JP2019143196A - Method for recovering scandium - Google Patents
Method for recovering scandium Download PDFInfo
- Publication number
- JP2019143196A JP2019143196A JP2018027998A JP2018027998A JP2019143196A JP 2019143196 A JP2019143196 A JP 2019143196A JP 2018027998 A JP2018027998 A JP 2018027998A JP 2018027998 A JP2018027998 A JP 2018027998A JP 2019143196 A JP2019143196 A JP 2019143196A
- Authority
- JP
- Japan
- Prior art keywords
- scandium
- solution
- treatment
- hydrogen sulfide
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052706 scandium Inorganic materials 0.000 title claims abstract description 202
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 title claims abstract description 198
- 238000000034 method Methods 0.000 title claims abstract description 137
- 239000000243 solution Substances 0.000 claims abstract description 178
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 167
- 229910052742 iron Inorganic materials 0.000 claims abstract description 83
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims abstract description 60
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims abstract description 60
- 239000007789 gas Substances 0.000 claims abstract description 58
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 42
- 238000005486 sulfidation Methods 0.000 claims abstract description 38
- 229910000480 nickel oxide Inorganic materials 0.000 claims abstract description 32
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000003929 acidic solution Substances 0.000 claims abstract description 26
- 239000003513 alkali Substances 0.000 claims abstract description 16
- LQPWUWOODZHKKW-UHFFFAOYSA-K scandium(3+);trihydroxide Chemical compound [OH-].[OH-].[OH-].[Sc+3] LQPWUWOODZHKKW-UHFFFAOYSA-K 0.000 claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims abstract description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 150
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 92
- 238000011084 recovery Methods 0.000 claims description 55
- 239000012670 alkaline solution Substances 0.000 claims description 47
- 229910052759 nickel Inorganic materials 0.000 claims description 46
- 239000003480 eluent Substances 0.000 claims description 38
- 238000005987 sulfurization reaction Methods 0.000 claims description 32
- 238000002386 leaching Methods 0.000 claims description 26
- 238000005342 ion exchange Methods 0.000 claims description 21
- 238000009854 hydrometallurgy Methods 0.000 claims description 17
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 11
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 8
- 239000003456 ion exchange resin Substances 0.000 claims description 8
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 8
- 239000007788 liquid Substances 0.000 abstract description 55
- 238000001784 detoxification Methods 0.000 abstract description 48
- 238000006386 neutralization reaction Methods 0.000 abstract description 42
- 230000003472 neutralizing effect Effects 0.000 abstract description 21
- 239000002253 acid Substances 0.000 abstract description 13
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 abstract description 3
- 238000007670 refining Methods 0.000 abstract 2
- 210000000416 exudates and transudate Anatomy 0.000 abstract 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 49
- 239000012535 impurity Substances 0.000 description 32
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 27
- 239000003795 chemical substances by application Substances 0.000 description 24
- 238000000605 extraction Methods 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 19
- 238000000926 separation method Methods 0.000 description 19
- 239000002002 slurry Substances 0.000 description 19
- 229910017052 cobalt Inorganic materials 0.000 description 17
- 239000010941 cobalt Substances 0.000 description 17
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 16
- 239000002244 precipitate Substances 0.000 description 16
- 230000001965 increasing effect Effects 0.000 description 15
- 239000011347 resin Substances 0.000 description 15
- 229920005989 resin Polymers 0.000 description 15
- 239000013522 chelant Substances 0.000 description 14
- 238000000638 solvent extraction Methods 0.000 description 14
- 239000002699 waste material Substances 0.000 description 13
- 238000003723 Smelting Methods 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 8
- 239000000920 calcium hydroxide Substances 0.000 description 8
- 235000011116 calcium hydroxide Nutrition 0.000 description 8
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 8
- 239000003960 organic solvent Substances 0.000 description 8
- OMMFSGNJZPSNEH-UHFFFAOYSA-H oxalate;scandium(3+) Chemical compound [Sc+3].[Sc+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O OMMFSGNJZPSNEH-UHFFFAOYSA-H 0.000 description 8
- 229920002472 Starch Polymers 0.000 description 7
- 235000006408 oxalic acid Nutrition 0.000 description 7
- 239000008107 starch Substances 0.000 description 7
- 235000019698 starch Nutrition 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- 235000019738 Limestone Nutrition 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 239000006028 limestone Substances 0.000 description 6
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium oxide Chemical compound O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- -1 nickel sulfides Chemical class 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 238000000975 co-precipitation Methods 0.000 description 4
- 239000012452 mother liquor Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002562 thickening agent Substances 0.000 description 4
- 239000005083 Zinc sulfide Substances 0.000 description 3
- 238000005273 aeration Methods 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 235000014413 iron hydroxide Nutrition 0.000 description 3
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- XTAZYLNFDRKIHJ-UHFFFAOYSA-N n,n-dioctyloctan-1-amine Chemical compound CCCCCCCCN(CCCCCCCC)CCCCCCCC XTAZYLNFDRKIHJ-UHFFFAOYSA-N 0.000 description 3
- 150000003325 scandium Chemical class 0.000 description 3
- 238000005201 scrubbing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910052984 zinc sulfide Inorganic materials 0.000 description 3
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910001710 laterite Inorganic materials 0.000 description 2
- 239000011504 laterite Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- JRBAVVHMQRKGLN-UHFFFAOYSA-N 16,16-dimethylheptadecan-1-amine Chemical compound CC(C)(C)CCCCCCCCCCCCCCCN JRBAVVHMQRKGLN-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 206010024769 Local reaction Diseases 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical compound OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical group [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- ZADYMNAVLSWLEQ-UHFFFAOYSA-N magnesium;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[Mg+2].[Si+4] ZADYMNAVLSWLEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000346 scandium sulfate Inorganic materials 0.000 description 1
- QHYMYKHVGWATOS-UHFFFAOYSA-H scandium(3+);trisulfate Chemical compound [Sc+3].[Sc+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O QHYMYKHVGWATOS-UHFFFAOYSA-H 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- VRRFSFYSLSPWQY-UHFFFAOYSA-N sulfanylidenecobalt Chemical class [Co]=S VRRFSFYSLSPWQY-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/04—Extraction of metal compounds from ores or concentrates by wet processes by leaching
- C22B3/06—Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
- C22B3/08—Sulfuric acid, other sulfurated acids or salts thereof
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/42—Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B59/00—Obtaining rare earth metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、スカンジウムの回収方法に関する。 The present invention relates to a method for recovering scandium.
低品位ニッケル酸化鉱石からニッケルやコバルト等の有価物を効率よく回収する方法として、例えば、高圧酸浸出(High Pressure Acid Leach:HPAL)プロセスと呼ばれる方法がある。 As a method for efficiently recovering valuable materials such as nickel and cobalt from low-grade nickel oxide ore, there is a method called a high pressure acid leaching (HPAL) process, for example.
HPALプロセスでは、ニッケル酸化鉱石と硫酸とを混合しスラリー化してオートクレーブ等の耐圧反応容器に入れ、220℃〜280℃程度の高温度下で撹拌し、ニッケル酸化鉱石に含有されたニッケルやコバルト等の有価物を硫酸溶液中に浸出して浸出スラリーを生成させる(浸出工程)。次いで、得られた浸出スラリーを固液分離しながら洗浄し、さらに炭酸カルシウム等の中和剤を添加してpHを4程度に調整して鉄等の不純物の多くを分離し、ニッケルやコバルトを含有する浸出液を得る(固液分離工程)。 In the HPAL process, nickel oxide ore and sulfuric acid are mixed and slurried, put into a pressure-resistant reaction vessel such as an autoclave, stirred at a high temperature of about 220 ° C. to 280 ° C., nickel and cobalt contained in the nickel oxide ore, etc. Is leached into a sulfuric acid solution to form a leaching slurry (leaching step). Next, the obtained leaching slurry is washed while separating it into solid and liquid, and a neutralizing agent such as calcium carbonate is added to adjust the pH to about 4 to separate many impurities such as iron. The contained leachate is obtained (solid-liquid separation step).
さらに、得られた浸出液に硫化剤を添加して硫化処理を施すことで、ニッケルやコバルト等の有価物を硫化物として沈殿させ、硫化後液と分離して回収する(硫化工程)。 Further, by adding a sulfiding agent to the obtained leachate and subjecting it to a sulfidation treatment, valuable substances such as nickel and cobalt are precipitated as sulfides, and separated from the sulfidized solution and recovered (sulfurization step).
このようなHPAL法による湿式製錬方法に関しては、浸出工程や固液分離工程における処理の簡素化や、得られた浸出液に対して中和処理を施す中和工程での中和剤消費量及び澱物量の削減、さらに効率的な水の繰り返し使用等を目的とする技術が種々提案されており、プロセス全体として簡素でかつ高効率な処理を行うことが可能な方法が研究されている。 Regarding such a hydrometallurgical method by the HPAL method, the simplification of the treatment in the leaching step and the solid-liquid separation step, and the amount of neutralizing agent consumed in the neutralization step of neutralizing the obtained leachate and Various techniques aimed at reducing the amount of starch and repetitive use of efficient water have been proposed, and methods capable of performing simple and highly efficient processing as a whole process have been studied.
上述したように、HPAL法による湿式製錬方法では、ニッケル酸化鉱石に対して浸出処理を施して得られた硫酸酸性溶液(浸出液)からニッケル及びコバルトを回収するために、消石灰や石灰石等のアルカリを添加してpHを調整することで不純物の大部分を分離している(中和工程)。次いで、中和処理後の溶液(中和後液)に硫化水素ガス等の硫化剤を添加してニッケルやコバルトの硫化物を析出させて、ニッケル及びコバルトを回収する操業が行われている(硫化工程)。そして、硫化工程後に硫化物が分離回収された後の硫化後液に対しては、中和剤を添加して中和処理(最終中和処理)を施し、マンガン等の不純物を分離して中和後排水として放流している。 As described above, in the hydrometallurgical method using the HPAL method, alkali such as slaked lime or limestone is used to recover nickel and cobalt from the sulfuric acid solution (leaching solution) obtained by leaching the nickel oxide ore. Is added to adjust the pH to separate most of the impurities (neutralization step). Subsequently, an operation for recovering nickel and cobalt is performed by adding a sulfiding agent such as hydrogen sulfide gas to the solution after neutralization treatment (liquid after neutralization) to precipitate sulfides of nickel and cobalt. Sulfurization process). And after the sulfidation process, after the sulfide is separated and recovered, the neutralized solution (final neutralization treatment) is performed by adding a neutralizing agent to separate impurities such as manganese. Discharged as Japanese wastewater.
ところが、硫化後液中には、硫化処理に用いた硫化水素ガスのような硫化剤が残留することがあり、放流するにあたっては溶液中から硫化水素を除去することが必要になる。硫化後液(硫酸溶液)中に溶存する硫化水素を除去する具体的な方法としては、例えば、エアレーションにより曝気する方法、減圧により曝気する方法、過酸化水素等の酸化剤により硫化水素を酸化し硫酸塩を得て固定化する方法、さらには水溶液の酸濃度を上昇させて硫化水素の溶解度を低下させる方法等が挙げられる。 However, a sulfidizing agent such as hydrogen sulfide gas used for sulfidation may remain in the solution after sulfidation, and it is necessary to remove hydrogen sulfide from the solution before discharge. Specific methods for removing hydrogen sulfide dissolved in the solution after sulfidation (sulfuric acid solution) include, for example, a method of aeration by aeration, a method of aeration by reduced pressure, and oxidation of hydrogen sulfide by an oxidizing agent such as hydrogen peroxide. Examples thereof include a method for obtaining and fixing a sulfate, and a method for decreasing the solubility of hydrogen sulfide by increasing the acid concentration of the aqueous solution.
これらの多くの処理方法では、硫化水素の溶解度を低減させるようにしているため、処理槽中に硫化水素ガスが発生する。そのため、処理においては、硫化水素ガスを除害する必要がある。硫化水素ガスを除害する方法としては、例えば、水酸化ナトリウム(苛性ソーダ)等のアルカリ溶液を吸収液とする排ガス処理設備(スクラバー)にて処理する方法が一般的であり、除害後のアルカリ排液は別途処理する必要がある。なお、そのアルカリ排液は、例えば、硫化後液に対する最終中和処理にて用いる中和剤である消石灰や石灰石等のアルカリの代替として使用されている。 In many of these treatment methods, the solubility of hydrogen sulfide is reduced, so that hydrogen sulfide gas is generated in the treatment tank. Therefore, in the treatment, it is necessary to remove the hydrogen sulfide gas. As a method of removing hydrogen sulfide gas, for example, a method of treating with an exhaust gas treatment facility (scrubber) using an alkaline solution such as sodium hydroxide (caustic soda) as an absorbent is common. The drainage needs to be treated separately. In addition, the alkaline drainage is used as an alternative to alkali such as slaked lime and limestone, which are neutralizing agents used in the final neutralization treatment for the post-sulfurization solution.
ところで、ニッケル酸化鉱石には、ニッケルやコバルト等の有価物の他に、微量のスカンジウムが含有される場合があることも知られている。スカンジウムは、極めて有価な金属であるにもかかわらず、少量しか産出されないため、ニッケル酸化鉱石からスカンジウムを回収する技術の確立が望まれている。 Incidentally, it is also known that nickel oxide ore may contain a trace amount of scandium in addition to valuable materials such as nickel and cobalt. Although scandium is a very valuable metal, only a small amount is produced, and therefore, establishment of a technique for recovering scandium from nickel oxide ore is desired.
例えば、特許文献1には、ニッケル酸化鉱石から高品位のスカンジウムを回収する方法が提案されている。具体的には、ニッケル酸化鉱石の湿式製錬方法における硫化工程にて生成した硫化後液(スカンジウムを含有する酸性溶液)を、キレート樹脂を用いたイオン交換処理に付してスカンジウムを濃縮させたスカンジウム溶離液を得て、そのスカンジウム溶離液に対して溶媒抽出処理を施し、抽出剤を逆抽出することによって逆抽出物を得て、得られた逆抽出物を焼成することでスカンジウムを酸化スカンジウムの形態で回収する、という方法である。また、特許文献1には、イオン交換処理後のスカンジウム溶離液から澱物を生成させ、その澱物を酸溶解することでスカンジウムを濃縮する工程や、溶媒抽出処理の後に得られた逆抽出物を塩酸で溶解し、さらにシュウ酸を加えてシュウ酸スカンジウムを得るシュウ酸化工程を設けることがさらに好ましいとされている。 For example, Patent Document 1 proposes a method for recovering high-quality scandium from nickel oxide ore. Specifically, the post-sulfurization liquid (acidic solution containing scandium) produced in the sulfidation process in the nickel oxide ore hydrometallurgical process was subjected to ion exchange treatment using a chelate resin to concentrate scandium. Obtaining a scandium eluent, subjecting the scandium eluent to solvent extraction, obtaining a back extract by back extracting the extractant, and firing the obtained back extract to synthesize scandium oxide. It is a method of collecting in the form of. Patent Document 1 discloses that a starch is produced from a scandium eluate after ion exchange treatment, and the scandium is concentrated by dissolving the starch with an acid, and a back extract obtained after solvent extraction treatment. It is further preferable to provide an oxalic acid oxidation step in which oxalic acid is dissolved in hydrochloric acid and oxalic acid is further added to obtain scandium oxalate.
また、特許文献2においても、高純度なスカンジウムを簡便に且つ効率よく回収することができるスカンジウムの回収方法が提案されている。具体的には、スカンジウムを含有する溶液をイオン交換樹脂に通液し、次いでそのイオン交換樹脂から溶離した溶離液を溶媒抽出に付して抽残液と抽出後抽出剤とに分離し、次いで抽残液に対してシュウ酸塩化処理を施しシュウ酸スカンジウムの沈殿物を得て、その沈殿物を焙焼することによって酸化スカンジウムを得る回収方法において、溶媒抽出の抽出剤にアミン系抽出剤を用いることを特徴とする技術が開示されている。 Patent Document 2 also proposes a scandium recovery method capable of easily and efficiently recovering high-purity scandium. Specifically, a solution containing scandium is passed through an ion exchange resin, and then the eluate eluted from the ion exchange resin is subjected to solvent extraction to be separated into a residual extraction solution and an extractant after extraction, In the recovery method of obtaining scandium oxide by subjecting the extracted residue to an oxalate treatment to obtain a scandium oxalate precipitate and baking the precipitate, an amine-based extractant is used as the solvent extractant. The technique characterized by using is disclosed.
また、特許文献3には、高品位のスカンジウムを効率よく回収する方法として、スカンジウムを含有する硫酸溶液に硫酸ナトリウムを添加し、スカンジウム硫酸複塩の沈殿を回収した後、この沈殿物に純水を添加して溶解させ、得られた溶解液に中和剤を添加して水酸化スカンジウムを回収し、得られた水酸化スカンジウムに酸を添加し、その水酸化スカンジウムを再溶解(精製)してスカンジウム溶解液を得る方法が開示されている。 Further, in Patent Document 3, as a method for efficiently recovering high-quality scandium, sodium sulfate is added to a sulfuric acid solution containing scandium, a precipitate of scandium sulfate double salt is recovered, and then pure water is added to the precipitate. Add a neutralizer to the resulting solution to recover scandium hydroxide, add acid to the obtained scandium hydroxide, and redissolve (purify) the scandium hydroxide. Thus, a method for obtaining a scandium solution is disclosed.
しかしながら、これらの方法を用いた場合、中和剤のコストがかかり、経済的な観点で効率的にスカンジウムを回収することが難しいという問題がある。また、中和処理時に局部的な反応が生じて、沈殿させたくないスカンジウムが鉄等の不純物と共沈し、その結果として回収ロスが増加する等、好ましくない結果をもたらすこともある。 However, when these methods are used, there is a problem that the cost of the neutralizing agent is increased, and it is difficult to efficiently recover scandium from an economical viewpoint. In addition, a local reaction occurs during the neutralization treatment, and scandium that is not desired to be precipitated may coprecipitate with impurities such as iron, resulting in an unfavorable result such as an increase in recovery loss.
中和処理において中和剤として用いられるアルカリとしては、一般的には、苛性ソーダ(水酸化ナトリウム)や、消石灰、石灰石等が挙げられる。その中でも、水酸化ナトリウムは、消石灰や石灰石等の固体あるいは固体が懸濁したスラリーでなく、溶液として取り扱うことができるため、制御が容易であるという特徴がある。 In general, the alkali used as a neutralizing agent in the neutralization treatment includes caustic soda (sodium hydroxide), slaked lime, limestone, and the like. Among them, sodium hydroxide is characterized by being easy to control because it can be handled as a solution, not a solid such as slaked lime or limestone, or a slurry in which a solid is suspended.
ところが、水酸化ナトリウムの使用コストは、消石灰のコストに比べて数倍、石灰石のコストに比べると数十倍もかかる等、非常に高価なものであり、水酸化ナトリウムの使用量はできるだけ抑制することが望まれている。 However, the usage cost of sodium hydroxide is very expensive, such as several times higher than the cost of slaked lime and several tens of times higher than the cost of limestone. The amount of sodium hydroxide used is suppressed as much as possible. It is hoped that.
さらに、中和剤として、消石灰や石灰石はもちろんのこと、水酸化ナトリウムを使用した場合でも、濃厚な状態で溶液中に添加すると、溶液が一時的かつ局部的に高いpH状態になりやすいため、生成した水酸化鉄と共にスカンジウムが共沈してしまう問題がある。このようなスカンジウムの共沈を抑制するために、添加するアルカリの濃度を低下させてしまうと、使用量が増加し、排水処理量も増加する等、設備規模が拡大する等の別の問題が生じる。 Furthermore, as a neutralizing agent, not only slaked lime and limestone, but also when using sodium hydroxide, if it is added to the solution in a concentrated state, the solution tends to temporarily and locally become a high pH state, There is a problem that scandium coprecipitates with the produced iron hydroxide. In order to suppress the coprecipitation of scandium, if the concentration of the alkali to be added is reduced, there is another problem such as an increase in the scale of equipment, such as an increase in the amount used and an increase in the amount of wastewater treatment. Arise.
このように、スカンジウムの回収方法において、鉄等の不純物を中和してスカンジウムと分離するにあたり、スカンジウムと鉄とを低コストで効率的にかつ効果的に分離する方法は見出されない。 As described above, in the method for recovering scandium, a method for efficiently and effectively separating scandium and iron at low cost has not been found when neutralizing impurities such as iron and separating them from scandium.
本発明は、このような実情に鑑みて提案されたものであり、スカンジウムを含有する酸性溶液から不純物の鉄を効果的に、かつ経済的にも効率的に除去して、ロスを低減しながら高純度なスカンジウムを回収することができる方法を提供することを目的とする。 The present invention has been proposed in view of such a situation, and effectively and economically removes impurity iron from an acidic solution containing scandium while reducing loss. An object is to provide a method capable of recovering high-purity scandium.
本発明者は、上述した課題を解決するために鋭意検討を重ねた。その結果、スカンジウムを含有する酸性溶液として硫化後液を用い、その硫化後液に対してイオン交換処理を経て得られるスカンジウム溶離液に対してアルカリ溶液を添加して鉄を除去する脱鉄工程において、ニッケル酸化鉱石の湿式製錬プロセスにて生じた硫化水素ガスに対する除害処理を経て排出される除害排液を、スカンジウム溶離液に添加するアルカリ溶液として用いることで、低コストで効率的にかつ効果的に鉄を除去してスカンジウムを分離できることを見出いし、本発明を完成するに至った。 This inventor repeated earnest examination in order to solve the subject mentioned above. As a result, in the de-ironing step of using a post-sulfurized solution as an acidic solution containing scandium and adding an alkaline solution to the scandium eluate obtained by ion exchange treatment to the post-sulfurized solution to remove iron By using the detoxification effluent discharged through the detoxification treatment for hydrogen sulfide gas generated in the hydrometallurgical process of nickel oxide ore as an alkaline solution to be added to the scandium eluent, it can be efficiently performed at low cost. And it was found that iron can be effectively removed to separate scandium, and the present invention has been completed.
(1)本発明の第1の発明は、スカンジウムを含有する酸性溶液にアルカリ溶液を添加することによって該酸性溶液に含まれる鉄を水酸化物として分離する脱鉄工程と、脱鉄後液に対して中和処理を施して水酸化スカンジウムを得る中和工程と、を含むスカンジウムの回収方法であって、前記スカンジウムを含有する酸性溶液は、ニッケル酸化鉱石を硫酸浸出して得られた浸出液に硫化水素ガスを添加して硫化処理を施し、ニッケルを含む硫化物と硫化後液とを生成させる湿式製錬により回収される該硫化後液であり、前記脱鉄工程では、前記硫化後液に添加するアルカリ溶液としてpHを13.0以上14.0以下の範囲に調整したものを用い、該アルカリ溶液の少なくとも一部として、前記湿式製錬における硫化処理後に残留した硫化水素ガスをアルカリ溶液に吸収させて除害した除害排液を用いる、スカンジウムの回収方法である。 (1) In the first invention of the present invention, an alkaline solution is added to an acidic solution containing scandium to separate iron contained in the acidic solution as a hydroxide, And a neutralizing step of obtaining a scandium hydroxide by neutralizing the scandium, wherein the scandium-containing acidic solution is a leachate obtained by leaching the nickel oxide ore with sulfuric acid. This is a post-sulfurization liquid that is recovered by wet smelting by adding hydrogen sulfide gas and performing a sulfidation treatment to produce a sulfide containing nickel and a post-sulfurization liquid. In the deironation step, As the alkaline solution to be added, one having a pH adjusted to the range of 13.0 or higher and 14.0 or lower is used. Gas was absorbed in an alkaline solution using abatement effluent was detoxified by a method of recovering scandium.
(2)本発明の第2の発明は、第1の発明において、前記アルカリ溶液は、水酸化ナトリウム溶液である、スカンジウムの回収方法である。 (2) The second invention of the present invention is the scandium recovery method according to the first invention, wherein the alkaline solution is a sodium hydroxide solution.
(3)本発明の第3の発明は、第1又は第2の発明において、前記スカンジウムを含有する酸性溶液は、前記硫化後液に対してイオン交換樹脂を用いたイオン交換処理を施すことによって得られるスカンジウム溶離液である、スカンジウムの回収方法である。 (3) According to a third aspect of the present invention, in the first or second aspect, the acidic solution containing scandium is subjected to an ion exchange treatment using an ion exchange resin on the post-sulfurization solution. This is a method for recovering scandium which is the obtained scandium eluent.
本発明に係るスカンジウムの回収方法によれば、スカンジウムを含有する酸性溶液から不純物の鉄を効果的に、かつ経済的にも効率的に除去して、ロスを低減しながら高純度なスカンジウムを回収することができる。 According to the scandium recovery method of the present invention, impurity iron is effectively and economically removed from an acidic solution containing scandium to recover high purity scandium while reducing loss. can do.
以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明するが、本発明は以下の実施形態に何ら限定されるものではなく、本発明の要旨を変更しない範囲内において、適宜変更を加えて実施することができる。なお、本明細書にて、「X〜Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。 Hereinafter, specific embodiments of the present invention (hereinafter referred to as “present embodiments”) will be described in detail. However, the present invention is not limited to the following embodiments, and the gist of the present invention is changed. In the range which does not carry out, it can implement by adding a change suitably. In this specification, “X to Y” (X and Y are arbitrary numerical values) means “X or more and Y or less”.
≪1.概要≫
本実施の形態に係るスカンジウムの回収方法は、スカンジウムを含有する酸性溶液から、溶液中の不純物を除去してスカンジウムを濃縮させる処理を経て、高純度なスカンジウムを回収する方法である。具体的に、このスカンジウムの回収方法は、スカンジウムを含有する酸性溶液(以下、単に「スカンジウム含有溶液」ともいう)にアルカリ溶液を添加することでスカンジウム溶離液に含まれる鉄を水酸化物として分離する脱鉄工程と、脱鉄後液に対して中和処理を施して水酸化スカンジウムを得る中和工程と、を含む方法である。
<< 1. Overview >>
The scandium recovery method according to the present embodiment is a method for recovering high-purity scandium from an acidic solution containing scandium through a process of removing impurities in the solution and concentrating the scandium. Specifically, this scandium recovery method separates iron contained in scandium eluent as hydroxide by adding an alkaline solution to an acidic solution containing scandium (hereinafter also simply referred to as “scandium-containing solution”). And a neutralization step of performing a neutralization treatment on the post-deironation solution to obtain scandium hydroxide.
このスカンジウムの回収方法では、スカンジウムを含有する酸性溶液として、ニッケル酸化鉱石を硫酸浸出して得られた浸出液に硫化水素ガスを添加して硫化処理を施し、ニッケルを含む硫化物と硫化後液とを生成させる湿式製錬(ニッケル酸化鉱石の湿式製錬)により回収される硫化後液を用いる。また、好ましくは、ニッケル酸化鉱石の湿式製錬により得られた硫化後液に対してキレート樹脂をイオン交換樹脂として用いたイオン交換処理を施すことによって得られるスカンジウム溶離液を用いることができる。 In this scandium recovery method, as an acidic solution containing scandium, hydrogen sulfide gas is added to a leachate obtained by leaching nickel oxide ore with sulfuric acid to perform a sulfidation treatment. A post-sulfurized solution recovered by hydrometallurgy (hydrometallurgy of nickel oxide ore) is used. Preferably, a scandium eluent obtained by subjecting a post-sulfurization solution obtained by wet smelting of nickel oxide ore to an ion exchange treatment using a chelate resin as an ion exchange resin can be used.
そして、このスカンジウムの回収方法において、脱鉄工程では、スカンジウム含有溶液から鉄を除去するために添加するアルカリ溶液の少なくとも一部又は全部として、ニッケル酸化鉱石の湿式製錬における硫化処理後に残留した硫化水素ガスをアルカリ溶液に吸収させて除害した除害排液を用いることを特徴としている。 In the scandium recovery method, in the deironing step, at least part or all of the alkaline solution added to remove iron from the scandium-containing solution, the sulfide remaining after the sulfidation treatment in the hydrometallurgy of nickel oxide ore. It is characterized by using a detoxification drainage that is detoxified by absorbing hydrogen gas into an alkaline solution.
また、その脱鉄処理に使用するアルカリ溶液としては、pHを13.0以上14.0以下の範囲に調整したものを用いる。 Moreover, as an alkaline solution used for the deironing process, a solution whose pH is adjusted to a range of 13.0 or more and 14.0 or less is used.
従来、脱鉄工程における中和処理(脱鉄のための中和処理)において、スカンジウム含有溶液に添加するアルカリ溶液としては、水酸化ナトリウム等が用いられていた。しかしながら、水酸化ナトリウム溶液は高価な薬剤であり、新規の水酸化ナトリウムを用いると処理コストの上昇をもたらすことになっていた。 Conventionally, sodium hydroxide or the like has been used as an alkaline solution to be added to a scandium-containing solution in the neutralization treatment (neutralization treatment for iron removal) in the iron removal step. However, sodium hydroxide solution is an expensive drug, and the use of new sodium hydroxide has resulted in increased processing costs.
これに対して、本実施の形態に係るスカンジウムの回収方法において使用するアルカリ溶液の少なくとも一部は、湿式製錬における硫化処理後に残留した硫化水素ガスを除害する処理にて生じた除害排液であり、硫化水素をアルカリ溶液に吸収させて生じたアルカリ溶液からなる排液である。アルカリ溶液としては、水酸化ナトリウムが挙げられる。 On the other hand, at least a part of the alkaline solution used in the scandium recovery method according to the present embodiment is an abatement exhaust generated by the treatment for removing the hydrogen sulfide gas remaining after the sulfidation treatment in the hydrometallurgy. It is a liquid, and is a drainage solution composed of an alkaline solution produced by absorbing hydrogen sulfide into the alkaline solution. Examples of the alkaline solution include sodium hydroxide.
このような除害排液は、上述したように硫化水素ガスの除害処理にあたって添加した水酸化ナトリウム溶液に基づくアルカリ溶液である。したがって、脱鉄処理のためのアルカリ溶液として、十分に溶液(スカンジウムを含有する酸性溶液)のpHを適切な範囲に制御することができる。また一方で、従来の処理のように、新規な水酸化ナトリウム溶液を脱鉄処理のためのアルカリ溶液として使用する場合に比べ、除害排液をいわゆる再利用していることから、薬剤コストを低減することができ、経済的にも効率的な処理を実行することができる。 Such a detoxifying effluent is an alkaline solution based on a sodium hydroxide solution added in the detoxifying treatment of hydrogen sulfide gas as described above. Therefore, the pH of the solution (an acidic solution containing scandium) can be sufficiently controlled in an appropriate range as an alkaline solution for the deironing treatment. On the other hand, compared to the case where a new sodium hydroxide solution is used as an alkaline solution for deironing treatment as in the conventional treatment, the detoxification waste solution is reused, so the drug cost is reduced. It can be reduced, and economically efficient processing can be executed.
また、除害排液を一部又は全部とするアルカリ溶液として、その溶液のpHを13.0以上14.0以下の範囲に調整したものを用いるようにしていることから、脱鉄処理による鉄除去率を効果的に高めることができる。 In addition, since the alkaline solution having a part or all of the detoxification waste solution is adjusted to have a pH of 13.0 or more and 14.0 or less, the iron by deironing treatment is used. The removal rate can be effectively increased.
しかも、硫化水素ガスを除害する処理にて生じた除害排液であって、pHを13.0以上14.0以下の範囲に調整したものを用いることで、スカンジウムを含有する酸性溶液に添加したとき、溶液中で局所的にpHが高くなるといった事態を抑えることができ、脱鉄処理において鉄と共にスカンジウムが沈殿化(共沈)することを防ぐことができる。これにより、スカンジウムの回収方法において、スカンジウムの回収ロスを低減できる。 Moreover, by using a detoxifying effluent generated by the treatment for detoxifying hydrogen sulfide gas, the pH of which is adjusted to the range of 13.0 to 14.0, an acidic solution containing scandium can be used. When added, it is possible to suppress a situation where the pH is locally increased in the solution, and it is possible to prevent scandium from being precipitated (co-precipitated) together with iron in the iron removal treatment. Thereby, in the scandium recovery method, the scandium recovery loss can be reduced.
≪2.スカンジウムの回収方法における各工程について≫
図1は、本実施の形態に係るスカンジウムの回収方法の一例を示す工程図である。このスカンジウムの回収方法は、ニッケル酸化鉱石の湿式製錬プロセス(湿式製錬処理)により得られた硫化後液(スカンジウムを含有する酸性溶液)から、スカンジウムとその他の不純物とを分離し、高純度のスカンジウムを経済的にも効率性高く回収するものである。
≪2. About each step in the scandium recovery process >>
FIG. 1 is a process diagram showing an example of a scandium recovery method according to the present embodiment. This scandium recovery method separates scandium and other impurities from the post-sulfurization solution (acid solution containing scandium) obtained by the hydrometallurgical smelting process of nickel oxide ore (high-purity). The scandium is recovered economically and efficiently.
具体的に、スカンジウムの回収方法は、ニッケル酸化鉱石の湿式製錬工程S1と、湿式製錬工程S1から得られたスカンジウム含有溶液である硫化後液に対してイオン交換処理を施すイオン交換処理工程S2と、スカンジウム溶離液に対してアルカリ溶液を添加して脱鉄処理を施す脱鉄工程S3と、脱鉄後液に対して中和処理を施して水酸化スカンジウムを得た後に酸に溶解してスカンジウム溶解液を得る中和工程S4と、スカンジウム溶解液に溶媒抽出処理を施す溶媒抽出工程S5と、得られた抽残液からスカンジウムを酸化スカンジウムの形態として回収するスカンジウム回収工程S6と、を有する。 Specifically, the scandium recovery method includes a nickel oxide ore wet smelting step S1 and an ion exchange treatment step of subjecting the post-sulfurization solution, which is a scandium-containing solution obtained from the wet smelting step S1, to ion exchange treatment. S2 and an iron removal step S3 in which an alkaline solution is added to the scandium eluent to remove iron, and a solution after the iron removal is neutralized to obtain scandium hydroxide and then dissolved in an acid. A neutralization step S4 for obtaining a scandium solution, a solvent extraction step S5 for subjecting the scandium solution to solvent extraction, and a scandium recovery step S6 for recovering scandium in the form of scandium oxide from the obtained extracted residue. Have.
このように、本実施の形態に係るスカンジウムの回収方法は、スカンジウム回収の原料となる溶液を得るためのニッケル酸化鉱石の湿式製錬処理のプロセス(湿式製錬工程S1)と、その原料溶液から不純物を除去して高純度なスカンジウムを回収するスカンジウム回収処理のプロセス(イオン交換処理工程S2〜スカンジウム回収工程S6)と、に大きく分けることができる。 Thus, the scandium recovery method according to the present embodiment includes a nickel oxide ore wet smelting process (wet smelting step S1) for obtaining a solution that is a raw material for scandium recovery, and the raw material solution. It can be broadly divided into a scandium recovery process (ion exchange treatment step S2 to scandium recovery step S6) in which impurities are removed and high-purity scandium is recovered.
ここで、詳しくは後述するが、ニッケル酸化鉱石の湿式製錬処理のプロセスでは、脱亜鉛工程S14やニッケル回収工程S15において硫化水素ガスを用いた硫化処理が行われ、その硫化処理後に残留した硫化水素ガスは、除害処理工程S16における処理により無害化される。除害処理工程S16における処理では、水酸化ナトリウム溶液を用い、残留した硫化水素ガスを水酸化ナトリウム溶液に吸収させることによって除害している。したがって、除害処理工程S16を経て得られる排液、すなわち除害排液は、硫化水素ナトリウムが吸収された水酸化ナトリウム溶液に基づくアルカリ性の溶液となっている。 Here, as will be described in detail later, in the hydrometallurgical treatment process of nickel oxide ore, sulfidation treatment using hydrogen sulfide gas is performed in the dezincification step S14 and nickel recovery step S15, and the sulfidation remaining after the sulfidation treatment Hydrogen gas is rendered harmless by the treatment in the detoxification treatment step S16. In the treatment in the detoxification treatment step S16, a sodium hydroxide solution is used, and the remaining hydrogen sulfide gas is absorbed by the sodium hydroxide solution. Therefore, the drainage obtained through the detoxification treatment step S16, that is, the detoxification drainage, is an alkaline solution based on a sodium hydroxide solution in which sodium hydrogen sulfide is absorbed.
<2−1.ニッケル酸化鉱石の湿式製錬処理のプロセス>
(1)湿式製錬工程
ニッケル酸化鉱石の湿式製錬工程S1は、図1に示すように、ニッケル酸化鉱石を高温高圧下で硫酸浸出して浸出スラリーを得る浸出工程S11と、浸出スラリーを固液分離して浸出液と浸出残渣とを得る固液分離工程S12と、浸出液に中和剤を添加して不純物を含む中和澱物と中和後液とを得る中和工程S13と、中和後液に硫化水素ガスを添加して亜鉛を硫化物として除去する脱亜鉛工程S14と、脱亜鉛処理後の溶液に硫化水素が宇を添加してニッケルの硫化物と硫化後液とを得るニッケル回収工程S15と、を有する。
<2-1. Process of hydrometallurgical treatment of nickel oxide ore>
(1) Hydrometallurgical process As shown in FIG. 1, the hydrometallurgical process S1 of nickel oxide ore is a leaching process S11 in which nickel oxide ore is leached with sulfuric acid under high temperature and high pressure to obtain a leaching slurry, and the leaching slurry is solidified. A solid-liquid separation step S12 for obtaining a leachate and a leach residue by liquid separation, a neutralization step S13 for obtaining a neutralized starch containing impurities and a post-neutralization solution by adding a neutralizing agent to the leachate, and neutralization Dezincification step S14 in which hydrogen sulfide gas is added to the post-solution to remove zinc as sulfide, and nickel to obtain nickel sulfide and post-sulfidation solution by adding hydrogen sulfide to the solution after the dezincing treatment Recovery step S15.
また、ニッケル酸化鉱石の湿式製錬工程S1では、脱亜鉛工程S14やニッケル回収工程S15における硫化処理後に残留した硫化水素ガスを、アルカリ溶液(水酸化ナトリウム溶液)に吸収させて除害する除害処理工程S16を有する。 Moreover, in the hydrometallurgy process S1 of nickel oxide ore, the detoxification that removes the hydrogen sulfide gas remaining after the sulfidation process in the dezincification process S14 or the nickel recovery process S15 by an alkaline solution (sodium hydroxide solution) It has processing step S16.
[浸出工程]
浸出工程S11は、例えば高温加圧容器(オートクレーブ)等を用いて、ニッケル酸化鉱石のスラリーに硫酸を添加して240℃〜260℃の温度下で撹拌処理を施し、浸出液と浸出残渣とからなる浸出スラリーを形成する工程である。なお、浸出工程S11における処理は、従来知られているHPALプロセスに従って行えばよい。
[Leaching process]
In the leaching step S11, for example, sulfuric acid is added to the nickel oxide ore slurry using a high-temperature pressurized container (autoclave) or the like, and the mixture is stirred at a temperature of 240 ° C. to 260 ° C., and consists of a leaching solution and a leaching residue. It is a process of forming a leaching slurry. In addition, what is necessary is just to perform the process in leaching process S11 according to the conventionally known HPAL process.
ニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱が挙げられる。ラテライト鉱のニッケル含有量は、通常、0.8重量%〜2.5重量%であり、水酸化物又はケイ苦土(ケイ酸マグネシウム)鉱物として含有される。また、これらのニッケル酸化鉱石には、スカンジウムが含まれている。 Examples of the nickel oxide ore include so-called laterite ores such as limonite ore and saprolite ore. Laterite ore usually has a nickel content of 0.8% to 2.5% by weight, and is contained as a hydroxide or a siliceous clay (magnesium silicate) mineral. These nickel oxide ores contain scandium.
[固液分離工程]
固液分離工程S12は、浸出工程S11にて得られた浸出スラリーを洗浄しながら、ニッケルやコバルト、スカンジウム等を含む浸出液と、ヘマタイトである浸出残渣とに固液分離する工程である。
[Solid-liquid separation process]
The solid-liquid separation step S12 is a step of solid-liquid separation into a leachate containing nickel, cobalt, scandium, and the like and a leach residue that is hematite while washing the leach slurry obtained in the leach step S11.
固液分離処理では、例えば、浸出スラリーを洗浄液と混合した後、凝集剤供給設備等から供給される凝集剤を用い、シックナー等の固液分離設備を利用して行うことができる。 The solid-liquid separation treatment can be performed, for example, using a flocculant supplied from a flocculant supply facility or the like using a solid-liquid separation facility such as a thickener after the leaching slurry is mixed with a cleaning liquid.
[中和工程]
中和工程S13は、分離して得られた浸出液に中和剤を添加してpH調整し、不純物元素を含む中和澱物と中和後液とを得る工程である。中和工程S13における中和処理により、ニッケルやコバルト、スカンジウム等の有価金属は中和後液に含まれるようになり、鉄、アルミニウムをはじめとした不純物の大部分が中和澱物となる。
[Neutralization process]
The neutralization step S13 is a step of adding a neutralizing agent to the leachate obtained by separation and adjusting the pH to obtain a neutralized starch containing an impurity element and a post-neutralized solution. Due to the neutralization treatment in the neutralization step S13, valuable metals such as nickel, cobalt, and scandium are included in the post-neutralization solution, and most of impurities such as iron and aluminum become neutralized starch.
中和剤としては、従来公知のもの使用することができ、例えば、炭酸カルシウム、消石灰、水酸化ナトリウム等が挙げられる。 A conventionally well-known thing can be used as a neutralizer, For example, a calcium carbonate, slaked lime, sodium hydroxide etc. are mentioned.
[脱亜鉛工程]
脱亜鉛工程S14は、中和工程S13を経て得られた中和後液に硫化剤である硫化水素ガスを添加することによって、中和後液中に含まれる亜鉛を硫化物の形態として分離除去する工程である。このように、中和後液に対する硫化処理により生成した亜鉛硫化物を分離除去することで、ニッケル及びコバルトを含むニッケル回収用母液を得る。
[Dezincing process]
In the dezincing step S14, zinc sulfide contained in the post-neutralization solution is separated and removed in the form of sulfide by adding hydrogen sulfide gas, which is a sulfiding agent, to the post-neutralization solution obtained through the neutralization step S13. It is a process to do. Thus, by separating and removing the zinc sulfide generated by the sulfidation treatment on the post-neutralization solution, a nickel recovery mother liquor containing nickel and cobalt is obtained.
具体的に、脱亜鉛工程S14では、例えば、加圧された容器内にニッケル及びコバルトと共に亜鉛を含む中和後液を導入し、気相中へ硫化水素ガスを吹き込むことによって、亜鉛をニッケル及びコバルトに対して選択的に硫化し、亜鉛硫化物とニッケル回収用母液とを生成する。そして、硫化反応後に得られたスラリーを固液分離することで、亜鉛を分離したニッケル回収用母液を得ることができる。 Specifically, in the dezincification step S14, for example, a post-neutralization solution containing zinc and nickel and cobalt is introduced into a pressurized container, and hydrogen sulfide gas is blown into the gas phase, whereby zinc and nickel are mixed. Sulfurizes selectively to cobalt to produce zinc sulfide and nickel recovery mother liquor. And the mother liquid for nickel collection | recovery which isolate | separated zinc can be obtained by carrying out solid-liquid separation of the slurry obtained after the sulfurization reaction.
なお、次工程のニッケル回収工程S15においても、硫化水素ガスを添加して硫化反応を生じさせることによってニッケル及びコバルトの混合硫化物を生成させるが、そのニッケル等の硫化処理に先立って行う脱亜鉛処理では、硫化反応の条件として、ニッケルに対する硫化反応条件よりも緩和させた条件で行う。 In the next nickel recovery step S15 as well, a mixed sulfide of nickel and cobalt is generated by adding a hydrogen sulfide gas to cause a sulfurization reaction. However, dezincification performed prior to the sulfurization treatment of the nickel or the like is performed. The treatment is performed under conditions that are more relaxed than the sulfurization reaction conditions for nickel.
[ニッケル回収工程]
ニッケル回収工程S15は、脱亜鉛工程S14を経て得られたニッケル回収用母液を硫化反応始液として、その硫化反応始液に対して硫化剤である硫化水素ガスを吹き込むことにより硫化反応を生じさせ、不純物成分の少ないニッケル及びコバルトの硫化物(便宜的に単に「ニッケル硫化物」ともいう)と、ニッケルの濃度を低い水準で安定させた貧液(硫化後液)とを生成させる工程である。なお、ニッケル回収用母液は、ニッケル及びコバルトを含む硫酸水溶液である。
[Nickel recovery process]
In the nickel recovery step S15, a nickel recovery mother liquor obtained through the dezincification step S14 is used as a sulfurization reaction start solution, and hydrogen sulfide gas as a sulfiding agent is blown into the sulfurization reaction start solution to cause a sulfurization reaction. In this process, nickel and cobalt sulfides (which are also simply referred to as “nickel sulfides” for the sake of convenience) and poor liquid (post-sulfurized liquid) in which the concentration of nickel is stabilized at a low level are generated. . The mother liquor for nickel recovery is an aqueous sulfuric acid solution containing nickel and cobalt.
ニッケル回収工程S15における硫化処理は、硫化反応槽等を用いて行うことができ、硫化反応槽に導入した硫化反応始液に対して、その反応槽内の気相部分に硫化水素ガスを吹き込み、溶液中に硫化水素ガスを溶解させることで硫化反応を生じさせる。この硫化処理により、硫化反応始液中に含まれるニッケルを硫化物として固定化して回収する。 The sulfidation treatment in the nickel recovery step S15 can be performed using a sulfidation reaction tank or the like, and hydrogen sulfide gas is blown into the gas phase portion in the reaction tank with respect to the sulfidation reaction starting liquid introduced into the sulfidation reaction tank. A sulfurization reaction is caused by dissolving hydrogen sulfide gas in the solution. By this sulfidation treatment, nickel contained in the sulfidation reaction starting solution is fixed and recovered as a sulfide.
なお、硫化処理後においては、得られたニッケル硫化物を含むスラリーをシックナー等の沈降分離装置に装入して沈降分離処理を施し、その硫化物のみをシックナーの底部より分離回収する。一方で、水溶液成分は、シックナーの上部からオーバーフローさせて硫化後液として回収する。 After the sulfidation treatment, the obtained slurry containing nickel sulfide is charged into a sedimentation apparatus such as a thickener and subjected to a sedimentation separation treatment, and only the sulfide is separated and recovered from the bottom of the thickener. On the other hand, the aqueous solution component overflows from the upper part of the thickener and is recovered as a liquid after sulfidation.
(2)湿式製錬工程における硫化水素ガスの除害処理(除害処理工程)
ここで、上述した脱亜鉛工程S14やニッケル回収工程S15における硫化処理で使用した硫化水素ガスのうち、反応後のプロセス液中に含まれることになる未反応の硫化水素ガスについては、除害処理工程S16にて除害(無害化)される。具体的には、その未反応の硫化水素ガスは、除害設備における除害塔(スクラバー)に移送されて、アルカリ溶液(水酸化ナトリウム溶液)を用いた無害化処理が行われる。
(2) Detoxification treatment of hydrogen sulfide gas in the hydrometallurgical process (detoxification treatment process)
Here, of the hydrogen sulfide gas used in the sulfiding treatment in the dezincing step S14 and nickel recovery step S15 described above, the unreacted hydrogen sulfide gas that is included in the process liquid after the reaction is detoxified. It is detoxified (detoxified) in step S16. Specifically, the unreacted hydrogen sulfide gas is transferred to a detoxification tower (scrubber) in a detoxification facility, and detoxified using an alkali solution (sodium hydroxide solution).
脱亜鉛工程S14やニッケル回収工程S15における硫化処理では、ニッケルの回収率を向上させる観点から、硫化水素ガスの吹き込み量を徐々に増加させることによって、反応槽の硫化水素ガス分圧を上昇させることが有効となる。硫化水素ガス分圧を増加させることで、プロセス液中に溶存するガス量が増加し、例えば下記に示す反応を右方向に進行させることができる。また、各工程での処理の増強を行い、処理するプロセス液の流量を増加させることによって、生産量を増加させることも可能となる。
H2S+Ni2→NiS+2H+
In the sulfiding treatment in the dezincification step S14 and the nickel recovery step S15, from the viewpoint of improving the nickel recovery rate, the hydrogen sulfide gas partial pressure in the reaction tank is increased by gradually increasing the amount of hydrogen sulfide gas blown. Becomes effective. By increasing the hydrogen sulfide gas partial pressure, the amount of gas dissolved in the process liquid increases, and for example, the following reaction can proceed in the right direction. In addition, it is possible to increase the production volume by enhancing the processing in each step and increasing the flow rate of the process liquid to be processed.
H 2 S + Ni 2 → NiS + 2H +
ところが、硫化処理に供するプロセス液の流量が増加すると、単位流量あたりの液中の硫化水素ガスの溶存量は変わらないものの、流量に比例してトータルの液中に溶存する未反応の硫化水素ガス量が増加する。このため、除害処理に供される硫化水素ガスの量が上昇することになる。 However, when the flow rate of the process liquid used for sulfidation increases, the dissolved amount of hydrogen sulfide gas in the liquid per unit flow rate does not change, but unreacted hydrogen sulfide gas dissolved in the total liquid in proportion to the flow rate The amount increases. For this reason, the amount of hydrogen sulfide gas used for the detoxification treatment increases.
そこで、除害処理工程S16における除害処理では、反応液中に残留した未反応の硫化水素ガスを除害して排出するようにしている。残留した硫化水素ガスを除害するにあたっては、例えば、反応液中の酸濃度を上昇させて硫化水素の溶解度を低下させることによって溶液から硫化水素ガスを発生させる。除害処理では、このようにして分離した硫化水素ガスを捕集して除害する。 Therefore, in the detoxification process in the detoxification process S16, the unreacted hydrogen sulfide gas remaining in the reaction solution is detoxified and discharged. In removing the remaining hydrogen sulfide gas, for example, hydrogen sulfide gas is generated from the solution by increasing the acid concentration in the reaction solution to lower the solubility of hydrogen sulfide. In the detoxification process, the hydrogen sulfide gas thus separated is collected and detoxified.
より具体的には、洗浄塔において反応液中に残留した未反応の硫化水素ガスを除害ファンにて吸引して回収し、回収した硫化水素ガスを、アルカリ溶液である水酸化ナトリウム溶液に吸収させる反応により無害化し、随伴する空気を大気放出する。除害処理工程S16における除害処理では、例えば以下の反応式に示す反応により硫化水素ガスを除害している。このような除害処理は、例えばスクラバーと呼ばれる排ガス処理設備を用いて行うことができる。
H2S+2NaOH→2H2O+Na2S
H2S+NaOH→H2O+NaHS
More specifically, unreacted hydrogen sulfide gas remaining in the reaction liquid in the washing tower is sucked and collected by a detoxifying fan, and the collected hydrogen sulfide gas is absorbed by the sodium hydroxide solution, which is an alkaline solution. It is detoxified by the reaction to release the accompanying air to the atmosphere. In the detoxification process in the detoxification process S16, for example, hydrogen sulfide gas is detoxified by the reaction shown in the following reaction formula. Such a detoxification process can be performed using, for example, an exhaust gas treatment facility called a scrubber.
H 2 S + 2NaOH → 2H 2 O + Na 2 S
H 2 S + NaOH → H 2 O + NaHS
そして、このような除害処理により、除害排液として、硫化水素ガスを水酸化ナトリウム溶液に吸収させて生成した溶液(洗浄溶液)が排出される。したがって、この除害処理により排出される除害排液は、除害のために使用した水酸化ナトリウム溶液に基づくアルカリ性の溶液である。 And by such a detoxification process, the solution (cleaning solution) produced | generated by absorbing hydrogen sulfide gas in a sodium hydroxide solution as a detoxification waste liquid is discharged | emitted. Therefore, the detoxification drainage discharged by this detoxification treatment is an alkaline solution based on the sodium hydroxide solution used for the detoxification.
<2−2.スカンジウム回収処理>
スカンジウムの回収方法では、上述したニッケル酸化鉱石の湿式製錬工程S1を経て得られた硫化後液を、スカンジウム回収処理の対象溶液として適用することができる。以下では、スカンジウム回収処理の対象溶液として、スカンジウムを含有する酸性溶液である硫化後液を用いてスカンジウムを回収する工程について、順に説明する。
<2-2. Scandium recovery processing>
In the scandium recovery method, the post-sulfurization solution obtained through the above-described nickel oxide ore hydrometallurgy step S1 can be applied as a target solution for the scandium recovery process. Below, the process of collect | recovering scandium using the post-sulfurization liquid which is an acidic solution containing scandium as a target solution of a scandium collection process is demonstrated in order.
[イオン交換処理工程]
イオン交換処理工程S2は、硫化後液に対してイオン交換樹脂を用いたイオン交換処理を施すことによってスカンジウム溶離液を得る工程である。
[Ion exchange treatment process]
The ion exchange treatment step S2 is a step for obtaining a scandium eluent by subjecting the post-sulfurization solution to an ion exchange treatment using an ion exchange resin.
ここで、スカンジウムを含有する酸性溶液である硫化後液には、スカンジウムのほかに、例えば上述したニッケル回収工程S15での硫化処理で硫化されずに溶液中に残留したアルミニウムやクロム、その他の不純物が含まれている。このことから、硫化後液からスカンジウムを回収するにあたり、予め、その硫化後液中に含まれる不純物を除去してスカンジウム(Sc)を濃縮し、スカンジウム溶離液を生成させることが好ましい。 Here, in the post-sulfurization solution that is an acidic solution containing scandium, in addition to scandium, for example, aluminum, chromium, and other impurities remaining in the solution without being sulfided by the sulfidation treatment in the nickel recovery step S15 described above. It is included. For this reason, when recovering scandium from the solution after sulfidation, it is preferable to previously remove impurities contained in the solution after sulfidation and concentrate scandium (Sc) to generate a scandium eluent.
イオン交換処理工程S2では、例えばキレート樹脂をイオン交換樹脂として使用したイオン交換処理による方法であり、硫化後液中に含まれるアルミニウム等の不純物を分離して除去し、スカンジウムを濃縮させたスカンジウム含有溶液(スカンジウム溶離液)を得ることができる。具体的に、イオン交換処理工程S2としては、例えば、硫化後液をキレート樹脂に接触させてスカンジウムを吸着させる吸着工程と、スカンジウムを吸着したキレート樹脂に所定の規定度の硫酸を接触させてアルミニウムを除去するアルミニウム除去工程と、キレート樹脂に所定の規定度の硫酸を接触させてスカンジウム溶離液を得るスカンジウム溶離工程と、キレート樹脂に所定の規定度の硫酸を接触させてキレート樹脂に吸着したクロムを除去するクロム除去工程と、を有するものを例示できる。 In the ion exchange treatment step S2, for example, a method based on ion exchange treatment using a chelate resin as an ion exchange resin, containing impurities such as aluminum separated and removed from the solution after sulfidation and enriched with scandium A solution (scandium eluent) can be obtained. Specifically, as the ion exchange treatment step S2, for example, an adsorption step in which a solution after sulfurization is brought into contact with a chelate resin to adsorb scandium, and a sulfuric acid having a predetermined normality is brought into contact with the chelate resin adsorbing scandium to form aluminum. An aluminum removal step to remove the aluminum, a scandium elution step to obtain a scandium eluent by bringing the chelate resin into contact with sulfuric acid of a predetermined degree, and a chromium adsorbed to the chelate resin by bringing the chelate resin into contact with a predetermined degree of sulfuric acid And a chrome removal step of removing.
イオン交換処理に用いるキレート樹脂の種類としては、特に限定されない。例えばイミノジ酢酸を官能基とする樹脂を用いることができ、このキレート樹脂によれば、スカンジウムの吸着選択性を高めることができる。 The type of chelate resin used for the ion exchange treatment is not particularly limited. For example, a resin having iminodiacetic acid as a functional group can be used, and according to this chelate resin, the adsorption selectivity of scandium can be enhanced.
このように、硫化後液に対してイオン交換処理を施すことによって、硫化後液に含まれる不純物を除去することができ、スカンジウムを濃縮させたスカンジウム溶離液を得ることができる。 As described above, by subjecting the post-sulfurization solution to an ion exchange treatment, impurities contained in the post-sulfurization solution can be removed, and a scandium eluate enriched with scandium can be obtained.
[脱鉄工程]
脱鉄工程S3は、スカンジウムを含有する酸性溶液にアルカリ溶液を添加して脱鉄処理を施すことによって鉄を水酸化物として分離除去する工程である。スカンジウムを含有する酸性溶液としては、上述したイオン交換処理工程S2におけるイオン交換処理を経て得られたスカンジウム溶離液を用いることができる。
[Deironing process]
The iron removal step S3 is a step of separating and removing iron as a hydroxide by adding an alkaline solution to an acidic solution containing scandium and performing a iron removal treatment. As the acidic solution containing scandium, the scandium eluent obtained through the ion exchange treatment in the ion exchange treatment step S2 described above can be used.
ここで、ニッケル酸化鉱石の湿式製錬工程S1を経て得られたスカンジウムを含有する溶液(硫化後液)中に含まれる鉄は、その溶液の電位から、2価のイオンの形態で存在していると考えられる。すなわち、溶液中に鉄イオン(Fe2+)が溶解している。 Here, the iron contained in the solution (post-sulfurization solution) containing scandium obtained through the hydrometallurgy step S1 of nickel oxide ore is present in the form of divalent ions from the potential of the solution. It is thought that there is. That is, iron ions (Fe 2+ ) are dissolved in the solution.
このような溶液中の鉄を分離除去するにあたっては、塩素ガスや酸素、空気等の酸化剤を添加するとともに、アルカリ溶液である水酸化ナトリウム溶液を中和剤として添加し、2価の鉄イオンを水酸化物の形態で中和澱物として固定化する。そして、この中和処理により得られたスラリーを固液分離することで、スカンジウムを鉄から有効に分離することができる。なお、具体的には、以下の反応が生じる。
Fe2+→Fe3++e−
Fe3++3NaOH→Fe(OH)3+3Na+
In separating and removing iron in such a solution, an oxidizing agent such as chlorine gas, oxygen, or air is added, and a sodium hydroxide solution, which is an alkaline solution, is added as a neutralizing agent to add divalent iron ions. Is immobilized as neutralized starch in the form of hydroxide. And the scandium can be effectively isolate | separated from iron by carrying out solid-liquid separation of the slurry obtained by this neutralization process. Specifically, the following reaction occurs.
Fe 2+ → Fe 3+ + e −
Fe 3+ + 3NaOH → Fe (OH) 3 + 3Na +
本実施の形態に係るスカンジウムの回収方法においては、図1に示すように、スカンジウムを含有する酸性溶液(スカンジウム溶離液)から中和により鉄を除去するために添加するアルカリ溶液の少なくとも一部又は全部として、ニッケル酸化鉱石の湿式製錬における硫化処理後に残留した硫化水素ガスをアルカリ溶液に吸収させて除害した除害排液を用いることを特徴としている。この除害排液は、硫化水素ガスをアルカリ溶液である水酸化ナトリウム溶液に吸収させて生成した溶液であり、すなわち、水酸化ナトリウム溶液に基づくアルカリ性の溶液である。 In the scandium recovery method according to the present embodiment, as shown in FIG. 1, at least a part of an alkaline solution added to remove iron by neutralization from an acidic solution containing scandium (scandium eluent) or All of them are characterized by using a detoxification effluent that has been detoxified by absorbing the hydrogen sulfide gas remaining after the sulfidation treatment in the hydrometallurgy of nickel oxide ore into an alkaline solution. This detoxification waste liquid is a solution produced by absorbing hydrogen sulfide gas in a sodium hydroxide solution, which is an alkaline solution, that is, an alkaline solution based on a sodium hydroxide solution.
このように、湿式製錬工程S1における除害処理工程S16を経て得られる、硫化水素ガスをアルカリ溶液に吸収させて除害した除害排液を再利用して、スカンジウム溶離液中の鉄を水酸化鉄として固定するためのアルカリ溶液の少なくとも一部に用いることで、従来の処理にて使用していた中和剤(新規な水酸化ナトリウム溶液)の使用量を減らすことができ、処理コストを有効に低減することができる。また、新規の水酸化物ナトリウム溶液の使用量が減少することから、排水量が増加することもない。 In this way, by reusing the detoxified effluent obtained by absorbing the hydrogen sulfide gas into the alkaline solution and detoxifying it obtained through the detoxification treatment step S16 in the hydrometallurgical step S1, the iron in the scandium eluent is recycled. By using it as at least part of the alkaline solution for fixing as iron hydroxide, the amount of neutralizing agent (new sodium hydroxide solution) used in the conventional treatment can be reduced, and the treatment cost Can be effectively reduced. In addition, since the amount of new sodium hydroxide solution used is reduced, the amount of drainage is not increased.
また、上述のように、除害排液は硫化水素ガスをアルカリ溶液である水酸化ナトリウム溶液に吸収させる処理を経て排出された溶液であって、水酸化ナトリウム溶液に基づくアルカリ性の溶液であることから、脱鉄処理のためのアルカリ溶液として用いることで、スカンジウム溶離液中に含まれる2価鉄イオンを水酸化物として効果的に分離除去できる。 In addition, as described above, the detoxification waste solution is a solution discharged through a process of absorbing hydrogen sulfide gas into a sodium hydroxide solution, which is an alkaline solution, and is an alkaline solution based on the sodium hydroxide solution. Thus, by using it as an alkaline solution for deironing treatment, divalent iron ions contained in the scandium eluent can be effectively separated and removed as hydroxides.
また、除害排液は、湿式製錬工程S1における除害処理工程S16における除害塔内で処理されて得られた溶液であることから、除害塔内での循環や撹拌により、アルカリ濃度は均一化されている。したがって、このようなアルカリ濃度が均一な除害排液を再利用することで、中和反応の速度低下等に起因する不純物である鉄の除去不良等の発生を抑制することができ、安定的に処理することができる。 Moreover, since the detoxification effluent is a solution obtained by being treated in the detoxification tower in the detoxification treatment step S16 in the hydrometallurgical process S1, the alkali concentration is increased by circulation and stirring in the detoxification tower. Is uniform. Therefore, by reusing such a detoxification effluent with a uniform alkali concentration, it is possible to suppress the occurrence of poor removal of iron, which is an impurity due to a decrease in the speed of the neutralization reaction, etc. Can be processed.
さて、脱鉄工程S3における脱鉄処理においては、鉄の沈殿と共にスカンジウムが沈殿物化(共沈)してしまうことがあり、このことはスカンジウム回収率の低下をもたらすため、スカンジウムの鉄との共沈を防ぐことが好ましい。スカンジウムの沈殿を抑制して鉄のみを選択的に沈殿物化させるためには、スカンジウムを含有する酸性溶液(スカンジウム溶離液)にアルカリ溶液を添加したときのpH範囲を適切に制御することが有効となる。具体的には、アルカリ溶液を添加することで、スカンジウム溶離液のpHを3.5〜4.5の範囲、好ましくは3.8〜4.2の範囲に維持することで、スカンジウムの共沈を抑制しながら、例えば95質量%以上の除去率で鉄を分離除去することができる。 Now, in the iron removal process in the iron removal step S3, scandium may precipitate (coprecipitate) together with the precipitation of iron, and this leads to a decrease in the scandium recovery rate. It is preferable to prevent settling. In order to suppress the precipitation of scandium and selectively precipitate only iron, it is effective to appropriately control the pH range when an alkaline solution is added to an acidic solution containing scandium (scandium eluent). Become. Specifically, by adding an alkaline solution, the pH of the scandium eluent is maintained in the range of 3.5 to 4.5, preferably in the range of 3.8 to 4.2. For example, iron can be separated and removed at a removal rate of 95% by mass or more.
pHが4.5を超えると、溶液中では局所的にはpHがさらに上昇し、スカンジウムまでもが共沈し始め、その結果としてスカンジウムの回収ロスが増加する。一方で、中和が不完全となりpHが3.5未満の状態では、鉄の除去率が不十分となり、高純度のスカンジウムが得られなくなる可能性がある。 When the pH exceeds 4.5, the pH further rises locally in the solution, and even scandium begins to coprecipitate, resulting in an increase in scandium recovery loss. On the other hand, when the neutralization is incomplete and the pH is less than 3.5, the iron removal rate may be insufficient, and high-purity scandium may not be obtained.
このように、脱鉄処理にアルカリ溶液添加後のスカンジウム溶離液のpHを適切な範囲に制御するにあたっては、添加するアルカリ溶液のpHを制御することが重要となる。 Thus, in order to control the pH of the scandium eluent after addition of the alkali solution to an appropriate range for the deironing process, it is important to control the pH of the alkali solution to be added.
したがって、本実施の形態においては、除害排液を少なくとも一部又は全部とするアルカリ溶液(脱鉄処理に用いるアルカリ溶液)として、pHを13.0以上14.0以下の範囲に調整したものを用いることを特徴としている。このように、除害排液を含むアルカリ溶液のpHを13.0以上14.0以下に調整して用いることで、適切にかつ安定的にスカンジウム溶離液のpH調整操作を行うことができ、鉄の十分に除去することが可能になるとともに、スカンジウムの共沈を抑制して回収ロスを低減することができる。 Therefore, in the present embodiment, the pH is adjusted to a range of 13.0 or more and 14.0 or less as an alkaline solution (an alkaline solution used for deironing treatment) having at least part or all of the detoxification waste liquid. It is characterized by using. Thus, by adjusting the pH of the alkaline solution containing the detoxifying waste liquid to 13.0 or more and 14.0 or less, the pH adjustment operation of the scandium eluent can be appropriately and stably performed. It is possible to sufficiently remove iron and to suppress recovery loss by suppressing coprecipitation of scandium.
[中和工程]
中和工程S4は、脱鉄工程S3における処理を経て鉄が分離除去された脱鉄後液に対して中和処理を施すことによって水酸化スカンジウムを得る工程である。中和工程S4では、水酸化スカンジウムを生成させたのち、それを硫酸等の鉱酸に溶解させてスカンジウム溶解液を得る。
[Neutralization process]
The neutralization step S4 is a step of obtaining scandium hydroxide by performing a neutralization treatment on the post-deironation solution from which iron has been separated and removed through the treatment in the deironation step S3. In the neutralization step S4, scandium hydroxide is generated and then dissolved in a mineral acid such as sulfuric acid to obtain a scandium solution.
具体的に、中和工程S4においては、例えば、炭酸カルシウム、消石灰、水酸化ナトリウム等の中和剤を使用し、脱鉄後液に添加して中和処理を施す。なお、カルシウム分を含む中和剤であると、石膏(硫酸カルシウム)が生成してスカンジウムに混在する可能性があるため、水酸化ナトリウム等の固形物を生成しない種類であるものが好ましい。 Specifically, in the neutralization step S4, for example, a neutralizing agent such as calcium carbonate, slaked lime, or sodium hydroxide is used, and the neutralized treatment is performed by adding to the solution after deironing. In addition, since it is possible that gypsum (calcium sulfate) is generated and mixed with scandium when the neutralizing agent contains calcium, a type that does not generate solids such as sodium hydroxide is preferable.
また、中和処理におけるpH条件としては、中和剤を添加することによって6〜9の範囲に調整されることが好ましい。pHが6未満であると、中和が不十分となってスカンジウムを十分に回収できない可能性がある。一方で、pHが9を超えると、中和剤の使用量が増加してコスト増となる点で好ましくない。 Moreover, as pH conditions in a neutralization process, it is preferable to adjust to the range of 6-9 by adding a neutralizing agent. If the pH is less than 6, neutralization may be insufficient and scandium may not be sufficiently recovered. On the other hand, if the pH exceeds 9, the amount of neutralizing agent used is increased, which is not preferable in terms of cost increase.
このようにして硫化後液中のスカンジウムを水酸化物(水酸化スカンジウム)の沈殿物とし、得られたスラリーを固液分離する。 In this way, scandium in the liquid after sulfiding is converted into a precipitate of hydroxide (scandium hydroxide), and the resulting slurry is subjected to solid-liquid separation.
その後、固液分離して回収した水酸化スカンジウムの沈殿物を、硫酸や塩酸等の鉱酸で溶解することによって、スカンジウムを濃縮させて溶液を得る。 Thereafter, the scandium hydroxide precipitate recovered by solid-liquid separation is dissolved with a mineral acid such as sulfuric acid or hydrochloric acid to concentrate the scandium to obtain a solution.
[溶媒抽出工程]
溶媒抽出工程S5は、中和工程S4を経て得られたスカンジウムを濃縮させた溶液であるスカンジウム溶解液を溶媒抽出処理に付し、抽出剤に接触させて、スカンジウムを含有する抽残液を得る工程である。
[Solvent extraction step]
In the solvent extraction step S5, a scandium solution, which is a solution obtained by concentrating scandium obtained through the neutralization step S4, is subjected to a solvent extraction treatment and brought into contact with an extractant to obtain an extraction liquid containing scandium. It is a process.
溶媒抽出工程S5における態様としては、特に限定されないが、スカンジウム溶解液と有機溶媒である抽出剤とを混合して、不純物と僅かなスカンジウムを抽出した抽出後有機溶媒とスカンジウムを残した抽残液とに分離する抽出工程と、抽出後有機溶媒に硫酸溶液を混合して抽出後有機溶媒に抽出された僅かなスカンジウムを水相に分離させて洗浄後液を得るスクラビング工程と、洗浄後有機溶媒に逆抽出剤を添加して洗浄後有機溶媒から不純物を逆抽出する逆抽出工程と、を有する溶媒抽出処理を行うことが好ましい。 The mode in the solvent extraction step S5 is not particularly limited, but the extraction solution is a mixture of a scandium solution and an extractant that is an organic solvent to extract impurities and a small amount of scandium. And a scrubbing step in which a small amount of scandium extracted into the organic solvent after the extraction is mixed into an aqueous phase to obtain a post-washing solution, and a post-washing organic solvent. It is preferable to perform a solvent extraction process including a back extraction step of adding a back extractant to the solvent and back-extracting impurities from the organic solvent after washing.
抽出処理においては、抽出剤を含む有機溶媒中に不純物を選択的に抽出し、不純物を含有する有機溶媒と抽残液とを得る。抽出剤としては、特に限定されないが、アミン系の抽出剤を用いることが好ましい。例えば、スカンジウムとの選択性が低く、また抽出時に中和剤が不要である等の特徴を有する、例えば、1級アミンであるPrimeneJM−T、2級アミンであるLA−1、3級アミンであるTNOA(Tri−n−octylamine)、TIOA(Tri−i−octylamine)等の商品名で知られるアミン系抽出剤を用いることが好ましい。このようなアミン系抽出剤を用いて溶媒抽出処理を行うことで、効率的に且つ効果的に不純物を抽出してスカンジウムと分離することができる。 In the extraction process, impurities are selectively extracted into an organic solvent containing an extractant to obtain an organic solvent containing impurities and a residual extraction liquid. Although it does not specifically limit as an extracting agent, It is preferable to use an amine type extracting agent. For example, it has characteristics such as low selectivity with scandium and no need for a neutralizing agent at the time of extraction, for example, Primene JM-T, which is a primary amine, LA-1, which is a secondary amine, and tertiary amine. It is preferable to use an amine-based extractant known by a trade name such as certain TNOA (Tri-n-octylamine) or TIOA (Tri-i-octylamine). By performing a solvent extraction process using such an amine extractant, impurities can be efficiently and effectively extracted and separated from scandium.
また、逆抽出処理においては、抽出処理を経て不純物を抽出した有機溶媒から、不純物を逆抽出する。具体的には、抽出剤を含む有機溶媒に逆抽出溶液(逆抽出始液)を添加して混合することによって、抽出処理とは逆の反応を生じさせて不純物を逆抽出し、不純物を含む逆抽出後液を得る。なお、逆抽出溶液としては、炭酸ナトリウム、炭酸カリウム等の炭酸塩を含有する溶液を用いることが好ましい。 In the back extraction process, impurities are back extracted from the organic solvent from which the impurities have been extracted through the extraction process. Specifically, a reverse extraction solution (back extraction start liquid) is added to an organic solvent containing an extractant and mixed to cause a reverse reaction to the extraction process, so that impurities are back-extracted and contain impurities. A liquid after back extraction is obtained. In addition, as a back extraction solution, it is preferable to use the solution containing carbonates, such as sodium carbonate and potassium carbonate.
[スカンジウム回収工程]
スカンジウム回収工程S6は、溶媒抽出工程S5における抽出処理にて得られた抽残液、及び、スクラビング処理を行った場合にはそのスクラビング後の洗浄液から、スカンジウムを回収する工程である。
[Scandium recovery process]
The scandium recovery step S6 is a step of recovering scandium from the extraction residual liquid obtained by the extraction process in the solvent extraction process S5 and, if a scrubbing process is performed, the scrubbing cleaning liquid.
スカンジウム回収方法としては、特に限定されず公知の方法を用いることができる。例えば、スカンジウムを含有する抽残液にアルカリを添加して中和して水酸化スカンジウムの沈殿物として回収する方法や、抽残液にシュウ酸を添加してシュウ酸塩の沈殿物として回収する方法(シュウ酸塩化処理)を用いることができる。その中でも、シュウ酸塩化処理を用いた方法によれば、より一層効果的に不純物を分離することができ好ましい。 The scandium recovery method is not particularly limited, and a known method can be used. For example, a method in which alkali is added to the extracted residue containing scandium and neutralized and recovered as a precipitate of scandium hydroxide, or oxalic acid is added to the extracted residue and recovered as an oxalate precipitate. The method (oxalate treatment) can be used. Among them, the method using oxalate treatment is preferable because impurities can be more effectively separated.
シュウ酸塩化処理を用いた回収方法では、抽残液にシュウ酸を加えることでシュウ酸スカンジウムの沈殿物を生成させ、その後、シュウ酸スカンジウムを乾燥し、焙焼することによって酸化スカンジウムとして回収する。このシュウ酸塩化処理では、シュウ酸溶液を収容した反応槽に抽残液を添加してシュウ酸スカンジウムの沈殿物を生成させてもよい。 In the recovery method using oxalate treatment, a precipitate of scandium oxalate is generated by adding oxalic acid to the extracted residue, and then the scandium oxalate is dried and roasted and recovered as scandium oxide. . In this oxalate treatment, the extraction residue may be added to a reaction vessel containing an oxalic acid solution to generate scandium oxalate precipitates.
焙焼処理は、シュウ酸塩化処理により得られたシュウ酸スカンジウムの沈殿物を水で洗浄し、乾燥させた後に、焙焼する処理である。この焙焼処理を経ることで、スカンジウムを極めて高純度な酸化スカンジウムとして回収することができる。焙焼処理条件は、特に限定されないが、例えば管状炉に入れて約900℃で2時間程度加熱すればよい。 The roasting process is a process of washing the precipitate of scandium oxalate obtained by the oxalate treatment with water and drying it, followed by roasting. Through this roasting treatment, scandium can be recovered as extremely high-purity scandium oxide. The roasting treatment conditions are not particularly limited. For example, the roasting treatment conditions may be put in a tubular furnace and heated at about 900 ° C. for about 2 hours.
以下、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
[実施例1]
実施例1では、図1に示した工程図に基づくスカンジウムの回収方法を実行した。
[Example 1]
In Example 1, the scandium recovery method based on the process diagram shown in FIG. 1 was executed.
(湿式製錬処理)
ニッケル酸化鉱石の湿式製錬工程S1として、以下の各工程を実行した。すなわち、先ず、ニッケル酸化鉱石を破砕して得られた鉱石スラリーをオートクレーブに装入し、250℃〜270℃程度の高温下で硫酸を添加し、ニッケル、コバルト、及びスカンジウムを酸浸出するHLAP法による浸出処理を行った(浸出工程S11)。次に、浸出処理により得られた浸出スラリーを固液分離装置に供し、ニッケル、コバルト、及びスカンジウムを含有する浸出液と浸出残渣とに分離した(固液分離工程S12)。
(Wet smelting treatment)
The following steps were performed as the nickel oxide ore hydrometallurgical step S1. That is, first, an HLAP method in which an ore slurry obtained by crushing nickel oxide ore is charged into an autoclave, sulfuric acid is added at a high temperature of about 250 ° C. to 270 ° C., and nickel, cobalt, and scandium are acid leached. The leaching process was performed by (leaching step S11). Next, the leaching slurry obtained by the leaching treatment was subjected to a solid-liquid separation device and separated into a leaching solution containing nickel, cobalt, and scandium and a leaching residue (solid-liquid separation step S12).
次に、得られた浸出液にアルカリを添加してpHを調整して鉄やアルミニウム等の不純物の大部分を分離し、固液分離して中和後液を得た(中和工程S13)。 Next, an alkali was added to the obtained leachate to adjust the pH to separate most of the impurities such as iron and aluminum, followed by solid-liquid separation to obtain a neutralized solution (neutralization step S13).
次に、得られた中和後液に硫化剤として硫化水素ガスを吹き込んで硫化反応を生じさせ、溶液中に含まれる亜鉛を硫化物の形態として分離した(脱亜鉛工程S14)。次いで、脱亜鉛処理後の溶液にさらに硫化水素ガスを吹き込んで硫化反応を生じさせ、溶液中にニッケルやコバルトを硫化物の形態として回収した(ニッケル回収工程S15)。一方、ニッケル回収工程では、ニッケル等が分離された溶液であって、スカンジウムを含有する酸性溶液である硫化後液が得られた。 Next, hydrogen sulfide gas as a sulfiding agent was blown into the obtained post-neutralized solution to cause a sulfidation reaction, and zinc contained in the solution was separated as a sulfide (dezincing step S14). Next, hydrogen sulfide gas was further blown into the solution after the dezincing treatment to cause a sulfurization reaction, and nickel and cobalt were recovered in the solution in the form of sulfide (nickel recovery step S15). On the other hand, in the nickel recovery step, a solution after separation of nickel and the like, and a post-sulfurization solution that is an acidic solution containing scandium was obtained.
ここで、湿式製錬工程S1では、除害処理工程S16として、脱亜鉛工程S14及びニッケル回収工程S15における硫化処理後に残留した硫化水素ガスを、除害塔にて水酸化ナトリウム溶液に吸収させて除害する処理を行った。この除害処理により、硫化水素ガスを吸収させた水酸化ナトリウム溶液に基づくアルカリ性の除害排液が生じた。 Here, in the hydrometallurgical process S1, as the detoxification process S16, the hydrogen sulfide gas remaining after the sulfidation process in the dezincification process S14 and the nickel recovery process S15 is absorbed by the sodium hydroxide solution in the detoxification tower. Disinfecting was performed. By this detoxification treatment, an alkaline detoxification drainage based on a sodium hydroxide solution in which hydrogen sulfide gas was absorbed was generated.
(スカンジウム回収処理)
湿式製錬工程S1を経て得られた、スカンジウムを含有する酸性溶液である硫化後液を用いてスカンジウムを回収するために、以下の各工程を実行した。すなわち、先ず、硫化後液を、キレート樹脂をイオン交換樹脂として用いたイオン交換処理に付した(イオン交換処理工程S2)。具体的には、キレート樹脂に硫化後液を接触させることによってスカンジウムを吸着させ、それ以外の不純物成分と分離した。続いて、スカンジウムを吸着させたキレート樹脂に硫酸溶液を接触させることでスカンジウムを溶離し、スカンジウム溶離液を回収した。なお、キレート樹脂には、スカンジウムと共に鉄やアルミニウム、クロム等の不純物の一部も吸着していたため、硫酸溶液の濃度を調整することでスカンジウムのみを選択的に溶離させた。
(Scandium recovery process)
In order to recover scandium using the post-sulfurization solution that is an acidic solution containing scandium obtained through the hydrometallurgical step S1, the following steps were performed. That is, first, the sulfurized solution was subjected to an ion exchange treatment using a chelate resin as an ion exchange resin (ion exchange treatment step S2). Specifically, scandium was adsorbed by bringing the solution after sulfurization into contact with the chelate resin and separated from other impurity components. Subsequently, the scandium was eluted by bringing the sulfuric acid solution into contact with the chelate resin on which scandium was adsorbed, and the scandium eluent was recovered. Since the chelate resin also adsorbed part of impurities such as iron, aluminum and chromium together with scandium, only scandium was selectively eluted by adjusting the concentration of the sulfuric acid solution.
次に、回収したスカンジウム溶離液にアルカリ溶液を添加することによって、スカンジウム溶離液中に含まれる鉄を水酸化鉄の沈殿物として除去する脱鉄処理を行った(脱鉄工程S3)。このとき、スカンジウム溶離液に添加するアルカリ溶液として、湿式製錬工程S1における除害処理工程S16にて生じた除害排液を用いた。 Next, an iron solution was added to the recovered scandium eluent to remove iron contained in the scandium eluent as a precipitate of iron hydroxide (deironation step S3). At this time, the detoxification waste solution generated in the detoxification treatment step S16 in the wet smelting step S1 was used as the alkaline solution added to the scandium eluent.
ここで、下記表1に、脱鉄処理の始液であるスカンジウム溶離液の組成を示す。このスカンジウム溶離液に、エアーを吹き込みながら、硫化水素ガスを水酸化ナトリウム溶液で除害処理して得られた除害排液を、水酸化ナトリウム濃度換算で1.0N(pH14.0)の濃度に調整した溶液として、添加した。なお、下記表2は、水酸化ナトリウム溶液の濃度とそのときの溶液のpHの対応表である。 Here, Table 1 below shows the composition of the scandium eluent that is the starting solution for the deironing treatment. A detoxified effluent obtained by detoxifying the hydrogen sulfide gas with a sodium hydroxide solution while blowing air into the scandium eluent has a concentration of 1.0 N (pH 14.0) in terms of sodium hydroxide concentration. It was added as a solution adjusted to. Table 2 below is a correspondence table between the concentration of the sodium hydroxide solution and the pH of the solution at that time.
そして、スターラーにて撹拌しながら反応温度を30℃〜40℃とし、反応中のpHが4.0〜4.5の範囲となるように維持しつつ120分間反応させ、脱鉄処理を行った。 Then, while stirring with a stirrer, the reaction temperature was set to 30 ° C. to 40 ° C., and the reaction was performed for 120 minutes while maintaining the pH during the reaction to be in the range of 4.0 to 4.5 to perform a deironing treatment. .
このような脱鉄処理の結果、スカンジウム溶離液に含まれていた鉄の95%を超える量を分離除去することができた(鉄除去率:>95%)。一方で、中和に伴うスカンジウムのロスは13%に抑制することができた(スカンジウム除去率(共沈率):13%)。 As a result of such deironing treatment, an amount exceeding 95% of the iron contained in the scandium eluent could be separated and removed (iron removal rate:> 95%). On the other hand, the scandium loss accompanying neutralization could be suppressed to 13% (scandium removal rate (coprecipitation rate): 13%).
ここで、鉄除去率(%)、スカンジウム除去率(%)は、それぞれ以下のように定義される。なお、脱鉄後液とは、脱鉄処理後に鉄を分離除去して得られた溶液をいう。
鉄除去率(%)=(スカンジウム溶離液中の鉄量−脱鉄後液中の鉄量)/スカンジウム溶離液中の鉄量×100
スカンジウム除去率(共沈率)(%)=(スカンジウム溶離液中のスカンジウム量−脱鉄後液中のスカンジウム量)/スカンジウム溶離液中のスカンジウム量×100
Here, the iron removal rate (%) and the scandium removal rate (%) are respectively defined as follows. In addition, the solution after iron removal means a solution obtained by separating and removing iron after the iron removal treatment.
Iron removal rate (%) = (iron amount in scandium eluent−iron amount in solution after deiron removal) / iron amount in scandium eluent × 100
Scandium removal rate (coprecipitation rate) (%) = (scandium amount in the scandium eluent−scandium amount in the solution after deironing) / scandium amount in the scandium eluate × 100
また、脱鉄処理後のスラリーに対する濾過処理の時間は、従来処理(比較例1)と比べて1.4倍に増加したものの、除害排液を再利用したとこにより、発生する排水量が減少した。また、従来処理に比べて、新規に必要な水酸化ナトリウム溶液の添加量を有効に低減させることができた。 In addition, the filtration time for the slurry after the iron removal treatment was increased by 1.4 times compared to the conventional treatment (Comparative Example 1), but the amount of wastewater generated was reduced by reusing the detoxification waste liquid. did. Moreover, the amount of newly added sodium hydroxide solution can be effectively reduced as compared with the conventional treatment.
なお、脱鉄工程S3における脱鉄処理の後、得られた脱鉄後液に中和処理を施すことで水酸化スカンジウムの沈殿物を生成させ、その後、その水酸化スカンジウムの沈殿物を硫酸により溶解してスカンジウム溶解液を得た(中和工程S4)。次いで、スカンジウム溶解液を溶媒抽出処理に付して不純物を分離した抽残液を得た(溶媒抽出工程S5)。そして、スカンジウムを含有する抽残液にシュウ酸を添加してシュウ酸スカンジウムを生成させ、得られたシュウ酸スカンジウムを管状炉に入れて焙焼することによって、高純度な酸化スカンジウムを得た(スカンジウム回収工程)。 In addition, after the iron removal treatment in the iron removal step S3, the obtained post-deironation solution is neutralized to generate a scandium hydroxide precipitate, and then the scandium hydroxide precipitate is added with sulfuric acid. It melt | dissolved and the scandium solution was obtained (neutralization process S4). Next, the scandium-dissolved solution was subjected to a solvent extraction treatment to obtain an extraction residue from which impurities were separated (solvent extraction step S5). Then, oxalic acid was added to the extraction liquid containing scandium to produce scandium oxalate, and the obtained scandium oxalate was placed in a tube furnace and baked to obtain high-purity scandium oxide ( Scandium recovery process).
[実施例2]
実施例2では、脱鉄工程S3での脱鉄処理において、除害排液を、水酸化ナトリウム濃度換算で0.5N(pH13.0〜14.0の範囲)の濃度に調整した溶液とし、これをスカンジウム溶離液に添加して処理したこと以外は、実施例1と同様に処理した。
[Example 2]
In Example 2, in the iron removal process in the iron removal step S3, the detoxification waste liquid is a solution adjusted to a concentration of 0.5 N (pH 13.0 to 14.0 range) in terms of sodium hydroxide concentration, This was treated in the same manner as in Example 1 except that this was added to the scandium eluent and treated.
[実施例3]
実施例3では、脱鉄工程S3での脱鉄処理において、除害排液を、水酸化ナトリウム濃度換算で0.1N(pH13.0)の濃度に調整した溶液とし、これをスカンジウム溶離液に添加したこと以外は、実施例1と同様に処理した。
[Example 3]
In Example 3, in the iron removal treatment in the iron removal step S3, the detoxification waste liquid is a solution adjusted to a concentration of 0.1 N (pH 13.0) in terms of sodium hydroxide concentration, and this is used as a scandium eluent. The treatment was performed in the same manner as in Example 1 except that it was added.
[比較例1]
比較例1では、従来処理と同様に、脱鉄工程での脱鉄処理においてアルカリ溶液として新規の水酸化ナトリウム溶液のみを添加した。具体的には、4Nの濃度に調整した新規の水酸化ナトリウム溶液を用い、これをスカンジウム溶離液に添加した。なお、このこと以外は、実施例1と同様に処理した。
[Comparative Example 1]
In Comparative Example 1, only a novel sodium hydroxide solution was added as an alkaline solution in the deironing process in the deironing process as in the conventional process. Specifically, a novel sodium hydroxide solution adjusted to a concentration of 4N was used and added to the scandium eluent. In addition, it processed similarly to Example 1 except this.
このような比較例1での脱鉄処理の結果、スカンジウム溶離液に含まれていた鉄の95%を超える量を分離除去することができ、スカンジウムのロスも15%であった。しかしながら、新規の水酸化ナトリウム溶液を用いたため、処理コストが非常に高くなる結果となった。 As a result of the iron removal treatment in Comparative Example 1, an amount exceeding 95% of the iron contained in the scandium eluent could be separated and removed, and the scandium loss was 15%. However, the use of a new sodium hydroxide solution resulted in very high processing costs.
[比較例2]
比較例2では、8Nの濃度に調整した新規の水酸化ナトリウム溶液を用い、これをスカンジウム溶離液に添加したこと以外は、比較例1と同様に処理した。
[Comparative Example 2]
Comparative Example 2 was treated in the same manner as Comparative Example 1 except that a new sodium hydroxide solution adjusted to a concentration of 8N was used and this was added to the scandium eluent.
このような比較例2での脱鉄処理の結果、スカンジウム溶離液に含まれていた鉄の95%を超える量を分離除去することができたものの、スカンジウムのロスは30%にもなり、ロスが多くなった。また、比較例2でも当然に、新規の水酸化ナトリウム溶液を用いたため、処理コストが非常に高くなる結果となった。 As a result of the iron removal treatment in Comparative Example 2, it was possible to separate and remove more than 95% of the iron contained in the scandium eluent, but the scandium loss was as high as 30%. Increased. In Comparative Example 2, as a matter of course, since a new sodium hydroxide solution was used, the treatment cost was very high.
[比較例3]
比較例3では、脱鉄工程S3での脱鉄処理において、除害排液を、水酸化ナトリウム濃度換算で0.05N(pH12.0〜13.0の範囲)の濃度に調整した溶液とし、これをスカンジウム溶離液に添加して処理したこと以外は、実施例1と同様に処理した。
[Comparative Example 3]
In Comparative Example 3, in the iron removal process in the iron removal step S3, the detoxification waste liquid is a solution adjusted to a concentration of 0.05 N (pH 12.0 to 13.0 range) in terms of sodium hydroxide concentration, This was treated in the same manner as in Example 1 except that this was added to the scandium eluent and treated.
このような比較例3での脱鉄処理の結果、鉄除去率は85%程度と低く、スカンジウ溶離液から鉄を十分に除去することができなかった。また、脱鉄処理後のスラリーに対する濾過時間が、比較例1よりも10倍もかかるなど濾過性が低下した。 As a result of the iron removal treatment in Comparative Example 3 as described above, the iron removal rate was as low as about 85%, and iron could not be sufficiently removed from the Scandinavian eluent. Moreover, filterability fell, such as the filtration time with respect to the slurry after a iron removal process took 10 time compared with the comparative example 1. FIG.
[比較例4]
比較例4では、脱鉄工程S3での脱鉄処理において、除害排液を、水酸化ナトリウム濃度換算で0.01N(pH12.0)の濃度に調整した溶液とし、これをスカンジウム溶離液に添加して処理したこと以外は、実施例1と同様に処理した。
[Comparative Example 4]
In Comparative Example 4, in the deironation process in the deironation step S3, the detoxification waste solution is a solution adjusted to a concentration of 0.01 N (pH 12.0) in terms of sodium hydroxide concentration, and this is used as the scandium eluent. The treatment was performed in the same manner as in Example 1 except that it was added and treated.
このような比較例4での脱鉄処理の結果、鉄除去率は85%程度と低く、スカンジウ溶離液から鉄を十分に除去することができなかった。また、脱鉄処理後のスラリーに対する濾過時間が、比較例1よりも51倍もかかるなど濾過性が著しく低下した。 As a result of the iron removal treatment in Comparative Example 4, the iron removal rate was as low as about 85%, and iron could not be sufficiently removed from the Scandinavian eluent. Further, the filterability was remarkably lowered, for example, the filtration time for the slurry after the iron removal treatment was 51 times longer than that of Comparative Example 1.
下記表3に、実施例1〜3、比較例1〜4における脱鉄処理の処理条件と処理結果をまとめて示す。なお、表中の濾過時間の評価は、従来処理(比較例1)により得られた脱鉄処理後のスラリーに対する濾過処理時間との相対評価であり、その従来処理の濾過時間を「1」としたときの相対値である。 Table 3 below collectively shows the processing conditions and processing results of the iron removal processing in Examples 1 to 3 and Comparative Examples 1 to 4. In addition, evaluation of the filtration time in a table | surface is relative evaluation with the filtration time with respect to the slurry after the iron removal process obtained by the conventional process (comparative example 1), and the filtration time of the conventional process is set to "1". This is the relative value.
Claims (3)
前記スカンジウムを含有する酸性溶液は、ニッケル酸化鉱石を硫酸浸出して得られた浸出液に硫化水素ガスを添加して硫化処理を施し、ニッケルを含む硫化物と硫化後液とを生成させる湿式製錬により回収される該硫化後液であり、
前記脱鉄工程では、前記硫化後液に添加するアルカリ溶液としてpHを13.0以上14.0以下の範囲に調整したものを用い、該アルカリ溶液の少なくとも一部として、前記湿式製錬における硫化処理後に残留した硫化水素ガスをアルカリ溶液に吸収させて除害した除害排液を用いる
スカンジウムの回収方法。 By adding an alkaline solution to an acidic solution containing scandium, the iron removal step in which iron contained in the acidic solution is separated as a hydroxide, and the solution after the iron removal is neutralized to give scandium hydroxide. A scandium recovery method comprising:
The acidic solution containing scandium is a hydrometallurgical process in which hydrogen sulfide gas is added to a leachate obtained by leaching nickel oxide ore with sulfuric acid and subjected to sulfidation to produce a sulfide containing nickel and a post-sulfurization solution. The post-sulfurized solution recovered by
In the iron removal step, an alkali solution added to the post-sulfurization solution having a pH adjusted to a range of 13.0 or higher and 14.0 or lower is used, and at least a part of the alkaline solution is sulfided in the hydrometallurgy. A method for recovering scandium that uses a detoxified effluent that has been detoxified by absorbing hydrogen sulfide gas remaining after the treatment into an alkaline solution.
請求項1に記載のスカンジウムの回収方法。 The method for recovering scandium according to claim 1, wherein the alkaline solution is a sodium hydroxide solution.
請求項1又は2に記載のスカンジウムの回収方法。 The method for recovering scandium according to claim 1 or 2, wherein the acidic solution containing scandium is a scandium eluent obtained by subjecting the post-sulfurized solution to an ion exchange treatment using an ion exchange resin.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018027998A JP6852695B2 (en) | 2018-02-20 | 2018-02-20 | Scandium recovery method |
PCT/JP2018/047932 WO2019163284A1 (en) | 2018-02-20 | 2018-12-26 | Method for recovering scandium |
PH12020551269A PH12020551269A1 (en) | 2018-02-20 | 2020-08-18 | Method for recovering scandium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018027998A JP6852695B2 (en) | 2018-02-20 | 2018-02-20 | Scandium recovery method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019143196A true JP2019143196A (en) | 2019-08-29 |
JP6852695B2 JP6852695B2 (en) | 2021-03-31 |
Family
ID=67686760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018027998A Active JP6852695B2 (en) | 2018-02-20 | 2018-02-20 | Scandium recovery method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6852695B2 (en) |
PH (1) | PH12020551269A1 (en) |
WO (1) | WO2019163284A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021127514A (en) * | 2019-09-24 | 2021-09-02 | 住友金属鉱山株式会社 | Method for recovering scandium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010031302A (en) * | 2008-07-25 | 2010-02-12 | Sumitomo Metal Mining Co Ltd | Hydrometallurgical process for nickel oxide ore |
JP2010163657A (en) * | 2009-01-15 | 2010-07-29 | Chuo Denki Kogyo Co Ltd | Process for recovering rare earth element |
JP2013139616A (en) * | 2012-01-06 | 2013-07-18 | Sumitomo Metal Mining Co Ltd | Recovery method of rare earth element |
JP2015163729A (en) * | 2014-01-31 | 2015-09-10 | 住友金属鉱山株式会社 | Scandium recovery method |
-
2018
- 2018-02-20 JP JP2018027998A patent/JP6852695B2/en active Active
- 2018-12-26 WO PCT/JP2018/047932 patent/WO2019163284A1/en active Application Filing
-
2020
- 2020-08-18 PH PH12020551269A patent/PH12020551269A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010031302A (en) * | 2008-07-25 | 2010-02-12 | Sumitomo Metal Mining Co Ltd | Hydrometallurgical process for nickel oxide ore |
JP2010163657A (en) * | 2009-01-15 | 2010-07-29 | Chuo Denki Kogyo Co Ltd | Process for recovering rare earth element |
JP2013139616A (en) * | 2012-01-06 | 2013-07-18 | Sumitomo Metal Mining Co Ltd | Recovery method of rare earth element |
JP2015163729A (en) * | 2014-01-31 | 2015-09-10 | 住友金属鉱山株式会社 | Scandium recovery method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021127514A (en) * | 2019-09-24 | 2021-09-02 | 住友金属鉱山株式会社 | Method for recovering scandium |
JP7327276B2 (en) | 2019-09-24 | 2023-08-16 | 住友金属鉱山株式会社 | Scandium recovery method |
Also Published As
Publication number | Publication date |
---|---|
PH12020551269A1 (en) | 2021-05-31 |
JP6852695B2 (en) | 2021-03-31 |
WO2019163284A1 (en) | 2019-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6004023B2 (en) | Scandium recovery method | |
KR20090042996A (en) | Production of metallic nickel with low iron content | |
WO2016157629A1 (en) | Method for manufacturing nickel and cobalt mixed sulfide and nickel oxide ore hydrometallurgical method | |
JP6439530B2 (en) | Scandium recovery method | |
AU2016315207B2 (en) | Scandium oxide manufacturing method | |
JP2018090844A (en) | Ion exchange treatment method, and method of recovering scandium | |
JP6953988B2 (en) | How to remove sulfide | |
JP6996328B2 (en) | Dezincification method, wet smelting method of nickel oxide ore | |
JP5904100B2 (en) | Method for settling and separating neutralized slurry and method for hydrometallizing nickel oxide ore | |
WO2018043183A1 (en) | Method for recovering scandium | |
AU2018315046A1 (en) | Recovery of metals from pyrite | |
WO2019163284A1 (en) | Method for recovering scandium | |
JP6256491B2 (en) | Scandium recovery method | |
WO2017094308A1 (en) | Sulfurizing agent removal method | |
JP7196630B2 (en) | Method and equipment for recovering valuable metals from aqueous sulfuric acid solution | |
JP6888359B2 (en) | Smelting method of metal oxide ore | |
JP7508977B2 (en) | Dezincification treatment method, nickel oxide ore hydrometallurgy method | |
JP6206358B2 (en) | Scandium recovery method | |
JP7338283B2 (en) | Scandium recovery method | |
JP6128166B2 (en) | Method for producing scandium oxide | |
JP2019077928A (en) | Neutralization treatment method and wet refining method of nickel oxide ore | |
JP2019171315A (en) | Method for removing hydrogen sulfide from post-sulfidation liquid produced by wet nickel smelting | |
JP2021017606A (en) | Recovery method of scandium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200311 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210222 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6852695 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |