JP2019032290A - Drift correction method of scan type probe microscope, and scan type probe microscope with drift correction function - Google Patents
Drift correction method of scan type probe microscope, and scan type probe microscope with drift correction function Download PDFInfo
- Publication number
- JP2019032290A JP2019032290A JP2017154999A JP2017154999A JP2019032290A JP 2019032290 A JP2019032290 A JP 2019032290A JP 2017154999 A JP2017154999 A JP 2017154999A JP 2017154999 A JP2017154999 A JP 2017154999A JP 2019032290 A JP2019032290 A JP 2019032290A
- Authority
- JP
- Japan
- Prior art keywords
- scanning
- measurement
- probe
- scan
- shape measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
本発明は、走査型プローブ顕微鏡のドリフト補正方法及びドリフト補正機能を備えた走査型プローブ顕微鏡に関し、特に、ラスター走査により計測データを取得する計測装置の計測結果に対し、副走査方向に起こる高さ方向および主走査方向の二軸に関するドリフト変形を補正する方法およびこうしたドリフト変形を補正する補正機能を備えた走査型プローブ顕微鏡に関する。 The present invention relates to a drift correction method for a scanning probe microscope and a scanning probe microscope having a drift correction function, and in particular, a height that occurs in a sub-scanning direction with respect to a measurement result of a measurement apparatus that acquires measurement data by raster scanning. The present invention relates to a method for correcting drift deformation about two axes in the direction and the main scanning direction, and a scanning probe microscope having a correction function for correcting such drift deformation.
走査型プローブ顕微鏡(SPM)では、主走査と副走査からなる探針走査動作(ラスター走査)に基づく計測によって試料表面の形状計測データを取得する。
ラスター走査では、主走査をX軸方向、副走査をY軸方向としたとき、X軸方向の主走査が終了すると、ΔYだけ副走査方向にシフトして、再度X軸方向の主走査を行い、これを繰り返すことで、試料表面の計測データを得るようにしている。
1回の主走査は比較的短時間で完了するが、ΔYずつ副走査を繰り返していくと、最初の主走査から徐々に時間が経過し、特に主走査開始直後と終了直前との間では、時間経過に伴って、計測結果に副走査方向のドリフトの影響が無視できなくなり、各主走査ライン間の相対位置関係が実際の試料形状との誤差が大きくなってしまう。
そこで、こうしたドリフト変形の補正を各主走査ラインに対して行うためには、各主走査ラインの計測時におけるドリフト量を知る必要がある。
In the scanning probe microscope (SPM), the shape measurement data of the sample surface is acquired by measurement based on a probe scanning operation (raster scanning) including main scanning and sub scanning.
In raster scanning, when main scanning is in the X-axis direction and sub-scanning is in the Y-axis direction, when main scanning in the X-axis direction ends, the main scanning in the X-axis direction is performed again by shifting by ΔY in the sub-scanning direction. By repeating this, measurement data of the sample surface is obtained.
One main scan is completed in a relatively short time. However, if the sub-scan is repeated by ΔY, the time gradually elapses from the first main scan, particularly between immediately after the start of main scan and immediately before the end. As time elapses, the influence of drift in the sub-scanning direction cannot be ignored on the measurement result, and the relative positional relationship between the main scanning lines becomes larger in error from the actual sample shape.
Therefore, in order to correct such drift deformation for each main scanning line, it is necessary to know the drift amount during measurement of each main scanning line.
特許文献1には、はじめに各主走査ラインの主走査方向に対する高さ方向の傾斜を補正し、次に各主走査ラインの平均高さを求めて、すべての主走査ラインの平均高さが等しくなるように補正することが記載されている。
非特許文献1には、複数のSPM像を取得してそれらの画像内にある共通の特徴点がどの方向へ移動しているかを確認することにより、装置のもつドリフト速度を求め、複数の計測画像から求めたドリフト速度を補間して、補正を施したい画像の各主走査ラインに対して補正を行うことが記載されている。
非特許文献2には、通常のラスター走査計測結果とドリフト補正用計測結果を組み合わせて高さ方向のドリフト補正を行うことが提案されている。ここで示される実験では、はじめ通常のラスター走査計測を行い、その後ドリフト補正用計測を行う。はじめの通常計測では、主走査は短時間で完了するためドリフトの影響は無視できるが、副走査は長時間かかるため副走査方向にドリフト変形が起き、各主走査ライン間の相対位置が実際の形状と異なってしまう。次に、主走査軸を90°回転させてから、ドリフト補正用の計測を行う。
このとき、通常計測での計測範囲の内から、副走査方向に関して狭い範囲を選択して少ない主走査ライン数で計測を行う。ドリフト補正用計測の主走査方向は通常計測における副走査方向であり、少ないライン数においては副走査方向でもドリフト量が小さいことを利用して、この結果を通常計測結果の副走査方向の高さ基準として扱う。ドリフトが高さ方向のみで水平方向には起きていないと仮定すると、計測データはxy行列形式で表すことができ、各xyにおける成分は高さzの情報として扱える。二つの計測結果にはそれぞれ同一のxy座標の結果があるため、それらの座標の点の高さzを比較することにより、通常計測での副走査方向のドリフトを補正することができる。
In
Non-Patent
At this time, a narrow range in the sub-scanning direction is selected from the measurement range in normal measurement, and measurement is performed with a small number of main scanning lines. The main scanning direction of drift correction measurement is the sub-scanning direction in normal measurement. Taking advantage of the small amount of drift in the sub-scanning direction when the number of lines is small, this result is the height of the normal measurement result in the sub-scanning direction. Treat as a standard. Assuming that drift does not occur in the horizontal direction only in the height direction, the measurement data can be expressed in the form of an xy matrix, and the component in each xy can be handled as information on the height z. Since the two measurement results have the same xy coordinate result, the drift in the sub-scanning direction in the normal measurement can be corrected by comparing the height z of the point of those coordinates.
しかし、特許文献1に記載された補正では、計測対象が凹凸を有し、各主走査ラインの平均高さが一様でない場合には、各主走査ラインの平均高さが変動することとなり、高精度な補正を行うことができないという問題がある。
また、非特許文献1に記載された補正では、一画像内で起きる時間変化するドリフト変形を、複数の計測画像から求めたドリフト量の線形補間で求めているため、実際のドリフト量からの誤差が大きくなってしまう。特に、各主走査ライン間に非線形なドリフト変形が起きていた場合は誤差が大きくなりやすい。
However, in the correction described in
Further, in the correction described in
非特許文献2に示されたドリフト補正では、プローブの探針形状に由来する畳み込みを考慮していない。一般的に、走査型プローブ顕微鏡のプローブ(探針)先端は有限の大きさをもつため、これを走査して試料をなぞると、探針形状が計測結果に畳み込まれてしまう。畳み込まれる形状は探針形状(探針を振動させる場合はその見かけ上の探針形状)に依存しているため、探針の走査方向が異なると畳み込み形状も異なる。
すなわち、形状結果としての初めの計測と、副走査方向の基準として用いる計測とで主走査方向が90°回転しているため、計測結果に畳み込まれた探針形状も異なり、その分が誤差として補正されてしまう。例えば、現在、原子間力顕微鏡で最も使用されている振幅変調モードを使用する場合、探針先端形状が数nmの曲率半径を有していたとしても、探針の振動により見かけ上の探針先端形状は数十nmになる。この探針で試料表面の凹凸な形状を走査すると、データ取得の基準となる探針接触点と、実際に試料表面に接している点が異なり、計測結果においても実際の形状と数十nm以下の誤差が発生する。周波数変調モードやコンタクトモードなどの振幅変調モード以外のモードにおいても、これと同様の誤差は発生する。
The drift correction shown in Non-Patent
That is, since the main scanning direction is rotated by 90 ° between the initial measurement as the shape result and the measurement used as the reference in the sub-scanning direction, the probe shape convoluted in the measurement result is also different, and the corresponding amount is an error. Will be corrected. For example, when using the amplitude modulation mode that is currently used most in atomic force microscopes, even if the probe tip shape has a radius of curvature of several nanometers, the apparent probe is caused by the vibration of the probe. The tip shape is several tens of nm. When the uneven surface of the sample surface is scanned with this probe, the probe contact point, which is the reference for data acquisition, is different from the actual contact with the sample surface. Error occurs. An error similar to this also occurs in modes other than the amplitude modulation mode such as the frequency modulation mode and the contact mode.
さらに、水平方向にはドリフトが起きていないと仮定しても、実際の計測においては装置由来のノイズや環境ノイズなどの計測ノイズがあるため、全く同一座標のデータを取得できない。そのため、通常のラスター走査計測結果とドリフト補正用計測結果を組み合わせ計算の精度は、組み合わせに使う点数が少ないと低くなってしまう。このドリフト補正方法では、通常のラスター走査計測結果を補正するために、組み合わせ処理は計測結果の各主走査ライン毎に行われる。この組み合わせ処理で計算に使える点数は、ドリフト補正用計測結果の主走査ライン数に等しく、リフト補正用計測結果がドリフトの影響を受けるのを防ぐため、少ない数とする必要があるため、この組み合わせ計算は計測ノイズに影響を受けやすい。 Furthermore, even if it is assumed that there is no drift in the horizontal direction, in the actual measurement, there is measurement noise such as noise derived from the apparatus and environmental noise, and therefore data with exactly the same coordinates cannot be acquired. For this reason, the accuracy of the combined calculation of the normal raster scan measurement result and the drift correction measurement result becomes low when the number of points used for the combination is small. In this drift correction method, in order to correct a normal raster scan measurement result, a combination process is performed for each main scan line of the measurement result. The number of points that can be used for calculation in this combination processing is equal to the number of main scanning lines in the drift correction measurement result, and it is necessary to reduce the number of points to prevent the lift correction measurement result from being affected by drift. Calculations are sensitive to measurement noise.
走査型プローブ顕微鏡は、半導体デバイスの製造プロセスや研究開発において、形状計測や形状計測と併せた物性計測に広く採用されている。近年の半導体デバイスの微細化に伴って計測対象の形状も縮小化されており、その寸法が100nm以下となる場合が多く、品質管理上求められる形状計測の精度は1nm以下である。
このように、高精度な寸法計測は半導体デバイスの製造管理には欠かせず、その計測精度は製品の歩留まりに大きく影響する。
Scanning probe microscopes are widely used for shape measurement and physical property measurement in combination with shape measurement in the manufacturing process and research and development of semiconductor devices. With the recent miniaturization of semiconductor devices, the shape of a measurement target is also reduced, and the size thereof is often 100 nm or less, and the accuracy of shape measurement required for quality control is 1 nm or less.
Thus, highly accurate dimension measurement is indispensable for manufacturing management of semiconductor devices, and the measurement accuracy greatly affects the yield of products.
そこで、本発明の目的は、計測中に発生したドリフトを高精度に補正することで、計測寸法が微小な半導体デバイスに対しても、高精度な形状計測を実現することにある。 Therefore, an object of the present invention is to realize highly accurate shape measurement even for a semiconductor device having a small measurement dimension by correcting a drift generated during measurement with high accuracy.
上記の課題を解決するため、本発明による走査型プローブ顕微鏡のドリフト補正方法は、プローブを走査して試料表面の形状計測を行う走査型プローブ顕微鏡のドリフト補正方法であって、試料表面上の走査ラインに沿ってプローブを走査することにより、当該走査ラインに沿った形状計測を行うとともに、プローブを移動させ、次の走査ラインに沿ってプローブを走査して形状計測を繰り返す第1の工程と、第1の工程において特定の走査ラインに沿った形状計測終了後に、試料表面に対し予め設定した参照形状計測用走査ラインに沿ってプローブを走査させ、当該走査ラインに沿った参照形状を計測する第2の工程と、第2の工程による今回の参照形状計測結果と、以前に計測した参照形状計測結果を対比することで、両者間の時間経過により発生したドリフト量を演算する第3の工程と、第3の工程で演算されたドリフト量に基づいて、第1の工程で得られた今回の形状計測結果を補正する第4の工程とにより構成される。
In order to solve the above problems, a drift correction method for a scanning probe microscope according to the present invention is a drift correction method for a scanning probe microscope that scans a probe to measure the shape of the sample surface, and scans the sample surface. Scanning the probe along the line to perform shape measurement along the scan line, moving the probe, scanning the probe along the next scan line, and repeating the shape measurement; After the shape measurement along the specific scanning line is completed in the first step, the probe is scanned along the reference shape measurement scanning line set in advance on the sample surface, and the reference shape along the scanning line is measured. By comparing the current reference shape measurement result of
また、本発明による走査型プローブ顕微鏡は、プローブを主走査方向と副走査方向に走査させるラスター走査によって試料表面の形状計測を行う走査型プローブ顕微鏡であって、プローブを試料表面の各主走査ラインに沿って走査させる主走査機構と、所定の主走査ラインに位置決めする副走査機構と、主走査機構と副走査機構を制御する制御装置と、主走査機構により前記プローブを走査した際に得られる計測結果を各主走査ライン毎に記録する記録装置と、記録装置が記録した計測結果を演算する演算装置とを備えており、制御機構は、特定の主走査ラインに沿った計測用走査が終了したと判断した際、副走査機構及び主走査機構に指令を送出し、予め設定した参照形状計測用走査ラインに沿って参照形状計測走査を行わせ、演算装置は、記録装置からの計測結果に基づいて、今回得られた参照形状計測結果と以前に得られた参照形状計測走査とを比較し、両者間の時間経過に基づくドリフト量を演算し、今回得られた計測用走査による計測結果を補正するようにした。 The scanning probe microscope according to the present invention is a scanning probe microscope that measures the shape of the sample surface by raster scanning in which the probe is scanned in the main scanning direction and the sub-scanning direction. Obtained when the probe is scanned by the main scanning mechanism, a sub-scanning mechanism for positioning to a predetermined main scanning line, a control device for controlling the main scanning mechanism and the sub-scanning mechanism, and the main scanning mechanism. It has a recording device that records measurement results for each main scan line, and an arithmetic unit that calculates the measurement results recorded by the recording device, and the control mechanism ends the scanning for measurement along a specific main scan line. When it is determined that the reference shape measurement scan is performed, a command is sent to the sub-scanning mechanism and the main scanning mechanism to perform a reference shape measurement scan along a preset reference shape measurement scan line. Based on the measurement result from the recording device, the reference shape measurement result obtained this time was compared with the reference shape measurement scan obtained previously, the drift amount based on the passage of time between them was calculated, and this time obtained The measurement result by the measurement scan was corrected.
本発明によれば、今回得られた参照形状計測結果と以前に得られた参照形状計測走査とを比較することで、両者間の時間経過に基づく、高さ方向と主走査方向の二軸方向のドリフト量を正確に演算することができ、このドリフト量に基づき今回得られた計測結果を補正することで、微小な半導体デバイスであっても、所要の計測精度を実現することが可能となる。 According to the present invention, by comparing the reference shape measurement result obtained this time with the reference shape measurement scan obtained previously, the biaxial direction of the height direction and the main scanning direction based on the passage of time between the two The amount of drift can be accurately calculated, and the required measurement accuracy can be achieved even with a small semiconductor device by correcting the measurement result obtained this time based on this drift amount. .
以下、本発明の実施例を図面を参照しつつ説明する。 Embodiments of the present invention will be described below with reference to the drawings.
本実施例では、原子間力顕微鏡(AFM)によるシリコン製ラインパターンの形状計測を行う。計測結果であるAFM像を歪ませる原因には、スキャナ駆動素子のヒステリシスやクリープ、熱ドリフトがある。これらのうち、スキャナ駆動素子のヒステリシスとクリープについては、スキャナを位置センサで計測し、その結果を利用してフィードバック制御を行うことで補正することができる。
そこで、本実施例では、ヒステリシスとクリープの影響を熱ドリフトと分離するために、位置センサを利用したフィードバック制御機能を備えたAFMを使用する。
In this embodiment, the shape of a silicon line pattern is measured by an atomic force microscope (AFM). Causes of distorting the AFM image that is the measurement result include hysteresis, creep, and thermal drift of the scanner driving element. Among these, the hysteresis and creep of the scanner driving element can be corrected by measuring the scanner with a position sensor and performing feedback control using the result.
Therefore, in this embodiment, an AFM having a feedback control function using a position sensor is used in order to separate the influence of hysteresis and creep from thermal drift.
本実施例では、一番目の主走査ラインを参照形状と設定し、試料形状計測と参照形状計測を交互に繰り返すことでドリフト量の時間変化を調べる。つまり、主走査の時系列で奇数番目の主走査では副走査方向に順次移動しながら試料形状を計測し、偶数番目の走査では最初の位置に戻って参照形状を計測するようなプローブ(探針)制御を行う。
ここで、図1において、X軸方向をプローブの主走査方向、Y軸方向をプローブの副走査方向、i(i=1,2,…,n)をプローブが計測用主走査を行う主走査ライン番号、j(1,2)を役割番号(計測用の主走査を1、補正量算出用の主走査、すなわち、参照形状計測用主走査を2)とし、各主走査をLijとしたとき、最初の計測用主走査L11を行う。計測用主走査L11の計測結果は参照形状として設定され、次の主走査では、再度戻り方向の主走査を行った後、計測用主走査L11と同じ主走査ラインに沿って、補正量算出用主走査L12を計測する。なお、L11は一番目の試料形状計測の結果でもあり、参照形状ということもできる。
In the present embodiment, the first main scanning line is set as a reference shape, and the time change of the drift amount is examined by alternately repeating the sample shape measurement and the reference shape measurement. That is, a probe (probe) that measures the sample shape while sequentially moving in the sub-scanning direction in the odd-numbered main scan in the time series of the main scan, and returns to the first position and measures the reference shape in the even-numbered scan. ) Control.
Here, in FIG. 1, the X-axis direction is the main scanning direction of the probe, the Y-axis direction is the sub-scanning direction of the probe, and i (i = 1, 2,..., N) is the main scanning in which the probe performs measurement main scanning. The line number, j (1,2) is a role number (measurement main scan is 1, correction amount calculation main scan, ie, reference shape measurement main scan is 2), and each main scan is L ij . At that time, the first main scanning L 11 for measurement is performed. Measurement results of the measurement main scanning L 11 is set as a reference shape, the next main scan, after the main scan again return direction, along the same main scanning line as the measurement main scanning L 11, the correction amount measuring the calculation main scanning L 12. Note that L 11 is also the result of the first sample shape measurement, and can also be referred to as a reference shape.
次に、−ΔYだけ副走査方向に移動し、2回目の計測用主走査L21を行う。その後、戻り方向の主走査と並行して再びΔYだけ副走査方向に戻り、L11と同じ主走査ラインに沿って、主走査L21で得られた計測結果を補正するための補正量算出用主走査L22を行う。
次に、戻り方向の主走査と並行して−2ΔYだけ副走査方向に移動し、3回目の計測用主走査L31を行い、再び戻り方向の主走査と並行して2ΔYだけ副走査方向に戻し、L11と同じ主走査ラインに沿って、主走査L31で得られた計測結果を補正するための補正量算出用主走査L32を行う。主走査L11,L12,L21,L22,L31,L32までの計測順序を図2に示す。
Next, it moves in the sub-scanning direction by −ΔY, and the second measurement main scan L 21 is performed. Thereafter, in parallel with the main scan in the return direction, the control returns to the sub-scan direction again by ΔY, and is used for calculating a correction amount for correcting the measurement result obtained in the main scan L 21 along the same main scan line as L 11 . performing the main scanning L 22.
Next, it moves in the sub-scanning direction by −2ΔY in parallel with the main scanning in the return direction, performs the third measurement main scan L 31 , and again in the sub-scanning direction by 2ΔY in parallel with the main scanning in the return direction. back, along the same main scanning line as L 11, performs correction amount calculation main scanning L 32 for correcting the measurement results obtained in the main scanning L 31. FIG. 2 shows the measurement sequence up to the main scans L 11 , L 12 , L 21 , L 22 , L 31 and L 32 .
このように、補正量算出用主走査Li2は、最初の計測用主走査L11を行った時点と、主走査ライン番号iで計測用主走査Li1を行った時点との間で生じたドリフト量を検出するため、計測用主走査L11と同じ主走査ラインで行うものである。
なお、本実施例でも、通常の走査型プローブ顕微鏡と同様に、一つの主走査が終了した後の戻り方向の主走査は、副走査方向の移動と並行して行うので、走査ライン番号iが増大しても、計測用主走査終了後、補正量算出用主走査開始に到るまでの時間はさほど増加しない。
In this way, the correction amount calculation main scan L i2 occurs between the time when the first measurement main scan L 11 is performed and the time when the measurement main scan L i1 is performed with the main scan line number i. for detecting the drift amount, it is performed by the same main scanning line as the measurement main scanning L 11.
In this embodiment as well, as in a normal scanning probe microscope, the main scanning in the return direction after one main scanning is completed is performed in parallel with the movement in the sub-scanning direction. Even if it increases, the time from the end of the measurement main scan to the start of the correction amount calculation main scan does not increase much.
このように、n番目の主走査ラインで、計測用主走査Ln1を行った後、その都度L11と同じ主走査ラインに戻り、この計測用主走査Ln1で得られた計測結果を補正するための補正量算出用主走査Ln2をL11と同じ主走査ラインに沿って行うことを繰り返す。
すなわち、図1に示すように、プローブ走査による計測時、時系列順には、L11,L12,L21,L22,L31,L32,・・・Ln1,Ln2となる。なお、それぞれの主走査Lijで得られるデータは、三次元点群で構成されている。
In this way, after the measurement main scan L n1 is performed on the nth main scan line, the measurement scan returns to the same main scan line as L 11 each time, and the measurement result obtained by this measurement main scan L n1 is corrected. The correction amount calculation main scan L n2 for this is repeated along the same main scan line as L 11 .
That is, as shown in FIG. 1, when measured by the probe scan, the chronological order, L 11, L 12, L 21,
前述のように、特にn、すなわちプローブが計測用主走査を行う主走査ライン番号が増加するにつれ、最初の計測用主走査L11を行った時点から時間が経過し、ドリフト等の影響で、試料基準にずれが発生する。そこで、特定の主走査ライン番号iで計測用主走査Li1を行った後、その都度、最初の主走査ライン番号1に戻り、計測用主走査Li1で得られた計測結果を補正するため、参照形状計測用走査ラインに沿って補正量算出用主走査Li2を行い、これにより得られた計測結果により補正値を求めることで、それぞれの参照形状計測用走査ラインを計測した時点における、計測開始時点からの試料基準のずれを正確に補正することが可能となる。
As described above, in particular, as n increases, that is, as the main scanning line number on which the probe performs the measurement main scan increases, the time elapses from the time when the first measurement main scan L 11 is performed. Deviation occurs in the sample standard. Therefore, after the measurement main scan L i1 is performed at a specific main scan line number i, the measurement returns to the first main
補正量を求めるために、Li2の計測結果はL11と最大限一致するようマッチング計算され、ドリフト量が求められる。Li2とL11はそれぞれ、同一の位置センサ座標で形状を計測した結果であるため、簡易的には、重心Gi2とG11を求めると、その差ΔG=Gi2−G11がドリフト量として求められる。
一方、AFM計測結果には探針位置制御の不安定性や計測中の環境ノイズがあることや、主走査方向のドリフトなどに起因して、厳密にはLi2とL11はそれぞれ異なる形状結果になっている。その場合は、上記の重心を利用したマッチング方法では最適とはいえない場合があり、高精度化にはより一般的なマッチング手法が必要となる。
具体的には、点群マッチングの代表的な手法であるICP(Iterative Closest Point)法やそれに派生する方法、もしくはその他の点群マッチング法で演算を用い、L11を構成している一方の点群P11と、Li2を構成しているもう一方の点群Pi2が最大限一致するよう計算され、その結果から、Li2計測時における高さ方向と主走査方向の二軸方向のドリフト量が求まり、これが補正値となる。
In order to obtain the correction amount, matching calculation is performed so that the measurement result of L i2 matches L 11 as much as possible, and the drift amount is obtained. Since L i2 and L 11 are the results of measuring the shape with the same position sensor coordinates, when the centroids G i2 and G 11 are obtained simply, the difference ΔG = G i2 −G 11 is the drift amount. As required.
On the other hand, due to the instability of the probe position control, environmental noise during measurement, and drift in the main scanning direction in the AFM measurement result, strictly speaking, L i2 and L 11 have different shape results. It has become. In that case, the above-described matching method using the center of gravity may not be optimal, and a more general matching method is required for higher accuracy.
Specifically, one of the points constituting L 11 using arithmetic in the ICP (Iterative Closest Point) method, which is a representative method of point cloud matching, a method derived therefrom, or other point cloud matching methods The calculation is performed so that the group P 11 and the other point group P i2 constituting L i2 match each other as much as possible. From the result, the drift in the biaxial direction in the height direction and the main scanning direction during the measurement of L i2 is calculated. The amount is obtained and this is the correction value.
例えば、ICP法では図3に示すように、一方の点群の各点P11k(k=1,2,…,m)に対する、もう一方の点群内の各点Pi2kとの距離を求め、その最小値を最近傍点距離Dkとする。そしてDkの二乗の総和Sl=Σ(Dk 2)(l=1,2、・・・、s:sは並進移動回数)を求める計算を、点群Pi2の並進移動を任意の間隔で行いながらs回繰り返す。図4に、高さ方向に並進移動を行いながら総和Slを求め、並進移動量に関するグラフにプロットした例を示す。並進移動量に関する総和Slに対して、例えば二次関数でフィッティングを行うと、その最小値が求められる。この時の並進移動量が高さ方向の一時的な補正量として求まり、それだけ点群Pi2を移動させる。
上記の操作を、高さ方向と主走査方向の二軸に関して、一時的な補正量が0に収束するまで繰り返す。点群Pi2の初めの位置から、移動後の最終的な位置への、二軸方向の移動量が、L11計測時からLi2計測時までの間に起きた高さ方向と主走査方向の二軸方向のドリフト量であり、これが補正値Ciとなる。
For example, in the ICP method, as shown in FIG. 3, the distance between each point P 11k (k = 1, 2,..., M) in one point group and each point P i2k in the other point group is obtained. The minimum value is the nearest neighbor point distance D k . Then, a calculation for obtaining the sum of squares of D k S 1 = Σ (D k 2 ) (l = 1, 2,..., S: s is the number of times of translation), and the translation of the point group P i2 is arbitrarily set. Repeat s times at intervals. FIG. 4 shows an example in which the total sum S 1 is obtained while performing translation in the height direction and plotted on a graph relating to the amount of translation. For example, when fitting is performed with a quadratic function on the total sum S 1 regarding the translational movement amount, the minimum value is obtained. The translational movement amount at this time is obtained as a temporary correction amount in the height direction, and the point group P i2 is moved accordingly.
The above operation is repeated until the temporary correction amount converges to 0 for the two axes in the height direction and the main scanning direction. The amount of movement in the biaxial direction from the initial position of the point group P i2 to the final position after movement occurs in the height direction and the main scanning direction between the time of L 11 measurement and the time of L i2 measurement. The amount of drift in the biaxial direction is a correction value C i .
最初の形状計測結果のL11を除いた、補正対象の計測結果L21,L31,・・・,Ln1の各Li1は、例えばその前後の時系列における補正値Ciの補間から求まる補正量で補正され、補正後の計測結果L11,L’21,L’31,・・・,L’n1が求まる。二軸に関する補正量は、例えばC(i-1)とCiから線形補間を行い、(Ci−C(i-1))/2 により求めることができる。 Each L i1 of the measurement results L 21 , L 31 ,..., L n1 excluding L 11 of the first shape measurement result is obtained, for example, by interpolation of correction values C i in the time series before and after that. The corrected measurement results L 11 , L ′ 21 , L ′ 31 ,..., L ′ n1 are obtained. The correction amount for the two axes can be obtained by (C i −C (i−1) ) / 2 by performing linear interpolation from C (i−1) and C i , for example.
このような補正は、各走査L11,L12,L21,L22,L31,L32,・・・Ln1,Ln2で得られた計測結果をすべてメモリに記憶し、計測終了後にオフライン処理で行ってよいし、各計測と並行してリアルタイム処理で行ってもよい。リアルタイム処理の場合はFPGAやDSPといったデジタル信号処理回路により実現でき、処理結果を位置センサ信号の補正に用いることができる。
Such correction, each scanning L 11, L 12, L 21 ,
次に、図5を用いて、以上で説明した形状計測データの補正を行うための走査型プローブ顕微鏡の構成を具体的に説明する。
原子間力顕微鏡を用いてシリコン製ラインパターンの形状を計測するような場合、一般的に計測結果であるAFM像を歪ませる原因として、スキャナ駆動素子のヒステリシスやクリープ、熱ドリフトが挙げられる。
これらのうち、ヒステリシスとクリープについては、スキャナを位置センサで計測し、その結果を利用してフィードバック制御を行うことで解決できるので、ここでは、ヒステリシスとクリープの影響を熱ドリフトと分離するために、位置センサを利用したフィードバック制御機能をもつAFMを使用する。
Next, the configuration of the scanning probe microscope for correcting the shape measurement data described above will be specifically described with reference to FIG.
When the shape of a silicon line pattern is measured using an atomic force microscope, the AFM image that is the measurement result is generally distorted due to the hysteresis, creep, and thermal drift of the scanner driving element.
Among these, hysteresis and creep can be solved by measuring the scanner with a position sensor and performing feedback control using the result, so here we will separate the effects of hysteresis and creep from thermal drift. An AFM having a feedback control function using a position sensor is used.
この実施例では、一番目の主走査ラインを参照形状と設定し、試料形状計測と参照形状計測を交互に繰り返すことでドリフト量の時間変化を調べる。つまり、主走査の時系列で奇数番目の主走査では副走査方向に順次移動しながら試料形状を計測し、偶数番目の走査では最初の位置に戻って参照形状を計測するような探針制御を行う。
このように、主走査ラインは異なる役割をもつ二つに分類され、一つ目は補正対象である計測結果として、二つ目は二軸方向(主走査方向と高さ方向)の補正量算出用として計測する。
In this embodiment, the first main scanning line is set as a reference shape, and the time variation of the drift amount is examined by alternately repeating the sample shape measurement and the reference shape measurement. In other words, probe control is performed such that the sample shape is measured while sequentially moving in the sub-scanning direction in the odd-numbered main scan in the time series of the main scan, and the reference shape is measured by returning to the first position in the even-numbered scan. Do.
As described above, the main scanning lines are classified into two having different roles, the first is the measurement result to be corrected, the second is the correction amount calculation in the biaxial direction (main scanning direction and height direction). Measure for use.
図5に示すように、原子間力顕微鏡1では、粗動用移動機構を内蔵する試料ステージ2の上にウェハ等の試料3を搭載しており、この試料3の表面に対してカンチレバー4の先端に設けられた探針5が臨んでいる。カンチレバー4は、位置決め機構を構成するXYZ微動機構6に装着されており、XYZ微動機構6は、試料3の表面に対して配置される探針5をX軸方向(主走査方向)、Y軸方向(副走査方向)、Z軸方向(試料表面に対する高さ方向)に移動させる機能、および、X軸、Y軸、Z軸の移動量をリアルタイムでモニタする位置センサ7を有している。なお、X軸、Y軸、Z軸は直交三次元座標系を形成している。
こうして、カンチレバー4およびその先端の探針5は、試料3の表面に対して、試料表面の計測の際に、主走査(X軸方向の走査動作)と副走査(Y軸方向の走査動作)から成る探針走査動作に基づいて微小距離(「nm」レベル等)にて移動させられ、かつ、その微小距離の移動量もモニタすることができる。
As shown in FIG. 5, in the
Thus, the
試料表面の計測の際には、試料3の表面と探針5の先端の間には原子間力が作用し、予め設定された基準値に基づいて試料表面と探針5の間の距離は一定に保たれるよう、制御器8によって制御される。制御器8は、カンチレバー4の変形を検出する光てこ式光学検知装置9からの検知信号の入力を受け、この検知信号と基準値を比較し、XYZ微動機構6のZ微動部をフィードバック制御し、試料表面と探針の間の距離を一定に保つ。また、制御器8は位置センサ7からの信号を入力し、X軸、Y軸の位置制御指示値と位置センサ7からの信号が示す値が一致するよう、XYZ微動機構6のXY微動部の動作をフィードバック制御する。探針5が試料3の表面をXY走査するとき、これらの制御状態は常に維持され、そのとき位置センサ7で得られた、XYZ微動機構6のX軸、Y軸、Z軸に関する軌跡が、試料表面の凹凸形状に係る計測データ(三次元点群で表される形状計測データ)としてコンピュータ等からなる計測器本体10に供給される。
At the time of measuring the sample surface, an atomic force acts between the surface of the
計測器本体10は、原子間力顕微鏡1の計測動作を制御するとともに、得られた形状計測データを内蔵するメモリに保存し、必要に応じて演算処理し、画像化処理して、ディスプレイ等に表示する機能を有している。したがって、計測器本体10のメモリには、データ保存領域とともに、計測プログラム、形状計測データ処理プログラム、画像化プログラムが格納されている。
なお、原子間力顕微鏡1の計測動作では、制御器8を介してXYZ微動機構6のXYZ微動部の動作を前述のようにフィードバック制御して、探針5に対して探針走査移動および計測データ収集を実行する。
さらに計測器本体10のメモリには、前述した形状計測データの補正を実施するための補正プログラムも格納されている。計測器本体10の演算処理部が、メモリに格納された補正プログラムを読み出し、これを実行すると、前述したように、主走査ライン番号iで計測用主走査Li1を実行した後、最初の計測用主走査L11と同じラインで補正量算出用主走査Li2の実行を繰り返し、ドリフト量の補正を行う。
The measuring instrument
In the measurement operation of the
Further, the memory of the measuring instrument
なお、以上の実施例では、走査型プローブ顕微鏡として原子間力顕微鏡1を例示しているが、本発明は、例示した装置構成以外の原子間力顕微鏡、および、原子間力顕微鏡以外の走査型プローブ顕微鏡にも広く適用できるものである。
また、すべての計測用主走査Li1に対し、最初の計測用主走査L11と同じラインに戻って補正量算出用主走査Li2を行っているが、さまざまな変更が可能である。
In the above embodiment, the
Further, the correction amount calculation main scan L i2 is performed for all the measurement main scans L i1 by returning to the same line as the first measurement main scan L 11 , but various changes are possible.
すなわち、計測用主走査Li1を複数回行った後、例えば、5回毎、すなわち、L11
L51、L10 1、L15 1・・・の計測用主走査に対してのみ、補正量算出用主走査L12,
L52、L10 2、L15 2を行うようにしてもよい。補正量算出用主走査を行う間隔が増えるほど、補正量算出用主走査に要する時間を短縮できるが、その分補正精度が低下するため、要求される計測精度に応じて補正量算出用主走査を行う間隔を設定することにより、計測時間の短縮を図ることができる。
That is, after the measurement main scan L i1 is performed a plurality of times, for example, every 5 times, that is, L 11
L 51, L 10 1, L 15 only for 1 ... of the measurement main scanning correction amount calculation main scanning L 12,
L 52, L 10 2, may be performed L 15 2. As the interval for performing the correction amount calculation main scan increases, the time required for the correction amount calculation main scan can be shortened. However, since the correction accuracy decreases accordingly, the correction amount calculation main scan is performed according to the required measurement accuracy. By setting the interval for performing the measurement, the measurement time can be shortened.
さらに、補正量算出用主走査、すなわち参照形状の設定は、最初の計測用主走査L11以外、種々変更することができる。例えば、試料の中央部付近を参照形状としてもよいし、試料の形状計測を行うための主走査軸と直交する方向の走査にしてもよい。また、例示したラスター走査ではない、非ラスター走査にしてもよい。ただし、それらの場合は参照形状計測も同じ走査方法で行うことになる。
また、計測用主走査ラインの設定は、一番初めに計測する主走査ラインにする方法の他、任意の時点の計測用主走査ラインにしてもよい。これにより、補正量算出用主走査のために行う副走査方向の大きな移動操作を減らすことができる。例えば、補正量算出用主走査を直近の計測用主走査ライン位置に戻って行う操作を繰り返す。
Furthermore, the correction amount calculation main scan, that is, the setting of the reference shape, can be variously changed except for the first measurement main scan L 11 . For example, the vicinity of the center of the sample may be used as a reference shape, or scanning in a direction orthogonal to the main scanning axis for measuring the shape of the sample may be performed. Further, non-raster scanning may be used instead of the illustrated raster scanning. However, in these cases, the reference shape measurement is also performed by the same scanning method.
The measurement main scan line may be set to a measurement main scan line at an arbitrary time in addition to the method of setting the main scan line to be measured first. As a result, a large movement operation in the sub-scanning direction performed for the correction amount calculating main scan can be reduced. For example, the operation of performing the correction amount calculation main scan by returning to the most recent measurement main scan line position is repeated.
ただし、この場合、図6に示すように、補正量算出で求まる値は、計測開始時点からのドリフト量ではなく、直近の計測用主走査ライン計測時点からのドリフト量になるため、一つ前の補正量算出用主走査の時点から、直近の計測用主走査ラインの時点までのドリフト量は未知になる。
そこで、計測開始時点からのドリフト量を知るためには、例えば図7に示すように、一つ前の補正量算出用主走査から求めたドリフト量と、今回求まったドリフト量の平均を、その未知のドリフト量と仮定すると、任意の時点における計測開始時点からのドリフト量を求めることができる。
However, in this case, as shown in FIG. 6, the value obtained by calculating the correction amount is not the drift amount from the measurement start point, but the drift amount from the latest measurement main scan line measurement point. The drift amount from the time point of the correction amount calculation main scan to the time point of the latest measurement main scan line is unknown.
Therefore, in order to know the drift amount from the measurement start time, for example, as shown in FIG. 7, the average of the drift amount obtained from the previous correction amount calculation main scan and the drift amount obtained this time is Assuming an unknown drift amount, it is possible to obtain a drift amount from a measurement start time at an arbitrary time.
以上説明したように、本発明によれば、微小な半導体デバイスに対しても所要の計測精度を実現できるので、半導体製造分野等で秘匿採用されることが期待できる。 As described above, according to the present invention, the required measurement accuracy can be realized even for a minute semiconductor device, so that it can be expected to be employed secretly in the field of semiconductor manufacturing.
1;原子間力顕微鏡 2;試料ステージ 3;試料
4;カンチレバー 5;探針 6;XYZ微動機構
7;位置センサ 8;制御器 9;光てこ式光学検知装置
10;計測器本体
DESCRIPTION OF
Claims (6)
試料表面上の走査ラインに沿ってプローブを走査することにより、当該走査ラインに沿った形状計測を行うとともに、前記プローブを移動させ、次の走査ラインに沿って前記プローブを走査して形状計測を繰り返す第1の工程と、
前記第1の工程において特定の走査ラインに沿った形状計測終了後に、試料表面に対し予め設定した参照形状計測用走査ラインに沿って前記プローブを走査させ、当該走査ラインに沿った参照形状を計測する第2の工程と、
前記第2の工程による今回の参照形状計測結果と、以前に計測した参照形状計測結果を対比することで、両者間の時間経過により発生したドリフト量を演算する第3の工程と、
前記第3の工程で演算されたドリフト量に基づいて、前記第1の工程で得られた今回の形状計測結果を補正する第4の工程とからなる走査型プローブ顕微鏡のドリフト補正方法。 A scanning probe microscope drift correction method for measuring the shape of the sample surface by scanning a probe,
By scanning the probe along the scanning line on the sample surface, the shape measurement is performed along the scanning line, the probe is moved, and the probe is scanned along the next scanning line to perform the shape measurement. A first step to repeat;
After the shape measurement along the specific scanning line is completed in the first step, the probe is scanned along the reference shape measurement scanning line set in advance on the sample surface, and the reference shape along the scanning line is measured. A second step of:
A third step of calculating the drift amount generated by the passage of time between the two by comparing the current reference shape measurement result of the second step and the previously measured reference shape measurement result;
A drift correction method for a scanning probe microscope comprising a fourth step of correcting the current shape measurement result obtained in the first step based on the drift amount calculated in the third step.
前記プローブを試料表面の走査ラインに沿って走査させる走査機構と、
所定の走査ラインに位置決めする位置決め機構と、
前記走査機構と前記位置決め機構を制御する制御装置と、
前記走査機構により前記プローブを走査した際に得られる計測結果を各走査ライン毎に記録する記録装置と、
前記記録装置が記録した計測結果を演算する演算装置とを備え、
前記制御装置は、特定の走査ラインに沿った計測用走査が終了した判断した際、前記走査機構及び前記位置決め機構に指令を送出し、予め設定した参照形状計測用走査ラインに沿って参照形状計測走査を行わせ、
前記演算装置は、前記記録装置からの計測結果に基づいて、今回得られた参照形状計測結果と以前に得られた参照形状計測走査とを比較し、両者間の時間経過に基づくドリフト量を演算し、今回得られた計測用走査による計測結果を補正するようにしたことを特徴とする走査型プローブ顕微鏡。 A scanning probe microscope that scans the probe and measures the shape of the sample surface,
A scanning mechanism for scanning the probe along a scanning line on the sample surface;
A positioning mechanism for positioning to a predetermined scanning line;
A control device for controlling the scanning mechanism and the positioning mechanism;
A recording apparatus for recording a measurement result obtained when the probe is scanned by the scanning mechanism for each scanning line;
An arithmetic device for calculating the measurement result recorded by the recording device,
When the control device determines that the measurement scan along the specific scan line is completed, the control device sends a command to the scan mechanism and the positioning mechanism, and performs a reference shape measurement along the preset reference shape measurement scan line. Let me scan,
The arithmetic device compares the reference shape measurement result obtained this time with the reference shape measurement scan obtained previously based on the measurement result from the recording device, and calculates the drift amount based on the passage of time between the two. A scanning probe microscope characterized in that the measurement result obtained by the measurement scan obtained this time is corrected.
The scanning probe microscope according to claim 5, wherein the positioning mechanism moves the probe in a direction intersecting a scanning direction of the scanning mechanism and positions the probe on a next scanning line.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017154999A JP2019032290A (en) | 2017-08-10 | 2017-08-10 | Drift correction method of scan type probe microscope, and scan type probe microscope with drift correction function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017154999A JP2019032290A (en) | 2017-08-10 | 2017-08-10 | Drift correction method of scan type probe microscope, and scan type probe microscope with drift correction function |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019032290A true JP2019032290A (en) | 2019-02-28 |
Family
ID=65524308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017154999A Pending JP2019032290A (en) | 2017-08-10 | 2017-08-10 | Drift correction method of scan type probe microscope, and scan type probe microscope with drift correction function |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019032290A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022024370A1 (en) * | 2020-07-31 | 2022-02-03 | 昭和電工マテリアルズ株式会社 | Surface analysis method, surface analysis system, and surface analysis program |
CN114236181A (en) * | 2021-12-02 | 2022-03-25 | 中国电子科技集团公司第十三研究所 | AFM probe measuring method, device, control equipment and storage medium |
CN114359084A (en) * | 2021-12-27 | 2022-04-15 | 中山大学 | AFM thermal drift image correction method, system, medium and device based on vector machine |
WO2023283048A1 (en) * | 2021-07-08 | 2023-01-12 | Bruker Nano, Inc. | Afm imaging with real time drift correction |
-
2017
- 2017-08-10 JP JP2017154999A patent/JP2019032290A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022024370A1 (en) * | 2020-07-31 | 2022-02-03 | 昭和電工マテリアルズ株式会社 | Surface analysis method, surface analysis system, and surface analysis program |
JP7067686B1 (en) * | 2020-07-31 | 2022-05-16 | 昭和電工マテリアルズ株式会社 | Surface analysis methods, surface analysis systems, and surface analysis programs |
WO2023283048A1 (en) * | 2021-07-08 | 2023-01-12 | Bruker Nano, Inc. | Afm imaging with real time drift correction |
CN114236181A (en) * | 2021-12-02 | 2022-03-25 | 中国电子科技集团公司第十三研究所 | AFM probe measuring method, device, control equipment and storage medium |
CN114236181B (en) * | 2021-12-02 | 2023-10-20 | 中国电子科技集团公司第十三研究所 | AFM probe measuring method, device, control equipment and storage medium |
CN114359084A (en) * | 2021-12-27 | 2022-04-15 | 中山大学 | AFM thermal drift image correction method, system, medium and device based on vector machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019032290A (en) | Drift correction method of scan type probe microscope, and scan type probe microscope with drift correction function | |
US5644512A (en) | High precision calibration and feature measurement system for a scanning probe microscope | |
JP2007218711A (en) | Method for measuring measurement target pattern using electron microscope device | |
TWI688986B (en) | Charged particle beam device | |
KR102194152B1 (en) | Scanning electron microscope | |
KR101187957B1 (en) | Charged particle beam device | |
CN106796246B (en) | Precision probe deployment in an automated scanning probe microscope system | |
US8296860B2 (en) | Atomic force microscopy true shape measurement method | |
US20130081159A1 (en) | Advanced atomic force microscopy scanning for obtaining a true shape | |
JP2005037205A (en) | Scanning probe microscope and measuring method of the same | |
JP6135820B2 (en) | Scanning probe microscope | |
US20080298671A1 (en) | Method For Increasing The Accuracy Of The Positioning Of A First Object Relative To A Second Object | |
JP2018005974A (en) | Charged particle beam device | |
US20230245851A1 (en) | Method for calibrating a scanning charged particle microscope | |
TWI847994B (en) | High speed atomic force profilometry of large areas | |
KR101738257B1 (en) | Probe alignment measurement method for probe rotary type atomic force microscope | |
TWI734383B (en) | Carrier movement control device and charged particle beam system | |
JP2021190407A (en) | Electron microscope and focus adjustment method thereof | |
JP4490793B2 (en) | Three-dimensional measurement method | |
JP2010038856A (en) | Scanning probe microscope | |
JP2003028772A (en) | Scanning probe microscope and its measurement setting method | |
JP2009058479A (en) | Method for correcting measured shape data, program for correcting measured shape data, and scanning type probe microscope | |
JP4882304B2 (en) | Coordinate correction apparatus, coordinate correction method, and program used therefor | |
JP2007218676A (en) | Positioning method of measuring position of scanning probe microscope | |
JP2007248417A (en) | Method for controlling probe of scanning probe microscope |