JP2019033233A - Semiconductor device, and electronic equipment - Google Patents
Semiconductor device, and electronic equipment Download PDFInfo
- Publication number
- JP2019033233A JP2019033233A JP2017154879A JP2017154879A JP2019033233A JP 2019033233 A JP2019033233 A JP 2019033233A JP 2017154879 A JP2017154879 A JP 2017154879A JP 2017154879 A JP2017154879 A JP 2017154879A JP 2019033233 A JP2019033233 A JP 2019033233A
- Authority
- JP
- Japan
- Prior art keywords
- data
- transistor
- chip
- circuit
- memory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 60
- 230000015654 memory Effects 0.000 claims abstract description 114
- 230000006870 function Effects 0.000 claims abstract description 28
- 238000013473 artificial intelligence Methods 0.000 claims abstract description 24
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 15
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 15
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 7
- 238000011156 evaluation Methods 0.000 claims description 10
- 239000003990 capacitor Substances 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 abstract description 19
- 238000012545 processing Methods 0.000 abstract description 16
- 238000010586 diagram Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 13
- 238000003491 array Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 239000011701 zinc Substances 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 101100127285 Drosophila melanogaster unc-104 gene Proteins 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 101000885321 Homo sapiens Serine/threonine-protein kinase DCLK1 Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 102100039758 Serine/threonine-protein kinase DCLK1 Human genes 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000002159 nanocrystal Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000000547 structure data Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910007610 Zn—Sn Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000003079 width control Methods 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- OIWCYIUQAVBPGV-DAQGAKHBSA-N {1-O-hexadecanoyl-2-O-[(Z)-octadec-9-enoyl]-sn-glycero-3-phospho}serine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCC\C=C/CCCCCCCC OIWCYIUQAVBPGV-DAQGAKHBSA-N 0.000 description 1
Images
Landscapes
- Thin Film Transistor (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
例えば、本発明の一態様は、半導体装置、半導体装置を有する電子機器に関する。 For example, one embodiment of the present invention relates to a semiconductor device and an electronic device including the semiconductor device.
なお、本明細書において、半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタ、半導体回路、演算装置、記憶装置等は半導体装置の一態様である。また、表示装置、撮像装置、電気光学装置、発電装置(薄膜太陽電池、有機薄膜太陽電池等を含む)、及び電子機器は半導体装置を有している場合がある。 Note that in this specification, a semiconductor device refers to all devices that can function by utilizing semiconductor characteristics. A transistor, a semiconductor circuit, an arithmetic device, a memory device, or the like is one embodiment of a semiconductor device. In addition, a display device, an imaging device, an electro-optical device, a power generation device (including a thin film solar cell and an organic thin film solar cell), and an electronic device may include a semiconductor device.
チャネル形成領域に金属酸化物を有するトランジスタ(以下、「金属酸化物トランジスタ」、「酸化物半導体トランジスタ」、または「oxトランジスタ」と呼ぶ場合がある)が知られている。oxトランジスタはオフ電流が極めて小さい。メモリセルの書込みトランジスタをoxトランジスタで構成することで、保持特性の優れたメモリセルを提供することが可能である。例えば、非特許文献1には、oxトランジスタを用いた多値NOSRAM(登録商標)が開示されている。
A transistor having a metal oxide in a channel formation region (hereinafter may be referred to as a “metal oxide transistor”, an “oxide semiconductor transistor”, or an “ox transistor”) is known. The ox transistor has an extremely small off-state current. By configuring the write transistor of the memory cell with an ox transistor, it is possible to provide a memory cell with excellent retention characteristics. For example, Non-Patent
なお、本明細書では、NOSRAMとは、メモリセルが2トランジスタ型(2T)、又は3トランジスタ型(3T)ゲインセルであり、メモリセルの書込みトランジスタがoxトランジスタであるメモリ装置のことをいう。なお、「NOSRAM」とは、[Nonvolatile Oxide Semiconductor RAM]の略称である。 Note that in this specification, NOSRAM refers to a memory device in which a memory cell is a two-transistor (2T) or three-transistor (3T) gain cell, and a write transistor of the memory cell is an ox transistor. Note that “NOSRAM” is an abbreviation for [Nonvolatile Oxide Semiconductor RAM].
近年、人工知能(AI)分野の技術発展が著しい。特許文献1には、oxトランジスタが用いられ、ニューラルネットワークを構成することが可能な半導体装置が記載されている。
In recent years, technological development in the field of artificial intelligence (AI) has been remarkable.
例えば、本発明の一形態の課題は、oxトランジスタを有する新規な半導体装置を提供すること、またはAIの演算が可能な低消費電力半導体装置を提供することである。 For example, an object of one embodiment of the present invention is to provide a novel semiconductor device having an ox transistor, or to provide a low power consumption semiconductor device capable of calculating AI.
本発明の一形態は、例示した全ての課題を解決する必要はない。複数の課題の記載は互いの課題の存在を妨げるものではない。例示した以外の課題は本明細書等の記載から自ずと明らかになり、これらの課題も本発明の一形態の課題となり得る。 One embodiment of the present invention need not solve all of the problems illustrated. The description of a plurality of tasks does not disturb the existence of each other's tasks. Problems other than those illustrated will be apparent from the description of this specification and the like, and these problems may also be a problem of one embodiment of the present invention.
複数の課題の例示は、互いの課題の存在を妨げるものではない。本発明の一形態は、例示した全ての課題を解決する必要はない。また、列記した以外の課題が、本明細書等の記載から、自ずと明らかとなるものであり、このような課題も、本発明の一形態の課題となり得る。 The illustration of a plurality of issues does not preclude the existence of each other's issues. One embodiment of the present invention need not solve all of the problems illustrated. In addition, problems other than those listed will become apparent from the description of the present specification and the like, and such problems may also be a problem of one embodiment of the present invention.
(1)本発明の一形態は、第1プロセッサチップと、メモリ部と、データバスとを有する半導体装置であり、第1プロセッサチップ、およびメモリ部は、それぞれ、データバスと電気的に接続され、第1プロセッサチップは、人工知能の演算を行う演算回路アレイを有し、演算回路アレイは、複数の演算回路を有し、演算回路は、複数のメモリ回路を有し、複数のメモリ回路は、それぞれ、複数のメモリセルを有し、複数のメモリセルは、それぞれ、保持ノードと、保持ノードへのデータの書き込みを制御するトランジスタを有し、トランジスタのチャネル形成領域は金属酸化物を有する。 (1) One embodiment of the present invention is a semiconductor device including a first processor chip, a memory unit, and a data bus, and the first processor chip and the memory unit are electrically connected to the data bus, respectively. The first processor chip includes an arithmetic circuit array that performs artificial intelligence operations, the arithmetic circuit array includes a plurality of arithmetic circuits, the arithmetic circuit includes a plurality of memory circuits, and the plurality of memory circuits include Each of the plurality of memory cells includes a holding node and a transistor that controls writing of data to the holding node, and a channel formation region of the transistor includes a metal oxide.
(2)上記形態(1)において、保持ノードは、アナログデータが書き込まれる。 (2) In the above form (1), analog data is written in the holding node.
(3)本発明の一形態は、第1プロセッサチップと、メモリ部と、データバスとを有する半導体装置であり、第1プロセッサチップ、およびメモリ部は、それぞれ、データバスと電気的に接続され、第1プロセッサチップは、人工知能の演算を行う演算回路アレイを有し、演算回路アレイは、複数の演算回路を有し、演算回路は、複数のメモリ回路を有し、複数のメモリ回路は、それぞれ、複数のメモリセルを有し、複数のメモリセルは、それぞれ、保持ノードと、保持ノードへのデータの書き込みを制御するトランジスタを有し、トランジスタのチャネル形成領域は金属酸化物を有することを特徴とする半導体装置。 (3) One embodiment of the present invention is a semiconductor device including a first processor chip, a memory unit, and a data bus, and the first processor chip and the memory unit are electrically connected to the data bus, respectively. The first processor chip includes an arithmetic circuit array that performs artificial intelligence operations, the arithmetic circuit array includes a plurality of arithmetic circuits, the arithmetic circuit includes a plurality of memory circuits, and the plurality of memory circuits include , Each having a plurality of memory cells, each of the plurality of memory cells including a holding node and a transistor for controlling data writing to the holding node, and a channel formation region of the transistor including a metal oxide A semiconductor device characterized by the above.
(4)上記形態(3)において、保持ノードは、デジタルデータが書き込まれる。 (4) In the above form (3), digital data is written in the holding node.
(5)上記形態(1)乃至(4)の何れか一に係る半導体装置は、第2プロセッサチップを更に有する。 (5) The semiconductor device according to any one of the above aspects (1) to (4) further includes a second processor chip.
本明細書等において、「第1」、「第2」、「第3」などの序数詞は、順序を表すために使用される場合がある。または、構成要素の混同を避けるために使用する場合がある。これらの場合、序数詞の使用は構成要素の個数を限定するものではない。例えば、「第1」を「第2」または「第3」に置き換えて、本発明の一形態を説明することができる。 In this specification and the like, ordinal numbers such as “first”, “second”, and “third” may be used to indicate order. Or it may be used to avoid confusion between components. In these cases, the use of ordinal numbers does not limit the number of components. For example, one form of the present invention can be described by replacing “first” with “second” or “third”.
本明細書等において、XとYとが接続されていると記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に記載されているものとする。X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層など)であるとする。 In this specification and the like, when it is described that X and Y are connected, X and Y are electrically connected and X and Y are functionally connected The case and the case where X and Y are directly connected are disclosed in this specification and the like. Therefore, it is not limited to a predetermined connection relationship, for example, the connection relationship shown in the figure or text, and anything other than the connection relation shown in the figure or text is also described in the figure or text. X and Y are objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
トランジスタは、ゲート、ソース、およびドレインと呼ばれる3個の端子を有する。ゲートは、トランジスタの導通状態を制御する制御端子である。ソースまたはドレインとして機能する2個の端子は、トランジスタの入出力端子である。2つの入出力端子は、トランジスタの導電型(nチャネル型、pチャネル型)及びトランジスタの3個の端子に与えられる電位の高低によって、一方がソースとなり他方がドレインとなる。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができるものとする。また、本明細書等では、ゲート以外の2個の入出力端子を第1端子、第2端子等と呼ぶ場合がある。 The transistor has three terminals called gate, source, and drain. The gate is a control terminal that controls the conduction state of the transistor. Two terminals functioning as a source or a drain are input / output terminals of the transistor. One of the two input / output terminals is a source and the other is a drain depending on the conductivity type (n-channel type, p-channel type) of the transistor and the potential applied to the three terminals of the transistor. Therefore, in this specification and the like, the terms source and drain can be used interchangeably. In this specification and the like, the two input / output terminals other than the gate may be referred to as a first terminal, a second terminal, and the like.
ノードは、回路構成やデバイス構造等に応じて、端子、配線、電極、導電層、導電体、不純物領域等と言い換えることが可能である。また、端子、配線等をノードと言い換えることが可能である。 A node can be restated as a terminal, a wiring, an electrode, a conductive layer, a conductor, an impurity region, or the like depending on a circuit configuration, a device structure, or the like. Further, a terminal, a wiring, or the like can be referred to as a node.
電圧は、ある電位と、基準の電位(例えば接地電位(GND)またはソース電位)との電位差のことを示す場合が多い。よって、電圧を電位と言い換えることが可能である。なお、電位とは相対的なものである。よって、GNDと記載されていても、必ずしも0Vを意味しない場合もある。 In many cases, the voltage indicates a potential difference between a certain potential and a reference potential (for example, a ground potential (GND) or a source potential). Thus, a voltage can be rephrased as a potential. Note that the potential is relative. Therefore, even if it is described as GND, it may not necessarily mean 0V.
本明細書において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている場合がある。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。 In this specification, terms and phrases such as “above” and “below” may be used for convenience in describing the positional relationship between components with reference to the drawings. Moreover, the positional relationship between components changes suitably according to the direction which draws each structure. Therefore, the present invention is not limited to the words and phrases described in the specification, and can be appropriately rephrased depending on the situation.
本明細書等において、「膜」という言葉と「層」という言葉とは、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を「導電膜」という用語に変更することが可能な場合がある。例えば、「絶縁膜」という用語を「絶縁層」という用語に変更することが可能な場合がある。 In this specification and the like, the terms “film” and “layer” can be interchanged with each other depending on the case or circumstances. For example, it may be possible to change the term “conductive layer” to the term “conductive film”. For example, it may be possible to change the term “insulating film” to the term “insulating layer”.
本発明の一形態によって、oxトランジスタを有する新規な半導体装置を提供することが可能である。 According to one embodiment of the present invention, a novel semiconductor device including an ox transistor can be provided.
複数の効果の記載は、他の効果の存在を妨げるものではない。また、本発明の一形態は、必ずしも、例示した効果の全てを有する必要はない。また、本発明の一形態について、上記以外の課題、効果、および新規な特徴については、本明細書の記載および図面から自ずと明らかになるものである。 The description of a plurality of effects does not disturb the existence of other effects. Further, one embodiment of the present invention does not necessarily have all of the exemplified effects. Further, problems, effects, and novel features of the embodiment of the present invention other than those described above will be apparent from the description of the present specification and the drawings.
以下に、本発明の実施の形態を説明する。ただし、本発明の一形態は、以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。したがって、本発明の一形態は、以下に示す実施の形態の記載内容に限定して解釈されるものではない。 Hereinafter, embodiments of the present invention will be described. However, one form of the present invention is not limited to the following description, and it is easily understood by those skilled in the art that the form and details can be variously changed without departing from the spirit and scope of the present invention. Is done. Therefore, one embodiment of the present invention is not construed as being limited to the description of the embodiment modes to be given below.
以下に示される複数の実施の形態は適宜組み合わせることが可能である。また1の実施の形態の中に、複数の構成例(作製方法例、動作方法例、使用方法例等も含む。)が示される場合は、互いの構成例を適宜組み合わせること、および他の実施の形態に記載された1または複数の構成例と適宜組み合わせることも可能である。 A plurality of embodiments shown below can be appropriately combined. Further, in the case where a plurality of structure examples (including a manufacturing method example, an operation method example, a usage method example, and the like) are given in one embodiment, appropriate combinations of the structure examples with each other and other implementations It is also possible to appropriately combine with one or a plurality of configuration examples described in the embodiment.
図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状又は値などに限定されない。例えば、ノイズによる信号、電圧、若しくは電流のばらつき、又は、タイミングのずれによる信号、電圧、若しくは電流のばらつきなどを含むことが可能である。 In the drawings, the size, layer thickness, or region may be exaggerated for clarity. Therefore, it is not necessarily limited to the scale. The drawings schematically show an ideal example, and are not limited to the shapes or values shown in the drawings. For example, variation in signal, voltage, or current due to noise, variation in signal, voltage, or current due to timing shift can be included.
〔実施の形態1〕
本実施の形態では、人工知能のための演算機能を有する半導体装置、および当該半導体装置が搭載される電子機器などについて説明する。人工知能の演算処理とは、例えば、機械学習、ニューラルネットワークなどのAIに関する数理モデルに基づく演算処理である。
[Embodiment 1]
In this embodiment, a semiconductor device having an arithmetic function for artificial intelligence, an electronic device in which the semiconductor device is mounted, and the like will be described. The arithmetic processing of artificial intelligence is arithmetic processing based on a mathematical model related to AI such as machine learning and neural network.
図1は、半導体装置の構成例を示す機能ブロック図である。図1に示す半導体装置100は、データバス110、入出力(I/O)インターフェース112、メモリ部114、FPGAチップ115、oxAIチップ120を有する。I/Oインターフェース112、メモリ部114、FPGAチップ115、およびoxAIチップ120は、データバス110を介してデータを授受する。
FIG. 1 is a functional block diagram illustrating a configuration example of a semiconductor device. A
I/Oインターフェース112は、各種の周辺機器150を接続するための複数種類のインターフェースを備えていることが好ましい。例えば、USBコネクタ、HDMI、(登録商標)コネクタ、eDPコネクタ、ePCIe、LANコネクタなどが設けられる。
The I /
「USB」はUniversal Serial Busの略称である。「HDMI/eDP」はHigh−Definition Multimedia Interface/の略称である。ことである。eDPはembedded DisplayPortの略称である。「ePCIe」はPeripheral Component Interconnect Expressの略称である。「LAN」は、Local Area Networkの略称である。 “USB” is an abbreviation for Universal Serial Bus. “HDMI / eDP” is an abbreviation for High-Definition Multimedia Interface /. That is. eDP is an abbreviation for embedded DisplayPort. “EPCIe” is an abbreviation for Peripheral Component Interconnect Express. “LAN” is an abbreviation for Local Area Network.
メモリ部114は、1個または2個以上のメモリチップを有する。例えば、メモリ部114に複数種類のメモリチップを設けて、メモリ部114を階層化する。例えば、SRAMチップ、DRAMチップ、およびフラッシュメモリチップがメモリ部114に設けられる。DRAMチップに代えて、NOSRAMチップ、またはDOSRAMチップを設けてもよい。フラッシュメモリチップに代えて、NOSRAMチップ、またはDOSRAMチップを設けてもよい。
The
「DOSRAM(登録商標)」とは、「Dynamic Oxide Semiconductor RAM」の略称であり、oxトランジスタと容量素子とでなる1トランジスタ1容量型のメモリセルを有するRAMを指す。NOSRAM、およびDOSRAMともメモリセルの書込みトランジスタがoxトランジスタであるので、不揮発性メモリとして用いることができる。 “DOSRAM (registered trademark)” is an abbreviation of “Dynamic Oxide Semiconductor RAM” and refers to a RAM having a one-transistor one-capacitance type memory cell composed of an ox transistor and a capacitor. Both NOSRAM and DOSRAM can be used as nonvolatile memories because the write transistor of the memory cell is an ox transistor.
半導体装置100にFPGAチップ115が搭載されているため、半導体装置100は拡張性が高い。FPGAチップ115には、メモリ装置が組み込まれている。
Since the
半導体装置100の用途等によって、半導体装置100に組み込まれるICチップの種類は取捨される。少なくとも、AIの演算を実行するプロセッサチップを半導体装置100に組み込むことが好ましい。
Depending on the application of the
ユーザは、半導体装置100にホスト装置155(例えば、パーソナルコンピュータ(PC))を接続することで、半導体装置100で動作するソフトウエアの開発を行うことができる。半導体装置100は、ホスト装置155に対するアクセラレータとして機能させることができる。
A user can develop software that operates on the
<oxAIチップ120>
oxAIチップ120は、oxトランジスタが用いられたAIの演算処理が可能なICチップである。oxAIチップ120が使用するデータには、重み係数データ(学習可能なデータ)、画像データ、教師データなどがある。oxAIチップ120の演算結果は、例えば、推論データとして出力される。
<
The
oxAIチップ120の特長には、演算に用いられるデータ(代表的には、重み係数データ)を記憶するメモリ回路が演算回路と近接して設けられていることである。このメモリ回路に、oxトランジスタが用いられている。本明細書では、oxトランジスタを有するメモリ回路を、「oxメモリ回路」と呼ぶ場合がある。図2A〜図2Cにoxメモリ回路の回路構成例を示す。
A feature of the
図2Aに示すoxメモリ回路11は、2Tゲインセルと同じ回路構成であり、書込みトランジスタMW1、読出しトランジスタMR1、容量素子CS1を有する。読出しトランジスタMR1のゲートが保持ノードSNである。書込みトランジスタMW1、読出しトランジスタMR1はそれぞれoxトランジスタである。
The
金属酸化物のバンドギャップは2.5eV以上あるため、oxトランジスタは極小のオフ電流をもつ。一例として、ソースとドレイン間の電圧が3.5V、室温(25℃)下において、チャネル幅1μm当たりのオフ電流を1×10−20A未満、1×10−22A未満、あるいは1×10−24A未満とすることができる。すなわち、ドレイン電流のオン/オフ電流比を20桁以上150桁以下とすることができる。なお、書込みトランジスタMW、読出しトランジスタMRの半導体層については後述する。 Since the band gap of metal oxide is 2.5 eV or more, the ox transistor has a minimum off-state current. As an example, the off-current per channel width of 1 μm is less than 1 × 10 −20 A, less than 1 × 10 −22 A, or 1 × 10 at a source-drain voltage of 3.5 V and room temperature (25 ° C.). It can be less than −24 A. That is, the on / off current ratio of the drain current can be 20 digits or more and 150 digits or less. The semiconductor layers of the write transistor MW and the read transistor MR will be described later.
oxメモリ回路11のノードSNには、書込みトランジスタMW1を介して電荷が充電される。oxトランジスタが極小オフ電流であることから、書込みトランジスタMW1は、ノードSNの電荷を殆んどリークさせない。従って、oxメモリ回路11は不揮発性メモリ回路として機能でき、かつ多値化が容易である。よって、oxメモリ回路11を不揮発性アナログメモリ回路として、oxAIチップ120に設けることができる。
The node SN of the
oxトランジスタに適用される金属酸化物は、Zn酸化物、Zn‐Sn酸化物、Ga‐Sn酸化物、In‐Ga酸化物、In‐Zn酸化物、In‐M‐Zn酸化物(Mは、Ti、Ga、Y、Zr、La、Ce、Nd、SnまたはHf)などがある。また、インジウムおよび亜鉛を含む酸化物に、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。 Metal oxides applied to ox transistors are Zn oxide, Zn-Sn oxide, Ga-Sn oxide, In-Ga oxide, In-Zn oxide, In-M-Zn oxide (M is Ti, Ga, Y, Zr, La, Ce, Nd, Sn, or Hf). In addition, oxides containing indium and zinc include aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten , Or one or more selected from magnesium or the like may be included.
oxトランジスタの信頼性、電気特性の向上のため、半導体層に適用される金属酸化物は、CAAC‐OS、CAC−OS、nc‐OSなどの結晶部を有する金属酸化物であることが好ましい。CAAC‐OSとは、c‐axis‐aligned crystalline metal oxide semiconductorの略称である。CAC‐OSとは、Cloud‐Aligned Composite metal oxide semiconductorの略称である。nc‐OSとは、nanocrystalline metal oxide semiconductorの略称である。 In order to improve the reliability and electrical characteristics of the ox transistor, the metal oxide applied to the semiconductor layer is preferably a metal oxide having a crystal part such as CAAC-OS, CAC-OS, or nc-OS. CAAC-OS is an abbreviation for c-axis-aligned crystalline metal oxide semiconductor. CAC-OS is an abbreviation for Cloud-Aligned Composite metal oxide semiconductor. nc-OS is an abbreviation for nanocrystalline metal oxide semiconductor.
CAAC‐OSは、c軸配向性を有し、かつa‐b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域との間で格子配列の向きが変化している箇所を指す。 The CAAC-OS has a c-axis orientation and has a crystal structure in which a plurality of nanocrystals are connected in the ab plane direction to have a strain. Note that the strain refers to a portion where the orientation of the lattice arrangement is changed between a region where the lattice arrangement is aligned and a region where another lattice arrangement is aligned in a region where a plurality of nanocrystals are connected.
CAC‐OSは、キャリアとなる電子(または正孔)を流す機能と、キャリアとなる電子を流さない機能とを有する。電子を流す機能と、電子を流さない機能とを分離させることで、双方の機能を最大限に高めることができる。つまり、CAC‐OSをoxトランジスタのチャネル形成領域に用いることで、高いオン電流と、極めて低いオフ電流との双方を実現できる。 The CAC-OS has a function of flowing electrons (or holes) serving as carriers and a function of not flowing electrons serving as carriers. By separating the function of flowing electrons from the function of not flowing electrons, both functions can be maximized. That is, by using the CAC-OS for the channel formation region of the ox transistor, both a high on-state current and an extremely low off-state current can be realized.
書込みトランジスタMW1のバックゲート電圧を変化させることで、書込みトランジスタMW1のしきい値電圧を変化させることができる。書込みトランジスタMW1はバックゲートの無いoxトランジスタでもよい。読出しトランジスタMR1についても同様である。 By changing the back gate voltage of the write transistor MW1, the threshold voltage of the write transistor MW1 can be changed. The write transistor MW1 may be an ox transistor without a back gate. The same applies to the read transistor MR1.
金属酸化物は、エネルギーギャップが大きく、電子が励起されにくいこと、ホールの有効質量が大きいことなどから、oxトランジスタは、一般的なSiトランジスタと比較して、アバランシェ崩壊等が生じにくい場合がある。従って、例えばアバランシェ崩壊に起因するホットキャリア劣化等を抑制できる場合がある。ホットキャリア劣化を抑制できることで、高いドレイン電圧でoxトランジスタを駆動することができる。従って、書込みトランジスタMWがOSトランジスタであることで、ノードSNに高い電圧を印加することが可能になるため、oxメモリ回路11の多値化が容易である。
Metal oxides have a large energy gap, electrons are difficult to be excited, and the effective mass of holes is large. Therefore, ox transistors are less likely to cause avalanche collapse or the like than general Si transistors. . Therefore, for example, hot carrier deterioration due to avalanche collapse may be suppressed. By suppressing the hot carrier deterioration, the ox transistor can be driven with a high drain voltage. Therefore, since the write transistor MW is an OS transistor, a high voltage can be applied to the node SN, so that the
oxトランジスタは、電子を多数キャリアとする蓄積型トランジスタである。そのため、pn接合を有する反転型トランジスタ(代表的には、Siトランジスタ)と比較して短チャネル効果の一つであるDIBL(Drain‐Induced Barrier Lowering)の影響が小さい。つまり、oxランジスタは、Siトランジスタよりも短チャネル効果に対する高い耐性を有する。 The ox transistor is a storage type transistor having electrons as majority carriers. Therefore, the influence of DIBL (Drain-Induced Barrier Lowering), which is one of the short channel effects, is smaller than that of an inverting transistor having a pn junction (typically, a Si transistor). In other words, the ox transistor has higher resistance to the short channel effect than the Si transistor.
oxトランジスタは、短チャネル効果に対する耐性が高いために、oxトランジスタの信頼性を劣化させずに、チャネル長を縮小できるので、oxトランジスタを用いることで回路の集積度を高めることができる。チャネル長が微細化するのに伴いドレイン電界が強まるが、上掲したように、oxトランジスタはSiトランジスタよりもアバランシェ崩壊が起きにくい。 Since the ox transistor has high resistance to the short channel effect, the channel length can be reduced without deteriorating the reliability of the ox transistor. Therefore, by using the ox transistor, the degree of circuit integration can be increased. As the channel length becomes finer, the drain electric field becomes stronger. However, as described above, the ox transistor is less prone to avalanche collapse than the Si transistor.
また、oxトランジスタは、短チャネル効果に対する耐性が高いために、Siシリコン等トランジスタよりもゲート絶縁物を厚くすることが可能となる。例えば、チャネル長及びチャネル幅が50nm以下の微細なトランジスタにおいても、10nm程度の厚いゲート絶縁物を設けることが可能な場合がある。ゲート絶縁物を厚くすることで、寄生容量を低減することができるので、回路の動作速度を向上できる。またゲート絶縁物を厚くすることにで、リーク電流が低減されるため、静的消費電流の低減につながる。 In addition, since the ox transistor has high resistance to the short channel effect, the gate insulator can be made thicker than a transistor such as Si silicon. For example, even in a minute transistor with a channel length and a channel width of 50 nm or less, a thick gate insulator of about 10 nm may be provided. Since the parasitic capacitance can be reduced by increasing the thickness of the gate insulator, the operation speed of the circuit can be improved. Moreover, since the leakage current is reduced by increasing the thickness of the gate insulator, static current consumption is reduced.
図2Bに示すoxメモリ回路12はoxメモリ回路11の変形例であり、読出しトランジスタMW2がnチャネル型Siトランジスタである。読出しトランジスタMW2はpチャネル型Siトランジスタでもよい。
An
図2Cに示すoxメモリ回路13は、3トランジスタ型ゲインセルであり、書込みトランジスタMW3、読出しトランジスタMR3、選択トランジスタMS3、容量素子CS3を有する。トランジスタMW3、MR3、MS3はそれぞれバックゲートを有するoxトランジスタである。これらトランジスタの一部、または全てがバックゲートの無いoxトランジスタでもよい。
The
図2Dに示すoxメモリ回路14は、oxメモリ回路13の変形例である。読出しトランジスタMR4、選択トランジスタMS4はそれぞれnチャネル型Siトランジスタである。トランジスタMR4、MS4の一方または双方はpチャネル型Siトランジスタでもよい。
An
容量素子CS1の充放電によってデータを書き換えるため、oxメモリ回路11は原理的には書き換え回数に制約はなく、低エネルギーで、データの書き込みおよび読み出しが可能であり、データの保持に電力を消費しない。よって、oxメモリ回路11をoxAIチップ120に組み込むことで、低消費電力なAIチップを提供することが可能になる。oxメモリ回路12〜14もoxメモリ回路11と同様の特長を有する。
In order to rewrite data by charging / discharging the capacitive element CS1, the
図3Aに、oxAIチップ120の回路部121Aの積層構造を模式的に示す。回路部121Aは積層構造をもち、Siトランジスタ層1011、配線層1012、oxトランジスタ層1013に大別される。oxトランジスタ層1013をSiトランジスタ層1011に積層して設けることができるため、oxAIチップ120の面積を小さくすることができる。
FIG. 3A schematically shows a stacked structure of the
回路部121B(図3B参照)、回路部121C(図3C参照)のように、複数のoxトランジスタ層1013を設けてもよい。回路部121Cは、回路部121A、121Bと異なり、Siトランジスタ層1011が設けられていない。回路部121Cのoxトランジスタ層1013の数は、1層の場合がある。
A plurality of
oxAIチップ120のより具体的な回路構成は、実施の形態2で説明する。後述するように、oxAIチップ120の演算部を少ない素子数、配線数で演算部を構成することができるため、集積化に有利である。演算回路の集積化により、並列処理数を増やすことができるので、oxAIチップ120は、市販のGPUチップと同様、もしくはそれ以上の演算性能を実現できる可能性をもつ。
A more specific circuit configuration of the
例えば、市販のGPUチップの動作周波数が3GHz、乗算の並列処理数が103である場合、GPUチップの演算性能は3×1012OPS(Operations Per Second)=3Tera OPS(TOPS)である。例えば、oxAIチップ120は、106乃至108個程度の演算回路を設けることができ、乗算の並列処理数を106乃至108とすることができる。この場合、oxAIの動作周波数を3MHz又は30MHzに低下しても、oxAIチップ120の演算性能はGPUと同程度である。動作周波数の低減は、ICチップの動的消費電力の削減に非常に有効である。
For example, if 3GHz the operating frequency of the commercial GPU chip, the number of parallel processes of multiplying 10 3, operation performance of the GPU chip is 3 × 10 12 OPS (Operations Per Second) = 3Tera OPS (TOPS). For example, the
また、AIの演算など大規模な演算処理を行うため、GPUチップは高い周波数で駆動する。そのため、ことから,大電力を消費し、高温なる。oxAIチップ120は、動作周波数を低減できるため、oxAIチップ120の発熱を抑えることができる。したがって、半導体装置100において、oxAIチップ120の放熱機構をGPUチップのものよりも簡素にすることができる。
In addition, the GPU chip is driven at a high frequency in order to perform large-scale calculation processing such as AI calculation. Therefore, large power is consumed and the temperature becomes high. Since the
上掲したように、GPUチップは、演算性能の向上と、省電力化および発熱抑制との関係はトレードオフの関係である。これに対して、oxAIチップ120は、動作周波数を低減しても演算性能の劣化を少なくできる。したがって、oxAIチップ120は、時間および電力に対して高効率に、大規模な演算処理を実行することができる。
As described above, the GPU chip has a trade-off relationship between the improvement of calculation performance, power saving, and heat generation suppression. On the other hand, the
<<評価ボード>>
例えば、半導体装置100は、評価ボードとして用いることができる。図4A、図4Bは、評価ボードの構成例の斜視模式図である。
<< Evaluation Board >>
For example, the
図4Aに示すように、評価ボード200のボード210には、様々な電子部品が組み込まれている。図4Aの例では、oxAIチップ220、メモリチップ231、232、FPGAチップ235、236、PCIeコネクタ240、USBコネクタ242、HDMI入力(RX)コネクタ244、HDMI出力(TX)コネクタ245を有する。
As shown in FIG. 4A, various electronic components are incorporated in the
FPGAチップ236は、メモリ装置を含む。HDMI入力コネクタ244、HDMI出力コネクタ245に代えて、eDP入力コネクタ、eDP出力コネクタを設けてもよい。
The
oxAIチップ220は、コネクタ(図示されない)を使用して、ボード210と着脱可能となっている。例えば、別のアーキテクチャのoxAIチップ222、またはGPUチップ225を付け替えることができる。評価ボード200を用いて、AIの演算処理機能を持つ、複数種類のチップの性能および機能の確認を行うことができる。
The
図4Bに示す評価ボード202においては、oxAIチップは、専用のボード212に実装されている。ボード210には、コネクタ250A、250Bが設けられ、ボード212にはコネクタ252A、252Bが設けられている。コネクタ250A、250Bはそれぞれコネクタ250A、250Bと接続される。
In the
<<電子機器>>
ここでは、oxAIチップが組み込まれた電子機器について説明する。
<< Electronic equipment >>
Here, an electronic device incorporating an oxAI chip will be described.
図15A、図15Bに、コンピュータ7000の一例を示す。図15Aに示すように、コンピュータ7000は、筐体7010、モニタ部7012、キーボード7013、ポート7015を有する。キーボード7013、ポート7015は筐体7010に設けられている。ポート7015としては、例えば、USBポート、LANポート、HDMIポートなどがある。
15A and 15B show an example of the
モニタ部7012は、開閉可能に筐体7010に取り付けられている。図15Aには、モニタ部7012が開いている状態が示され、図15Bには、モニタ部7012が閉じている状態を示す。例えば、モニタ部7012の最大開角度は135°程度である。
The
図15Bに示すように、筐体7010には開閉可能なカバー7011が設けられている。筐体7010内部には、複数の半導体装置100が着脱可能に組み込まれている。筐体7010の内部には、半導体装置100を冷却する装置、または放熱する装置が設けられていてもよい。カバー7011を開けて、半導体装置100を交換することができるので、コンピュータ7000の拡張性は高い。コンピュータ7000に複数のoxAIチップを組み込むことで、様々なAIの処理を高速に行うことが可能になる。
As shown in FIG. 15B, the
多数の半導体装置100によって、大型並列計算機、スーパーコンピュータ、およびサーバなど大規模な並列演算を行うコンピューティングシステムを構築することができる。図16Aにスーパーコンピュータ7200の一例を示す。スーパーコンピュータ720には、複数のラック7210を有する。複数のラック7210にはそれぞれラックマウント型の計算機7220が複数格納されている。図16Bに示すように、計算機7220はマザーボード7224、PCカード7225を有する。PCカード7225に半導体装置100が適用されている。これにより、低消費電力なスーパーコンピュータ720を提供することができる。計算機7220の発熱が抑えられるので、スーパーコンピュータ7200の冷却設備の電力を削減することができる。
A large number of
図17に示すように、半導体装置100は様々な電子機器(例えばPC7500、ゲーム機7520、7530、ナビゲーションシステム7540、TV(テレビジョン受像)装置7550)に組み込むことができる。
As shown in FIG. 17, the
PC7500は据え置き型である。PC7500には、キーボード7502、およびモニタ装置7503が無線又は有線により接続されている。ノートPC、タブレット型端末などのコンピュータにも、半導体装置100を組み込むことができる。
The
ゲーム機7520は据え置き型ゲーム機の例である。ゲーム機7520には、無線または有線でコントローラ7522が接続されている。ゲーム機7530は携帯型ゲーム機の例である。ゲーム機7520に半導体装置100が組み込まれているので、例えば、ゲーム機7520は、AIを用いることで、ユーザを楽しませるようにゲームを展開させることが可能である。ゲーム機7530についても同様である。コントローラ7522をPC7500に接続して、PC7500をゲーミングPCとして用いることができる。
図17は、ナビゲーションシステム7540が自動車のコントロールパネルに組み込まれている例を示している。半導体装置100を組み込んでいるため、ナビゲーションシステム7540において、AIによって渋滞を予測して、案内するルートを設定する、AIによる音声対話などが可能になる。
FIG. 17 shows an example in which a
例えば、TV装置7550に内蔵された半導体装置100を、AIのアルゴリズムを利用した画像エンジンとして機能させることができる。半導体装置100は、ノイズ除去、解像度アップコンバージョンなどの画像処理を行う。
For example, the
〔実施の形態2〕
本実施の形態では、oxAIチップの具体的な構成例を説明する。
[Embodiment 2]
In this embodiment, a specific configuration example of the oxAI chip will be described.
<<アナログoxAIチップ>>
ここでは、アナログ演算を利用した超並列コンピューティングが可能なoxAIチップ400について説明する。oxAIチップ400は、全結合型ニューラルネットワーク(FCNN)に非常に有利である。oxAIチップ400の構成例、動作方法例の理解を容易にするため、図5に示すFCNNが回路によって構成されているとする。図5に示すFCNNは、1個の隠れ層をもつ。入力層、隠れ層、出力層のユニット数はそれぞれ1024、128、32である。活性化関数にはReLU(Rectified Liner Unit)が用いられている。oxAIチップ400のFCNNは、例えば、手書き文字認識、汎用AIに適用される。
<< Analog oxAI chip >>
Here, the
図6は、oxAIチップ400の構成例を示す機能ブロック図である。図6に示すoxAIチップ400は、レシーバ(RX)401、デジタル‐アナログコンバータ(DAC)403、404、積和演算回路(MAC)アレイ405、406、ゲートドライバ407、デジタル‐アナログコンバータ(DAC)408、トランスミッタ(TX)409を有する。
FIG. 6 is a functional block diagram illustrating a configuration example of the
oxAIチップ400のデータ伝送方式は差動伝送方式である。例えば、レシーバ401として、LVDS(小振幅差動伝送方式:Low Voltage Differential Signaling)レシーバが用いられ、トランスミッタ409としてLVDSトランスミッタが用いられる。
The data transmission method of the
リセット信号rest_nは、oxAIチップ400をリセットする。
The reset signal rest_n resets the
データin_w[7:0]は、学習済みデータである。例えば、重み係数を表す8ビットデジタル信号である。イネーブル信号en_la_w、クロック信号dclk_wに従い、DAC404は、データin_w[7:0]をアナログデータに変換する。ゲートドライバ407は、MACアレイ405、406へのアナログデータの書込みを制御する。ゲートドライバ407には、クロック信号gclk、パルス幅制御信号gpwc、スタートパルス信号gspが入力される。
Data in_w [7: 0] is learned data. For example, an 8-bit digital signal representing a weighting factor. In accordance with the enable signal en_la_w and the clock signal dclk_w, the
oxAIチップ400が処理するデータは8ビットデジタルデータであり、差動伝送方式で入力される。例えば、レシーバ401として、LVDS(小振幅差動伝送方式:Low Voltage Differential Signaling)レシーバが用いられる。レシーバ401は、差動クロック信号rx_clp、rx_clnに従い、入力データrx_dp[7:0]、rx_dn[7:0]をシングルエンド形式の8ビットデータに変換する。DAC403は、この8ビットデータをアナログデータに変換する。DAC404から出力されるアナログデータは、逐次MACアレイ405に書き込まれる。
Data processed by the
<MACアレイ405、406>
図7を参照して、MACアレイ405の回路構成例を説明する。MACアレイ405には、1024行144列の行列状に乗算回路40が設けられている。乗算回路40は、図2Bのoxメモリ回路12と同じ回路構成である。つまり、乗算回路40は、演算回路と、重み係数を記憶する不揮発性ローカルメモリ回路双方の機能を持つ。このことにより、oxAIチップ400は、GPUと比べて非常に少ないトランジスタ数によって、超並列演算を実現できる。トランジスタ数の低減は、oxAIチップ400の小型化、消費電力の低減につながる。
<
A circuit configuration example of the
MACアレイ405には、乗算回路40の配列に応じて、ゲート線GL1、データ線VX1、WD1、RD1が設けられている。データ線WD1は重み係数データを乗算回路40に入力するための配線である。データ線WD1には、DAC403からアナログデータが入力される。ゲート線GL1は、重み係数データを入力する乗算回路40を選択するための信号線である、ゲート線GL1は、ゲートドライバ407によって駆動される。
The
乗算回路40に重み係数データw0を書き込むことで、乗算回路40の保持ノード(読出しトランジスタのゲート)の電圧は、重み係数データに応じた電圧Vw0となる。
By writing the weight coefficient data w0 into the
データ線VX1は、CFNNが処理するデータの入力用配線である。データ線VX1には、DAC402からアナログデータが入力される。データ線RD1には、乗算回路40の演算結果が読みだされる。データ線RD1には、電流源42、オフセット回路43が電気的に接続されている。
The data line VX1 is an input wiring for data processed by the CFNN. Analog data is input from the DAC 402 to the data line VX1. The operation result of the
乗算回路40に流れる電流I0は、保持ノードの電圧Vx0とデータ線RD1の電圧Vx0の積に比例する。つまり、電流I0は、重み係数と入力データの積を表している。同様に、電流I1は、保持ノードの電圧Vw1と電圧Vx1との積に比例する。つまり乗算回路40は、重み係数データと入力データとの積を計算することができる。
The current I0 flowing through the
データ線RD1あたり1024個の乗算回路40が電気的に接続されている。電流源42は参照電流Irefを生成する。オフセット回路43に入力される電流Ioutは、参照電流Irefと電流Imacとの差分である。電流Imacは、1024個の乗算回路40を流れる電流の総和であり、重み係数と入力データとの積和した値を表す。参照電流IrefとImacとの差分ととることで、電流Ioutのノイズ成分を低減できる。
1024
オフセット回路43は、電流Ioutを電圧Voutに変換し、参照電圧Vrefと電圧Voutとの差分をとる。これにより、電圧Voutのノイズ成分が低減される。オフセット回路43、VrefとVoutとの差分電圧を増幅して、活性化関数回路44に出力する。活性化関数回路44は処理したデータをMACアレイ405に出力する。
The offset
なお、MACアレイ405の144列のうちの16列は、電流Ioutの生成に寄与せず積和演算に用いられる参照データを保持する。
Of the 144 columns of the
MACアレイ406は、MACアレイ405と同様の構成である。乗算回路40が36行128列の行列状に配置されている。MACアレイ406において、36行のうちの4行は、電流Ioutの生成に寄与せず、参照データの保持に用いられる。
The
図6に示すイネーブル信号en_cmは、MACアレイ405、406の電流源42用のイネーブル信号である。イネーブル信号en_absは、MACアレイ405、406のオフセット回路43用のイネーブル信号であり、信号osp1、osn1、en_res1はMACアレイ405のオフセット回路43の制御信号であり、信号osp2、osn2、en_res2はMACアレイ406のオフセット回路43の制御信号である。
The enable signal en_cm shown in FIG. 6 is an enable signal for the
<ADC408、TX409>
ADC408には、MACアレイ406から32のアナログデータが並列に入力される。ADC408は、シリアルパラレル変換を行うため、出力段にレジスタを備える。ADC408は、1チャネルの8ビットデジタルデータを出力する。
<
The
信号clk_sar、res_sar、go、stby_adcは、それぞれ、ADC408用のクロック信号、リセット信号、イネーブル信号、スタンバイ信号である。信号dclk_p2s、en_p2s_per、en_p2s_serは、それぞれ、レジスタ用のクロック信号、ラッチ信号、出力イネーブル信号である。ADC408には、32のアナログデータが入力され、8ビットデジタルデータをトランスミッタ409へ出力する。信号stby_txはトランスミッタ409用のスタンバイ信号である。
The signals clk_sar, res_sar, go, and stby_adc are a clock signal, a reset signal, an enable signal, and a standby signal for the
トランスミッタ409は、信号dclk_p2sに応じて、8ビットデジタルデータを差分形式のデータtx_dp[7:0]、tx_dn[7:0]に変換し、出力し、信号dclk_p2sを差分形式のクロック信号tx_clp、tx_clnに変換し、出力する。差分データtx_dp[7:0]、tx_dn[7:0]は、FCNNが取得した32種類の推論データである。
The
MACアレイ405、406の入力および出力データはアナログデータであるので、入出力データがデジタルデータである場合と比較し、MACアレイ405、406の配線数を大幅に低減することができる。乗算回路40は、乗算機能と、重み係数データの保持機能双方を備えるため、演算時にデータを読み込むことがない。つまり、乗算回路40は、データの授受の時間ペナルティーおよび電力ペナルティーが実質的にない。
Since the input and output data of the
並列処理アーキテクチャをもつプロセッサとしてGPUが知られている。GPUも、CPUと同様に、演算部とメモリ部間のデータ授受が演算効率のボトルネックとされている。これに対して、oxAIチップ400はこのような問題点がない。
A GPU is known as a processor having a parallel processing architecture. Similarly to the CPU, data exchange between the calculation unit and the memory unit is a bottleneck of calculation efficiency in the GPU. On the other hand, the
乗算回路40は、2Tゲインセルと同じ回路構成であり、少ないトランジスタ数によって、アナログデータの掛け算を行うことができる。したがって、多数の乗算回路40を用いて、積和演算部を構成することで、低消費電力で、超並列演算処理が可能なoxAIチップ400を提供することができる。例えば、乗算回路40の数が106乃至108個程度であり、動作周波数3MHz又は30MHzである場合、oxAIチップ400の演算性能は、3TOPS(Tere Operations Per Second)乃至3POPS(Peta OPS)程度である。
The
<<プログラマブルoxAIチップ>>
ここで示すoxAIチップ450は、プログラマブルNNを構成できる。oxAIチップ450が演算するデータの形式はデジタルである。oxAIチップ450の演算回路は、専用の不揮発性ローカルメモリ回路を有し、不揮発性ローカルメモリはoxメモリ回路で構成されている。oxAIチップ450のNNは、例えば、各種画像処理(例えば、ノイズ除去、高解像度化)、物体認識、汎用AIとして用いることができる。
<< Programmable oxAI chip >>
The
図8は、oxAIチップ450の構成例を示す機能ブロック図である。oxAIチップ450は、コントローラ460、I2Cモジュール462、レシーバ(RX)463、トランスミッタ(TX)464、データドライバ466、ワードドライバ467を有する。コントローラ460は、演算回路アレイ470、演算部471、SRAM472、セレクタ474、475、デマルチプレクサ476を有する。
FIG. 8 is a functional block diagram illustrating a configuration example of the
oxAIチップ450の入力データには、動作設定データ、学習済みデータ、パイプライン構造データ、演算回路アレイ470が処理するデータがある。学習済みデータ、パイプライン構造データは、コントローラ460のコンフィギュレーションデータとして、oxAIチップ450に入力される。
The input data of the
データsdaはシリアル形式の動作設定データであり、I2Cモジュール462に書き込まれる。I2Cモジュール462は、書き込まれた動作設定データをコントローラ460に出力する。信号i2c_clk、i2c_resetb、sclは、それぞれ、I2Cコントローラ用クロック信号、I2Cリセット信号、I2Cクロック信号である。信号O_SAVE、O_LOAD、OS_USEは、動作設定データのバックアップ制御に用いられる。
Data sda is operation setting data in a serial format, and is written in the
データDATA0は、データドライバ466に入力される。データDATA0はコンフィグレーションデータである。データドライバ466からは信号nSTATUSが出力される。信号nSTATUSは、コンフィギュレーション状態をあらわす信号である。
The data DATA0 is input to the
oxAIチップ450へのデータ伝送方式には、シングルエンド方式と、LVDS方式とが可能である。データdin[7:0]はシングルエンド方式の入力データであり、セレクタ474に入力される。レシーバ463は、oxAIチップ400のレシーバと同様の構成であり、差動クロック信号rx_clp、rx_clnに従い、差動入力データrx_dp[7:0]、rx_dn[7:0]をシングルエンド方式のデータrx_ds[7:0]に変換し、セレクタ474に出力する。信号stby_rx、hpe_rxはそれぞれ、はレシーバ463のスタンバイ信号である。
As a data transmission method to the
信号nCONFIG、DCLKがコントローラ460に入力され、コントローラ460は信号CONF_DONEを出力する。信号nCONFIG、DCLKはそれぞれ、コンフィギュレーション開始信号、コンフィギュレーション用クロック信号である。信号CONF_DONEはコンフィギュレーションが完了したことを表す信号である。
The signals nCONFIG and DCLK are input to the
信号sys_clk、sys_resetb、user_resetb、context_ex[5:0]はシステムクロック信号、システムリセット信号、ユーザリセット信号、外部コンテキスト信号である。信号data_enは、コントローラ460への入力データの伝送を実行する期間を設定する信号である。これらの信号は、コントローラ460に入力される。コントローラ460は信号State[2:0]、sabstate[2:0]を出力する。信号State[2:0]、sabstate[2:0]はそれぞれコントローラ460内部の状態、サブ状態をあらわす。
Signals sys_clk, sys_resetb, user_resetb, context_ex [5: 0] are a system clock signal, a system reset signal, a user reset signal, and an external context signal. The signal data_en is a signal that sets a period for executing transmission of input data to the
演算回路アレイ470には、セレクタ475の出力データが入力される。演算回路アレイ470は処理したデータを演算部471に出力する。演算部471の出力データはSRAM472で一時的に記憶される。SRAM472から読み出されたデータは、セレクタ475、デマルチプレクサ476に出力される。セレクタ475は、セレクタ474の出力データ、SRAM473の出力データの何れか一方を演算回路アレイ470に出力する。
The output data of the
デマルチプレクサ476は、データの出力形式を選択する機能をもつ。デマルチプレクサ476の一方の出力データは、シングルエンド形式のデータdout[7:0]としてoxAIチップ450外部に出力される。他方の出力データはトランスミッタ464で処理され、差動形式のデータtx_dp[7:0]、tx_dn[7:0]に変換され、oxAIチップ450外部に出力される。
The
<演算回路アレイ470>
図9〜図13を参照して、演算回路アレイ470について説明する。図9に示すように、演算回路アレイ470は、複数の演算回路21、複数のスイッチ回路22が行列状に設けられている。演算回路21、スイッチ回路22はプログラマブル回路である。演算回路アレイ470の処理内容に合わせて、演算回路21は回路構成される。演算回路アレイ470の処理内容に合わせて、スイッチ回路22の回路構成を変更することにより、演算回路21の接続関係が変更される。
<
The
なお、図9中の「U」、「D、「L」、「R」はスイッチ回路22の配線の名称であり、かつ接続方向(上、下、左、右)を表している。
Note that “U”, “D,“ L ”, and“ R ”in FIG. 9 are the names of the wirings of the
図10に演算回路21の構成例を示す。演算回路21は、入力レジスタ51、メモリ回路52、乗算回路53、加算回路54、出力レジスタ55A、55B、セレクタ56A〜56D、メモリ回路57A〜57Cを有する。メモリ回路52、57A〜57Cは、演算回路21の不揮発性ローカルメモリ回路であり、oxメモリ回路が適用されている。
FIG. 10 shows a configuration example of the
入力レジスタ51には、データsinが入力される。入力レジスタ51はラッチ信号slatの制御でデータsinを保持する。入力レジスタ51は、保持データをデータsoutとして、セレクタ56Aに出力する。メモリ回路57Aの出力信号に従い、セレクタ56Aは、データsinとデータsoutの何れか一方を選択し、選択したデータを乗算回路53に出力する。データsoutは、演算回路21の外部に出力される。入力レジスタ51を設けることで、データsinを入力レジスタ51で一時的に保持することで、データsinをシフトしたデータsoutを出力することができる。
Data sin is input to the
メモリ回路52は、コンテキスト信号contex_W[1:0]が入力される。コンテキスト信号contex_W[1:0]は、信号contex_ex[5:0]をデコードすることで生成される内部信号である。メモリ回路52は複数の重み係数データを記憶している。重み係数データは、コンフィギュレーションデータとして、メモリ回路52に書き込まれている。コンフィギュレーションデータはデータドライバ446から伝送される。
The
図11Aに示すように、メモリ回路52は、フリップフロップ71、デコーダ72、メモリセル73_0〜73_3、トランジスタ77、ラッチ回路78を有する。メモリセル73_0〜73_3は、oxメモリ回路13(図2C参照)と同じ回路構成であり、3個のoxトランジスタでなるゲインセルである。
As illustrated in FIG. 11A, the
信号word0〜word3はワードドライバ67で生成される。信号word0〜word3によって1個のメモリセルが選択され、選択されたメモリセルにコンフィギュレーションデータが書き込まれる。
フリップフロップ71は、コンテキスト信号context_W[1:0]を保持するする。デコーダ72は、コンテキスト信号context_W[1:0]をデコードして、切替え信号context_W0〜context_W3を生成し、出力する。機能を有する。切替え信号context_W0〜context_W3は、重み係数データを出力するメモリセルを選択する機能を持つ。選択されたメモリセルから読み出された重みデータは、データcmoutとして、乗算回路53へ出力される。トランジスタ77は、データcmoutが読みだされる配線を電圧Vpreにプリチャージする機能を持つ。信号prchに従い、トランジスタ77は当該配線をプリチャージする。
The flip-flop 71 holds the context signal context_W [1: 0]. The decoder 72 decodes the context signal context_W [1: 0] to generate and output the switching signals context_W0 to context_W3. It has a function. The switching signals context_W0 to context_W3 have a function of selecting a memory cell that outputs weight coefficient data. The weight data read from the selected memory cell is output to the
図11Bにメモリセルの他の構成例を示す。図11Bに示すメモリセル74は、メモリセル73_0の変形例であり、読出しトランジスタのゲートに2個のインバータ回路でなるラッチ回路が設けられている。例えば、これらインバータ回路は、nチャネル型Siトランジスタとpチャネル型SiトランジスタでなるCMOS回路である。
FIG. 11B shows another configuration example of the memory cell. A
図12にメモリ回路57Aの構成例を示す。メモリ回路57Aは、メモリセル91_0、91_1、トランジスタ92_0、92_1、93を有する。メモリ回路57Aには、コンフィギュレーションデータ、切替え信号context_A0、context_A1、信号wordA0、wordB0、wordA1、wordB1が入力される。
FIG. 12 shows a configuration example of the
メモリセル91_0、91_1は、それぞれ、2個のoxメモリ回路12(図2B)で構成される。メモリセル91_0にコンフィギュレーションデータ“1”を書き込む場合は、信号wordA0を“H”にし、信号wordB0、wordA1、wordB1を“L”にする。メモリセル91_1にコンフィギュレーションデータ“0”を書き込む場合は、信号wordB0を“H”にし、信号wordA0、wordA1、wordB1を“L”にする。 Each of the memory cells 91_0 and 91_1 includes two ox memory circuits 12 (FIG. 2B). When the configuration data “1” is written to the memory cell 91_0, the signal wordA0 is set to “H”, and the signals wordB0, wordA1, and wordB1 are set to “L”. When the configuration data “0” is written to the memory cell 91_1, the signal wordB0 is set to “H”, and the signals wordA0, wordA1, and wordB1 are set to “L”.
セレクタ56Aへ制御信号する間は、トランジスタ93はオフ状態である。切替え信号context_A0、context_A1により、トランジスタ92_0、92_1の何れか一方がオン状態になる。例えば、トランジスタ92_0がオンになると、メモリセル91_0の保持データに応じた論理の制御信号が、セレクタ56Aに出力される。
While the control signal is sent to the
メモリ回路57B、57Cは、メモリ回路57Aと同じ回路構成をもつ。
The
乗算回路53は、データsdataとデータcmoutとの積を計算し、計算結果を表すデータmoutを生成する。データmoutは、加算回路54およびセレクタ56Bに出力される。
The
データainは、他の演算回路21の出力データ、または、セレクタ475の出力データである。加算回路54は、データainとデータmoutとの和を計算し、計算結果を表すデータaoutを生成する。データaoutはセレクタ56Bに出力される。
Data ain is output data of another
出力レジスタ55Aはセレクタ56Bの出力データを保持し、出力レジスタ55Bはセレクタ56Cの出力データを保持する。出力レジスタ55A、55Bを設けることで、信号遅延による演算エラーを防ぐことができる。信号res_rgは、出力レジスタ55A、55Bのリセット信号である。
The
出力レジスタ55Aは保持データをセレクタ56Dに出力する。セレクタ56Dまたは出力レジスタ55Bの出力データが、データsoutとして演算回路21から出力される。
The
演算回路アレイ470には演算回路21が行列状に配列されているので、演算回路アレイは、積和演算装置として機能させることができる。
Since the
演算回路アレイ470の出力データは、演算部471に入力される。例えば、演算部471は、活性化関数の機能および/またはプーリング層の機能を持つ。
Output data of the
<スイッチ回路22の構成>
図13A、図13Bを参照して、スイッチ回路22を説明する。図13Aに示すように、スイッチ回路22には、8個のスイッチ回路25が設けられている。データsoutの出力用配線26Sは、配線U、D、L、Rのうちの何れか1に電気的に接続される。データacoutの出力用配線26Aについても同様である。
<Configuration of
The
図13Bに示すように、スイッチ回路25は、フリップフロップ80、デコーダ81、メモリセル83_0、83_1、配線87を有する。配線87は、配線L、R、UまたはDのいずれかの配線である。図13Bには、4ビットデータを伝えるためのスイッチ回路25を図示している。
As illustrated in FIG. 13B, the
フリップフロップ80は、コンテキスト信号context_Cを保持する。デコーダ72は、コンテキスト信号context_Cをデコードして、切替え信号context_C0、context_C1を生成する。メモリセル83_0には信号context_C0、word0が入力され、メモリセル83_1には信号context_C0、word1が入力される。
The flip-
メモリセル83_0の書込みトランジスタは、バックゲートを有するoxトランジスタである。メモリセル83_0において、バックゲートを有さないnチャネル型トランジスタはSiトランジスタである。なお、メモリセル83_0の全てのトランジスタがoxトランジスタであってもよい。メモリセル83_1についても堂々である。 The write transistor of the memory cell 83_0 is an ox transistor having a back gate. In the memory cell 83_0, the n-channel transistor having no back gate is a Si transistor. Note that all the transistors of the memory cell 83_0 may be ox transistors. The memory cell 83_1 is also imposing.
信号word0によって、書込みトランジスタをオン状態にすることで、メモリセル83_0へコンフィギュレーションデータが書き込まれる。切替え信号context_C0によって、メモリセル83_0が選択される場合、メモリセル83_0が保持しているコンフィギュレーションデータに応じて、配線87と演算回路21間の接続状態が決定される。
Configuration data is written to the memory cell 83_0 by turning on the writing transistor with the signal word0. When the memory cell 83_0 is selected by the switching signal context_C0, the connection state between the wiring 87 and the
演算回路21およびスイッチ回路22は不揮発性ローカルメモリ回路を内蔵しているため、回路21、22は、演算中にoxAIチップ450の外部のメモリ装置にアクセスする必要がない。よって、oxAIチップ450もoxAIチップ400と同様に演算部とメモリ部間のデータ授受が演算効率のボトルネックにならない。演算回路21間でデータの受け渡しと、演算処理とが逐次実行されるため、演算を高効率に行える。
Since the
演算回路21およびスイッチ回路22がマルチコンテキスト方式のプログラマブルな回路であるため、少ないハードウエハ資源で、超並列演算処理を効率よく実行することが可能である。また、様々なNNをoxAIチップ450のハードウエアによって実現することができる。例えば、図14に示すような畳み込みNNをoxAIチップ450のハードウエハで実現することができる。図14の数値は、層のサイズ、深さ(チャネル数)を表している。例えば、入力層の幅W、高さH、チャネル数Mは、それぞれ38、24、1である。入力層のフィルタのサイズW×H×Mは3×3×1である。
Since the
11、12、13、14:oxメモリ回路、
100:半導体装置、 110:データバス、 112:I/O(入出力)インターフェース、 114:メモリ部、 115:FPGAチップ、120:oxAIチップ、
121A、121B、121C:回路部、 150:周辺機器、
200、202:評価ボード、 202:評価ボード、 210、212:ボード、
220、222:oxAIチップ、 225:GPUチップ、 231、232:メモリチップ、 235、236:FPGAチップ、 240:PCIeコネクタ、 242:USBコネクタ、 244:HDMI入力コネクタ、 244:HDMI入力コネクタ、 245:HDMI出力コネクタ、
250A、250B、252A、252B:コネクタ
11, 12, 13, 14: ox memory circuit,
100: Semiconductor device 110: Data bus 112: I / O (input / output) interface 114: Memory unit 115: FPGA chip 120: oxAI chip
121A, 121B, 121C: circuit unit, 150: peripheral device,
200, 202: Evaluation board, 202: Evaluation board, 210, 212: Board,
220, 222: oxAI chip, 225: GPU chip, 231, 232: Memory chip, 235, 236: FPGA chip, 240: PCIe connector, 242: USB connector, 244: HDMI input connector, 244: HDMI input connector, 245: HDMI output connector,
250A, 250B, 252A, 252B: Connector
Claims (7)
メモリ部と、
データバスと、を有し、
前記第1プロセッサチップおよび前記メモリ部はそれぞれ、前記データバスと電気的に接続され、
前記第1プロセッサチップは、人工知能の演算を行う演算回路アレイを有し、
前記演算回路アレイは、複数の演算回路を有し、
前記演算回路は、第1トランジスタ、第2トランジスタ、容量素子、および保持ノードを有し、
前記第1トランジスタのチャネル形成領域は金属酸化物を有し、
前記第1トランジスタは前記保持ノードへのデータの書き込みを制御する機能をもち、
前記第2トランジスタのゲートは前記保持ノードに電気的に接続され、
前記容量素子は、前記保持ノードに電気的に接続されていることを特徴とする半導体装置。 A first processor chip;
A memory section;
A data bus, and
Each of the first processor chip and the memory unit is electrically connected to the data bus;
The first processor chip has an arithmetic circuit array for performing artificial intelligence operations,
The arithmetic circuit array has a plurality of arithmetic circuits,
The arithmetic circuit has a first transistor, a second transistor, a capacitor, and a holding node,
The channel formation region of the first transistor has a metal oxide,
The first transistor has a function of controlling data writing to the holding node,
A gate of the second transistor is electrically connected to the holding node;
The semiconductor device is characterized in that the capacitor is electrically connected to the holding node.
前記保持ノードは、アナログデータが書き込まれる半導体装置。 In claim 1,
The holding node is a semiconductor device to which analog data is written.
メモリ部と、
データバスと、を有し、
前記第1プロセッサチップ、および前記メモリ部は、それぞれ、前記データバスと電気的に接続され、
前記第1プロセッサチップは、人工知能の演算を行う演算回路アレイを有し、
前記演算回路アレイは、複数の演算回路を有し、
前記演算回路は、複数のメモリ回路を有し、
前記複数のメモリ回路は、それぞれ、複数のメモリセルを有し、
前記複数のメモリセルは、それぞれ、保持ノードと、前記保持ノードへのデータの書き込みを制御するトランジスタを有し、
前記トランジスタのチャネル形成領域は金属酸化物を有することを特徴とする半導体装置。 A first processor chip;
A memory section;
A data bus, and
The first processor chip and the memory unit are each electrically connected to the data bus,
The first processor chip has an arithmetic circuit array for performing artificial intelligence operations,
The arithmetic circuit array has a plurality of arithmetic circuits,
The arithmetic circuit has a plurality of memory circuits,
Each of the plurality of memory circuits includes a plurality of memory cells;
Each of the plurality of memory cells includes a holding node and a transistor that controls writing of data to the holding node.
The channel formation region of the transistor includes a metal oxide.
前記保持ノードは、デジタルデータが書き込まれる半導体装置。 In claim 3,
The holding node is a semiconductor device to which digital data is written.
さらに、FPGAを有する2プロセッサチップが設けられていることを特徴とする半導体装置。 In any one of Claims 1 thru | or 4,
Further, a two-processor chip having an FPGA is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017154879A JP2019033233A (en) | 2017-08-10 | 2017-08-10 | Semiconductor device, and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017154879A JP2019033233A (en) | 2017-08-10 | 2017-08-10 | Semiconductor device, and electronic equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019033233A true JP2019033233A (en) | 2019-02-28 |
Family
ID=65524465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017154879A Withdrawn JP2019033233A (en) | 2017-08-10 | 2017-08-10 | Semiconductor device, and electronic equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019033233A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110070182A (en) * | 2019-04-01 | 2019-07-30 | 京微齐力(北京)科技有限公司 | The platform chip of suitable artificial intelligence and its manufacture and design method |
WO2021130591A1 (en) * | 2019-12-27 | 2021-07-01 | 株式会社半導体エネルギー研究所 | Semiconductor device |
WO2021186279A1 (en) * | 2020-03-18 | 2021-09-23 | 株式会社半導体エネルギー研究所 | Semiconductor device |
-
2017
- 2017-08-10 JP JP2017154879A patent/JP2019033233A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110070182A (en) * | 2019-04-01 | 2019-07-30 | 京微齐力(北京)科技有限公司 | The platform chip of suitable artificial intelligence and its manufacture and design method |
CN110070182B (en) * | 2019-04-01 | 2021-08-24 | 京微齐力(北京)科技有限公司 | Platform chip suitable for artificial intelligence and manufacturing and designing method thereof |
WO2021130591A1 (en) * | 2019-12-27 | 2021-07-01 | 株式会社半導体エネルギー研究所 | Semiconductor device |
WO2021186279A1 (en) * | 2020-03-18 | 2021-09-23 | 株式会社半導体エネルギー研究所 | Semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7502503B2 (en) | Calculation unit | |
JP7504964B2 (en) | Semiconductor Device | |
JP2019046199A (en) | Processor and electronic device | |
US10908669B2 (en) | Methods and apparatus for power management of a memory cell | |
JP2019033233A (en) | Semiconductor device, and electronic equipment | |
US11962295B2 (en) | Multiplexer and semiconductor device including the same | |
CN105843981B (en) | Circuit design system and semiconductor circuit designed by using the same | |
US11908947B2 (en) | Semiconductor device | |
US10833579B1 (en) | Switched capacitor regulators with flying-inverter-controlled power switches | |
CN116821048A (en) | Integrated memory chip and operation method thereof | |
US9467147B2 (en) | Counter circuit and image sensor including the same | |
CN107404305B (en) | Semiconductor circuit having a plurality of transistors | |
JP6953229B2 (en) | Semiconductor device | |
JP2017527942A (en) | Bus circuit for memory devices | |
US20220276839A1 (en) | Semiconductor device | |
US10366646B2 (en) | Devices including first and second buffers, and methods of operating devices including first and second buffers | |
US20150222301A1 (en) | Transmitting circuit and transceiver system including the same | |
US9904310B2 (en) | Regulator circuit and power system including the same | |
JP7581209B2 (en) | Semiconductor Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20200713 |