en) | High-strength copper alloy | |
EP0265307B1 (en) | Process for manufacturing shaped bodies from hypereutectic aluminium-silicon alloys, starting from powders obtained by rapid cooling | |
WO2019069651A1 (en) | Compressor component for transport and method for manufacturing same | |
EP4083244A1 (en) | Heat-resistant powdered aluminium material | |
EP3170594B1 (en) | Aluminum alloy powder for hot forging of sliding component, method of producing the same, aluminum alloy forged product for sliding component, and method of producing the same | |
JP6738212B2 (en) | Aluminum alloy forged product and manufacturing method thereof | |
JP7033481B2 (en) | Aluminum alloy powder and its manufacturing method, aluminum alloy extruded material and its manufacturing method | |
JP2019065358A (en) | Aluminum alloy powder and manufacturing method therefor, aluminum alloy extruded material, and manufacturing method therefor | |
JP4764094B2 (en) | Heat-resistant Al-based alloy | |
JP3184367B2 (en) | Method for producing high toughness Al-Si alloy | |
JP4312037B2 (en) | Heat-resistant and high-toughness aluminum alloy, method for producing the same, and engine parts | |
WO2019193985A1 (en) | Compressor part for transport aircraft having excellent mechanical properties at high temperature and manufacturing method thereof | |
JP2020007594A (en) | Aluminum alloy material, manufacturing method of aluminum alloy cast material, and manufacturing method of aluminum alloy powder extrusion material | |
JP4704720B2 (en) | Heat-resistant Al-based alloy with excellent high-temperature fatigue properties | |
JP2019026859A (en) | Aluminum alloy forging article for high speed moving component, and manufacturing method therefor | |
JP5560549B2 (en) | Aluminum sintered alloy and powder for aluminum sintered alloy | |
JP2790774B2 (en) | High elasticity aluminum alloy with excellent toughness | |
JPH108162A (en) | Production of aluminum alloy material excellent in high temperature strength | |
JP2000282161A (en) | Heat resisting aluminum alloy excellent in toughness, and its manufacture | |
JP4699787B2 (en) | Heat-resistant Al-based alloy with excellent wear resistance and rigidity | |
JPH10265918A (en) | Aluminum alloy | |
JP2000328164A (en) | Heat resistant aluminum alloy excellent in strength and toughness and its production | |
JPH01268838A (en) | Aluminum alloy member having high strength and excellent forgeability | |
JP2020007596A (en) | Aluminum alloy material | |
JP2003253306A (en) | METHOD FOR MANUFACTURING COMPACT OF Al-Si ALLOY BY COMPRESSION PLASTIC WORKING |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7033481 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |