Nothing Special   »   [go: up one dir, main page]

JP2019157256A - Copper alloy plate excellent in strength and conductivity, electronic component for electrification, electronic component for heat release - Google Patents

Copper alloy plate excellent in strength and conductivity, electronic component for electrification, electronic component for heat release Download PDF

Info

Publication number
JP2019157256A
JP2019157256A JP2018049979A JP2018049979A JP2019157256A JP 2019157256 A JP2019157256 A JP 2019157256A JP 2018049979 A JP2018049979 A JP 2018049979A JP 2018049979 A JP2018049979 A JP 2018049979A JP 2019157256 A JP2019157256 A JP 2019157256A
Authority
JP
Japan
Prior art keywords
copper alloy
less
alloy plate
orientation
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018049979A
Other languages
Japanese (ja)
Other versions
JP7133327B2 (en
Inventor
康弘 岡藤
Yasuhiro Okafuji
康弘 岡藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018049979A priority Critical patent/JP7133327B2/en
Publication of JP2019157256A publication Critical patent/JP2019157256A/en
Application granted granted Critical
Publication of JP7133327B2 publication Critical patent/JP7133327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

To provide a Cu-Cr-Zr-Ti-based alloy plate having high strength, high conductivity, and flexure processability, and of which stress relaxation rate and Young modulus are improved.SOLUTION: There is provided a copper alloy plate containing Cr of 0.1 to 0.6 mass%, one or two kind of Zr and Ti of total 0.01 to 0.30 mass% and the balance copper with inevitable impurities, and having area percentage of Cube orientation {001}<100> of 10% or less, area percentage of Brass orientation {110}<112> of 40% or less, and area percentage of Copper orientation {112}<111> of 20% or more, in which 100000/mmor less of second phase particles with size of 0.1 μm or more exist.SELECTED DRAWING: None

Description

本発明は電子材料などの電子部品の製造に好適に使用可能な銅合金板及び通電用又は放熱用電子部品に関し、特に、電機・電子機器、自動車等に搭載される端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の素材として使用される銅合金板、及び該銅合金板を用いた電子部品に関する。中でも、電気自動車、ハイブリッド自動車等で用いられるコネクタや端子等の通電用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に好適な銅合金板及び該銅合金板を用いた電子部品に関するものである。   TECHNICAL FIELD The present invention relates to a copper alloy plate and an electronic component for energization or heat dissipation that can be suitably used for manufacturing electronic components such as electronic materials, and in particular, terminals, connectors, relays, and switches mounted on electric machines / electronic devices, automobiles, and the like. The present invention relates to a copper alloy plate used as a material for electronic components such as sockets, bus bars, lead frames, and heat sinks, and an electronic component using the copper alloy plate. Among them, a copper alloy plate suitable for use in energizing electronic components such as connectors and terminals used in electric vehicles, hybrid vehicles, etc., or in heat dissipating electronic components such as liquid crystal frames used in smartphones and tablet PCs, and the copper The present invention relates to an electronic component using an alloy plate.

電子機器の端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電気又は熱を伝えるための材料として、強度と導電率に優れた銅合金条が広く用いられている。ここで、電気伝導性と熱伝導性は比例関係にある。ところで、近年、電子機器のコネクタにおいて高電流化が進んでおり、良好な曲げ性を有し、80%IACS以上の導電率、600MPa以上の耐力を有することが必要と考えられている。   Copper alloy strips having excellent strength and conductivity are widely used as materials for transmitting electricity or heat, such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, and heat sinks of electronic devices. Here, electrical conductivity and thermal conductivity are in a proportional relationship. By the way, in recent years, high currents have been developed in connectors of electronic devices, and it is considered necessary to have good bendability, conductivity of 80% IACS or more, and proof stress of 600 MPa or more.

一方、例えばスマートフォンやタブレットPCの液晶には液晶フレームと呼ばれる放熱部品が用いられている。このような放熱用途の銅合金板においても、高熱伝導率化が進んでおり、良好な曲げ性を有し、高強度を有することが必要と考えられている。このため、放熱用途の銅合金板においても、80%IACS以上の導電率、600MPa以上の耐力を有することが必要と考えられている。   On the other hand, for example, a heat radiating component called a liquid crystal frame is used for a liquid crystal of a smartphone or a tablet PC. Even in such a copper alloy plate for heat dissipation, high thermal conductivity is progressing, and it is considered necessary to have good bendability and high strength. For this reason, it is considered that a copper alloy plate for heat dissipation needs to have a conductivity of 80% IACS or more and a proof stress of 600 MPa or more.

しかしながら、80%IACS以上の導電率をコルソン合金系銅合金で達成することは難しいため、Cu−Cr系やCu−Zr系の銅合金の開発が進められてきた。例えば、Cu−Cr−Zr系銅合金として、I(220)を制御することで、曲げ加工性や応力緩和率に優れた銅合金が開示されている(特許文献1)。また、Cu−Cr−Zr系銅合金として、I(200)を高くすることで、曲げ加工性に優れた銅合金が開示されている(特許文献2)。   However, since it is difficult to achieve a conductivity of 80% IACS or higher with a Corson alloy-based copper alloy, the development of Cu-Cr-based and Cu-Zr-based copper alloys has been promoted. For example, a copper alloy excellent in bending workability and stress relaxation rate by controlling I (220) is disclosed as a Cu—Cr—Zr copper alloy (Patent Document 1). Moreover, the copper alloy excellent in bending workability is disclosed by making I (200) high as a Cu-Cr-Zr-type copper alloy (patent document 2).

特開2017−179503号公報JP 2017-179503 A 特許第5834528号公報Japanese Patent No. 5834528

しかしながら、Cu−Cr−Zr系銅合金は、比較的良好な応力緩和特性を有するとはいうものの、その応力緩和特性のレベルは大電流を通電する部品又は大熱量を放散する部品の用途として必ずしも十分とはいえない場合があった。また、80%IACS以上の高導電率と良好な曲げ加工性を確保しつつ耐力を高めることには限界があり、コネクタとして用いられる場合に必ずしも十分な接圧を確保できない場合があった。また、特許文献1のようにI(220)/I0(220)を制御して曲げ加工性を改善しても曲げ加工部にシワが生じ、高電流化に対応できない。また、特許文献2のように、強度を維持しつつ曲げ加工性を良好にするためには、ヤング率の低下が懸念される場合もある。 However, although the Cu-Cr-Zr-based copper alloy has relatively good stress relaxation characteristics, the level of the stress relaxation characteristics is not necessarily used as a part that conducts a large current or a part that dissipates a large amount of heat. In some cases, it was not enough. Further, there is a limit to increasing the proof stress while ensuring a high conductivity of 80% IACS or higher and good bending workability, and there are cases where sufficient contact pressure cannot always be secured when used as a connector. Further, even if I (220) / I 0 (220) is controlled as in Patent Document 1 to improve the bending workability, wrinkles are generated in the bent portion, and it is not possible to cope with a high current. In addition, as in Patent Document 2, in order to improve the bending workability while maintaining the strength, there may be a concern about a decrease in Young's modulus.

そこで、本発明は、高強度、高導電性、曲げ加工性を兼ね備えた銅合金板において、応力緩和率及びヤング率が改善されたCu−Cr−Zr−Ti系合金板を提供することを課題とする。さらには、本発明は、通電用途又は放熱用途に好適な電子部品を提供することをも目的とする。   Therefore, the present invention is to provide a Cu—Cr—Zr—Ti alloy plate with improved stress relaxation rate and Young's modulus in a copper alloy plate having high strength, high conductivity, and bending workability. And Furthermore, another object of the present invention is to provide an electronic component suitable for energization or heat dissipation.

本発明に係る銅合金板は一側面において、Crを0.1〜0.6質量%、ZrおよびTiのうちの一種または二種を合計で0.01〜0.30質量%含有し、残部が銅及び不可避的不純物からなり、EBSD測定における結晶方位解析において、Cube方位{0 0 1}<1 0 0>の面積率が10%以下、Brass方位{1 1 0}<1 1 2>の面積率が40%以下、Copper方位{1 1 2}<1 1 1>の面積率が20%以上であり、0.1μm以上のサイズの第二相粒子が100000個/mm2以下存在する銅合金板が提供される。 In one aspect, the copper alloy plate according to the present invention contains 0.1 to 0.6% by mass of Cr, 0.01 to 0.30% by mass in total of one or two of Zr and Ti, and the balance Is made of copper and inevitable impurities, and in the crystal orientation analysis in the EBSD measurement, the area ratio of the Cube orientation {0 0 1} <1 0 0> is 10% or less, and the Brass orientation {1 1 0} <1 1 2> area ratio of 40% or less, and the copper orientation {1 1 2} <1 1 1> area ratio of 20% or more, copper second phase particles of 0.1μm or more in size exist 100,000 / mm 2 or less An alloy plate is provided.

本発明に係る銅合金板は別の一実施態様において、応力緩和率が10%以下である。   In another embodiment, the copper alloy sheet according to the present invention has a stress relaxation rate of 10% or less.

本発明に係る銅合金板は更に別の一実施態様において、銅合金板のヤング率が120GPa以上である。   In yet another embodiment of the copper alloy plate according to the present invention, the Young's modulus of the copper alloy plate is 120 GPa or more.

本発明に係る銅合金板は更に別の一実施態様において、銅合金板はAg、B、Co、Fe、Mg、Mn、Ni、P、Si、SnおよびZnよりなる群から選ばれる少なくとも1種を合計で1.0質量%以下含有する。   In yet another embodiment, the copper alloy plate according to the present invention is at least one selected from the group consisting of Ag, B, Co, Fe, Mg, Mn, Ni, P, Si, Sn and Zn. Are contained in a total of 1.0% by mass or less.

本発明は別の一側面において、上記銅合金板を用いた通電用電子部品である。   In another aspect, the present invention is an electronic component for energization using the copper alloy plate.

本発明は更に別の一側面において、上記銅合金板を用いた放熱用電子部品である。   In another aspect of the present invention, there is provided a heat dissipating electronic component using the copper alloy plate.

本発明によれば、導電率や強度を維持しつつ、曲げ加工性に優れ、かつ、応力緩和率及びヤング率が改善されたCu−Cr−Zr−Ti系合金板、並びに通電用途又は放熱用途に好適な電子部品を提供することが可能である。この銅合金板は、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム等の電子部品の素材として好適に使用することができ、特に大電流を通電する電子部品の素材又は大熱量を放散する電子部品の素材として有用である。   According to the present invention, a Cu-Cr-Zr-Ti alloy plate having excellent bending workability and having improved stress relaxation rate and Young's modulus while maintaining conductivity and strength, as well as energization use or heat dissipation use. It is possible to provide a suitable electronic component. This copper alloy plate can be suitably used as a material for electronic parts such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, etc., and particularly dissipates the material or large amount of heat of electronic parts that carry a large current. It is useful as a material for electronic parts.

応力緩和率の測定原理を説明する図である。It is a figure explaining the measurement principle of a stress relaxation rate. 応力緩和率の測定原理を説明する図である。It is a figure explaining the measurement principle of a stress relaxation rate.

以下、本発明の実施形態に係る銅合金板(Cu−Cr−Zr−Ti系合金板)について説明する。なお、本発明において「%」とは、特に断らない限り、質量%を示すものとする。   Hereinafter, a copper alloy plate (Cu—Cr—Zr—Ti alloy plate) according to an embodiment of the present invention will be described. In the present invention, “%” means mass% unless otherwise specified.

(成分濃度)
本発明の実施の形態に係る銅合金板は、Crを0.1〜0.6%、Zr及びTiのうちの一種又は二種を合計で0.01〜0.30%含み、残部が銅及び不可避的不純物からなる。一実施態様においては、Crを0.15〜0.3%含み、Zr及びTiのうちの一種又は二種を合計で0.05〜0.20%含有することが好ましい。Crが0.6%を超えると曲げ加工性が低下し、0.1%未満になると600MPa以上の0.2%耐力を得ることが難しくなる。Zr及びTiのうちの一種又は二種の合計が0.30%を超えると曲げ加工性が低下し、0.01%未満になると、600MPa以上の0.2%耐力を得ることが難しくなる。
(Ingredient concentration)
The copper alloy plate according to the embodiment of the present invention includes Cr in an amount of 0.1 to 0.6%, one or two of Zr and Ti in a total of 0.01 to 0.30%, and the balance being copper. And inevitable impurities. In one embodiment, it is preferable to contain 0.15 to 0.3% of Cr and 0.05 to 0.20% in total of one or two of Zr and Ti. If Cr exceeds 0.6%, the bending workability decreases, and if it is less than 0.1%, it becomes difficult to obtain a 0.2% yield strength of 600 MPa or more. If the total of one or two of Zr and Ti exceeds 0.30%, the bending workability decreases, and if it is less than 0.01%, it becomes difficult to obtain a 0.2% proof stress of 600 MPa or more.

さらに、本発明の実施の形態に係る銅合金板は、Ag、B、Co、Fe、Mg、Mn、Ni、P、Si、SnおよびZnよりなる群から選ばれる少なくとも1種を合計で1.0%以下含有することが好ましい。これら元素は固溶強化や析出強化等により強度上昇に寄与する。これら元素の合計量が1.0%を超えると導電率が低下する、或いは、熱間圧延で割れる場合がある。   Furthermore, the copper alloy plate according to the embodiment of the present invention includes a total of at least one selected from the group consisting of Ag, B, Co, Fe, Mg, Mn, Ni, P, Si, Sn, and Zn. It is preferable to contain 0% or less. These elements contribute to an increase in strength by solid solution strengthening or precipitation strengthening. If the total amount of these elements exceeds 1.0%, the electrical conductivity may decrease, or may be cracked by hot rolling.

なお、高強度および高導電性を有する銅合金板において、添加する添加元素の組み合わせによって個々の添加量が変更されることは当業者によって理解可能なものである。典型的な一実施態様においては、例えば、Agは1.0%以下、Bは0.05%以下、Coは0.1%以下、Feは0.1%以下、Mgは0.1%以下、Mnは0.1%以下、Niは0.2%以下、Pは0.05%以下、Siは0.1%以下、Snは0.1%以下、Znは0.5%以下添加することができるが、導電率が80%IACSを下回らない添加元素の組み合わせおよび添加量であれば、本発明の銅合金板は必ずしもこれらの上限値に限定されるものではない。   In addition, it is understandable by those skilled in the art that in a copper alloy plate having high strength and high conductivity, the amount of each additive is changed depending on the combination of additive elements to be added. In one exemplary embodiment, for example, Ag is 1.0% or less, B is 0.05% or less, Co is 0.1% or less, Fe is 0.1% or less, and Mg is 0.1% or less. , Mn is 0.1% or less, Ni is 0.2% or less, P is 0.05% or less, Si is 0.1% or less, Sn is 0.1% or less, and Zn is 0.5% or less. However, the copper alloy sheet of the present invention is not necessarily limited to these upper limit values as long as the combination and addition amount of additive elements whose conductivity does not fall below 80% IACS.

本発明の実施の形態に係る銅合金板の厚みは特に限定されないが、例えば0.03〜0.6mmとすることができる。   Although the thickness of the copper alloy plate which concerns on embodiment of this invention is not specifically limited, For example, it can be 0.03-0.6 mm.

(結晶方位)
種々のCu−Cr−Zr−Ti系合金板について、EBSD法(Electron Back Scatter Diffraction:電子後方散乱回折)により結晶方位分布を測定し、結晶方位分布関数を用い、発達している方位成分を求めたところ、Cube方位{0 0 1}<1 0 0>、Brass方位{1 1 0}<1 1 2>及びCopper方位{1 1 2}<1 1 1>の3方位が検出された。ここで、例えば{0 0 1}<1 0 0>方位とは、圧延面法線方向(ND)に(0 0 1)面が、圧延方向(RD)に(1 0 0)面が向いている状態を示す。
各方位の発達度と曲げ加工性との関係について実験的に検討した結果、Cube方位{0 0 1}<1 0 0>とCopper方位{1 1 2}<1 1 1>が非常に有効であった。一方、Brass方位{1 1 0}<1 1 2>は曲げ加工性に対し有害な成分であった。
また、各方位の発達度とヤング率との関係について実験的に検討した結果、Copper方位{1 1 2}<1 1 1>が非常に有効であった。一方、Cube方位{0 0 1}<1 0 0>はヤング率に対し有害な成分であった。
そこで、本発明者は、Cube方位の面積率を10%以下、Copper方位の面積率を20%以上、Brass方位の面積率を40%以下とすることで、強度、導電率、曲げ加工性、ヤング率のバランスが取れたCu−Cr−Zr−Ti系合金が得られることを見出した。
EBSD法による測定条件は後述する。
(Crystal orientation)
For various Cu-Cr-Zr-Ti alloy plates, the crystal orientation distribution is measured by the EBSD method (Electron Back Scatter Diffraction) and the developed orientation component is obtained using the crystal orientation distribution function. As a result, three orientations were detected: Cube orientation {0 0 1} <1 0 0>, Brass orientation {1 1 0} <1 1 2> and Copper orientation {1 1 2} <1 1 1>. Here, for example, the {0 0 1} <1 0 0> orientation means that the (0 0 1) plane is oriented in the rolling surface normal direction (ND) and the (1 0 0) plane is oriented in the rolling direction (RD). Indicates the state.
As a result of experimentally examining the relationship between the degree of development of each orientation and the bending workability, the Cube orientation {0 0 1} <1 0 0> and the Copper orientation {1 1 2} <1 1 1> are very effective. there were. On the other hand, the Brass orientation {1 1 0} <1 1 2> was a component harmful to bending workability.
Moreover, as a result of experimentally examining the relationship between the degree of development of each orientation and the Young's modulus, the Copper orientation {1 1 2} <1 1 1> was very effective. On the other hand, the Cube orientation {0 0 1} <1 0 0> was a harmful component for Young's modulus.
Therefore, the present inventor has an area ratio of Cube orientation of 10% or less, an area ratio of Copper orientation of 20% or more, and an area ratio of Brass orientation of 40% or less. It has been found that a Cu—Cr—Zr—Ti alloy having a balanced Young's modulus can be obtained.
Measurement conditions by the EBSD method will be described later.

(0.1μm以上のサイズの第二相粒子の密度)
0.1μm以上のサイズの第二相粒子の密度を100000個/mm2以下に調整することにより、銅合金板の曲げ加工性が改善される。ここで、第二相粒子とは、Cr、Cu−Zr化合物等のCu母相とは異なる粒子を指し、その個数密度が100000個/mm2を上回ると曲げ加工性が低下する。
0.1μm以上のサイズの第二相粒子の密度の測定条件は後述する。
(Density of second phase particles having a size of 0.1 μm or more)
By adjusting the density of the second phase particles having a size of 0.1 μm or more to 100000 particles / mm 2 or less, the bending workability of the copper alloy plate is improved. Here, the second phase particles refer to particles different from the Cu matrix such as Cr and Cu—Zr compounds, and when the number density exceeds 100,000 / mm 2 , the bending workability decreases.
The measurement conditions of the density of the second phase particles having a size of 0.1 μm or more will be described later.

(用途)
本発明の実施の形態に係る銅合金板は、端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板などの電子部品の用途に好適に使用することができ、特に、電気自動車、ハイブリッド自動車等で用いられるコネクタや端子等の通電用途、またはスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に有用である。
(Use)
The copper alloy plate according to the embodiment of the present invention can be suitably used for applications of electronic components such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, heat sinks, in particular, electric vehicles, This is useful for energizing applications such as connectors and terminals used in hybrid vehicles and the like, or for heat-dissipating electronic components such as liquid crystal frames used in smartphones and tablet PCs.

(製造方法)
本発明の実施の形態に係る銅合金板は以下の製造工程により製造することができる。まず、純銅原料として電気銅等を溶解し、カーボン脱酸等により酸素濃度を低減した後、Crと、Zr及びTiのうちの一種又は二種と、必要に応じて他の合金元素を添加し、厚み30〜300mm程度のインゴットに鋳造する。このインゴットを例えば800〜1000℃の熱間圧延により厚み3〜30mm程度の板とした後、第1の冷間圧延、溶体化処理、第1の時効処理、第2の冷間圧延、第2の時効処理をこの順で行う。必要に応じて酸化膜等を除去するために表面研削や酸洗を熱間圧延後、時効処理、溶体化処理等の熱処理後に実施する。
(Production method)
The copper alloy plate according to the embodiment of the present invention can be manufactured by the following manufacturing process. First, after dissolving electrolytic copper or the like as a pure copper raw material and reducing the oxygen concentration by carbon deoxidation or the like, Cr, one or two of Zr and Ti, and other alloy elements as necessary are added. And cast into an ingot having a thickness of about 30 to 300 mm. After this ingot is made into a plate having a thickness of about 3 to 30 mm by hot rolling at 800 to 1000 ° C., for example, the first cold rolling, solution treatment, first aging treatment, second cold rolling, second The aging process is performed in this order. If necessary, surface grinding and pickling are performed after hot rolling and after heat treatment such as aging treatment and solution treatment in order to remove the oxide film and the like.

第1の冷間圧延は、第2の冷間圧延加工度が所定の範囲内となるように表面研削や酸洗による板厚減少を考慮し設定した目標板厚に加工する。   The first cold rolling is processed to a target plate thickness that is set in consideration of a reduction in plate thickness due to surface grinding or pickling so that the second cold rolling degree is within a predetermined range.

溶体化処理は、300℃〜600℃までの材料の平均昇温速度を5〜30℃/minとし、600℃以上の材料の平均昇温速度を300℃/min以上とし、850〜900℃で5秒〜2分の保持後、水冷することで行う。   In the solution treatment, the average temperature rising rate of the material up to 300 ° C. to 600 ° C. is set to 5 to 30 ° C./min, the average temperature rising rate of the material of 600 ° C. or higher is set to 300 ° C./min or higher, and 850 to 900 ° C. After holding for 5 seconds to 2 minutes, it is performed by water cooling.

300℃〜600℃までの平均昇温速度が5℃/minを下回ると、0.1μm以上のサイズの第二相粒子が100000個/mm2を超えて曲げ加工性が低下する。 When the average rate of temperature increase from 300 ° C. to 600 ° C. is less than 5 ° C./min, the number of second phase particles having a size of 0.1 μm or more exceeds 100000 particles / mm 2 and the bending workability is lowered.

溶体化温度は、850℃を下回ると、銅中に固溶する添加元素の量が低下し、製品の0.2%耐力(YS)が低くなる場合がある。900℃を超えると、Cube方位が発達する。そのため、溶体化温度は850〜900℃とすることが好ましい。   When the solution temperature is lower than 850 ° C., the amount of additive element dissolved in copper decreases, and the 0.2% yield strength (YS) of the product may be lowered. If it exceeds 900 ° C., the Cube orientation develops. Therefore, the solution temperature is preferably 850 to 900 ° C.

第1の時効処理は、低温で長時間の実施が好ましく、300℃〜400℃で15〜25hが好ましい。300℃未満や15h未満の時効処理では、第1の時効処理後の導電率が75%IACS未満となり、後の冷間圧延でBrass方位が発達する。また、400℃を超えるか25hを超える時効処理では、第1の時効処理後の導電率が90%IACSを超え、Cube方位が発達してヤング率が低下する。   The first aging treatment is preferably performed at a low temperature for a long time, and preferably at 300 to 400 ° C. for 15 to 25 hours. In an aging treatment of less than 300 ° C. or less than 15 hours, the conductivity after the first aging treatment is less than 75% IACS, and the Brass orientation develops in the subsequent cold rolling. In addition, in the aging treatment exceeding 400 ° C. or exceeding 25 h, the conductivity after the first aging treatment exceeds 90% IACS, the Cube orientation develops, and the Young's modulus decreases.

第2の冷間圧延は、加工度を85%以上とすることが好ましい。85%未満ではCopper方位の発達が不足する。   The second cold rolling preferably has a workability of 85% or more. If it is less than 85%, the development of Copper orientation is insufficient.

第2の時効処理は、低温で長時間の実施が好ましく、200℃〜300℃で15〜30hが好ましい。再結晶しない低温度域で長時間時効処理することで、第2の冷間圧延後のCopper方位粒の維持と、第2の冷間圧延で低下した導電率の回復と、応力緩和率の向上が達成できる。   The second aging treatment is preferably carried out at a low temperature for a long time, and preferably at 200 to 300 ° C. for 15 to 30 hours. Long-term aging treatment in a low temperature range that does not recrystallize to maintain Copper orientation grains after the second cold rolling, restore the conductivity decreased by the second cold rolling, and improve the stress relaxation rate Can be achieved.

以上より、本発明に係る銅合金板の製造方法は、Crを0.1〜0.6質量%、ZrおよびTiのうちの一種または二種を合計で0.01〜0.30質量%含有し、残部が銅及び不可避的不純物からなる銅合金インゴットを熱間圧延した後、第1の冷間圧延工程、溶体化処理工程、第1の時効処理工程、第2の冷間圧延工程、第2の時効処理工程を含む銅合金板の製造方法であって、
前記溶体化処理は、300℃〜600℃までの平均昇温速度を5〜30℃/minとし、
前記第1の時効処理は、300℃〜400℃で15〜25h行い、
前記第2の冷間圧延は、加工度を85%以上とし、
前記第2の時効処理は、200℃〜300℃で15〜30h行うことを特徴とする銅合金板の製造方法である。
As mentioned above, the manufacturing method of the copper alloy plate which concerns on this invention contains 0.1-0.6 mass% of Cr, 0.01 to 0.30 mass% in total of 1 type or 2 types of Zr and Ti Then, after hot-rolling a copper alloy ingot whose balance is made of copper and inevitable impurities, the first cold rolling process, the solution treatment process, the first aging treatment process, the second cold rolling process, A method for producing a copper alloy plate including an aging treatment step of 2,
In the solution treatment, an average rate of temperature increase from 300 ° C. to 600 ° C. is 5 to 30 ° C./min,
The first aging treatment is performed at 300 to 400 ° C. for 15 to 25 hours,
The second cold rolling has a workability of 85% or more,
The second aging treatment is performed at 200 ° C. to 300 ° C. for 15 to 30 hours, and is a method for producing a copper alloy plate.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

溶銅に合金元素を添加した後、厚みが200mmのインゴットに鋳造した。インゴットを950℃で3h加熱し、熱間圧延により厚み15mmの板にした。熱間圧延板表面の酸化スケールをグラインダーで研削、除去した後、冷間圧延で1.5mmの厚みの板とした後、溶体化処理を300℃〜600℃までの材料の平均昇温速度を5〜30℃/minとし(具体的な平均昇温速度は表1の「昇温速度」の欄に示す)、600℃以上の材料の平均昇温速度を300℃/min以上とし、850〜900℃で5秒〜2分の保持後、水冷することで行った。その後、第1の時効処理を300℃〜400℃で15〜25h実施し、第2の冷間圧延にて0.1mmの板とし、第2の時効処理を200℃〜300℃で15〜30h実施した。   After adding the alloy element to the molten copper, it was cast into an ingot having a thickness of 200 mm. The ingot was heated at 950 ° C. for 3 hours and formed into a plate having a thickness of 15 mm by hot rolling. After grinding and removing the oxide scale on the surface of the hot-rolled sheet with a grinder, the sheet was made into a 1.5 mm thick sheet by cold rolling, and then subjected to a solution treatment with an average heating rate of the material from 300 ° C to 600 ° C. 5 to 30 ° C./min (specific average temperature rising rate is shown in the column of “temperature rising rate” in Table 1), and the average temperature rising rate of materials of 600 ° C. or higher is 300 ° C./min or higher. After holding at 900 ° C. for 5 seconds to 2 minutes, it was performed by cooling with water. Thereafter, the first aging treatment is carried out at 300 ° C. to 400 ° C. for 15 to 25 hours, the second cold rolling is performed to form a 0.1 mm plate, and the second aging treatment is carried out at 200 ° C. to 300 ° C. for 15 to 30 hours. Carried out.

各試料につき、以下の評価を行った。
<引張強度(TS)>
引張試験機により、JIS−Z2241に従い、圧延方向と平行な方向における引張強度(TS)を測定した。
Each sample was evaluated as follows.
<Tensile strength (TS)>
The tensile strength (TS) in a direction parallel to the rolling direction was measured with a tensile tester according to JIS-Z2241.

<0.2%耐力(YS)>
引張試験機により、JIS−Z2241に従い、圧延方向と平行な方向における0.2%耐力(YS)を測定した。0.2%耐力(YS)を降伏強度とした。
<0.2% yield strength (YS)>
A 0.2% proof stress (YS) in a direction parallel to the rolling direction was measured with a tensile tester in accordance with JIS-Z2241. 0.2% yield strength (YS) was taken as the yield strength.

<導電率(EC、単位:%IACS)>
試験片の長手方向が圧延方向と平行になるように試験片を採取し、JIS−H0505に準拠し四端子法により20℃での導電率を測定した。
<Conductivity (EC, unit:% IACS)>
The test piece was sampled so that the longitudinal direction of the test piece was parallel to the rolling direction, and the conductivity at 20 ° C. was measured by a four-terminal method in accordance with JIS-H0505.

<EBSD>
EBSD測定を用いて{0 0 1}<1 0 0>、{1 1 0}<1 1 2>及び{1 1 2}<1 1 1>の各方位の面積率を測定した。
表層の結晶方位を解析するための試料として、試料表面を機械研磨した後、電解研磨により鏡面に仕上げた。
EBSD測定では、結晶粒を200個以上含む、500μm四方の試料面積に対し、0.5μmのステップでスキャンし、結晶方位分布を測定した。そして、結晶方位分布関数解析を行って、{0 0 1}<1 0 0>、{1 1 0}<1 1 2>及び{1 1 2}<1 1 1>の各方位から10°以内の方位差を持つ領域の面積率を求めた。以上の解析にはTSL社製OIM Analysis 5.3を使用した。
<EBSD>
The area ratio of each direction of {0 0 1} <1 0 0>, {1 1 0} <1 1 2> and {1 1 2} <1 1 1> was measured using EBSD measurement.
As a sample for analyzing the crystal orientation of the surface layer, the sample surface was mechanically polished and then finished to a mirror surface by electrolytic polishing.
In the EBSD measurement, a 500 μm square sample area containing 200 or more crystal grains was scanned in 0.5 μm steps to measure the crystal orientation distribution. Then, a crystal orientation distribution function analysis is performed, and within 10 degrees from each orientation of {0 0 1} <1 0 0>, {1 1 0} <1 1 2>, and {1 1 2} <1 1 1> The area ratio of the region having the difference in orientation was obtained. For the above analysis, OIM Analysis 5.3 manufactured by TSL was used.

<ヤング率>
JIS−Z2201に規定する13B号試験片を引張方向が圧延方向と平行になるように採取し、引張試験を行った。得られた応力歪曲線から、弾性範囲における直線部の傾きを求め、この値をヤング率とした。
<Young's modulus>
A No. 13B test piece defined in JIS-Z2201 was taken so that the tensile direction was parallel to the rolling direction, and a tensile test was performed. From the obtained stress-strain curve, the slope of the straight line portion in the elastic range was obtained, and this value was taken as the Young's modulus.

<曲げ加工性>
試料を幅10mm、長さ200mmに切り出したものを曲げ用試験片として用いた。曲げ加工性は、曲げ部の肌荒れにより評価した。JIS−H3130に従って、Badway(曲げ軸が圧延方向と同一方向)のW曲げ試験を行い、光学顕微鏡で50倍に拡大して日本伸銅協会技術標準JCBA T307(2007)の評価基準に従い、A:しわなし、B:しわ小、C:しわ大、D:割れ小、E:割れ大の5段階の評価とした。
<Bending workability>
A sample cut into a width of 10 mm and a length of 200 mm was used as a bending test piece. Bending workability was evaluated based on rough skin at the bent part. In accordance with JIS-H3130, a Badway (bending axis is in the same direction as the rolling direction) W-bending test was performed, and it was magnified 50 times with an optical microscope and in accordance with the evaluation criteria of Japan Technical Standard JCBA T307 (2007). There were no wrinkles, B: small wrinkles, C: large wrinkles, D: small cracks, and E: large cracks.

<0.1μm以上のサイズの第二相粒子の密度>
0.1μm以上のサイズの第二相粒子の密度は、最終時効後のサンプル表面を機械研磨して鏡面に仕上げた後、電解研磨や酸洗エッチングをし、走査電子顕微鏡を用いて2000μm2の評価面積を1000〜10000倍で観察して行い、長径が0.1μm以上の第二相粒子の個数をカウントし、評価面積で除した数値を密度とした。
<Density of second phase particles having a size of 0.1 μm or more>
The density of the second phase particles having a size of 0.1 μm or more is 2000 μm 2 using a scanning electron microscope after mechanical polishing of the sample surface after final aging to finish it into a mirror surface, and then performing electrolytic polishing and pickling etching. The evaluation area was observed at 1000 to 10000 times, the number of second phase particles having a major axis of 0.1 μm or more was counted, and the numerical value divided by the evaluation area was taken as the density.

<応力緩和率>
幅10mm、長さ100mmの短冊形状の試験片を、試験片の長手方向が圧延方向と平行になるように採取した。図1のように、l=50mmの位置を作用点として、試験片にy0のたわみを与え、圧延方向の0.2%耐力(JIS−Z2241に準拠して測定)の80%に相当する応力(s)を負荷した。y0は次式により求めた。
0=(2/3)・I2・s/(E・t)
ここで、Eは圧延方向のヤング率であり、tは試料の厚みである。150℃にて1000時間加熱後に除荷し、図2のように永久変形量(高さ)yを測定し、応力緩和率{[y(mm)/y0(mm)]×100(%)}を算出した。
<Stress relaxation rate>
A strip-shaped test piece having a width of 10 mm and a length of 100 mm was collected so that the longitudinal direction of the test piece was parallel to the rolling direction. As shown in FIG. 1, with the position of l = 50 mm as the working point, the test piece is given a deflection of y 0 , which corresponds to 80% of the 0.2% yield strength (measured in accordance with JIS-Z2241) in the rolling direction. Stress (s) was applied. y 0 was determined by the following equation.
y 0 = (2/3) · I 2 · s / (E · t)
Here, E is the Young's modulus in the rolling direction, and t is the thickness of the sample. Unloading after heating at 150 ° C. for 1000 hours, and measuring the amount of permanent deformation (height) y as shown in FIG. 2, stress relaxation rate {[y (mm) / y 0 (mm)] × 100 (%) } Was calculated.

各試験片の組成と製造条件を表1に示し、各実施例及び比較例に対して得られた結果を表2に示す。なお、比較例については、表1に記載の製造条件以外は実施例と同様の条件で製造した。   The composition and production conditions of each test piece are shown in Table 1, and the results obtained for each Example and Comparative Example are shown in Table 2. In addition, about the comparative example, it manufactured on the conditions similar to an Example except the manufacturing conditions of Table 1.

Figure 2019157256
Figure 2019157256

Figure 2019157256
Figure 2019157256

表1及び表2から明らかなように、第1の時効処理を300℃〜400℃で15〜25h実施し、第2の冷間圧延の加工度を85%以上とし、第2の時効処理を200℃〜300℃で15〜30h実施した各実施例の場合、YSが600MPa以上、導電率が80%IACS以上、曲げ加工性の評価がB以上、応力緩和率が10%以下、(一部を除いて)ヤング率が120GPa以上と良好な特性を得ることができた。   As is clear from Table 1 and Table 2, the first aging treatment is performed at 300 ° C. to 400 ° C. for 15 to 25 hours, the workability of the second cold rolling is set to 85% or more, and the second aging treatment is performed. In each example carried out at 200 ° C. to 300 ° C. for 15 to 30 hours, YS is 600 MPa or more, conductivity is 80% IACS or more, bending workability evaluation is B or more, stress relaxation rate is 10% or less, (partially A good characteristic with a Young's modulus of 120 GPa or more was obtained.

一方、Cr、Zrの成分濃度が高い比較例1、2の場合は、曲げ加工性が劣った。Cr、Tiの成分濃度が低い比較例3、4の場合、0.2%耐力が劣った。   On the other hand, in the case of Comparative Examples 1 and 2 with high Cr and Zr component concentrations, the bending workability was inferior. In the case of Comparative Examples 3 and 4 where the component concentrations of Cr and Ti were low, the 0.2% yield strength was inferior.

第1の時効処理時間が短い比較例5や、第1の時効処理温度が低い比較例6、8、9の場合、時効処理後の導電率が低くCopper方位の面積率が少なくなり曲げ加工性、ヤング率が劣った。   In Comparative Example 5 where the first aging treatment time is short and Comparative Examples 6, 8, and 9 where the first aging treatment temperature is low, the conductivity after aging treatment is low and the area ratio of the Copper orientation is reduced, and bending workability is reduced. The Young's modulus was inferior.

第1の時効処理時間が長い比較例13や、第1の時効処理温度が高い比較例7の場合、時効処理後の導電率が高くCube方位の面積率が多くなり耐力、ヤング率が劣った。   In Comparative Example 13 with a long first aging treatment time and Comparative Example 7 with a high first aging treatment temperature, the conductivity after aging treatment is high, the area ratio of the Cube orientation is increased, and the yield strength and Young's modulus are inferior. .

第2の時効処理温度が低い比較例8や、第2の時効処理時間が短い比較例9の場合、Copper方位の面積率が少なくなり曲げ加工性、ヤング率、応力緩和率が劣った。   In Comparative Example 8 in which the second aging treatment temperature was low and in Comparative Example 9 in which the second aging treatment time was short, the area ratio of the Copper orientation was reduced and bending workability, Young's modulus, and stress relaxation rate were inferior.

第2の時効処理温度が高い比較例10の場合、Cube方位の面積率が多くなり耐力、ヤング率が劣った。   In the case of Comparative Example 10 where the second aging treatment temperature is high, the area ratio of the Cube orientation was increased and the yield strength and Young's modulus were inferior.

第2の冷間圧延加工度が低い比較例11、12の場合、Copper方位の面積率が少なくなり曲げ加工性、ヤング率が劣った。   In Comparative Examples 11 and 12 having a low second cold rolling work degree, the area ratio of the Copper orientation was reduced, and the bending workability and Young's modulus were inferior.

溶体化処理時の300〜600℃の昇温速度が5℃/sを下回った比較例14は、0.1μm以上の第2相粒子密度が100000個/mm2を超え、曲げ加工性に劣った。 In Comparative Example 14 in which the heating rate at 300 to 600 ° C. during solution treatment was less than 5 ° C./s, the density of second phase particles of 0.1 μm or more exceeded 100,000 particles / mm 2 , and the bending workability was poor. It was.

Claims (6)

Crを0.1〜0.6質量%、ZrおよびTiのうちの一種または二種を合計で0.01〜0.30質量%含有し、残部が銅及び不可避的不純物からなり、EBSD測定における結晶方位解析において、Cube方位{0 0 1}<1 0 0>の面積率が10%以下、Brass方位{1 1 0}<1 1 2>の面積率が40%以下、Copper方位{1 1 2}<1 1 1>の面積率が20%以上であり、0.1μm以上のサイズの第二相粒子が100000個/mm2以下存在する銅合金板。 0.1 to 0.6% by mass of Cr, one or two of Zr and Ti are contained in a total of 0.01 to 0.30% by mass, and the balance is made of copper and inevitable impurities. In the crystal orientation analysis, the area ratio of the Cube orientation {0 0 1} <1 0 0> is 10% or less, the area ratio of the Brass orientation {1 1 0} <1 1 2> is 40% or less, and the Copper orientation {1 1 2} A copper alloy plate in which the area ratio of <1 1 1> is 20% or more and the number of second phase particles having a size of 0.1 μm or more is 100000 pieces / mm 2 or less. 応力緩和率が10%以下である請求項1に記載の銅合金板。   The copper alloy sheet according to claim 1, wherein the stress relaxation rate is 10% or less. ヤング率が120GPa以上である請求項1又は2に記載の銅合金板。   The copper alloy sheet according to claim 1 or 2, wherein Young's modulus is 120 GPa or more. Ag、B、Co、Fe、Mg、Mn、Ni、P、Si、SnおよびZnよりなる群から選ばれる少なくとも1種を合計で1.0質量%以下含有する請求項1〜3のいずれか1項に記載の銅合金板。   Any one of Claims 1-3 which contain 1.0 mass% or less in total of at least 1 sort (s) chosen from the group which consists of Ag, B, Co, Fe, Mg, Mn, Ni, P, Si, Sn, and Zn. The copper alloy sheet according to item. 請求項1〜4のいずれか1項に記載の銅合金板を用いた通電用電子部品。   The electronic component for electricity_supply using the copper alloy plate of any one of Claims 1-4. 請求項1〜4のいずれか1項に記載の銅合金板を用いた放熱用電子部品。   The electronic component for thermal radiation using the copper alloy plate of any one of Claims 1-4.
JP2018049979A 2018-03-16 2018-03-16 Copper alloy plates with excellent strength and conductivity, electrical parts, electronic parts for heat dissipation Active JP7133327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018049979A JP7133327B2 (en) 2018-03-16 2018-03-16 Copper alloy plates with excellent strength and conductivity, electrical parts, electronic parts for heat dissipation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018049979A JP7133327B2 (en) 2018-03-16 2018-03-16 Copper alloy plates with excellent strength and conductivity, electrical parts, electronic parts for heat dissipation

Publications (2)

Publication Number Publication Date
JP2019157256A true JP2019157256A (en) 2019-09-19
JP7133327B2 JP7133327B2 (en) 2022-09-08

Family

ID=67995831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018049979A Active JP7133327B2 (en) 2018-03-16 2018-03-16 Copper alloy plates with excellent strength and conductivity, electrical parts, electronic parts for heat dissipation

Country Status (1)

Country Link
JP (1) JP7133327B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527866A (en) * 2019-09-29 2019-12-03 广东和润新材料股份有限公司 A kind of highly conductive high-strength copper band and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132965A (en) * 2007-11-30 2009-06-18 Hitachi Cable Ltd Copper alloy material for electrical and electronic parts
JP2013173988A (en) * 2012-02-24 2013-09-05 Kobe Steel Ltd Copper alloy
JP2014208858A (en) * 2013-03-25 2014-11-06 Jx日鉱日石金属株式会社 Copper alloy sheet having excellent conductivity and bending deflection coefficient
JP2017179502A (en) * 2016-03-30 2017-10-05 Jx金属株式会社 Copper alloy sheet excellent in strength and conductivity
JP2017179553A (en) * 2016-03-31 2017-10-05 Dowaメタルテック株式会社 Cu-Zr-BASED COPPER ALLOY SHEET GOOD IN PRESS PUNCHING PROPERTY AND MANUFACTURING METHOD
JP2018070908A (en) * 2016-10-24 2018-05-10 Dowaメタルテック株式会社 Cu-Zr-Sn-Al-BASED COPPER ALLOY SHEET MATERIAL, MANUFACTURING METHOD AND CONDUCTIVE MEMBER

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132965A (en) * 2007-11-30 2009-06-18 Hitachi Cable Ltd Copper alloy material for electrical and electronic parts
JP2013173988A (en) * 2012-02-24 2013-09-05 Kobe Steel Ltd Copper alloy
JP2014208858A (en) * 2013-03-25 2014-11-06 Jx日鉱日石金属株式会社 Copper alloy sheet having excellent conductivity and bending deflection coefficient
JP2017179502A (en) * 2016-03-30 2017-10-05 Jx金属株式会社 Copper alloy sheet excellent in strength and conductivity
JP2017179553A (en) * 2016-03-31 2017-10-05 Dowaメタルテック株式会社 Cu-Zr-BASED COPPER ALLOY SHEET GOOD IN PRESS PUNCHING PROPERTY AND MANUFACTURING METHOD
JP2018070908A (en) * 2016-10-24 2018-05-10 Dowaメタルテック株式会社 Cu-Zr-Sn-Al-BASED COPPER ALLOY SHEET MATERIAL, MANUFACTURING METHOD AND CONDUCTIVE MEMBER

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527866A (en) * 2019-09-29 2019-12-03 广东和润新材料股份有限公司 A kind of highly conductive high-strength copper band and preparation method thereof
CN110527866B (en) * 2019-09-29 2021-02-05 广东和润新材料股份有限公司 High-conductivity and high-strength copper strip and preparation method thereof

Also Published As

Publication number Publication date
JP7133327B2 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
JP6296728B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP6128976B2 (en) Copper alloy and high current connector terminal material
JP5632063B1 (en) Copper alloy plate, high-current electronic component and heat dissipation electronic component including the same
JP6835638B2 (en) Copper alloy plate with excellent strength and conductivity
JP5470483B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6328380B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP2014208860A (en) Copper alloy sheet having excellent conductivity and stress relaxation characteristic
JP6749121B2 (en) Copper alloy plate with excellent strength and conductivity
JP6835636B2 (en) Copper alloy plate with excellent strength and conductivity
JP6230341B2 (en) Copper alloy sheet with excellent stress relaxation properties
JP2019157258A (en) Copper alloy sheet, electronic component for electrification, and electronic component for heat release
JP2017155340A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
JP2017002407A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
JP6246502B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP6207539B2 (en) Copper alloy strip, and electronic component for high current and heat dissipation provided with the same
JP6047466B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP5449595B1 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP2017066532A (en) Copper alloy sheet having excellent conductivity and stress relaxation properties
JP7133327B2 (en) Copper alloy plates with excellent strength and conductivity, electrical parts, electronic parts for heat dissipation
JP5620025B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5858961B2 (en) Copper alloy sheet with excellent stress relaxation properties
JP2014074223A (en) Copper alloy sheet excellent in conductivity and stress relaxation property
JP5470497B1 (en) Copper alloy sheet with excellent stress relaxation properties
JP2017179503A (en) Copper alloy sheet excellent in strength and conductivity
JP7133326B2 (en) Copper alloy plates with excellent strength and conductivity, electrical parts, electronic parts for heat dissipation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220829

R151 Written notification of patent or utility model registration

Ref document number: 7133327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151