Nothing Special   »   [go: up one dir, main page]

JP2019146115A - System and method for radio transmission - Google Patents

System and method for radio transmission Download PDF

Info

Publication number
JP2019146115A
JP2019146115A JP2018031036A JP2018031036A JP2019146115A JP 2019146115 A JP2019146115 A JP 2019146115A JP 2018031036 A JP2018031036 A JP 2018031036A JP 2018031036 A JP2018031036 A JP 2018031036A JP 2019146115 A JP2019146115 A JP 2019146115A
Authority
JP
Japan
Prior art keywords
data
signal
transmission
transmission signal
base station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018031036A
Other languages
Japanese (ja)
Inventor
雅文 森山
Masafumi Moriyama
雅文 森山
滝沢 賢一
Kenichi Takizawa
賢一 滝沢
大堂 雅之
Masayuki Odo
雅之 大堂
昌佑 表
Shosuke Omote
昌佑 表
耀 川崎
Akira Kawasaki
耀 川崎
史秀 児島
Fumihide Kojima
史秀 児島
隼人 手塚
Hayato Tezuka
隼人 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2018031036A priority Critical patent/JP2019146115A/en
Publication of JP2019146115A publication Critical patent/JP2019146115A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

To guarantee communication quality and enable communication of a shared method having high reliability, even in the case of an increased number of simultaneous connections transmitted from a plurality of terminals and the occurrence of collision between both signals having low delays.SOLUTION: A radio terminal generates a transmission signal and a continuous transmission signal from transmission target data to continuously transmit to the base station the above signals as transmission data. The base station performs equalization and demodulation of the continuously transmitted transmission data according to the characteristics of the received power, and after synthesizes the demodulated transmission signal with the continuous transmission signal, outputs the reception data of the transmission target. The base station then generates a reproduced transmission signal from the output reception target data, and reproduces a reproduced continuous transmission signal from the reproduced transmission signal, and performs the convolution of a re-modulated signal to generate the same data signal equivalent to the reception signal, and then repeats subtracting the reception data to separate the reception data.SELECTED DRAWING: Figure 5

Description

本発明は、複数の無線端末からの送信データを共通の基地局で受信する無線伝送システム、及び無線伝送方法に関する。   The present invention relates to a wireless transmission system and a wireless transmission method for receiving transmission data from a plurality of wireless terminals at a common base station.

これからの第5世代移動無線伝送システム(以降、5Gとする)では、大容量、低遅延、多数接続等がシステムの要件とされ、その実現に向けて各研究開発が世界各国で進められている。5Gは第4世代移動無線伝送システム(以降、4Gとする)を単に大容量化させるだけでなく、Internet of Things(以降、IoTとする)の通信を効率的に扱えるシステムであることが期待されている。そのため、膨大な数のIoT端末、無線端末(UE:User Equipment)が基地局(BS:Base Station、または、eNB:evolved NodeB)に接続され、多種多様なサービスの提供が始まっている。   In future 5th generation mobile radio transmission systems (hereinafter referred to as 5G), high capacity, low delay, multiple connections, etc. are required for the system, and various research and development are being promoted in various countries around the world to achieve this. . 5G is expected not only to increase the capacity of the fourth generation mobile radio transmission system (hereinafter referred to as 4G) but also to efficiently handle Internet of Things (hereinafter referred to as IoT) communication. ing. Therefore, an enormous number of IoT terminals and wireless terminals (UE: User Equipment) are connected to a base station (BS: Base Station or eNB: evolved Node B), and various services have been provided.

また、IoT通信の中では、自動車などの自動運転のように、各々の通信や制御のやり取りを低遅延で行う必要があるサービスも含まれており、このような場合は、膨大な数の端末を基地局に収容しつつ、低遅延通信が必要となる状況が要求される。このため、昨今の一層のIoT時代においては、膨大な数のセンサデバイスから送信される小サイズのデータを高い周波数効率で基地局に収容させることができる新しい無線アクセス技術が求められ、さらに、ドローンや自動運転車等のリアルタイム性が求められるIoTデバイスについては低遅延通信が求められている。   In addition, in IoT communication, there is also a service that requires each communication and control exchange with low delay, such as automatic driving of a car or the like. In such a case, a huge number of terminals are included. Is required in a base station while low delay communication is required. For this reason, in the recent IoT era, there is a need for a new radio access technology capable of accommodating small-sized data transmitted from a large number of sensor devices in a base station with high frequency efficiency. Low-delay communication is required for IoT devices that require real-time performance such as automatic driving vehicles and the like.

しかしながら、現在の移動通信網(LTE−A:Long Term Evolution−Advanced)で用いられているアクセス方式は、端末局が基地局に通信資源の割り当て要求を行い、その後、基地局が要求した端末に通信資源を割り当てる方式であるため、低遅延が求められる通信には不向きである。低遅延は、現在のランダムアクセスでは4ステップRACH(RACH:Random Access CHannel)と呼ばれるアクセス方法を使っているため、接続要求からリソースの割り当てまでの通信開始までに少なくとも、10msかかることとなる。   However, the access method used in the current mobile communication network (LTE-A: Long Term Evolution-Advanced) is that the terminal station makes a request for allocation of communication resources to the base station, and then the terminal requested by the base station Since this is a method for allocating communication resources, it is not suitable for communication requiring low delay. The low delay uses an access method called 4-step RACH (RACH: Random Access Channel) in the current random access, and therefore it takes at least 10 ms from the connection request to the start of communication from the resource allocation.

送信するデータ量が少ないIoT通信へこの方式を適用することは、オーバーヘッドが大きいことに加え、単一端末が通信スロットを占有してしまう。1リソースにアクセスできる端末は1台のみのため、RB(RB:Resource Block)の逼迫や周波数利用効率の著しい低下が懸念される。   When this method is applied to IoT communication with a small amount of data to be transmitted, a single terminal occupies a communication slot in addition to a large overhead. Since there is only one terminal that can access one resource, there is a concern about tightness of RB (RB: Resource Block) and a significant decrease in frequency utilization efficiency.

そこで、複数の端末局が通信スロットを共有するコンテンションベースの通信方式の研究開発が進められており、その通信の高信頼化が重要な課題となっている。現在の移動通信網では、基地局において端末局が使用する通信資源を管理し、複数端末局の送信が同一通信資源において衝突しないよう制御しており、今後、端末局が通信資源を共有し基地局において衝突を許容するコンテンションベースの通信が実用化すると考えられるが、この際、通信の信頼性を向上させる技術がまだ未整偏である。   Therefore, research and development of a contention-based communication method in which a plurality of terminal stations share a communication slot is underway, and high reliability of the communication is an important issue. In the current mobile communication network, the base station manages the communication resources used by the terminal stations, and controls so that transmissions of multiple terminal stations do not collide in the same communication resources. It is considered that contention-based communication that allows collisions at a station is put into practical use, but at this time, the technology for improving communication reliability is still unbalanced.

上述したような従来技術による通信では、次世代の移動通信網では通信資源を共用する方式が実用化されると考えられるが、共有方式(コンテンションベース通信)の課題は通信品質をどのように確保するかが課題となるが、これら共用方式は端末局の信号が基地局において互いに干渉するため、この干渉を抑圧・除去する技術が必要である。   In communication using the conventional technology as described above, it is considered that a method of sharing communication resources will be put into practical use in the next generation mobile communication network, but the issue of the sharing method (contention-based communication) is how to improve communication quality. However, since the signals of the terminal stations interfere with each other at the base station, a technique for suppressing and removing this interference is necessary.

すでに、多数接続を実現する技術として非直交多元接続(NOMA:Non−Orthogonal Multiple Access、以降、NOMAとする)、低遅延通信を実現する技術としてグラントフリー通信(GF:Grant Free、以降、GFとする)、さらに、干渉・抑圧技術については、逐次干渉抑圧・除去方法(SIC:Successive Interference Cancelation、以降、SICとする)、あるいは並列干渉抑圧・除去方法(PIC:Parallel Interference Cancelation 、以降、PICとする)など、既にいくつか提案されているものの、これらの技術を利用しても通信品質を非共用システム方式と同等にすることは非常に難しく、このことから、高い信頼性を持つ共用方式の通信を実現させるために通信遅延時間を増大させることなく通信品質を担保する技術が求められている。   Already, non-orthogonal multiple access (NOMA: Non-Orthogonal Multiple Access, hereinafter referred to as NOMA) as a technology for realizing multiple connections, grant-free communication (GF: Grant Free, hereinafter referred to as GF) as a technology for realizing low-delay communication. In addition, for interference / suppression technology, successive interference suppression / removal method (SIC: Successive Interference Cancellation, hereinafter referred to as SIC) or parallel interference suppression / removal method (PIC: Parallel Interference Cancellation, hereinafter referred to as PIC). However, it is very difficult to make the communication quality equivalent to the non-shared system method even if these technologies are used. Technology to ensure the communication quality without increasing the communication delay time in order to realize the communication of a shared system with the reliability are required.

Hasan, Monowar, Ekram Hossain, and Dusit Niyato. "Random access for machine-to-machine communication in LTE-advanced network; issue and approaches."IEEE Communications Magazine 51.6, P86-93, 2013Hasan, Monowar, Ekram Hossain, and Dusit Niyato. "Random access for machine-to-machine communication in LTE-advanced network; issue and approaches." IEEE Communications Magazine 51.6, P86-93, 2013

複数端末から送信された信号に衝突が発生しても、低遅延及び通信品質を担保し、同時接続数が増大しても高い信頼性を持つ共用方式の通信をできるようにする。   Even if a collision occurs in signals transmitted from a plurality of terminals, low delay and communication quality are ensured, and high-reliability shared communication can be performed even when the number of simultaneous connections increases.

本発明者らは、上述した問題点を解決するために、複数の無線端末からの送信データを共通の基地局で受信する無線伝送システム及び無線伝送方法を発明した。複数の無線端末は、送信対象のデータから送信信号と、送信信号をもとに連送信号とを各々生成する手段と、生成した送信信号と連送信号を送信データとして連続して送信し、基地局に送信する手段と、を少なくとも備える。基地局は、複数の無線端末で連続して送信された送信データを受信データとして受信する手段と、受信データの受信電力の信号特性の順位に応じて当該受信データを等化および復調し、復調した送信信号および連送信号を合成の後に送信対象のデータを出力する手段と、出力した送信対象のデータを用いて再生送信信号として送信信号と、再生送信信号をもとに再生連送信号として連送信号とを生成する手段と、受信したデータから再生送信信号および再生連送信号から再生したデータと同一となる受信データを差し引き、信号特性の順位に応じて他の受信データに送信対象のデータの出力にかかる一連の処理を行う手段と、を少なくとも備える。   In order to solve the above-described problems, the present inventors have invented a wireless transmission system and a wireless transmission method for receiving transmission data from a plurality of wireless terminals at a common base station. The plurality of wireless terminals continuously transmit the generated transmission signal and the continuous transmission signal as transmission data, respectively, a transmission signal from the transmission target data, a means for generating a continuous transmission signal based on the transmission signal, Means for transmitting to the base station. The base station receives transmission data continuously transmitted from a plurality of wireless terminals as reception data, and equalizes and demodulates the reception data according to the order of the signal characteristics of the reception power of the reception data, and demodulates the reception data Means for outputting the transmission target data after combining the transmission signal and the continuous transmission signal, a transmission signal as a reproduction transmission signal using the output transmission target data, and a reproduction continuous transmission signal based on the reproduction transmission signal A means for generating a continuous transmission signal, and a reception transmission data and a reception data that is the same as the data reproduced from the reproduction continuous transmission signal are subtracted from the received data, and other reception data is subject to transmission according to the order of signal characteristics. Means for performing a series of processes for outputting data.

請求項1に記載の無線伝送システムは、複数の無線端末からの送信データを共通の基地局で受信する無線伝送システムであって、前記複数の無線端末は、送信対象のデータから送信信号と、当該送信信号をもとに連送信号とを各々生成する手段と、当該生成した送信信号と連送信号を送信データとして連続して送信し、前記基地局に送信する手段と、を少なくとも備え、前記基地局は、前記複数の無線端末で連続して送信された送信データを受信データとして受信する手段と、前記受信データの受信電力の信号特性の順位に応じて当該受信データを等化および復調し、復調した送信信号および連送信号を合成の後に前記送信対象のデータを出力する手段と、前記出力した前記送信対象のデータを用いて再生送信信号として送信信号と、当該再生送信信号をもとに再生連送信号として連送信号とを生成する手段と、前記受信したデータから前記再生送信信号および再生連送信号から再生したデータと同一となる受信データを差し引き、前記信号特性の順位に応じて他の受信データに前記送信対象のデータの出力にかかる一連の処理を行う手段と、を少なくとも備えることを特徴とする。   The radio transmission system according to claim 1 is a radio transmission system that receives transmission data from a plurality of radio terminals at a common base station, and the plurality of radio terminals transmit a transmission signal from data to be transmitted; Means for generating each of the continuous transmission signals based on the transmission signal, and means for continuously transmitting the generated transmission signal and the continuous transmission signal as transmission data and transmitting to the base station, The base station receives transmission data continuously transmitted from the plurality of wireless terminals as reception data, and equalizes and demodulates the reception data according to the order of signal characteristics of reception power of the reception data And means for outputting the transmission target data after combining the demodulated transmission signal and the continuous transmission signal, a transmission signal as a reproduction transmission signal using the output transmission target data, and the re-transmission signal. Means for generating a continuous transmission signal as a reproduction continuous signal based on the transmission signal, and subtracting the reception data that is the same as the reproduction transmission signal and the data reproduced from the reproduction continuous transmission signal from the received data; And means for performing a series of processes for outputting the data to be transmitted on other received data in accordance with the order of characteristics.

請求項2に記載の無線伝送システムは、請求項1に記載の発明において、上記受信データの信号特性は、受信電力の出力の強さであることを特徴とする。   According to a second aspect of the present invention, in the radio transmission system according to the first aspect, the signal characteristic of the received data is the output power of the received power.

請求項3に記載の無線伝送システムは、請求項1乃至請求項2に記載の発明において、上記信号特性は、シンボル間干渉の電力と干渉信号の電力の両方をビットまたはシンボル単位で異なる強さであることを特徴とする。   According to a third aspect of the present invention, in the radio transmission system according to the first or second aspect, the signal characteristics are such that the power of the intersymbol interference and the power of the interference signal are different in bit or symbol units. It is characterized by being.

請求項4に記載の無線伝送システムは、請求項1乃至請求項3に記載の発明において、前記信号は、各々端末識別に関する領域とチャンネル推定用の領域、およびペイロード運搬用の領域を含むことを特徴とする。   According to a fourth aspect of the present invention, in the radio transmission system according to the first to third aspects of the present invention, each of the signals includes a terminal identification area, a channel estimation area, and a payload carrying area. Features.

請求項5に記載の無線伝送システムは、請求項1乃至請求項4に記載の発明において、上記基地局は、複数のアンテナをさらに備え、複数の端末局から連続して送信された送信データを受信し、当該各アンテナのチャンネル周波数応答の電力比に基づいて重み付けを行い、当該各信号を合成することを特徴とする。   According to a fifth aspect of the present invention, in the radio transmission system according to the first to fourth aspects, the base station further includes a plurality of antennas, and transmits transmission data continuously transmitted from a plurality of terminal stations. It receives, weights based on the power ratio of the channel frequency response of each said antenna, and synthesize | combines each said signal, It is characterized by the above-mentioned.

請求項6に記載の無線伝送方法は、複数の無線端末からの送信データを共通の基地局で受信する無線伝送方法であって、前記複数の無線端末は、送信対象のデータから送信信号と、当該送信信号をもとに連送信号とを各々生成する第1工程と、当該生成した送信信号と連送信号を送信データとして連続して送信し、前記基地局に送信する第2工程と、を少なくとも備え、前記基地局は、前記複数の無線端末で連続して送信された送信データを受信データとして受信する第3工程と、前記受信データの受信電力の信号特性の順位に応じて当該受信データを等化および復調し、復調した送信信号および連送信号を合成の後に前記送信対象のデータを出力する第4工程と、前記出力した前記送信対象のデータを用いて、再生送信信号として送信信号と、当該再生送信信号をもとに再生連送信号として連送信号とを生成する第5工程と、前記受信したデータから、前記再生送信信号および再生連送信号から再生したデータと同一となる受信データを差し引き、前記信号特性の順位に応じて他の受信データに前記送信対象のデータの出力にかかる一連の処理を行う第6工程と、を少なくとも備えること、を特徴とする。   The radio transmission method according to claim 6 is a radio transmission method in which transmission data from a plurality of radio terminals is received by a common base station, wherein the plurality of radio terminals transmit a transmission signal from data to be transmitted; A first step of generating a continuous transmission signal based on the transmission signal, a second step of continuously transmitting the generated transmission signal and the continuous transmission signal as transmission data, and transmitting to the base station; And the base station receives, as reception data, transmission data continuously transmitted by the plurality of wireless terminals, and the reception according to the order of the signal characteristics of the reception power of the reception data. A fourth step of equalizing and demodulating data, combining the demodulated transmission signal and continuous transmission signal and outputting the transmission target data, and transmitting the transmission target data as a transmission transmission signal signal A fifth step of generating a continuous transmission signal as a reproduction continuous transmission signal based on the reproduction transmission signal, and reception that is the same as the data reproduced from the reproduction transmission signal and the reproduction continuous transmission signal from the received data A sixth step of subtracting data and performing a series of processes related to output of the data to be transmitted on other received data according to the order of the signal characteristics.

第1発明によれば、無線端末で送信対象のデータから送信信号と連送信号とを生成し、その信号を送信データとして連続して送信し、基地局側では受信した送信データの信号特性基づいて受信データの等化・復調し、送信信号および連送信号を合成の後に送信対象のデータを出力し、その出力した送信対象のデータを用いて再生送信信号として送信信号と、この再生送信信号をもとに再生連送信号として連送信号とを生成し、その受信データから、再生送信信号および再生連送信号から再生したデータと同一となるデータを差し引き、信号特性の順位に応じて他の受信データに送信対象のデータの出力にかかる一連の処理を行う手段を備える。このため、多数接続と低遅延を両立する通信処理が可能となる。これにより、複数端末から送信された信号に衝突が発生しても、低遅延及び通信品質を担保し、同時接続数が増大しても高い信頼性を持つ共用方式の通信が可能となる。   According to the first invention, the wireless terminal generates a transmission signal and a continuous transmission signal from data to be transmitted, continuously transmits the signal as transmission data, and the base station side is based on the signal characteristics of the received transmission data. The received data is equalized and demodulated, the transmission signal and the continuous transmission signal are combined, the data to be transmitted is output, and the transmission signal is output as the reproduced transmission signal using the output transmission target data, and this reproduced transmission signal Based on the above, a continuous signal is generated as a playback continuous signal, and the same data as the playback transmission signal and the data reproduced from the playback continuous signal is subtracted from the received data. Means for performing a series of processing related to the output of the data to be transmitted. For this reason, it is possible to perform communication processing that achieves both a large number of connections and a low delay. As a result, even if a collision occurs in signals transmitted from a plurality of terminals, low delay and communication quality are ensured, and even if the number of simultaneous connections increases, highly reliable shared communication is possible.

第2発明〜第3発明によれば、無線端末側から送信される送信データの電力の強さ、シンボル間干渉の電力と干渉信号の電力の差異を検出できる。これにより、多数の端末を同時に判別できる。これにより、温度変化した際にも安定した出力特性を得ることが可能となる。このため、同時接続数が増大しても高い信頼性を持つ共用方式の通信を確立できる。   According to the second to third inventions, it is possible to detect the strength of the power of transmission data transmitted from the wireless terminal side, and the difference between the power of intersymbol interference and the power of the interference signal. Thereby, a large number of terminals can be discriminated simultaneously. This makes it possible to obtain stable output characteristics even when the temperature changes. For this reason, even if the number of simultaneous connections increases, a highly reliable shared communication can be established.

第4発明によれば、無線端末から送信される送信データには、各々端末識別に関する領域とチャンネル推定用の領域、およびペイロード運搬用の領域で構成している。これにより、従来のGFによる基地局からのgrantを得るためにかかっていた無線端末と基地局間における通信が不要となる。このため、複数端末から送信された信号に衝突が発生しても、低遅延化が可能となる。   According to the fourth aspect of the invention, transmission data transmitted from the radio terminal is composed of a terminal identification area, a channel estimation area, and a payload carrying area. This eliminates the need for communication between the wireless terminal and the base station, which is required to obtain a grant from the base station by the conventional GF. For this reason, even when a collision occurs in signals transmitted from a plurality of terminals, it is possible to reduce the delay.

第5発明によれば、基地局は、複数のアンテナをさらに備え、複数の端末局から連続して送信された送信データを受信し、当該各アンテナのチャンネル周波数応答の電力比に基づいて重み付けを行う。これにより、複数端末から送信された信号に衝突が発生しても、各無線端末からの送信データをより正確に効率よく受信することができる。このため、低遅延及び通信品質を担保し、同時接続数が増大しても高い信頼性を持つ共用方式の通信を確立できる。   According to the fifth invention, the base station further includes a plurality of antennas, receives transmission data continuously transmitted from the plurality of terminal stations, and performs weighting based on the power ratio of the channel frequency response of each antenna. Do. Thereby, even if a collision occurs in signals transmitted from a plurality of terminals, transmission data from each wireless terminal can be received more accurately and efficiently. For this reason, low delay and communication quality are ensured, and highly reliable shared communication can be established even if the number of simultaneous connections increases.

非直交多元接続における逐次干渉抑圧・除去の処理を示すブロック図である。It is a block diagram which shows the process of successive interference suppression and removal in non-orthogonal multiple access. LTEにおけるグラントフリー(GF)通信の手順を示す図である。It is a figure which shows the procedure of the grant free (GF) communication in LTE. 本発明のランダムアクセスを想定したサブフレーム構成を示す図である。It is a figure which shows the sub-frame structure which assumed the random access of this invention. 本発明のランダムアクセスを想定したサブフレーム構成のデータ構造を示す図である。It is a figure which shows the data structure of the sub-frame structure supposing the random access of this invention. 本発明のインターリーブを適用した連送方式(実施例1)Continuous transmission method to which interleaving of the present invention is applied (Example 1) 本発明のインターリーブを適用した連送方式(実施例2)Continuous transmission method to which interleaving of the present invention is applied (Example 2)

以下に本発明を適用した無線伝送システムの実施形態についてについて、ブロック図を用いて詳細に説明する。なお、ブロック図における符号については、同様の機能をもったブロックには、特別な事情のない限り、同じ符号を用いるものとする。   Hereinafter, embodiments of a wireless transmission system to which the present invention is applied will be described in detail with reference to block diagrams. In addition, about the code | symbol in a block diagram, the same code | symbol shall be used for the block with the same function unless there is special circumstances.

本発明を適用した無線伝送システムでは、NOMAとGFが同時に実現する無線フレーム構成とし、許可(grant)無しで送信することを特徴とし、基地局において複数の無線端末の識別信号が衝突する可能性があることからメディアアクセス制御(Media Acess Control : MAC)におけるスループットを行う。また、NOMA及びGFを適用する際は、信頼性をいかに高めるかが重要であるため、連送を行うほか、例えば受信ダイバーシチを行ってもよい。NOMAは1無線資源を複数のユーザが共有できるため、本発明を適用した無線伝送システムではSICを実施している。   The radio transmission system to which the present invention is applied has a radio frame configuration in which NOMA and GF are realized at the same time, and is transmitted without grant. There is a possibility that identification signals of a plurality of radio terminals collide at a base station. Therefore, the throughput in media access control (MAC) is performed. In addition, when applying NOMA and GF, it is important how to improve the reliability. Therefore, in addition to continuous transmission, for example, reception diversity may be performed. Since NOMA can share one radio resource by a plurality of users, the radio transmission system to which the present invention is applied implements SIC.

図1に従来の各無線端末と基地局における逐次干渉抑圧・除去の信号処理を示す。SICは複数の無線端末の信号が連続して送信された受信信号を、受信信号の順位(例えば、受信電力が高い順)に応じて受信信号を復調し、復調した信号を受信信号から引き去る処理を行い、これを繰り返して全信号を復調し信号分離する。   FIG. 1 shows signal processing for successive interference suppression / removal in conventional radio terminals and base stations. The SIC demodulates a received signal in which signals from a plurality of wireless terminals are continuously transmitted according to the order of the received signal (for example, in descending order of received power), and subtracts the demodulated signal from the received signal. This process is repeated and all signals are demodulated and separated.

具体的には、各無線端末100は、送信データ1を端末識別及び伝搬路推定用のリファレンス信号(RS1−1)とペイロードを伝送するデータ信(DS1−2)に分け、RT1−1に関しては、ザドフーチュウ系列生成器2、サイクリック拡張器3、移相器4において端末識別を行うZadoff−chu系列を巡回拡張したのち、端末固有の周波数に比例した位相回転を与え、この信号を逆離散フーリエ変換器5で時間信号化し、サイクリックプレフィックス付加器6−1でCP(共通パラメータ)を挿入し、送信部10より送信処理がなされ所定の基地局200に送信する。   Specifically, each wireless terminal 100 divides transmission data 1 into a terminal identification and propagation path estimation reference signal (RS1-1) and a data signal (DS1-2) for transmitting a payload. The Zadoff-chu sequence generator 2, the cyclic expander 3, and the phase shifter 4 cyclically expand the Zadoff-chu sequence for performing terminal identification, and then give a phase rotation proportional to the frequency specific to the terminal. A time signal is converted by the converter 5, a CP (common parameter) is inserted by the cyclic prefix adder 6-1, transmission processing is performed by the transmission unit 10, and transmission is performed to a predetermined base station 200.

各無線端末100から送信された送信データは、受信部20で受信処理がなされ、サイクリックプレフィックス除去部6−2において、受信データからRTとDSのCPが除去される。そして、離散フーリエ変換部21、ザドフーチュウ系列生成部2で送信側と同じZadoff−chu系列の複素共役を乗算して逆離散フーリエ変換部5において変換が行われる。   The transmission data transmitted from each wireless terminal 100 is subjected to reception processing by the reception unit 20, and the cyclic prefix removal unit 6-2 removes RT and DS CPs from the reception data. The discrete Fourier transform unit 21 and the Zadhoochu sequence generation unit 2 multiply the complex conjugate of the same Zadoff-chu sequence as that on the transmission side, and the inverse discrete Fourier transform unit 5 performs the conversion.

このとき、位相のZadoff−chu系列による位相の回転が戻されるので、変換後の信号はインパルス応答になりますが、無線端末毎に異なった周波数に比例した位相回転があるため、インパルス応答が判別でできる。これをタイムフィルタ22で無線端末毎に切り出し、端末識別とインパルス応答の取得の両方を行う。   At this time, the phase rotation by the Zadoff-chu sequence of the phase is returned, so the converted signal becomes an impulse response, but the impulse response is discriminated because there is a phase rotation proportional to a different frequency for each wireless terminal. You can do it. This is cut out for each wireless terminal by the time filter 22, and both terminal identification and acquisition of an impulse response are performed.

端末各無線端末100の受信電力は、各無線端末のチャンネルインパルス応答(CIR:Channel Impulse Response)から推定して計算する。そして、計算されたCIRに応じてFDE23にて最も受信電力の大きいCIRを利用して復調の処理がされる。その後、誤り訂正符号復号部8−2(ターボ復号部)で復調した信号を誤り訂正符号で符号化の処理をする。その後、CRC部7で符号化処理された受信信号(RT)の巡回冗長検査(CRC:Cyclic Redundancy Check)の検査の処理を行い、誤りがないことを確認したのち、受信データの取り出しをする。   The received power of each wireless terminal 100 is estimated and calculated from the channel impulse response (CIR: Channel Impulse Response) of each wireless terminal. Then, the FDE 23 performs demodulation processing using the CIR having the largest received power according to the calculated CIR. Thereafter, the signal demodulated by the error correction code decoding unit 8-2 (turbo decoding unit) is encoded with the error correction code. Thereafter, a cyclic redundancy check (CRC) check process is performed on the reception signal (RT) encoded by the CRC unit 7, and after confirming that there is no error, the received data is extracted.

誤り訂正符号符号化部8−3で、復調され、取り出された受信データの信号に、再び誤り訂正符号で符号化し、再変調部9−3で再び変調の処理をする。そしてCIR部24で、再変調した信号に畳み込みを行い、受信信号と同等の同一となるデータ信号を生成する。そして、この生成された同一となるデータ信号と同等の受信信号を、元の受信信号から引き去る処理を行う。同一となるデータ信号が引き去られた残差信号から、2番目に受信電力が高い無線端末の受信信号の復調をFDE部23で等化復調処理を行い、以下、同様の処理を各無線端末から受信した受信データに対して繰り返し行う。   The error correction code encoder 8-3 re-encodes the received data signal demodulated and extracted with the error correction code, and the remodulator 9-3 performs the modulation process again. Then, the CIR unit 24 convolves the remodulated signal to generate a data signal that is the same as the received signal. Then, a process of subtracting the received signal equivalent to the generated identical data signal from the original received signal is performed. The FDE unit 23 performs equalization demodulation processing on the received signal of the wireless terminal having the second highest received power from the residual signal from which the same data signal has been subtracted. Repeat for received data received from.

図2にグラントフリー(GF)通信の説明を示す。図2の(a)は、LTEの無線端末100(UE)がデータを送信する際、基地局200(BS)から許可を得る必要があるケースであり、Step1で無線端末100は、基地局200に対してスケジュール要求を行う。この要求に応じて、Step2で基地局200は、要求されたスケジュールの許可を無線端末100に行う。Step3で無線端末100は、送信するデータのサイズ等の通知を基地局200に行う。Step4で基地局200は、通知されたデータサイズ等の情報に基づき、必要となるリソースが割り当てられたことを無線端末100に行う。Step5で無線端末100は、データの送信を基地局200に対して行う。   FIG. 2 illustrates the grant-free (GF) communication. FIG. 2 (a) shows a case where it is necessary to obtain permission from the base station 200 (BS) when the LTE radio terminal 100 (UE) transmits data. In Step 1, the radio terminal 100 A schedule request is made to. In response to this request, in Step 2, the base station 200 grants the requested schedule to the wireless terminal 100. In Step 3, the wireless terminal 100 notifies the base station 200 of the size of data to be transmitted. In Step 4, the base station 200 performs to the radio terminal 100 that necessary resources have been allocated based on the notified information such as the data size. In Step 5, the wireless terminal 100 transmits data to the base station 200.

この無線端末100と基地局200での各Stepでのリソースの割り当てなどの処理が、無線端末100と基地局200における通信の遅延となる。無線端末100が通信要求(SR:Schedule Request)を基地局eNBに送信し、基地局200が無線端末100に許可を与えるまでの手順が数msの遅延となり、リアルタイム性を重視するシステムでは許容できない。   Processing such as resource allocation at each step between the radio terminal 100 and the base station 200 is a communication delay between the radio terminal 100 and the base station 200. The procedure until the radio terminal 100 transmits a communication request (SR: Schedule Request) to the base station eNB and the base station 200 grants permission to the radio terminal 100 is a delay of several ms, which is unacceptable in a system that emphasizes real-time characteristics. .

そのため、本発明を適用した無線伝送システムでは、この遅延を回避するため図2(b)のような構成としている。各無線端末100(UE)が、基地局200(BS)からの許可を得ずにデータを送信できるため、データに無線端末の識別のための信号(RS:Reference Signal)を付加し、データ信号(payload)とともに基地局200に送信する。また、このRSは伝搬路推定を行うために利用する。そのため、本発明では、RSは無線端末識別と伝搬路推定を兼ねた構成となる。   Therefore, the radio transmission system to which the present invention is applied has a configuration as shown in FIG. 2B in order to avoid this delay. Since each radio terminal 100 (UE) can transmit data without obtaining permission from the base station 200 (BS), a signal (RS: Reference Signal) for identifying the radio terminal is added to the data, and the data signal (Payload) is transmitted to the base station 200. Also, this RS is used to perform propagation path estimation. Therefore, in this invention, RS becomes a structure which served as both radio | wireless terminal identification and propagation path estimation.

図3に本発明を適用した無線伝送システムのスロットのフレーム構成を示す。スロットは、先頭にCP(CP:Cyclic Prefix)と最後にGT(GT:Guard Time)を設け、その間にそれぞれRSとDSが入る。GFが実現できるようにRSと DS(DS:Data Signal)を組みにして実現され、端末識別及び伝搬路推定用のリファレンス信号とペイロードを伝送するデータ信号を最小単位したスロット構成となる。   FIG. 3 shows a frame configuration of a slot of a wireless transmission system to which the present invention is applied. The slot has a CP (CP: Cyclic Prefix) at the beginning and a GT (GT: Guard Time) at the end, and RS and DS are inserted between them, respectively. It is realized by combining RS and DS (DS: Data Signal) so that GF can be realized, and has a slot configuration in which a reference signal for terminal identification and channel estimation and a data signal for transmitting a payload are minimum units.

また、LTEの使用で定められている拡張CPにおける6シンボル構成とし、LTEのシンボルフォーマットとほぼ同じ構成であり、2つのRSと4つのDSの組を連続して送信する。また、低遅延化を実現するために、LTE使用のシンボル構成において1つのRS及び1つのDSの2シンボルで構成されるミニスロットも定義する。このスロットは,シンボル数の少なくすることにより、遅延時間の更なる短縮を実現する。   Also, it has a 6-symbol configuration in the extended CP defined by the use of LTE, and has almost the same configuration as the LTE symbol format, and a set of two RSs and four DSs is transmitted continuously. Also, in order to realize a low delay, a mini-slot composed of two symbols of one RS and one DS in the symbol configuration using LTE is also defined. This slot realizes further reduction in delay time by reducing the number of symbols.

図4にCP、RS、DSのデータ構造の詳細の一例を示す。RSとDSの組はデータを格納する領域であり、信号の分離は干渉分離アルゴリズムで処理される。RSは基地局において、無線端末の識別及びCIRの推定のために利用される。本発明のRSは、Zadoff−chu系列を用い、時間軸において各無線端末100(ユーザ)のCIRを分離できるように位相回転が施される。DSは推定したCIRを利用してPICまたはSICにより信号を分離する。   FIG. 4 shows an example of details of the data structure of CP, RS, and DS. A pair of RS and DS is an area for storing data, and signal separation is processed by an interference separation algorithm. The RS is used for base station identification and CIR estimation. The RS of the present invention uses a Zadoff-chu sequence and is subjected to phase rotation so that the CIR of each wireless terminal 100 (user) can be separated on the time axis. DS separates signals by PIC or SIC using the estimated CIR.

次に、本発明を適用した無線伝送システムのインターリーブを適用した連送方式を説示する。本連送方式における合成方式はFDE(FDE:Frequency Domain Equalization)後の信号を合成する。すでに、最小平均二乗誤差(MMSE:Minimum Mean Square Error)で計算されるFDE重みを基本として、さらに各アンテナのチャンネル周波数応答の電力比も利用して重みの大きさを調整する重み付け方式が知られており、この重み計算は信号対雑音電力比(SNR:Signal to Noise power Ratio)にて算出することが知られている。   Next, a continuous transmission method to which interleaving of the wireless transmission system to which the present invention is applied is explained. The combination method in this continuous transmission method combines signals after FDE (FDE: Frequency Domain Equalization). Already, a weighting method is known in which the weight is adjusted based on the FDE weight calculated by the minimum mean square error (MMSE) and also using the power ratio of the channel frequency response of each antenna. It is known that this weight calculation is performed by a signal-to-noise power ratio (SNR).

NOMAの信号分離は、信号対干渉雑音電力比(SINR:Signal to Interference and Noise power Ratio)で拡張する。ここで、pを復調する端末の番号(最大P台)、mを受信アンテナ番号(最大M本)、kをDFTポイント、Hp、m(k)を端末pのm番目の受信アンテナのkポイントのチャンネル周波数応答、SINRp、m(k)を端末pのm番目のkポイントの受信アンテナの信号電力対干渉及び雑音電力比とし、wp、m(k)は以下のように設定する。   NOMA's signal separation is extended with Signal to Interference and Noise power Ratio (SINR). Here, the number of the terminal that demodulates p (maximum P units), m is the receiving antenna number (maximum M), k is the DFT point, Hp, m (k) is the k point of the mth receiving antenna of the terminal p. Is the signal power-to-interference and noise power ratio of the m-th k-point receiving antenna of the terminal p, and wp and m (k) are set as follows.

Figure 2019146115
ここで、*は複素共役を示し、SINRp、m(k)は
Figure 2019146115
Here, * indicates a complex conjugate, and SINRp, m (k) is

Figure 2019146115
となる。Nは雑音電力、p”はSICにより干渉除去が既に終了した端末番号を示す。
Figure 2019146115
It becomes. N represents noise power, and p ″ represents a terminal number for which interference cancellation has already been completed by SIC.

なお、周波数選択性フェージング環境下では、各無線端末の各周波数ポイントkにおいてSINRp、m(k)が変動する。また、コンテンションベースの通信では複数の端末が同一資源にアクセスすることからSINRは雑音電力より干渉信号電力が支配的である。各ブランチのSINRの差が非常に激しいことから、SINRp、m(k)を基準とした選択ダイバーシチ(SC:Selection Combining)も合成方式に近似する値を得る。   In a frequency selective fading environment, SINRp, m (k) varies at each frequency point k of each wireless terminal. In contention-based communication, since a plurality of terminals access the same resource, SINR is dominated by interference signal power rather than noise power. Since the difference in SINR of each branch is very large, a selection diversity (SC) based on SINRp, m (k) is also obtained as a value that approximates the synthesis method.

図5に本発明を適用した無線伝送システムのインターリーブ連送方式を示す。インターリーブを行う処理は、無線端末100−1と基地局200で行う。無線端末100では、連送信号(RS:Repetition Signal)に対してインターリーブ部15−1でインターリーブ処理のみを行う。一方、基地局200では無線端末100からの受信したデータをもとに最初にデインターリーブ部15−2でインターリーブされたデータの逆変換を行い、その後にインターリーブ部15−1で再度にインターリーブ処理を行う。   FIG. 5 shows an interleave continuous transmission system of a wireless transmission system to which the present invention is applied. The process of performing interleaving is performed by the radio terminal 100-1 and the base station 200. In the radio terminal 100, the interleaving unit 15-1 performs only the interleaving process on the continuous transmission signal (RS: Repetition Signal). On the other hand, the base station 200 first performs inverse conversion of the data interleaved by the deinterleaving unit 15-2 based on the data received from the radio terminal 100, and then performs interleaving processing again by the interleaving unit 15-1. Do.

無線端末100および基地局200の各インターリーブ部15−1、15−2において、インターリーブを行うことにより、時間軸信号における各シンボルの信号対干渉雑音電力比SINRp(t) (t=1、2、3、・・・、T)をオリジナルの信号(OS:Original Signal)と連送信号(RT:Repetition Signal)の間で異ならせ、SINRp(t)を異ならせた信号を、送信信号をもとに連送信号として生成し、その後に合成して処理を実行する。   Interleave units 15-1 and 15-2 of radio terminal 100 and base station 200 perform interleaving, whereby a signal-to-interference noise power ratio SINRp (t) (t = 1, 2, 3,..., T) is made different between the original signal (OS: Original Signal) and the repetitive signal (RT: Repetition Signal), and the signal with different SINRp (t) is used based on the transmission signal. Are generated as continuous transmission signals, and then synthesized and executed.

ここで利用するインターリーバは、シンボル間干渉(ISI:Inter Symbol Interference)の電力と干渉信号の電力の両方をビット又はシンボル単位でOSとRT間で異ならせるものであり、NOMAを利用するシステムでは、インターリーブで干渉信号の電力を異ならせ、干渉信号及び残留ISIの電力との差別化を図り、その後の処理において検出を容易とする。   The interleaver used here varies both the power of inter-symbol interference (ISI: Inter Symbol Interference) and the power of the interference signal between the OS and RT in units of bits or symbols. In a system using NOMA, The power of the interference signal is made different by interleaving to differentiate the interference signal from the power of the residual ISI, and detection is facilitated in the subsequent processing.

ISIの電力に関しては、MMSE基準(図示せず)のFDE23では、ISIが完全に除去できないことからインターリーブ部15−1、15−2により受信データのOSとRT間の各ビット又はシンボルのISI電力の大きさを異ならせ、残留ISIがある周波数領域の信号を時間領域に変換(IDFT5)すると周波数領域の歪は時間領域に拡散する。各シンボルが受けるこの歪の影響は、フェージングの状態の他、シンボルの遷移により異なる。   Regarding the ISI power, the FDE 23 of the MMSE standard (not shown) cannot completely remove the ISI. Therefore, the ISI power of each bit or symbol between the OS and RT of the received data by the interleave units 15-1 and 15-2. The frequency domain distortion is diffused in the time domain when the frequency domain signal with residual ISI is converted into the time domain (IDFT5). The influence of this distortion on each symbol differs depending on the transition of the symbol in addition to the fading state.

無線端末100は、ユーザが所持する、あるいは利用する機器の所定のプログラムやアプリケーションなど(図示せず)のデータ生成部1で送信対象のデータを生成する。CRC部7では、データ生成部1で生成された送信データの巡回冗長などの検査処理を行い、送信データに誤りがないことを確認する。   The wireless terminal 100 generates data to be transmitted by a data generation unit 1 such as a predetermined program or application (not shown) of a device that the user possesses or uses. The CRC unit 7 performs a check process such as cyclic redundancy of the transmission data generated by the data generation unit 1 and confirms that there is no error in the transmission data.

そして、誤り訂正符号符号部8−1は、確認した送信データの信号を誤り訂正符号で符号化を行う。インターリーブ部15−1では、符号化された信号から前述のようなインターリーブ処理を行い、変調部9−1は、誤り訂正符号符号部8−1での誤り訂正符号の符号化信号をOSと定義し、インターリーブ部15−1で処理した信号をRSと定義し、ビット又はシンボルの順番を変えンボルの偏移を変化させる。そのため、ここでのOSとRTの処理により、インターリーブ信号の各ビット又はシンボルのISIの電力はOSとRTで異ならせる。   Then, the error correction code encoding unit 8-1 encodes the confirmed transmission data signal with the error correction code. The interleaving unit 15-1 performs the above-described interleaving processing from the encoded signal, and the modulation unit 9-1 defines the encoded signal of the error correction code in the error correction code encoding unit 8-1 as OS. Then, the signal processed by the interleaving unit 15-1 is defined as RS, and the order of bits or symbols is changed to change the shift of the symbol. Therefore, the OS and RT processing here makes the ISI power of each bit or symbol of the interleave signal different between the OS and RT.

各信号間の干渉信号については、MMSE−FDEは希望信号への影響を小さくすることは可能ではあるが、除去自体は不可能であるため、インターリーブ部15−1では、OSとRTの干渉シンボルまたはビットの電力を変化させる処理を行う(BS200のインターリーブ部15−1でも同様)。一方、干渉信号となる場合は、時間軸信号の各ビット又はシンボルの干渉電力はフェージングの状態、信号の遷移に加えFDE23の重みにより変化させる。   As for the interference signal between the signals, the MMSE-FDE can reduce the influence on the desired signal, but cannot remove the interference signal itself. Or the process which changes the electric power of a bit is performed (same in the interleave part 15-1 of BS200). On the other hand, in the case of an interference signal, the interference power of each bit or symbol of the time axis signal is changed by the weight of the FDE 23 in addition to the fading state and signal transition.

サイクリックプレフィックス付加部6−1は、変調部9−1での処理に基づき、各々の生成したOSとRTにCPを挿入し、OSとRTを送信データとして連続して送信する。OSとRTの構造、CPについては前述の通りである。そして、無線端末100に備わる送信処理の後、アンテナ50−1より所定の基地局200に送信する。   The cyclic prefix adding unit 6-1 inserts a CP into each generated OS and RT based on the processing in the modulation unit 9-1, and continuously transmits the OS and RT as transmission data. The OS and RT structures and CP are as described above. And after the transmission process with which the radio | wireless terminal 100 is equipped, it transmits to the predetermined | prescribed base station 200 from the antenna 50-1.

次に基地局200は、無線端末100(無線端末は複数あるが1台のみ記載)から送信される連続して送信された送信データを受信データとして、アンテナ50−2より受信する。サイクリックプレフィックス除去部6−2は、基地局に備わるアンテナ50−2で無線端末100から受信した受信データの付されるCPを削除し、DFT部21および逆離散フーリエ変換部5でDFT処理を行う。すなわち、逆離散フーリエ変換部5では送信側と同じZadoff−chu系列の複素共役を乗算してIDFTを実施する。このとき、位相のZadoff−chu系列による位相の回転が戻されるので、IDFT後の信号はインパルス応答になり、無線端末毎に異なった周波数に比例した位相回転があるため、インパルス応答が立つ位置で判別することができるので、複数の各無線端末からの信号として各々区別することが可能となる。   Next, the base station 200 receives, from the antenna 50-2, transmission data continuously transmitted from the radio terminal 100 (there are a plurality of radio terminals but only one is described) as reception data. The cyclic prefix removal unit 6-2 deletes the CP to which the reception data received from the radio terminal 100 is received by the antenna 50-2 provided in the base station, and the DFT unit 21 and the inverse discrete Fourier transform unit 5 perform DFT processing. Do. That is, the inverse discrete Fourier transform unit 5 performs IDFT by multiplying the complex conjugate of the same Zadoff-chu sequence as that on the transmission side. At this time, since the phase rotation by the Zadoff-chu sequence of the phase is returned, the signal after the IDFT becomes an impulse response, and there is a phase rotation proportional to a different frequency for each wireless terminal. Since it can discriminate | determine, it becomes possible to distinguish each as a signal from several each radio | wireless terminal.

そして、この処理を繰り返すことで、所定のタイムフィルタでの複数の無線端末毎のデータを切り出し、各受信データに含まれる各無線端末の識別情報とインパルス応答の取得の両方が可能となる。   Then, by repeating this process, it is possible to cut out data for each of the plurality of wireless terminals with a predetermined time filter, and to obtain both the identification information and the impulse response of each wireless terminal included in each received data.

逆インターリーブ部15−2は、送信側の無線端末100で、誤り訂正符号の符号化信号をOSと定義してインターリーブを実施した信号をRTと定義し、合成された信号の分離を行い、合成部34、逆インターリーブした受信RTのLLRとOSのLLRを合成する。   The deinterleaving unit 15-2 defines the interleaved signal as RT by defining the encoded signal of the error correction code as OS in the transmitting radio terminal 100, separates the synthesized signal, and combines Unit 34 synthesizes the deinterleaved receive RT LLR and OS LLR.

誤り訂正符号復号部18は、受信データの受信電力の信号特性に基づき、受信データの等化および復調を行う。誤り訂正符号復号部18は、例えば受信データの受信電力の信号特性を判別し、受信データのその中から最も電力の強い信号の等化および復調を行う。復調した送信信号および連送信号を合成の後に前記送信対象のデータを出力する。   The error correction code decoding unit 18 performs equalization and demodulation of the received data based on the signal characteristics of the received power of the received data. For example, the error correction code decoding unit 18 determines the signal characteristics of the received power of the received data, and equalizes and demodulates the signal having the strongest power among the received data. The data to be transmitted is output after combining the demodulated transmission signal and continuous transmission signal.

誤り訂正符号復号部8−2、インターリーブ部15−1、再変調部9−3は、受信データの出力後、そのデータに含まれる信号をもとに、前述と同様の誤り訂正符号符号の処理、インターリーブ処理、再変調の各処理を順次に実施する。CRC7の検査により誤りがないことを確認し、復調信号を誤り訂正符号符号部8−3で再び誤り訂正符号で符号化し、再度にインターリーブ処理を行い、再変調及びCIRの畳み込みを行い、同一となるデータを生成する。   The error correction code decoding unit 8-2, the interleaving unit 15-1, and the remodulation unit 9-3 perform the same error correction code code processing as described above on the basis of the signal included in the received data after output. The interleaving process and the remodulation process are sequentially performed. It is confirmed by CRC7 that there is no error, and the demodulated signal is encoded again with the error correction code by the error correction code encoder 8-3, again subjected to interleaving, remodulation and CIR convolution, and the same To generate data.

これを元の受信信号から引き算して、その後は前述の処理に戻り、次の信号の干渉となる信号を除去する。同一となるデータ信号が除去された残差信号から2番目に受信電力が高い無線端末(信号対干渉電力SIRが高い順)に実施することを繰り返し行う。そして、全ての受信データに対して実施し、複数の無線端末からの受信データの処理を終了する。   This is subtracted from the original received signal, and then the process returns to the above-described processing to remove the signal that causes interference with the next signal. It is repeatedly performed for the wireless terminal having the second highest received power (in descending order of signal-to-interference power SIR) from the residual signal from which the same data signal is removed. And it implements with respect to all the reception data, and complete | finishes the process of the reception data from several radio | wireless terminals.

これにより、信頼性をさらに向上させることが可能となる。インターリーブを使った連送では、インターリーブを行うことによって、時間軸信号における各シンボルの信号対干渉雑音電力比SINRp(t) (t=1,2,3,…,T)をオリジナルの信号(OS:Original Signal)と連送信号(RT:Rrepetition Signal)の間で異ならせることが可能であるため、SINRp(t)を異ならせた信号を合成することで、ダイバーシチ効果を得ることが可能である。ここで利用するインターリーバは、シンボル間干渉(ISI:Inter Symbol Interference)の電力と干渉信号の電力の両方をビット又はシンボル単位でOSとRT間で異ならせる効果がある。そのため、NOMAを利用するシステムではインターリーブは干渉信号の電力を異ならせる効果が残留ISIのそれよりも大きくなる。   Thereby, it becomes possible to further improve the reliability. In continuous transmission using interleaving, interleaving is performed to change the signal-to-interference noise power ratio SINRp (t) (t = 1, 2, 3,..., T) of each symbol in the time axis signal to the original signal (OS : Original Signal (RT) and repetitive signal (RT) can be made different, so it is possible to obtain a diversity effect by synthesizing signals with different SINRp (t). . The interleaver used here has an effect of making both the power of inter-symbol interference (ISI) and the power of the interference signal different between the OS and RT in units of bits or symbols. Therefore, in a system using NOMA, interleaving has a greater effect of making the power of the interference signal different than that of residual ISI.

図6に本発明のインターリーブ連送方式を示す。この実施例では、無線端末100と基地局側200に複数(2本)との通信に関するもので、基地局200にはアンテナを2本設置し、この2本のアンテナで無線端末100からのデータを受信する。   FIG. 6 shows the interleave continuous transmission system of the present invention. This embodiment relates to communication between a plurality (two) of the radio terminal 100 and the base station 200, and two antennas are installed in the base station 200, and data from the radio terminal 100 is transmitted using these two antennas. Receive.

インターリーブを行う処理は、前記の無線端末100と基地局200と同様であり、無線端末100でも、RTに対してインターリーブ部15−1でインターリーブ処理を行い、変調部9−1およびサイクリックプレフィックス付加部6−1での処理の後、OSとRTを連続して送信してCPを挿入し、無線端末に備わる送信処理(図示せず)の後、アンテナ50−1より所定の基地局200に送信する。   The process of performing the interleaving is the same as that of the wireless terminal 100 and the base station 200, and the wireless terminal 100 also performs an interleaving process on the RT by the interleaving unit 15-1, and adds the modulation unit 9-1 and the cyclic prefix. After the processing in the unit 6-1, the OS and RT are continuously transmitted to insert the CP, and after the transmission processing (not shown) provided in the wireless terminal, the antenna 50-1 transmits a predetermined base station 200. Send.

基地局200での送信データの受信処理は、前述の合成方式および図5に記載のインターリーブ連送方式と同様の処理で通信を行うが、合成方式の構成が追加され、基地局200のMMSE部26で、最小平均二乗誤差で計算されるFDEの重みを基本として、さらに各アンテナ50−2、50−3、・・・のチャンネル周波数応答の電力比を利用し、この重みの大きさを調整し、複数の無線端末からの受信データに対して繰り返し実施する。   The base station 200 performs transmission data reception processing in the same manner as the above-described combining method and the interleaved continuous transmission method described in FIG. 5, but the composition of the combining method is added and the MMSE unit of the base station 200 is added. 26, based on the FDE weight calculated by the minimum mean square error, the power ratio of the channel frequency response of each antenna 50-2, 50-3,. Then, it is repeatedly performed on the received data from a plurality of wireless terminals.

これにより、複数の無線端末局から基地局への同時接続が可能となり、基地局において、PICによって干渉抑圧除去を行った場合の信号分離成功の確率が高くなる。   Thereby, simultaneous connection from a plurality of radio terminal stations to the base station becomes possible, and the probability of successful signal separation when interference suppression removal is performed by the PIC in the base station increases.

本実施形態における無線伝送方法は、上述した複数の無線端末100からの送信データを共通の基地局200における、複数の無線端末100は、送信対象のデータから送信信号と、当該送信信号をもとに連送信号とを各々生成する第1工程と、当該生成した送信信号と連送信号を送信データとして連続して送信し、前記基地局200に送信する第2工程とを少なくとも備える。   In the wireless transmission method according to the present embodiment, the transmission data from the plurality of wireless terminals 100 described above is transmitted from the data to be transmitted, and the plurality of wireless terminals 100 based on the transmission signal. And a second step of continuously transmitting the generated transmission signal and the continuous transmission signal as transmission data and transmitting them to the base station 200.

基地局200は、前記複数の無線端末100で連続して送信された送信データを受信データとして受信する第3工程と、前記受信データの受信電力の信号特性の順位に応じて当該受信データを等化および復調し、復調した送信信号および連送信号を合成の後に前記送信対象のデータを出力する第4工程と、前記出力した前記送信対象のデータを用いて、再生送信信号として送信信号と、当該再生送信信号をもとに再生連送信号として連送信号とを生成する第5工程と、前記受信したデータから、前記再生送信信号および再生連送信号から再生したデータと同一となる受信データを差し引き、前記信号特性の順位に応じて他の受信データに前記送信対象のデータの出力にかかる一連の処理を行う第6工程とを少なくとも備える。   The base station 200 receives, as received data, transmission data continuously transmitted by the plurality of radio terminals 100, and the received data according to the order of the signal characteristics of the received power of the received data, etc. A fourth step of outputting the transmission target data after synthesizing and demodulating the demodulated transmission signal and continuous transmission signal, and using the output transmission target data as a reproduction transmission signal, 5th process which produces | generates a continuous transmission signal as a reproduction | regeneration continuous transmission signal based on the said reproduction | regeneration transmission signal, The reception data which becomes the same as the data reproduced | regenerated from the said reproduction | regeneration transmission signal and reproduction | regeneration continuous transmission signal from the said received data And at least a sixth step of performing a series of processes related to the output of the data to be transmitted on the other received data according to the order of the signal characteristics.

上述した内容と同様に、多数接続と低遅延を両立する通信処理が可能となる。これにより、複数端末100から送信された信号に衝突が発生しても、低遅延及び通信品質を担保し、同時接続数が増大しても高い信頼性を持つ共用方式の通信が可能となる。   Similar to the contents described above, communication processing that achieves both a large number of connections and a low delay becomes possible. As a result, even if a collision occurs in signals transmitted from the plurality of terminals 100, low delay and communication quality are ensured, and even if the number of simultaneous connections increases, highly reliable shared communication is possible.

1 送信データ
1−1 レファレンス信号
1−2 データ信号
2 ザドフーチュウ系列生成部
3 サイクリック拡張器
4 移相部
5 逆離散フーリエ変換部
6−1 サイクリックプレフィックス付加部
6−2 サイクリックプレフィックス除去部
7 CRC部
8、8−1、8−3 誤り訂正符号符号部
8−2 誤り訂正符号復号部
9−1 変調部
9−2 逆変調部
9−3 再変調部
10 ルートレイゥドコサインフィター部
15−1 インターリーブ部
15−2 逆インターリーブ部
21 離散フーリエ変換部
22 タイムフィルタ
23 FDE部
24 CIR部
26 MMSE部
33 LLR部
34 合成部
35 逐次干渉除去部
50−1、50−2、50−3 アンテナ
100 無線端末(User Equipment)
200 基地局(Base Staion)
DESCRIPTION OF SYMBOLS 1 Transmission data 1-1 Reference signal 1-2 Data signal 2 Zadhoochu series generation part 3 Cyclic expander 4 Phase shift part 5 Inverse discrete Fourier transform part 6-1 Cyclic prefix addition part 6-2 Cyclic prefix removal part 7 CRC unit 8, 8-1, 8-3 Error correction code encoding unit 8-2 Error correction code decoding unit 9-1 Modulating unit 9-2 Inverse modulating unit 9-3 Remodulating unit 10 Root Lay cosine filter unit 15 -1 Interleaving unit 15-2 Inverse interleaving unit 21 Discrete Fourier transform unit 22 Time filter 23 FDE unit 24 CIR unit 26 MMSE unit 33 LLR unit 34 Combining unit 35 Sequential interference removing units 50-1, 50-2, 50-3 Antenna 100 Wireless equipment (User Equipment)
200 Base Station

Claims (6)

複数の無線端末からの送信データを共通の基地局で受信する無線伝送システムであって、
前記複数の無線端末は、
送信対象のデータから送信信号と、当該送信信号をもとに連送信号とを各々生成する手段と、
当該生成した送信信号と連送信号を送信データとして連続して送信し、前記基地局に送信する手段と、
を少なくとも備え、
前記基地局は、
前記複数の無線端末で連続して送信された送信データを受信データとして受信する手段と、
前記受信データの信号特性基づいて当該受信データを等化および復調し、復調した送信信号および連送信号を合成の後に前記送信対象のデータを出力する手段と、
前記出力した前記送信対象のデータを用いて再生送信信号として送信信号と、当該再生送信信号をもとに再生連送信号として連送信号とを生成する手段と、
前記受信データから、前記再生送信信号および前記再生連送信号から再生したデータと同一となるデータを差し引き、前記信号特性の順位に応じて他の受信データに前記送信対象のデータの出力にかかる一連の処理を行う手段と、
を少なくとも備えること、
を特徴とした無線伝送システム。
A wireless transmission system for receiving transmission data from a plurality of wireless terminals at a common base station,
The plurality of wireless terminals are:
Means for generating a transmission signal from data to be transmitted and a continuous transmission signal based on the transmission signal;
Means for continuously transmitting the generated transmission signal and continuous transmission signal as transmission data, and transmitting to the base station;
Comprising at least
The base station
Means for receiving transmission data continuously transmitted by the plurality of wireless terminals as reception data;
Means for equalizing and demodulating the received data based on signal characteristics of the received data, and outputting the data to be transmitted after combining the demodulated transmission signal and continuous transmission signal;
Means for generating a transmission signal as a reproduction transmission signal using the output data to be transmitted and a continuous signal as a reproduction continuous signal based on the reproduction transmission signal;
From the received data, the same data as the data reproduced from the reproduced transmission signal and the reproduced continuous transmission signal is subtracted, and a series of output of the transmission target data to other received data according to the order of the signal characteristics Means for performing
Having at least
Wireless transmission system characterized by
上記受信データの信号特性は、受信電力の出力の強さであることを特徴とする請求項1に記載の無線伝送システム。   2. The wireless transmission system according to claim 1, wherein the signal characteristic of the reception data is an output strength of reception power. 上記信号特性は、シンボル間干渉の電力と干渉信号の電力の両方をビットまたはシンボル単位で異なる強さであることを特徴とする請求項1乃至請求項2に記載の無線伝送システム。   3. The radio transmission system according to claim 1, wherein the signal characteristic is such that both the power of intersymbol interference and the power of the interference signal are different in bit or symbol units. 上記信号は、各々端末識別に関する領域とチャンネル推定用の領域、およびペイロード運搬用の領域を含むことを特徴とする請求項1乃至請求項3に記載の無線伝送システム。   4. The radio transmission system according to claim 1, wherein each of the signals includes a terminal identification area, a channel estimation area, and a payload carrying area. 上記基地局は、複数のアンテナをさらに備え、複数の端末局から連続して送信された送信データを受信し、当該各アンテナのチャンネル周波数応答の電力比に基づいて重み付けを行い、当該各信号を合成することを特徴とした請求項1乃至請求項4に記載の無線伝送システム。   The base station further includes a plurality of antennas, receives transmission data continuously transmitted from a plurality of terminal stations, performs weighting based on the power ratio of the channel frequency response of each antenna, The wireless transmission system according to claim 1, wherein the wireless transmission system is synthesized. 複数の無線端末からの送信データを共通の基地局で受信する無線伝送方法であって、
前記複数の無線端末は、
送信対象のデータから送信信号と、当該送信信号をもとに連送信号とを各々生成する第1工程と、
当該生成した送信信号と連送信号を送信データとして連続して送信し、前記基地局に送信する第2工程と、
を少なくとも備え、
前記基地局は、
前記複数の無線端末で連続して送信された送信データを受信データとして受信する第3工程と、
前記受信データの受信電力の信号特性の順位に応じて当該受信データを等化および復調し、復調した送信信号および連送信号を合成の後に前記送信対象のデータを出力する第4工程と、
前記出力した前記送信対象のデータを用いて、再生送信信号として送信信号と、当該再生送信信号をもとに再生連送信号として連送信号とを生成する第5工程と、
前記受信したデータから、前記再生送信信号および再生連送信号から再生したデータと同一となる受信データを差し引き、前記信号特性の順位に応じて他の受信データに前記送信対象のデータの出力にかかる一連の処理を行う第6工程と、
を少なくとも備えること、
を特徴とした無線伝送方法。
A wireless transmission method for receiving transmission data from a plurality of wireless terminals at a common base station,
The plurality of wireless terminals are:
A first step of generating a transmission signal from the transmission target data and a continuous transmission signal based on the transmission signal;
A second step of continuously transmitting the generated transmission signal and the continuous transmission signal as transmission data and transmitting to the base station;
Comprising at least
The base station
A third step of receiving transmission data continuously transmitted by the plurality of wireless terminals as reception data;
A fourth step of equalizing and demodulating the received data according to the order of the signal characteristics of the received power of the received data, and outputting the data to be transmitted after combining the demodulated transmission signal and continuous transmission signal;
Using the output data to be transmitted, a fifth step of generating a transmission signal as a reproduction transmission signal and a continuous transmission signal as a reproduction continuous transmission signal based on the reproduction transmission signal;
The received data that is the same as the data reproduced from the reproduction transmission signal and the reproduction continuous signal is subtracted from the received data, and the output of the transmission target data is applied to other reception data according to the order of the signal characteristics. A sixth step for performing a series of processes;
Having at least
A wireless transmission method characterized by the above.
JP2018031036A 2018-02-23 2018-02-23 System and method for radio transmission Pending JP2019146115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018031036A JP2019146115A (en) 2018-02-23 2018-02-23 System and method for radio transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018031036A JP2019146115A (en) 2018-02-23 2018-02-23 System and method for radio transmission

Publications (1)

Publication Number Publication Date
JP2019146115A true JP2019146115A (en) 2019-08-29

Family

ID=67772868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018031036A Pending JP2019146115A (en) 2018-02-23 2018-02-23 System and method for radio transmission

Country Status (1)

Country Link
JP (1) JP2019146115A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509552A (en) * 2000-09-20 2004-03-25 ビーエーイー・システムズ・インフォメーション・アンド・エレクトロニック・システムズ・インテグレーション・インコーポレーテッド Method for enabling simultaneous transmission from two or more users by using excessive frequency
WO2009020213A1 (en) * 2007-08-09 2009-02-12 Sharp Kabushiki Kaisha Mobile station device, base station device, communication system, communication method, and program
WO2016121911A1 (en) * 2015-01-29 2016-08-04 株式会社Nttドコモ Wireless base station, user terminal, and wireless communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509552A (en) * 2000-09-20 2004-03-25 ビーエーイー・システムズ・インフォメーション・アンド・エレクトロニック・システムズ・インテグレーション・インコーポレーテッド Method for enabling simultaneous transmission from two or more users by using excessive frequency
WO2009020213A1 (en) * 2007-08-09 2009-02-12 Sharp Kabushiki Kaisha Mobile station device, base station device, communication system, communication method, and program
US20110237265A1 (en) * 2007-08-09 2011-09-29 Yasuo Sugawara Mobile station device, base station device, communication system, communication method, and program
WO2016121911A1 (en) * 2015-01-29 2016-08-04 株式会社Nttドコモ Wireless base station, user terminal, and wireless communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
森山 雅文 MASAFUMI MORIYAMA 他: "多数デバイスを収容する携帯電話網に関する高効率通信方式 Efficient Radio Access for Massive Machine-T", 電子情報通信学会技術研究報告 VOL.117 NO.103 IEICE TECHNICAL REPORT, JPN6021046229, 14 June 2017 (2017-06-14), ISSN: 0004822656 *

Similar Documents

Publication Publication Date Title
CN110754051B (en) Wireless communication device, infrastructure equipment and method
JP5601803B2 (en) COMMUNICATION SYSTEM, COMMUNICATION METHOD, AND BASE STATION
CA2743371C (en) Method and system for reduced complexity channel estimation and interference cancellation for v-mimo demodulation
JP6254019B2 (en) Wireless base station, user terminal, wireless communication method, and wireless communication system
EP3116151A1 (en) User terminal, radio base station, radio communication method, and radio communication system
US9680676B2 (en) Communication system, communication device and communication method that can improve frequency use efficiency
JP5375520B2 (en) Communication device
WO2008000717A1 (en) Method for operating a radio communication system as well as sending station and receiving station
CN112020084B (en) Two-step random access channel design and signal detection method in satellite scene
JP2010136347A5 (en)
KR20150076205A (en) Distributed v-mimo processing for coordinated multipoint reception
EP3113379A1 (en) Wireless base station, user terminal, wireless communication method and wireless communication system
JP2020519163A (en) Communication device, infrastructure equipment, and method
Kim et al. Novel transceiver architecture for an asynchronous grant-free IDMA system
WO2014088271A1 (en) Method and device for transmitting and receiving signal in multi-cell cooperative communication system
CN111245750A (en) Frequency offset estimation method, device and storage medium
CN110326264A (en) Signal quality control method and base station
JP2019501560A (en) Multi-length ZT DFT-S-OFDM transmission
CN110213791A (en) A kind of user equipment that be used to wirelessly communicate, the method and apparatus in base station
JP2015201804A (en) Receiver, reception method, transmitter, transmission method, and radio communication system
Dinis et al. Frequency-domain multipacket detection: a high throughput technique for SC-FDE systems
Kawata et al. Performance evaluation of IDMA-based random access with various structures of interference canceller
JP2019146115A (en) System and method for radio transmission
JP6906782B2 (en) Contention-based communication system
KR101464410B1 (en) Method and apparatus of two-way relay communication based on ofdm

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220712