Nothing Special   »   [go: up one dir, main page]

JP2019158361A - Distance meter calibration method and calibration jig used for it - Google Patents

Distance meter calibration method and calibration jig used for it Download PDF

Info

Publication number
JP2019158361A
JP2019158361A JP2018040842A JP2018040842A JP2019158361A JP 2019158361 A JP2019158361 A JP 2019158361A JP 2018040842 A JP2018040842 A JP 2018040842A JP 2018040842 A JP2018040842 A JP 2018040842A JP 2019158361 A JP2019158361 A JP 2019158361A
Authority
JP
Japan
Prior art keywords
distance meter
mark
height region
reflected light
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018040842A
Other languages
Japanese (ja)
Other versions
JP6965795B2 (en
Inventor
洸平 大角
Kohei Osumi
洸平 大角
隆弘 田坂
Takahiro Tasaka
隆弘 田坂
佑史 大嶋
Yuji Oshima
佑史 大嶋
真彦 足立
Masahiko Adachi
真彦 足立
坂井 辰彦
Tatsuhiko Sakai
辰彦 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018040842A priority Critical patent/JP6965795B2/en
Publication of JP2019158361A publication Critical patent/JP2019158361A/en
Application granted granted Critical
Publication of JP6965795B2 publication Critical patent/JP6965795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

To provide a distance meter calibration method capable of performing efficient calibration for thickness measurement using a two-dimensional distance meter, and a calibration jig used for it.SOLUTION: This is a distance meter calibration method for calibrating the arrangement of the two-dimensional distance meter 10 to determine a distance to an object, in which a measurement object transported in the Y direction on the pass line G is vertically irradiated with a line light P1 which is long in the X direction perpendicular to the Y direction, and the line-shaped reflected light reflected by the measurement object is detected and the distance to the object is obtained. A calibration jig 20 having a first height region 30 and a second height region 28 having a different height from the first height region 30 in which a first and second marks 31, 33 having different arrangements in different Y directions are provided at intervals is irradiated with a line light P1, and a reflected light L1' which passes the first and second marks 31, 33 is reflected, and by detecting the reflected light L1', an inclination of the irradiation direction of the line light P1, positional deviations of the two-dimensional distance meter 10 in the X and Y directions, and an inclination of the longitudinal direction of the line light P1 with respect to the X direction is detected.SELECTED DRAWING: Figure 5

Description

本発明は、搬送中の計測対象物までの距離を求める2次元距離計の配置を校正する距離計校正方法、及び、それに用いる校正治具に関する。 The present invention relates to a distance meter calibration method for calibrating the arrangement of a two-dimensional distance meter for obtaining a distance to a measurement object being conveyed, and a calibration jig used therefor.

計測対象物の上下にそれぞれレーザ距離計を配置して、計測対象物の厚みを計測する設備においては、レーザ距離計の位置や傾きが計測精度に大きな影響を与えることから、レーザ距離計の位置や傾きを測定し、校正することが重要である。レーザ距離計の位置や傾きの測定についての具体例は、例えば特許文献1〜3に記載されている。
特許文献1には、レーザ距離計から所定の位置に配した第1校正板までの距離を計測した後、第1校正板を第1校正板とは厚みが異なる第2校正板に変え、レーザ距離計から第2校正板までの距離を計測し、2つの計測値から、レーザ距離計の傾きの偏差(ずれ)を求める方法が記載されている。
In equipment that measures the thickness of the measurement object by placing laser distance meters above and below the measurement object, the position and inclination of the laser distance meter greatly affects the measurement accuracy. It is important to measure and calibrate and tilt. Specific examples of the measurement of the position and tilt of the laser distance meter are described in Patent Documents 1 to 3, for example.
In Patent Document 1, after measuring a distance from a laser distance meter to a first calibration plate arranged at a predetermined position, the first calibration plate is changed to a second calibration plate having a thickness different from that of the first calibration plate, and a laser is measured. A method is described in which the distance from the distance meter to the second calibration plate is measured and the deviation (deviation) of the inclination of the laser distance meter is obtained from the two measured values.

特許文献2には、厚みの異なる2つの部位を有する校正板の厚みを計測し、その計測結果を基準にして、被測定物(計測対象物)の厚みの計測値を補正する方法が記載されている。
特許文献3には、2つの厚み計測装置を被測定物(計測対象物)の移動方向に配置し、一方の厚み計測装置で基準板を用いて校正値を求め、他方の厚み計測装置で計測した被測定物の厚みを、校正値を基に補正して、温度ドリフトによる厚み計測誤差を除去する方法が記載されている。
Patent Document 2 describes a method of measuring the thickness of a calibration plate having two parts having different thicknesses and correcting the measurement value of the thickness of the object to be measured (measurement object) based on the measurement result. ing.
In Patent Document 3, two thickness measuring devices are arranged in the moving direction of an object to be measured (measurement target), a calibration value is obtained using a reference plate with one thickness measuring device, and measured with the other thickness measuring device. The method of correcting the thickness of the measured object based on the calibration value and removing the thickness measurement error due to temperature drift is described.

特開2009−31120号公報JP 2009-31120 A 特開2012−229955号公報JP 2012-229955 A 特開2013−137197号公報JP 2013-137197 A

ところで、近年、計測対象物の厚み計測を行うにあたり、計測対象物の上下に対向して配置するレーザ距離計に2次元レーザ距離計(以下、「2次元距離計」とも言う)を採用する技術が開発されている。そのような2次元距離計を使用する厚み計測技術においては、特許文献1〜3に記載された技術を適用することができなかったり、当該技術の適用により校正作業が非効率になったりするという課題があった。
本発明は、かかる事情に鑑みてなされるもので、2次元距離計を用いた厚み計測に対し効率的に校正が行える距離計校正方法及びそれに用いる校正治具を提供することを目的とする。
By the way, in recent years, when measuring the thickness of a measurement object, a technology that employs a two-dimensional laser distance meter (hereinafter also referred to as a “two-dimensional distance meter”) as a laser distance meter disposed facing the measurement object in the vertical direction. Has been developed. In the thickness measurement technique using such a two-dimensional distance meter, the technique described in Patent Documents 1 to 3 cannot be applied, or the calibration work becomes inefficient due to the application of the technique. There was a problem.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a distance meter calibration method capable of efficiently calibrating thickness measurement using a two-dimensional distance meter and a calibration jig used therefor.

前記目的に沿う第1の発明に係る距離計校正方法は、パスラインを搬送方向であるY方向に搬送される計測対象物の上方から、Y方向に直交するX方向に長いライン光を垂直(鉛直)に照射し、前記計測対象物で反射したライン状の反射光αを検出して該計測対象物までの距離を求める2次元距離計の配置を校正する距離計校正方法であって、第1、第2のマークが間隔を空けて設けられた第1高さ領域、及び、前記第1高さ領域と高さが異なる第2高さ領域を有する校正治具を、前記2次元距離計が目標位置に正しく配されている場合に前記ライン光が照射されて前記校正治具で反射されるライン状の治具反射光が前記第1のマークの第1基準点及び前記第2のマークの第2基準点を通る位置、かつ、前記目標位置に対しX方向に所定の関係となる位置に配置する工程と、配置の校正対象である前記2次元距離計から前記ライン光を照射して、前記第1、第2のマークと前記第2高さ領域を通る反射光βを検出する工程と、検出した前記反射光βを基に前記2次元距離計から前記第1高さ領域までの距離と、前記2次元距離計から前記第2高さ領域までの距離とを計測して、前記ライン光の照射方向の傾きを求め、前記第1基準点に対する前記反射光βの該第1のマークを通る箇所のY方向の位置関係と、前記第2基準点に対する前記反射光βの該第2のマークを通る箇所のY方向の位置関係とを検出して、前記2次元距離計のY方向の位置ずれ、並びに、前記ライン光の長手方向のX方向に対する傾きを検知し、前記校正治具に対する前記反射光βのX方向の位置関係を検出して、前記2次元距離計のX方向の位置ずれを検知する工程とを有し、前記第1のマークはY方向の異なる部分の配置がそれぞれ相違し、前記第2のマークはY方向の異なる部分の配置がそれぞれ相違する。 In the distance meter calibration method according to the first aspect of the present invention, the line light that is long in the X direction perpendicular to the Y direction is vertically projected from above the measurement object that is conveyed in the Y direction that is the conveyance direction. A distance meter calibration method for calibrating the arrangement of a two-dimensional distance meter for detecting a line-shaped reflected light α reflected on the measurement object and obtaining a distance to the measurement object, A calibration jig having a first height region in which first and second marks are provided at an interval, and a second height region having a height different from the first height region is provided as the two-dimensional distance meter. When the line light is irradiated and reflected by the calibration jig, the line-shaped jig reflected light is reflected by the first reference point of the first mark and the second mark. A predetermined relationship in the X direction with respect to the position passing through the second reference point and the target position. Irradiating the line light from the two-dimensional distance meter which is a calibration target of the arrangement, and reflecting light β passing through the first and second marks and the second height region. And detecting a distance from the two-dimensional distance meter to the first height region and a distance from the two-dimensional distance meter to the second height region based on the detected reflected light β. Then, the inclination of the irradiation direction of the line light is obtained, the positional relationship in the Y direction of the portion of the reflected light β passing through the first mark with respect to the first reference point, and the reflected light β with respect to the second reference point. And detecting the positional displacement in the Y direction of the two-dimensional distance meter, and the inclination of the line light in the longitudinal direction with respect to the X direction, Detecting the positional relationship in the X direction of the reflected light β with respect to the calibration jig, A step of detecting a positional deviation in the X direction of the two-dimensional distance meter, wherein the first mark has a different arrangement of different parts in the Y direction, and the second mark has a different part in the Y direction. Each arrangement is different.

前記目的に沿う第2の発明に係る校正治具は、パスラインを搬送方向であるY方向に搬送される計測対象物の上方から、Y方向に垂直な(直交する)X方向に長いライン光をY方向及びX方向に対し垂直に照射し、前記計測対象物で反射したライン状の反射光を検出して該計測対象物までの距離を求める2次元距離計の配置を校正するのに用いられる校正治具であって、前記ライン光が照射される第1高さ領域と、前記第1高さ領域と高さが異なり、前記ライン光が照射される第2高さ領域とを備え、前記第1高さ領域には、第1基準点を具備する第1のマーク及び第2基準点を具備する第2のマークが間隔を空けて設けられ、前記第1基準点及び前記第2基準点がX方向に沿った状態に配置されて、前記第1のマークはY方向の異なる部分の配置がそれぞれ相違し、前記第2のマークはY方向の異なる部分の配置がそれぞれ相違する。 The calibration jig according to the second aspect of the invention that meets the above object is a line light that is long in the X direction perpendicular (orthogonal) to the Y direction from above the measurement object that is conveyed in the Y direction, which is the conveyance direction, of the pass line. Is used to calibrate the arrangement of a two-dimensional rangefinder that detects the line-shaped reflected light reflected by the measurement object and obtains the distance to the measurement object. A calibration jig that includes a first height region irradiated with the line light, and a second height region irradiated with the line light, the height of which is different from the first height region. In the first height region, a first mark having a first reference point and a second mark having a second reference point are provided at an interval, and the first reference point and the second reference point are provided. The points are arranged along the X direction, and the first mark is a different part in the Y direction. Arrangement differs respectively, the second mark is located in different parts of the Y direction are different, respectively.

第1の発明に係る距離計校正方法は、第1、第2のマークが間隔を空けて設けられた第1高さ領域、及び、第1高さ領域と高さが異なる第2高さ領域を有し、第1のマークのY方向の異なる部分の配置がそれぞれ相違し、第2のマークのY方向の異なる部分の配置がそれぞれ相違する校正治具を用いて2次元距離計の各種位置ずれを検知するので、2次元距離計を用いた厚み計測に対し効率的な校正を行うことが可能である。また、第2の発明に係る校正治具も、同様の構成を具備するので、2次元距離計を用いた厚み計測に対し効率的な校正を行うことができる。 The distance meter calibration method according to the first invention includes a first height region in which the first and second marks are provided at an interval, and a second height region having a height different from that of the first height region. Various positions of the two-dimensional distance meter using calibration jigs having different arrangements of the different parts of the first mark in the Y direction and different arrangements of the different parts of the second mark in the Y direction. Since displacement is detected, it is possible to perform efficient calibration for thickness measurement using a two-dimensional distance meter. In addition, since the calibration jig according to the second invention also has the same configuration, it is possible to perform efficient calibration for thickness measurement using a two-dimensional distance meter.

本発明の一実施の形態に係る距離計校正方法が適用される設備の説明図である。It is explanatory drawing of the installation with which the distance meter calibration method which concerns on one embodiment of this invention is applied. 同設備の説明図である。It is explanatory drawing of the installation. (A)、(B)はそれぞれ、同設備での反射光の反射の様子を示す説明図である。(A), (B) is explanatory drawing which shows the mode of reflection of the reflected light in the said installation, respectively. (A)、(B)、(C)はそれぞれ、2次元距離計が目標位置に配置されていない状態を示す説明図である。(A), (B), (C) is explanatory drawing which shows the state by which the two-dimensional distance meter is not arrange | positioned in the target position, respectively. (A)、(B)はそれぞれ、本発明の一実施の形態に係る距離計校正方法に用いられる校正治具の説明図であり、(C)は同校正治具が使用される様子を示す説明図である。(A), (B) is explanatory drawing of the calibration jig used for the distance meter calibration method which concerns on one embodiment of this invention, respectively, (C) shows a mode that this calibration jig is used. It is explanatory drawing. (A)、(B)はそれぞれ、2次元距離計のY方向の傾きを示す説明図である。(A), (B) is explanatory drawing which shows the inclination of the Y direction of a two-dimensional distance meter, respectively. (A)はX方向に傾いていない2次元距離計の説明図であり、(B)、(C)はそれぞれ反射光のライン光照射方向位置を示す説明図である。(A) is explanatory drawing of the two-dimensional rangefinder which is not inclined to X direction, (B), (C) is explanatory drawing which shows the line light irradiation direction position of reflected light, respectively. (A)はX方向に傾いている2次元距離計の説明図であり、(B)は反射光のライン光照射方向位置を示す説明図である。(A) is explanatory drawing of the two-dimensional rangefinder inclined in the X direction, (B) is explanatory drawing which shows the line light irradiation direction position of reflected light. (A)、(B)、(C)はそれぞれ、撮像部によって撮像された反射光の説明図である。(A), (B), (C) is explanatory drawing of the reflected light respectively imaged by the imaging part. (A)、(B)はそれぞれ、変形例に係る校正治具の説明図である。(A), (B) is explanatory drawing of the calibration jig which concerns on a modification, respectively.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1、図2、図3(A)、(B)に示すように、本発明の一実施の形態に係る距離計校正方法は、パスラインGを搬送方向であるY方向に搬送される鋼材(計測対象物の一例)Sの上方から、Y方向に垂直なX方向に長いライン光P1を垂直(鉛直)に照射し、鋼材Sで反射させたライン状の反射光L1(反射光αの一例)を検出して鋼材Sまでの距離を求める2次元距離計10の配置を校正する方法である。以下、詳細に説明する。
なお、Y方向及びX方向に対し垂直で上向きの方向をZ方向とする。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIGS. 1, 2, 3 (A), and 3 (B), the distance meter calibration method according to an embodiment of the present invention is a steel material that is conveyed in the Y direction, which is the conveyance direction, along the pass line G. (Example of Measurement Object) From the upper side of S, line-like reflected light L1 (irradiation of reflected light α) that is irradiated vertically with vertical line light P1 in the X direction perpendicular to the Y direction and reflected by the steel material S This is a method of calibrating the arrangement of the two-dimensional distance meter 10 that detects the example) and determines the distance to the steel material S. Details will be described below.
Note that the upward direction that is perpendicular to the Y direction and the X direction is the Z direction.

本実施の形態において、鋼材Sは、図1、図2に示すように、水平配置された図示しないローラコンベア上に載せられて搬送される。本実施の形態において、パスラインGは水平に配されており、Y方向はパスラインGに沿った方向である。 In this Embodiment, as shown in FIG. 1, FIG. 2, the steel material S is mounted and conveyed on the roller conveyor which is arrange | positioned horizontally and which is not shown in figure. In the present embodiment, the pass line G is arranged horizontally, and the Y direction is a direction along the pass line G.

パスラインGの上方には複数の2次元距離計10がそれぞれ間隔を空けてX方向に並べられ、パスラインGの下方には複数の2次元距離計11がそれぞれ間隔を空けてX方向に並べられている。
各2次元距離計10は、搬送中の鋼材Sの上面S1に対し、X方向に長いライン光P1をZ方向に照射するレーザ照射部12と、反射光L1を撮像する撮像部13を有している。
Above the pass line G, a plurality of two-dimensional rangefinders 10 are arranged in the X direction at intervals, and below the pass line G, a plurality of two-dimensional rangefinders 11 are arranged in the X direction at intervals. It has been.
Each two-dimensional distance meter 10 has a laser irradiation unit 12 that irradiates a line light P1 that is long in the X direction in the Z direction and an imaging unit 13 that images the reflected light L1 on the upper surface S1 of the steel material S being conveyed. ing.

隣り合う反射光L1の干渉を避けるべく、図3(A)、(B)に示すように、X方向に奇数番目に位置する2次元距離計10、11によるライン光P1、P2の照射と、X方向に偶数番目に位置する2次元距離計10、11によるライン光P1、P2の照射を、異なるタイミングで行われる。
レーザ照射部12からのライン光P1の照射によって、X方向に長いライン状の反射光L1が鋼材Sの上面S1で反射する。
In order to avoid the interference of the adjacent reflected light L1, as shown in FIGS. 3A and 3B, the irradiation of the line lights P1 and P2 by the two-dimensional distance meters 10 and 11 positioned at odd numbers in the X direction; Irradiation of the line lights P1 and P2 by the two-dimensional distance meters 10 and 11 positioned evenly in the X direction is performed at different timings.
The line-shaped reflected light L1 that is long in the X direction is reflected on the upper surface S1 of the steel material S by the irradiation of the line light P1 from the laser irradiation unit 12.

各2次元距離計11は、図1、図2に示すように、搬送中の鋼材Sの下面S2に対し、X方向に長いライン光P2をZ方向に照射するレーザ照射部14と、反射光L2(反射光αの一例)を撮像する撮像部15を有している。レーザ照射部14からのライン光P2の照射によって、図3(A)、(B)に示すように、X方向に長いライン状の反射光L2が鋼材Sの下面S2で反射する。
各2次元距離計10のレーザ照射部12は各2次元距離計11のレーザ照射部14に対向して配置されている。
As shown in FIGS. 1 and 2, each two-dimensional distance meter 11 includes a laser irradiation unit 14 that irradiates a lower surface S <b> 2 of the steel material S being conveyed with a line light P <b> 2 that is long in the X direction in the Z direction, and reflected light. The imaging unit 15 that images L2 (an example of the reflected light α) is provided. 3A and 3B, the line-shaped reflected light L2 that is long in the X direction is reflected by the lower surface S2 of the steel material S by the irradiation of the line light P2 from the laser irradiation unit 14.
The laser irradiation unit 12 of each two-dimensional distance meter 10 is disposed to face the laser irradiation unit 14 of each two-dimensional distance meter 11.

各反射光L1は鋼材SのY方向同位置で反射し、各反射光L2は鋼材SのY方向同位置で反射する。2次元距離計10、11は図示しない情報処理部をそれぞれ有し、2次元距離計10の情報処理部は、撮像部13の撮像画像から反射光L1を検出し、三角測量の原理を用いて、2次元距離計10から鋼材Sの上面S1までの距離を計測し、2次元距離計11の情報処理部も2次元距離計10の情報処理部と同様の処理によって、2次元距離計11から鋼材Sの下面S2までの距離を計測する。 Each reflected light L1 is reflected at the same position in the Y direction of the steel material S, and each reflected light L2 is reflected at the same position in the Y direction of the steel material S. The two-dimensional distance meters 10 and 11 each have an information processing unit (not shown). The information processing unit of the two-dimensional distance meter 10 detects the reflected light L1 from the captured image of the imaging unit 13 and uses the principle of triangulation. The distance from the two-dimensional distance meter 10 to the upper surface S1 of the steel material S is measured, and the information processing unit of the two-dimensional distance meter 11 is also processed from the two-dimensional distance meter 11 by the same processing as the information processing unit of the two-dimensional distance meter 10. The distance to the lower surface S2 of the steel material S is measured.

各2次元距離計10、11は、図1に示すように、アンプ16を介して厚み導出機17に接続されており、厚み導出機17は、各2次元距離計10から鋼材Sの上面S1までの距離、各2次元距離計11から鋼材Sの下面S2までの距離、各2次元距離計10からパスラインGまでの距離、及び、各2次元距離計11からパスラインGまでの距離を基に、鋼材SのX方向一端から他端までの厚みを導出する。 As shown in FIG. 1, each two-dimensional distance meter 10, 11 is connected to a thickness deriving machine 17 through an amplifier 16, and the thickness deriving machine 17 is connected to the upper surface S <b> 1 of the steel material S from each two-dimensional distance meter 10. Distance from each two-dimensional distance meter 11 to the lower surface S2 of the steel material S, distance from each two-dimensional distance meter 10 to the pass line G, and distance from each two-dimensional distance meter 11 to the pass line G Based on this, the thickness from one end of the steel material S to the other end is derived.

ここで、鋼材Sの厚みを正確に導出するには、各2次元距離計10、11がパスラインGに対して目標位置に配置されていることが重要である。本実施の形態において、2次元距離計10、11が目標位置に配置されているとは、各2次元距離計10が同一高さにX方向に等ピッチで配置され、各2次元距離計11が同一高さにX方向に等ピッチで配置され、更に、各2次元距離計10がZ方向に沿って下向き、即ち、パスラインGに垂直な方向にライン光P1を照射し、各2次元距離計11がZ方向に沿って上向き、即ち、パスラインGに垂直な方向にライン光P2を照射するように配置されていることを意味する。 Here, in order to accurately derive the thickness of the steel material S, it is important that the two-dimensional distance meters 10 and 11 are arranged at target positions with respect to the pass line G. In the present embodiment, the two-dimensional rangefinders 10 and 11 are arranged at the target position. The two-dimensional rangefinders 10 are arranged at the same height and at the same pitch in the X direction. Are arranged at the same height and at equal pitches in the X direction, and each two-dimensional distance meter 10 irradiates the line light P1 downward along the Z direction, that is, in a direction perpendicular to the pass line G. This means that the distance meter 11 is arranged so as to irradiate the line light P2 upward along the Z direction, that is, in a direction perpendicular to the pass line G.

2次元距離計10、11が目標位置に配置されていないことに起因して発生し得る計測対象物Wに対する厚みの計測誤差には、図4(A)、(B)、(C)にそれぞれ示すように、1)2次元距離計10、11がY方向に傾いていることによるものや、2次元距離計10、11がY方向に位置ずれしていることによるもの、2)2次元距離計10、11がX方向に傾いていることによるものや、X方向に位置ずれしていることによるもの、3)2次元距離計10、11がXY平面(パスラインG)内の回転方向にずれていることによるものが存在する。 FIGS. 4A, 4B, and 4C show thickness measurement errors with respect to the measurement object W that may occur due to the two-dimensional distance meters 10 and 11 not being arranged at the target positions, respectively. As shown, 1) two-dimensional rangefinders 10, 11 are tilted in the Y direction, two-dimensional rangefinders 10, 11 are displaced in the Y direction, and 2) two-dimensional distances. 3) The two-dimensional distance meters 10 and 11 are rotated in the XY plane (pass line G). There is something that is out of place.

そこで、図5(A)、(B)、(C)に示すように、各2次元距離計10、11から校正治具20にライン光P1、P2を照射して、各2次元距離計10、11のY方向の傾き、Y方向の位置ずれ、X方向の傾き、X方向の位置ずれ並びにXY平面内の回転方向のずれを検出し、その検出結果に基づいて、各2次元距離計10、11の配置を校正する。 Therefore, as shown in FIGS. 5A, 5 </ b> B, and 5 </ b> C, the two-dimensional distance meters 10, 11 irradiate the calibration jig 20 with the line lights P <b> 1, P <b> 2, respectively. 11, Y-direction tilt, Y-direction displacement, X-direction tilt, X-direction displacement and rotation-direction displacement in the XY plane are detected, and each two-dimensional distance meter 10 is detected based on the detection result. , 11 is calibrated.

校正治具20は、間隔を空けて設けられた同じ大きさの直方体のブロック21、22と、ブロック21、22の間に設けられたブロック23を備えている。
校正治具20は、図5(B)、(C)に示すように、ブロック21の対向する面24(第1の部位)及び面25をそれぞれ上下に配し、ブロック22の対向する面26(第2の部位)及び面27をそれぞれ上下に配し、ブロック23の対向する面28(第2高さ領域)及び面29をそれぞれ上下に配し、ブロック21、23、22がX方向に順に配された状態で用いられる。この状態で、面24〜29は水平に配置され、面24、26は同じ高さに配置され、面25、27は同じ高さに配置され、面28は面24、26より低い位置に配され、面29は面25、27より高い位置に配される。
The calibration jig 20 includes rectangular parallelepiped blocks 21 and 22 that are provided at intervals and a block 23 that is provided between the blocks 21 and 22.
As shown in FIGS. 5B and 5C, the calibration jig 20 has an opposing surface 24 (first portion) and surface 25 of the block 21 arranged vertically, and an opposing surface 26 of the block 22. (Second part) and the surface 27 are arranged up and down, the opposing surface 28 (second height region) and the surface 29 of the block 23 are arranged up and down, respectively, and the blocks 21, 23 and 22 are arranged in the X direction. Used in order. In this state, the surfaces 24 to 29 are disposed horizontally, the surfaces 24 and 26 are disposed at the same height, the surfaces 25 and 27 are disposed at the same height, and the surface 28 is disposed at a position lower than the surfaces 24 and 26. The surface 29 is arranged at a position higher than the surfaces 25 and 27.

本実施の形態では、図5(A)、(B)に示すように、ブロック21の面24及びブロック22の面26を合わせて、第1高さ領域30が構成されており、第1高さ領域30は面24、26が間隔を空けて設けられている。面28(即ち、第2高さ領域)は、平面視して面24、25の間に配置され、第1高さ領域30と高さが異なる。
ブロック21には、面24、25にマーク31(第1のマーク)及びマーク32がそれぞれ設けられ、ブロック22には、面26、27にマーク33(第2のマーク)及びマーク34がそれぞれ設けられている。従って、マーク31、33は間隔を空けて設けられ、マーク32、34は間隔を空けて設けられていることになる。
In the present embodiment, as shown in FIGS. 5A and 5B, the first height region 30 is configured by combining the surface 24 of the block 21 and the surface 26 of the block 22. The area 30 is provided with surfaces 24 and 26 spaced apart. The surface 28 (that is, the second height region) is disposed between the surfaces 24 and 25 in plan view and is different in height from the first height region 30.
The block 21 is provided with marks 31 (first marks) and marks 32 on the surfaces 24 and 25, respectively, and the block 22 is provided with marks 33 (second marks) and marks 34 on the surfaces 26 and 27, respectively. It has been. Therefore, the marks 31 and 33 are provided at intervals, and the marks 32 and 34 are provided at intervals.

マーク31〜34は、校正治具20のマーク31〜34の周囲の色とは異なる色で面24〜27のY方向に同一位置に描かれた図形であり、大きさ及び形状がそれぞれ等しく、その図形は具体的に、Xの字に縦線を加えたもので、縦線はその一端がXの字の中心(Xの字の交点であり、マーク31〜34それぞれの中心となる)に配され、Y方向に所定長さ延びている。よって、マーク31(マーク32、33、34についても同じ)のY方向の異なる部分の配置がそれぞれ相違する。 The marks 31 to 34 are figures drawn in the same position in the Y direction of the surfaces 24 to 27 in colors different from the colors around the marks 31 to 34 of the calibration jig 20, and have the same size and shape. Specifically, the figure is obtained by adding a vertical line to the letter X, and one end of the vertical line is at the center of the letter X (the intersection of the letters X and the centers of the marks 31 to 34). It is arranged and extends a predetermined length in the Y direction. Accordingly, the arrangement of the portions of the mark 31 (the same applies to the marks 32, 33, and 34) in the Y direction is different.

故に、マーク31〜34はそれぞれ、Y方向の任意の位置に配された部分の配置を基に、その部分のY方向位置が特定可能である。
以下、マーク31のXの字の中心を基準点35(第1基準点)とし、マーク32のXの字の中心を基準点36とし、マーク33のXの字の中心を基準点37(第2基準点)とし、マーク34のXの字の中心を基準点38とする。
Therefore, each of the marks 31 to 34 can specify the position of the portion in the Y direction based on the arrangement of the portion disposed at an arbitrary position in the Y direction.
Hereinafter, the center of the letter X of the mark 31 is the reference point 35 (first reference point), the center of the letter X of the mark 32 is the reference point 36, and the center of the letter X of the mark 33 is the reference point 37 (first point). 2), and the center of the letter X of the mark 34 is the reference point 38.

校正治具20を用いた距離計校正方法は、図5(A)、(C)に示すように、パスラインGの上下にそれぞれ設けられた2次元距離計10、11が目標位置に正しく配されている場合に、当該2次元距離計10からライン光P1が照射されて校正治具20で反射されるライン状の治具反射光L1’が基準点35、37を通り、当該2次元距離計11からライン光P2が照射されて校正治具20で反射されるライン状の治具反射光L2’が基準点36、38を通る位置、かつ、2次元距離計10、11の目標位置に対しX方向に所定の関係となる位置に校正治具20を配置する。このとき、校正治具20は、面24〜29がそれぞれ水平であり、基準点35、37がX方向に沿い、基準点36、38がX方向に沿った配置となる。 As shown in FIGS. 5A and 5C, the distance meter calibration method using the calibration jig 20 is such that the two-dimensional distance meters 10 and 11 respectively provided above and below the pass line G are correctly arranged at the target position. The line-shaped jig reflected light L1 ′ irradiated with the line light P1 from the two-dimensional distance meter 10 and reflected by the calibration jig 20 passes through the reference points 35 and 37, and the two-dimensional distance. The line-shaped jig reflected light L2 ′ irradiated with the line light P2 from the total 11 and reflected by the calibration jig 20 passes through the reference points 36 and 38, and at the target position of the two-dimensional distance meters 10 and 11. On the other hand, the calibration jig 20 is arranged at a position having a predetermined relationship in the X direction. At this time, the calibration jig 20 is arranged such that the surfaces 24 to 29 are horizontal, the reference points 35 and 37 are along the X direction, and the reference points 36 and 38 are along the X direction.

次に、図5(C)に示すように、校正治具20の上下にそれぞれ配置されている実際の2次元距離計10、11(配置の校正対象である2次元距離計10、11)からライン光P1、P2をそれぞれ照射して、マーク31、33及び面28を通る反射光L1’(反射光βの一例)を校正治具20の面24、28、26で反射させ、マーク32、34及び面29を通る反射光L2’(反射光βの一例)を校正治具20の面25、29、27で反射させ、2次元距離計10、11の各情報処理部で撮像部13、15の撮像画像を基に反射光L1’、L2’をそれぞれ検出する。 Next, as shown in FIG. 5C, from the actual two-dimensional rangefinders 10 and 11 (two-dimensional rangefinders 10 and 11 to be calibrated) arranged respectively above and below the calibration jig 20. The line lights P1 and P2 are respectively irradiated, and the reflected light L1 ′ (an example of the reflected light β) passing through the marks 31 and 33 and the surface 28 is reflected by the surfaces 24, 28, and 26 of the calibration jig 20, and the marks 32, 34 and the reflected light L2 ′ passing through the surface 29 (an example of the reflected light β) are reflected by the surfaces 25, 29, and 27 of the calibration jig 20, and the image processing unit 13 The reflected lights L1 ′ and L2 ′ are detected based on the 15 captured images.

そして、検出した反射光L1’を基に、2次元距離計10の情報処理部で、三角測量の原理を用いて2次元距離計10から面24、26(即ち、第1高さ領域30)までの距離と、2次元距離計10から面28(即ち、第2高さ領域)までの距離とを計測して、ライン光P1の照射方向のX方向及びY方向それぞれに対する傾きを求め、検出した反射光L2’を基に、2次元距離計11の情報処理部で、三角測量の原理を用いて2次元距離計11から面25、27までの距離と、2次元距離計11から面29までの距離とを計測して、ライン光P2の照射方向のX方向及びY方向それぞれに対する傾きを求める。以下、2次元距離計10から面24、26、28までの距離を基に、ライン光P1の照射方向のX方向及びY方向それぞれに対する傾きが検知できる点について説明する。 Then, based on the detected reflected light L1 ′, the information processing unit of the two-dimensional distance meter 10 uses the principle of triangulation to face the surfaces 24 and 26 (that is, the first height region 30) from the two-dimensional distance meter 10. , And the distance from the two-dimensional distance meter 10 to the surface 28 (ie, the second height region), the inclination of the irradiation direction of the line light P1 with respect to the X direction and the Y direction is obtained and detected. Based on the reflected light L2 ′, the information processing unit of the two-dimensional distance meter 11 uses the triangulation principle to measure the distance from the two-dimensional distance meter 11 to the surfaces 25 and 27, and the two-dimensional distance meter 11 to the surface 29. The distance to the X direction and the Y direction of the irradiation direction of the line light P2 is obtained. Hereinafter, the point that the inclination of the irradiation direction of the line light P1 with respect to the X direction and the Y direction can be detected based on the distance from the two-dimensional distance meter 10 to the surfaces 24, 26, and 28 will be described.

2次元距離計10が目標位置に配置されており、Y方向に傾いていない場合、図6(A)に示すように、2次元距離計10の情報処理部で検出した反射光L1’を基に算出される面24、26の高さ位置と面28の高さ位置の差は、面24、26の高さ位置と面28の高さ位置の実際の差(以下、「実際の高さ位置の差」とも言う)と等しくなる。 When the two-dimensional distance meter 10 is disposed at the target position and is not inclined in the Y direction, the reflected light L1 ′ detected by the information processing unit of the two-dimensional distance meter 10 is used as shown in FIG. The difference between the height position of the surfaces 24 and 26 and the height position of the surface 28 calculated in the above is the actual difference between the height position of the surfaces 24 and 26 and the height position of the surface 28 (hereinafter referred to as “actual height”). It is also called “positional difference”).

これに対し、2次元距離計10がY方向に傾いて配置されている場合、図6(B)に示すように、レーザ照射部12のライン光P1の照射方向はY方向に非垂直となる。実際の高さ位置の差をd、2次元距離計10がY方向に傾いている角度をθとすると、2次元距離計10の情報処理部で検出した反射光L1’を基に算出される面24、26の高さ位置と面28の高さ位置の差は、d/cosθになり、2次元距離計10の情報処理部で検出した反射光L1’を基に算出される面24、26の高さ位置と面28の高さ位置の差は実際の高さ位置の差より大きくなる。 On the other hand, when the two-dimensional distance meter 10 is disposed to be inclined in the Y direction, the irradiation direction of the line light P1 of the laser irradiation unit 12 is non-perpendicular to the Y direction as shown in FIG. . When the difference in actual height position is d and the angle at which the two-dimensional distance meter 10 is tilted in the Y direction is θ, the difference is calculated based on the reflected light L1 ′ detected by the information processing unit of the two-dimensional distance meter 10. The difference between the height position of the surfaces 24 and 26 and the height position of the surface 28 is d / cos θ, and is calculated based on the reflected light L1 ′ detected by the information processing unit of the two-dimensional distance meter 10. The difference between the height position 26 and the height position of the surface 28 is larger than the difference between the actual height positions.

本実施の形態では、実際の高さ位置の差、即ちdの値が、厚み導出機17に予め登録されており、厚み導出機17は、2次元距離計10の情報処理部が計測した2次元距離計10から面24、26までの距離及び2次元距離計10から面28までの距離を基に、面24、26の高さ位置と面28の高さ位置の差を算出し、その算出値と実際の高さ位置の差を比較する。よって、2次元距離計10から面24、26、28までの距離を基に、ライン光P1の照射方向のY方向に対する傾きが検知できる。 In the present embodiment, the actual height position difference, that is, the value of d is registered in advance in the thickness deriving device 17, and the thickness deriving device 17 is measured by the information processing unit of the two-dimensional distance meter 10. Based on the distance from the dimensional distance meter 10 to the surfaces 24 and 26 and the distance from the two-dimensional distance meter 10 to the surface 28, the difference between the height position of the surfaces 24 and 26 and the height position of the surface 28 is calculated. Compare the difference between the calculated value and the actual height position. Accordingly, the inclination of the irradiation direction of the line light P1 with respect to the Y direction can be detected based on the distances from the two-dimensional distance meter 10 to the surfaces 24, 26, and 28.

また、2次元距離計10が、図7(A)に示すように、目標位置に配置されており、X方向に傾いていない場合、2次元距離計10を基準としたライン光P1の照射方向の座標位置は、図7(B)に示すように、面24のX方向の異なる箇所で等しくなる。
これに対し、2次元距離計10が、図8(A)に示すように、X方向に傾いている場合、2次元距離計10を基準としたライン光P1の照射方向の座標位置は、図8(B)に示すように、面24のX方向の異なる箇所で相違する。これは、2次元距離計10から面26、28までの距離についても同様である。
In addition, when the two-dimensional distance meter 10 is arranged at the target position as shown in FIG. 7A and is not inclined in the X direction, the irradiation direction of the line light P1 with respect to the two-dimensional distance meter 10 is used. As shown in FIG. 7B, the coordinate positions of are equal at different portions of the surface 24 in the X direction.
On the other hand, when the two-dimensional distance meter 10 is tilted in the X direction as shown in FIG. 8A, the coordinate position in the irradiation direction of the line light P1 with respect to the two-dimensional distance meter 10 is As shown in FIG. 8B, the surface 24 differs at different locations in the X direction. The same applies to the distance from the two-dimensional distance meter 10 to the surfaces 26 and 28.

従って、面24(あるいは面26又は面28)のX方向の異なる箇所について、2次元距離計10を基準としたライン光P1の照射方向の座標位置を比較することで、2次元距離計10のライン光P1の照射方向のX方向に対する傾きを検知することができる。
2次元距離計11のライン光P2の照射方向のX方向及びY方向それぞれに対する傾きを検知する原理は、2次元距離計10のライン光P1の照射方向のX方向及びY方向それぞれに対する傾きを検知するのと同様の原理である。
Therefore, by comparing the coordinate positions in the irradiation direction of the line light P1 with respect to the two-dimensional distance meter 10 at different locations in the X direction on the surface 24 (or the surface 26 or the surface 28), the two-dimensional distance meter 10 The inclination of the irradiation direction of the line light P1 with respect to the X direction can be detected.
The principle of detecting the inclination of the irradiation direction of the line light P2 of the two-dimensional distance meter 11 with respect to each of the X direction and the Y direction is to detect the inclination of the irradiation direction of the line light P1 of the two-dimensional distance meter 10 with respect to each of the X direction and Y direction. The principle is the same as that.

また、厚み導出機17は、基準点35に対する反射光L1’のマーク31を通る箇所のY方向の位置関係と、基準点37に対する反射光L1’のマーク33を通る箇所のY方向の位置関係とを計測して、2次元距離計10のY方向の位置ずれ、並びに、ライン光P1の長手方向(反射光L1の長手方向と同じ)のX方向に対する傾きを検知し、同様の手順によって、2次元距離計11のY方向の位置ずれ、並びに、ライン光P2の長手方向(反射光L2の長手方向と同じ)のX方向に対する傾きを検知する。 Further, the thickness deriving machine 17 has a positional relationship in the Y direction where the reflected light L1 ′ passes the mark 31 relative to the reference point 35 and a positional relationship in the Y direction where the reflected light L1 ′ passes the mark 33 relative to the reference point 37. And detecting the positional deviation in the Y direction of the two-dimensional distance meter 10 and the inclination of the longitudinal direction of the line light P1 (the same as the longitudinal direction of the reflected light L1) with respect to the X direction. The positional deviation in the Y direction of the two-dimensional distance meter 11 and the inclination of the longitudinal direction of the line light P2 (same as the longitudinal direction of the reflected light L2) with respect to the X direction are detected.

2次元距離計10がY方向に位置がずれていないとき、反射光L1’が基準点35、37を通るため、図9(A)に示すように、反射光L1’はマーク31、33をそれぞれ一箇所で横切ることとなる。これに対し、2次元距離計10がY方向に位置がずれているとき、反射光L1’はマーク31の基準点35以外の部分及びマーク33の基準点37以外の部分を通るため、図9(B)に示すように、反射光L1’はマーク31、33をそれぞれ複数箇所で横切ることとなる。 When the position of the two-dimensional distance meter 10 is not shifted in the Y direction, the reflected light L1 ′ passes through the reference points 35 and 37. Therefore, as shown in FIG. Each will cross at one place. On the other hand, when the position of the two-dimensional distance meter 10 is shifted in the Y direction, the reflected light L1 ′ passes through a portion other than the reference point 35 of the mark 31 and a portion other than the reference point 37 of the mark 33. As shown in (B), the reflected light L1 ′ crosses the marks 31 and 33 at a plurality of locations.

厚み導出機17は、反射光L1’がマーク31、33をそれぞれ一箇所で横切っているか否かで2次元距離計10のY方向の位置ずれを検知する。なお、2次元距離計11のY方向の位置ずれは、反射光L2’がマーク32、34をそれぞれ一箇所で横切っているか否かによって検知される。 The thickness deriving machine 17 detects the positional deviation in the Y direction of the two-dimensional rangefinder 10 based on whether or not the reflected light L1 'crosses the marks 31 and 33 at one place. The positional deviation in the Y direction of the two-dimensional distance meter 11 is detected by whether or not the reflected light L2 'crosses the marks 32 and 34 at one place.

そして、2次元距離計10が目標位置に配置されており、ライン光P1の長手方向がX方向に沿っているとき、反射光L1’のマーク31を通るY方向位置と反射光L1’のマーク33を通るY方向位置が等しくなり、図9(A)、(B)に示すように、反射光L1’のマーク31を横切る数と反射光L1’のマーク33を横切る数が等しく、更に、仮に反射光L1’がマーク31、33をそれぞれ2箇所(あるいは3箇所)で横切る場合は、マーク31を横切る箇所間の距離とマーク33を横切る箇所間の距離が等しくなる。 When the two-dimensional distance meter 10 is arranged at the target position and the longitudinal direction of the line light P1 is along the X direction, the Y direction position passing through the mark 31 of the reflected light L1 ′ and the mark of the reflected light L1 ′ As shown in FIGS. 9A and 9B, the number of the reflected light L1 ′ across the mark 31 and the number of the reflected light L1 ′ across the mark 33 are equal, as shown in FIGS. If the reflected light L1 ′ crosses the marks 31 and 33 at two locations (or three locations), the distance between the locations crossing the mark 31 and the distance between the locations crossing the mark 33 are equal.

これに対し、図4(C)に示すように、2次元距離計10がXY平面内の回転方向にずれており、ライン光P1の長手方向がX方向に沿っていないとき、反射光L1’のマーク31を通るY方向位置と反射光L1’のマーク33を通るY方向位置が異なる。そのため、反射光L1’のマーク31を横切る数と反射光L1’のマーク33を横切る数が、図9(C)に示すように、異なるか、あるいは、反射光L1’がマーク31、33を横切る数が同じ場合、マーク31を横切る箇所間の距離とマーク33を横切る箇所間の距離が異なることとなる。 On the other hand, as shown in FIG. 4C, when the two-dimensional distance meter 10 is displaced in the rotational direction in the XY plane and the longitudinal direction of the line light P1 is not along the X direction, the reflected light L1 ′. The Y-direction position passing through the mark 31 and the Y-direction position passing through the mark 33 of the reflected light L1 ′ are different. Therefore, the number of the reflected light L1 ′ crossing the mark 31 and the number of the reflected light L1 ′ across the mark 33 are different as shown in FIG. 9C, or the reflected light L1 ′ When the number of crossings is the same, the distance between the locations crossing the mark 31 and the distance between the locations crossing the mark 33 are different.

従って、ライン光P1の長手方向がX方向に沿っているか否かは、基準点35に対する反射光L1’のマーク31を通る箇所のY方向の位置関係と、基準点37に対する反射光L1’のマーク33を通る箇所のY方向の位置関係から検知可能である。
同様の手順によって、ライン光P2の長手方向がX方向に沿っているか否かを検知することができる。
Therefore, whether or not the longitudinal direction of the line light P1 is along the X direction depends on the positional relationship of the reflected light L1 ′ passing the mark 31 with respect to the reference point 35 in the Y direction and the reflected light L1 ′ with respect to the reference point 37. It can be detected from the positional relationship in the Y direction at the location passing through the mark 33.
By the same procedure, it is possible to detect whether or not the longitudinal direction of the line light P2 is along the X direction.

更に、厚み導出機17は、校正治具20に対する反射光L1’のX方向の位置関係を検出して、2次元距離計10のX方向の位置ずれを検知し、校正治具20に対する反射光L2’のX方向の位置関係を検出して、2次元距離計11のX方向の位置ずれを検知する。
2次元距離計10の位置がX方向にずれていなければ、校正治具20に対する反射光L1’のX方向の位置関係は所定の位置となる。本実施の形態では、第1高さ領域30と面28(即ち、第2高さ領域)の段差(高さ位置の差)を利用して、校正治具20に対する反射光L1’のX方向の位置関係を計測している。
具体的には、図7(B)に示すように、2次元距離計10がX方向に所定の位置に配されているときの反射光L1’の面24で反射されている部分の長さをQとして、厚み導出機17が、図7(C)に示すように、反射光L1’の面24で反射されている部分の長さQ’を検出する。
Furthermore, the thickness deriving machine 17 detects the positional relationship in the X direction of the reflected light L1 ′ with respect to the calibration jig 20, detects the positional deviation in the X direction of the two-dimensional distance meter 10, and reflects the reflected light on the calibration jig 20. The positional relationship in the X direction of L2 ′ is detected, and the positional deviation in the X direction of the two-dimensional distance meter 11 is detected.
If the position of the two-dimensional distance meter 10 is not shifted in the X direction, the positional relationship in the X direction of the reflected light L1 ′ with respect to the calibration jig 20 is a predetermined position. In the present embodiment, the reflected light L1 ′ with respect to the calibration jig 20 in the X direction using the step (difference in height position) between the first height region 30 and the surface 28 (that is, the second height region). The positional relationship is measured.
Specifically, as shown in FIG. 7B, the length of the portion reflected by the surface 24 of the reflected light L1 ′ when the two-dimensional distance meter 10 is arranged at a predetermined position in the X direction. As shown in FIG. 7C, the thickness deriving device 17 detects the length Q ′ of the portion of the reflected light L1 ′ that is reflected by the surface 24, as shown in FIG.

厚み導出機17は、QとQ’が等しければ、2次元距離計10の位置がX方向にずれていないと判定し、QとQ’が異なれば、2次元距離計10の位置がX方向にずれていると判定する。
なお、比較対象を反射光L1’の面24で反射されている部分の長さにする必要はなく、例えば、比較対象を反射光L1’の面26で反射されている部分の長さにしてもよい。
2次元距離計10と同様の手順によって、2次元距離計11のX方向の位置ずれを検出可能である。
The thickness deriving machine 17 determines that the position of the two-dimensional distance meter 10 is not shifted in the X direction if Q and Q ′ are equal, and if the Q and Q ′ are different, the position of the two-dimensional distance meter 10 is determined to be in the X direction. It is determined that it is shifted to.
The comparison target need not have the length of the portion reflected by the surface 24 of the reflected light L1 ′. For example, the comparison target has the length of the portion reflected by the surface 26 of the reflected light L1 ′. Also good.
The positional deviation in the X direction of the two-dimensional distance meter 11 can be detected by the same procedure as that of the two-dimensional distance meter 10.

そして、校正治具20の上下にそれぞれ配置された2次元距離計10、11について、ライン光P1、P2の照射方向のX方向及びY方向それぞれに対する傾き、2次元距離計10、11のX方向及びY方向の位置ずれ、及び、ライン光P1、P2の長手方向のX方向に対する傾きを検知した結果を基に、該当の2次元距離計10、11の配置が調整される。その後、校正治具20をX方向に移動させ、同様の手順で別の2次元距離10、11の配置の計測及び調整がなされる。 Then, the two-dimensional distance meters 10 and 11 respectively disposed above and below the calibration jig 20 are inclined with respect to the X direction and the Y direction of the irradiation directions of the line lights P1 and P2, respectively. The X direction of the two-dimensional distance meters 10 and 11 The arrangement of the corresponding two-dimensional distance meters 10 and 11 is adjusted based on the result of detecting the positional deviation in the Y direction and the inclination of the line lights P1 and P2 with respect to the X direction in the longitudinal direction. Thereafter, the calibration jig 20 is moved in the X direction, and the arrangement of the other two-dimensional distances 10 and 11 is measured and adjusted in the same procedure.

以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、第1、第2のマークはそれぞれ第1高さ領域に形成された溝であってもよい。
また、第1高さ領域が第1、第2の部位を備えている校正治具を採用する代わりに、例えば、図10(A)、(B)に示すように、上面に第1、第2のマーク41、42が間隔を空けて配された第1高さ領域43のX方向に隣接して第2高さ領域44が設けられた校正治具45を採用してもよい。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions and the like that do not depart from the gist are within the scope of the present invention.
For example, the first and second marks may be grooves formed in the first height region.
Further, instead of employing a calibration jig in which the first height region includes the first and second parts, for example, as shown in FIGS. A calibration jig 45 in which a second height region 44 is provided adjacent to the first height region 43 in which the two marks 41 and 42 are spaced apart from each other in the X direction may be employed.

そして、第1、第2のマークは、第1のマークがY方向の異なる部分の配置がそれぞれ相違し、第2のマークがY方向の異なる部分の配置がそれぞれ相違していればよく、例えば、図10(A)に示す第1、第2のマーク41、42のような形状であってもよい。図10(A)に示す例の場合、第1のマーク41の中心(Q1の位置)及び第2基準点を第2のマーク42の中心(Q2の位置)をそれぞれ第1基準点及び第2基準点として設定することが可能である。
更に、第1、第2のマークは大きさや形状が異なっていてもよい。
また、下方から鋼材にライン光を照射しない場合、マークが第1高さ領域のみに設けられた校正治具を採用することができる。
The first mark and the second mark may be different in arrangement of portions where the first mark is different in the Y direction and different in arrangement of portions where the second mark is different in the Y direction. A shape such as the first and second marks 41 and 42 shown in FIG. In the example shown in FIG. 10A, the center of the first mark 41 (position Q1) and the second reference point are the center of the second mark 42 (position Q2), respectively. It can be set as a reference point.
Furthermore, the first and second marks may be different in size and shape.
When the steel material is not irradiated with line light from below, a calibration jig in which marks are provided only in the first height region can be employed.

10、11:2次元距離計、12:レーザ照射部、13:撮像部、14:レーザ照射部、15:撮像部、16:アンプ、17:厚み導出機、20:校正治具、21、22、23:ブロック、24〜29:面、30:第1高さ領域、31〜34:マーク、35〜38:基準点、41:第1のマーク、42:第2のマーク、43:第1高さ領域、44:第2高さ領域、45:校正治具、L1、L2:反射光、L1’、L2’:反射光、G:パスライン、P1、P2:ライン光、S:鋼材、W:計測対象物 10, 11: Two-dimensional distance meter, 12: Laser irradiation unit, 13: Imaging unit, 14: Laser irradiation unit, 15: Imaging unit, 16: Amplifier, 17: Thickness deriving machine, 20: Calibration jig, 21, 22 , 23: block, 24-29: plane, 30: first height region, 31-34: mark, 35-38: reference point, 41: first mark, 42: second mark, 43: first Height region, 44: second height region, 45: calibration jig, L1, L2: reflected light, L1 ′, L2 ′: reflected light, G: pass line, P1, P2: line light, S: steel material, W: Object to be measured

Claims (8)

パスラインを搬送方向であるY方向に搬送される計測対象物の上方から、Y方向に直交するX方向に長いライン光を垂直に照射し、前記計測対象物で反射したライン状の反射光αを検出して該計測対象物までの距離を求める2次元距離計の配置を校正する距離計校正方法であって、
第1、第2のマークが間隔を空けて設けられた第1高さ領域、及び、前記第1高さ領域と高さが異なる第2高さ領域を有する校正治具を、前記2次元距離計が目標位置に正しく配されている場合に前記ライン光が照射されて前記校正治具で反射されるライン状の治具反射光が前記第1のマークの第1基準点及び前記第2のマークの第2基準点を通る位置、かつ、前記目標位置に対しX方向に所定の関係となる位置に配置する工程と、
配置の校正対象である前記2次元距離計から前記ライン光を照射して、前記第1、第2のマークと前記第2高さ領域を通る反射光βを検出する工程と、
検出した前記反射光βを基に前記2次元距離計から前記第1高さ領域までの距離と、前記2次元距離計から前記第2高さ領域までの距離とを計測して、前記ライン光の照射方向の傾きを求め、前記第1基準点に対する前記反射光βの該第1のマークを通る箇所のY方向の位置関係と、前記第2基準点に対する前記反射光βの該第2のマークを通る箇所のY方向の位置関係とを検出して、前記2次元距離計のY方向の位置ずれ、並びに、前記ライン光の長手方向のX方向に対する傾きを検知し、前記校正治具に対する前記反射光βのX方向の位置関係を検出して、前記2次元距離計のX方向の位置ずれを検知する工程とを有し、
前記第1のマークはY方向の異なる部分の配置がそれぞれ相違し、前記第2のマークはY方向の異なる部分の配置がそれぞれ相違することを特徴とする距離計校正方法。
A line-shaped reflected light α that is vertically irradiated with long line light in the X direction orthogonal to the Y direction from above the measurement object conveyed in the Y direction, which is the conveyance direction, on the pass line, and reflected by the measurement object. A distance meter calibration method for calibrating the arrangement of a two-dimensional distance meter to detect the distance to the measurement object,
A calibration jig having a first height region in which first and second marks are provided at an interval and a second height region having a height different from the first height region is defined as the two-dimensional distance. When the meter is correctly arranged at the target position, the line-shaped jig reflected light that is irradiated with the line light and reflected by the calibration jig becomes the first reference point and the second mark of the first mark. Placing the mark at a position passing through the second reference point and a predetermined relationship in the X direction with respect to the target position;
Irradiating the line light from the two-dimensional distance meter which is a calibration target of the arrangement, and detecting the reflected light β passing through the first and second marks and the second height region;
Based on the detected reflected light β, a distance from the two-dimensional distance meter to the first height region and a distance from the two-dimensional distance meter to the second height region are measured, and the line light , The positional relationship in the Y direction of the portion of the reflected light β passing through the first mark with respect to the first reference point, and the second of the reflected light β with respect to the second reference point. The positional relationship in the Y direction of the portion passing through the mark is detected, the positional deviation in the Y direction of the two-dimensional distance meter, and the inclination of the line light in the longitudinal direction with respect to the X direction are detected, and the calibration jig is Detecting a positional relationship in the X direction of the reflected light β, and detecting a positional deviation in the X direction of the two-dimensional distance meter,
A distance meter calibration method, wherein the first mark has a different arrangement of portions in the Y direction, and the second mark has a different arrangement of portions in the Y direction.
前記第1高さ領域は、前記第1のマークが設けられた第1の部位と前記第2のマークが設けられた第2の部位とが間隔を空けて設けられ、前記第2高さ領域は、平面視して前記第1、第2の部位の間に配置されていることを特徴とする請求項1記載の距離計校正方法。 In the first height region, a first portion where the first mark is provided and a second portion where the second mark is provided are provided at an interval, and the second height region is provided. The distance meter calibration method according to claim 1, wherein the distance meter is disposed between the first and second parts in a plan view. 前記第1、第2のマークはそれぞれ、前記第1高さ領域に、周囲の色とは異なる色で描かれて設けられていることを特徴とする請求項1又は2記載の距離計校正方法。 3. The distance meter calibration method according to claim 1, wherein each of the first and second marks is provided in the first height region in a color different from a surrounding color. . 前記第1、第2のマークはそれぞれ、前記第1高さ領域に形成された溝であることを特徴とする請求項1又は2記載の距離計校正方法。 3. The distance meter calibration method according to claim 1, wherein each of the first and second marks is a groove formed in the first height region. パスラインを搬送方向であるY方向に搬送される計測対象物の上方から、Y方向に垂直なX方向に長いライン光をY方向及びX方向に対し垂直に照射し、前記計測対象物で反射したライン状の反射光を検出して該計測対象物までの距離を求める2次元距離計の配置を校正するのに用いられる校正治具であって、
前記ライン光が照射される第1高さ領域と、前記第1高さ領域と高さが異なり、前記ライン光が照射される第2高さ領域とを備え、
前記第1高さ領域には、第1基準点を具備する第1のマーク及び第2基準点を具備する第2のマークが間隔を空けて設けられ、
前記第1基準点及び前記第2基準点がX方向に沿った状態に配置されて、前記第1のマークはY方向の異なる部分の配置がそれぞれ相違し、前記第2のマークはY方向の異なる部分の配置がそれぞれ相違することを特徴とする校正治具。
Long line light in the X direction perpendicular to the Y direction is irradiated perpendicularly to the Y direction and the X direction from above the measurement object conveyed in the Y direction, which is the conveyance direction, and reflected by the measurement object. A calibration jig used to calibrate the arrangement of a two-dimensional distance meter that detects the reflected light in the form of a line and determines the distance to the measurement object,
A first height region irradiated with the line light and a second height region different in height from the first height region and irradiated with the line light;
In the first height region, a first mark having a first reference point and a second mark having a second reference point are provided at an interval,
The first reference point and the second reference point are arranged in a state along the X direction, the first mark is different in the arrangement of different parts in the Y direction, and the second mark is in the Y direction. A calibration jig characterized in that different parts are arranged differently.
前記第1高さ領域は、前記第1のマークが設けられた第1の部位と前記第2のマークが設けられた第2の部位とが間隔を空けて設けられ、前記第2高さ領域は、平面視して前記第1、第2の部位の間に配置されていることを特徴とする請求項5記載の校正治具。 In the first height region, a first portion where the first mark is provided and a second portion where the second mark is provided are provided at an interval, and the second height region is provided. The calibration jig according to claim 5, wherein the calibration jig is disposed between the first and second portions in plan view. 前記第1、第2のマークはそれぞれ、前記第1高さ領域に、周囲の色とは異なる色で描かれて設けられていることを特徴とする請求項5又は6記載の校正治具。 The calibration jig according to claim 5 or 6, wherein each of the first and second marks is provided in the first height region in a color different from a surrounding color. 前記第1、第2のマークはそれぞれ、前記第1高さ領域に形成された溝であることを特徴とする請求項5又は6記載の校正治具。 7. The calibration jig according to claim 5, wherein each of the first and second marks is a groove formed in the first height region.
JP2018040842A 2018-03-07 2018-03-07 Rangefinder calibration method and calibration jig used for it Active JP6965795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018040842A JP6965795B2 (en) 2018-03-07 2018-03-07 Rangefinder calibration method and calibration jig used for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018040842A JP6965795B2 (en) 2018-03-07 2018-03-07 Rangefinder calibration method and calibration jig used for it

Publications (2)

Publication Number Publication Date
JP2019158361A true JP2019158361A (en) 2019-09-19
JP6965795B2 JP6965795B2 (en) 2021-11-10

Family

ID=67992530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018040842A Active JP6965795B2 (en) 2018-03-07 2018-03-07 Rangefinder calibration method and calibration jig used for it

Country Status (1)

Country Link
JP (1) JP6965795B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136224A (en) * 1994-11-09 1996-05-31 Tokai Rika Co Ltd Dimension measuring instrument
US20050068523A1 (en) * 2003-08-11 2005-03-31 Multi-Dimension Technology, Llc Calibration block and method for 3D scanner
JP2007212159A (en) * 2006-02-07 2007-08-23 Brother Ind Ltd Calibration tool used for calibration of three-dimensional shape detector and calibration method therefor
JP2012177596A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Holder for calibration and method for calibrating photo cutting type shape measuring instrument
JP2018009888A (en) * 2016-07-14 2018-01-18 新日鐵住金株式会社 Device and method for measuring steel piece cross-sectional shape
US20180374239A1 (en) * 2015-11-09 2018-12-27 Cognex Corporation System and method for field calibration of a vision system imaging two opposite sides of a calibration object

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136224A (en) * 1994-11-09 1996-05-31 Tokai Rika Co Ltd Dimension measuring instrument
US20050068523A1 (en) * 2003-08-11 2005-03-31 Multi-Dimension Technology, Llc Calibration block and method for 3D scanner
JP2007212159A (en) * 2006-02-07 2007-08-23 Brother Ind Ltd Calibration tool used for calibration of three-dimensional shape detector and calibration method therefor
JP2012177596A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Holder for calibration and method for calibrating photo cutting type shape measuring instrument
US20180374239A1 (en) * 2015-11-09 2018-12-27 Cognex Corporation System and method for field calibration of a vision system imaging two opposite sides of a calibration object
JP2018009888A (en) * 2016-07-14 2018-01-18 新日鐵住金株式会社 Device and method for measuring steel piece cross-sectional shape

Also Published As

Publication number Publication date
JP6965795B2 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
KR101912647B1 (en) Method for thickness measurement on measurement objects and device for applying the method
US8987634B2 (en) Determining powder feed nozzle misalignment
JP6289980B2 (en) Processing method
US10102631B2 (en) Edge detection bias correction value calculation method, edge detection bias correction method, and edge detection bias correcting program
JP2009244831A (en) Maskless exposure method
JP5270138B2 (en) Calibration jig and calibration method
JP5030699B2 (en) Method and apparatus for adjusting thickness measuring apparatus
JP5545737B2 (en) Component mounter and image processing method
KR20110017227A (en) Apparatus for measuring alignment error of a laser vision system and method for measuring alignment error of a laser vision system using the same
JP2017116401A (en) Substrate position adjustment device and substrate position adjustment method
KR20110019011A (en) Calibration method and calibration jig between robot tcp and lvs
CN109073991A (en) The method of the position of mask clamp is detected on measurement table
JP6965795B2 (en) Rangefinder calibration method and calibration jig used for it
JP2011148045A (en) Device and method for calibrating tool coordinate system
JP2013140082A (en) Height measuring device and height measuring method
JP6474335B2 (en) Relative position measurement method between rolls
CN115638723A (en) Shape inspection apparatus and height image processing apparatus
KR20140123860A (en) Thin film deposition apparatus and method for forming thin film using the same
CN116592757A (en) Two-dimensional precision compensation method of measurement system
JP5431221B2 (en) Distance measuring device
JP6900261B2 (en) Processing equipment, substrate inspection equipment, processing method and substrate inspection method
KR100869055B1 (en) Apparatus for measuring arrangement of center axis of rotating part for supporting apposite ends and method for arranging using the same
JPH1032158A (en) Detection method for position
JP2020148738A (en) Plate position detection method, plate data correction method, and plate position detection device
WO2012111510A1 (en) Position detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211004

R151 Written notification of patent or utility model registration

Ref document number: 6965795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151